
For Review Only

 

 

 

 

 

 

Global invertibility of Sobolev maps 
 

 

Journal: Advances in Calculus of Variations 

Manuscript ID ACV.2018.0053 

Manuscript Type: Research Article 

Date Submitted by the Author: 04-Sep-2018 

Complete List of Authors: Henao, Duvan; Pontificia Universidad Catolica de Chile, Facultad de 
Matemáticas 
Mora-Corral, Carlos; Universidad Autonoma de Madrid, Mathematics 
Oliva, Marcos; PiperLab 

Classifications -- go to 
www.ams.org/msc to find your 

classifications: 
26B10, 74B20, 49J45, 74G65, 55M25 

Keywords: Global invertibility, Sobolev maps, Nonlinear elasticity 

  

Note: The following files were submitted by the author for peer review, but cannot be converted to 
PDF.  You must view these files (e.g. movies) online. 

cavitationboundary.zip 
leakageboundary.zip 

 

 

http://www.degruyter.de/journals/acv

Advances in Calculus of Variations



For Review Only

Global invertibility of Sobolev maps

Duvan Henao, Carlos Mora-Corral and Marcos Oliva

August 29, 2018

Abstract

We define a class of Sobolev W 1,p(Ω,Rn) functions, with p > n− 1, such that its trace on ∂Ω is also
Sobolev, and do not present cavitation in the interior or on the boundary. We show that if a function in
this class has positive Jacobian and coincides on the boundary with an injective map, then the function
is itself injective. We then prove the existence of minimizers within this class for the type of functionals
that appear in nonlinear elasticity.

1 Introduction

Let Ω be a bounded open set of Rn and consider a map u : Ω̄ → Rn such that u is locally invertible and
coincides on ∂Ω with an invertible map u0 : Ω̄ → Rn. A classic question in topology is to ascertain extra
conditions on u to conclude that u is globally invertible.

The question of global invertibility was revitalized with the study of nonlinear elasticity. In that theory,
u : Ω → Rn represents the deformation of a body that occupies the set Ω in its reference configuration.
Typically, u is assumed to be in some Sobolev space. A realistic deformation u is required to satisfy detDu >
0, because this condition guarantees the orientation-preserving character of the map. For sufficiently regular
u, that condition implies the local invertibility of u, thanks to the inverse function theorem. The non-
interpenetration of matter is a physical requirement on a deformation stating that two different material
points cannot be mapped to the same point. This expresses the injectivity (or invertibility) of the deformation
u. It is also common in nonlinear elasticity to impose Dirichlet boundary conditions on u, so that u = u0

on ∂Ω for some deformation u0 : Ω → Rn, which, again, has to be invertible. Hence, it is natural to ask
whether u is also invertible.

The first result for global invertibility in Sobolev spaces was due to Ball [3]. He proved the invertibility
of a Sobolev map W 1,p with p > n such that detDu > 0 and u coincides on ∂Ω with an invertible map.
Developments and refinements of his result, as well as other approaches to invertibility in the context of
nonlinear elasticity, are [8, 42, 43, 37, 35, 9, 23, 25, 26].

The starting point of this work is the paper by Barchiesi et al. [6], in which it is defined a class of Sobolev
functions W 1,p for p > n− 1 for which cavitation (the formation of voids in the material) does not appear.
For this class of functions, it is proved there a local invertibility theorem, thus extending the results by [17],
done for the case p ≥ n. In this paper we answer the question initially posed in this introduction: given a u
which is in the class of [6] (hence locally invertible) and coincides with an invertible map on ∂Ω, when is u
globally invertible?

One of the extra conditions we require is further regularity on the trace u|∂Ω. To be precise, trace theory

asserts that u|∂Ω lies the space W 1− 1
p ,p, while here we additionally impose that it is in W 1,p. In principle, the

integrability exponent for the tangential derivatives of u|∂Ω need not be the same p as for the integrability
of Du in the interior. As will be seen in Theorem 9.1, our proof of global invertibility is valid as long as the
integrability of the tangential derivatives on ∂Ω is above n− 1. Since we also need p ≥ n− 1 in the interior,
in particular to ensure that the cofactors are integrable, there is no substantial gain in presenting our results
using an exponent for the boundary value different from that of the interior, so, for clarity of exposition, we
shall work with maps u ∈W 1,p(Ω,Rn) such that u|∂Ω ∈W 1,p(∂Ω,Rn).
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The other fundamental extra condition for our analysis is longer to explain, and we start by recalling the
class of [6]. An essential question in the existence theory in nonlinear elasticity is whether the distributional
determinant DetDu equals the pointwise determinant detDu. Equality DetDu = detDu is expressed in a
more concrete way as

1

n
Div [adjDu(x) u(x)] = detDu(x), x ∈ Ω, (1.1)

where Div in the left-hand side denotes the distributional divergence. The following generalization of the
previous formula is also of interest (see [33, 42, 34, 37]):

Div [adjDu(x) g(u(x))] = div g(u(x)) detDu(x), x ∈ Ω, (1.2)

for all g ∈ C1(Rn,Rn)∩W 1,∞(Rn,Rn). For smooth maps u both equalities hold, as a consequence of Piola’s
identity Div cof Du = 0. When one writes down the definition of distributional divergence, formula (1.2)
reads as

−
∫

Ω

[adjDu(x) g(u(x))] ·Dφ(x) dx =

∫
Ω

detDu(x)φ(x) div g(u(x)) dx, (1.3)

for all φ ∈ C∞c (Ω). The class of maps that were object of the study of [6] were those u in W 1,p (with
p > n−1) satisfying (1.3). Previous work [24, 25] showed that condition (1.3) means that u does not exhibit
cavitation and does not create new surface. Hence, it was expected that those functions u are more regular
than the typical Sobolev W 1,p function, as confirmed by [6]. The passage from (1.2) to (1.3) is done, of
course, by multiplication by a φ ∈ C∞c (Ω) and integration. If we instead multiply (1.2) by a φ ∈ C∞(Ω̄) and
integrate, what we obtain is∫

∂Ω

φ(x) (adjDu(x) g(u(x))) · ν(x) dHn−1(x)−
∫

Ω

[adjDu(x) g(u(x))] ·Dφ(x) dx

=

∫
Ω

detDu(x)φ(x) div g(u(x)) dx,

(1.4)

where ν is the unit exterior normal of ∂Ω. Functions u in W 1,p (with p > n− 1) such that its trace u|∂Ω is
also in W 1,p and satisfy (1.4) is the class of functions object of this study. It is for these functions that we
prove the global invertibility theorem: if u,u0 are functions of this class such that detDu > 0, detDu0 ≥ 0,
u|∂Ω = u0|∂Ω and u0 is injective a.e., then u is injective a.e.

The functions satisfying (1.4) is a restricted class of those satisfying (1.3). Therefore, the maps studied
in this work enjoy the regularity of those of [6], and, in some sense, they are also regular up to the boundary.
Although we do not pursue the matter of boundary regularity on this paper, we show, by means of some
examples, that condition (1.4) excludes cavitation at the boundary and leakage at the boundary (see [35]).

We also prove the existence of minimizers of a typical hyperelastic energy∫
Ω

W (x,u(x), Du(x)) dx (1.5)

in our class of functions, under Dirichlet boundary conditions. The main assumptions for W is that it is
polyconvex in the last variable and it enjoys standard coercivity conditions.

The outline of this paper is as follows. In Section 2 we set the general notation of the paper. Section 3
recalls the definition of Sobolev function over a manifold, which in our case is the boundary of Ω. In Section
4 we define the space W 1,p(Ω) ∩W 1,p(∂Ω) of Sobolev functions in Ω such that its trace is Sobolev, too.
We then show that smooth functions are dense in that space. Section 5 starts with the definition of Āp(Ω),
which is the set of maps u ∈ W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) such that detDu ∈ L1(Ω) and (1.4) holds for
every φ ∈ C1(Ω̄) and g ∈ C1

c (Rn,Rn). Then we explain some examples taken from [35] to see that Āp(Ω)
functions not only avoid cavitation in Ω, but also cavitation and leakage at the boundary. The main result
of Section 6 is that Āp(Ω) functions can be extended to an open set Ω̃ ⊃ Ω̄ by a function in Ap(Ω̃) (the class

studied in [6], for which (1.3) holds in Ω̃), hence without cavities in Ω̃. Section 7 begins by showing that
regular functions up to the boundary, say C1(Ω̄,Rn), are included in Āp(Ω). Then, it exploits the density
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and extension results of Sections 4 and 6 to prove that a large class of Sobolev maps with Sobolev trace are
also in Āp(Ω). These inclusions parallel the results in classical elasticity [2, 42, 37] on classes of Sobolev
functions for which (1.3) holds. In particular, based on [37], we show that Āp(Ω) contains all functions u
in W 1,p with trace in W 1,p and such that cof Du and its trace are in Lq, provided p ≥ n− 1 and q ≥ n

n−1 .

In Section 8 we prove that Āp(Ω) functions u with detDu ≥ 0 a.e. are bounded. Section 9 presents the
main result of this paper: if u ∈ Āp(Ω) satisfies detDu > 0 a.e. and coincides on ∂Ω with an a.e. injective
u0 ∈ Āp(Ω) with detDu0 ≥ 0 a.e., then u is injective a.e. We also show that the inverse u−1 is Sobolev
W 1,1. In the final Section 10, we show the existence of minimizers of (1.5) in Āp(Ω). The proof of this fact
is standard once we have shown that the class of functions satisfying (1.4) enjoys a compactness property
under the relevant convergence.

2 Notation

In this section we set the general notation of the paper.
We will work in dimension n ≥ 2. In all the article, Ω is always a bounded open set of Rn with a Lipschitz

boundary. We will not state this explicitly in the statements. In some results, however, more regularity on
the boundary of Ω is required, and in this case we will specify that. The letter ν will always denote the unit
exterior normal to Ω.

Vector-valued and matrix-valued quantities will be written in boldface. We will work in three different
system of coordinates, which carry different notations. The reference configuration occupies Ω, and points
in Ω are generically called x. The deformed configuration occupies u(Ω), and points in u(Ω) are generically
called y. We will parametrize a relatively open set Γ of ∂Ω by the set (0, r)n−1, and also a neighbourhood
of Γ by (0, r)n−1 × (−β, β). Points in (0, r)n−1 are called ẑ, points in (0, r)n−1 × (−β, β) are called z, and
we will decompose z as z = (ẑ, zn). The canonical basis in Rn is {e1, . . . , en}.

The closure of an A ⊂ Rn is denoted by Ā, its boundary by ∂A, and its characteristic function by χA.
Given two sets U, V of Rn, we will write U ⊂⊂ V if Ū ⊂ V .

Given a square matrix A ∈ Rn×n, its determinant is denoted by det A. Its adjugate matrix is denoted
by adj A, and the transpose of adj A is the cofactor matrix cof A. Recall the formula

A adj A = cof AAT = (det A)I, (2.1)

where I denotes the identity matrix.
The inner (dot) product of vectors and of matrices will be denoted by ·. The norm of a vector or of a

matrix is denoted by |·|. Given a,b ∈ Rn, the tensor product a ⊗ b is the n × n matrix whose component
(i, j) is ai bj .

The Lebesgue measure in Rn is denoted by Ln, and the (n−1)-dimensional Hausdorff measure by Hn−1.
The abbreviation a.e. stands for almost everywhere or almost every ; unless otherwise stated, it refers to the
Lebesgue Ln measure. For p ≥ 1 (the exponent p will always be finite), the Lebesgue Lp and Sobolev W 1,p

spaces are defined in the usual way. So are the functions of class Ck, for k a positive integer or infinity, and
their versions Ckc of compact support. We will indicate the domain and target space, as in, for example,
Lp(Ω,Rn), except if the target space is R, in which case we will simply write Lp(Ω); the corresponding norm
is written ‖·‖Lp(Ω,Rn). Weak convergence in Lp or W 1,p is indicated by ⇀. The identity function is denoted
by id, if the set is clear from the context, and by idA to specify the set A of definition. The support of a
function is indicated by supp.

The distributional derivative of a Sobolev function u is written Du. The divergence in the reference
configuration is written Div, and in the deformed configuration div. Both divergences are taken by rows
when they refer to matrix-valued functions.

Given two sets A,B of Rn, we write A ⊂ B a.e. when Ln(A \ B) = 0, and A = B a.e. when A ⊂ B a.e.
and B ⊂ A a.e.

A function u : Ω → Rn is said to be injective a.e. if there exists Ω1 ⊂ Ω such that Ln(Ω \ Ω1) = 0 and
u|Ω1

is injective.
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We will use the following version of Federer’s [15] area formula; see also [35, Prop. 2.6] for a modern
formulation.

Proposition 2.1. Let u ∈ W 1,1(Ω,Rn). Then there exists a measurable set Ω0 ⊂ Ω with Ln(Ω \ Ω0) = 0
such that the following properties hold for any measurable ϕ : Rn → R and any measurable A ⊂ Ω:

a) Define Nu,A : Rn → N ∪ {∞} as follows: Nu,A(y) equals the number of x ∈ Ω0 ∩ A such that u(x) = y.
Then, Nu,A is measurable and∫

A

ϕ(u(x)) |detDu(x)|dx =

∫
Rn

ϕ(y)Nu,A(y) dy,

whenever either integral exists.

b) Given ψ : Ω→ R measurable, the function ψ̄ : u(Ω0)→ R defined by

ψ̄(y) :=
∑

x∈Ω0∩A:u(x)=y

ψ(x)

is measurable and satisfies∫
A

ψ(x)ϕ(u(x)) |detDu(x)|dx =

∫
u(Ω0∩A)

ψ̄(y)ϕ(y) dy,

whenever the integral of the left-hand side exists.

We will mainly use Nu,Ω, which will be denoted by Nu.
Now we devote some paragraphs to explain the concepts we need from exterior algebra (see, e.g., [42, 35]).
The tangent space of ∂Ω at x ∈ ∂Ω is denoted by Tx∂Ω, and the unit exterior normal to Ω at x by ν(x).

Since we are assuming that Ω is Lipschitz, both objects exist for Hn−1-a.e. x ∈ ∂Ω (they exist everywhere
if Ω is of class C1).

Let V be an (n−1)-dimensional subspace of Rn and let L : V → Rn be linear. The space Λn−1V consists
of all alternating (n− 1)-tensors on V . The transformation Λn−1L : Λn−1V → Rn is defined by

(Λn−1L)(a1 ∧ · · · ∧ an−1) = La1 ∧ · · · ∧ Lan−1, a1, . . . ,an−1 ∈ V.

Here ∧ denotes the exterior product between vectors in Rn. Now, the one-dimensional subspace Λn−1V
is identified in a canonical way with the space generated by v, one of the two unit normal vectors to V .
Therefore, the linear transformation Λn−1L is determined by the value of (Λn−1L) v, and, moreover, the
formula

(Λn−1L) v = (cof L̃) v (2.2)

holds whenever L̃ : Rn → Rn is any linear map extending L.
Now assume u ∈ W 1,p(∂Ω,Rn) with p ≥ n − 1. Then, the tangential derivative Du(x) : Tx∂Ω → Rn

exists for Hn−1-a.e. x ∈ ∂Ω, and |Du| ∈ Lp(∂Ω). Consequently, Λn−1Du(x)ν(x) exists for Hn−1-a.e.

x ∈ ∂Ω, and Λn−1Duν ∈ L
p

n−1 (∂Ω,Rn).
We will use the following version of the change of variables formula for surface integrals (see, e.g., [35,

Prop. 2.7] for a more general statement).

Proposition 2.2. Let S ⊂ Rn be an orientable Lipschitz manifold of dimension n− 1 oriented by the unit
vector field ν, and let H : S → Rn be a bi-Lipschitz homeomorphism onto H(S). Then, for every bounded
and Hn−1-measurable g : Rn → Rn, and any Hn−1-measurable subset A ⊂ S,∫

A

g(H(x)) · (Λn−1DH(x)ν(x)) dHn−1(x) =

∫
H(A)

g(y) · Λn−1DH(H−1(y))ν(H−1(y))

|Λn−1DH(H−1(y))ν(H−1(y))|
dHn−1(y).
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3 Sobolev functions on the boundary

There are several ways to define Sobolev functions over a manifold, all of which are equivalent if the manifold
is smooth enough. Here we have chosen the approach of [29, Sect. 6], which does not use partitions of unity,
since it lends itself to simpler proofs in our context.

In this work, the only manifold we will deal with is ∂Ω or a relatively open subset of it, so we restrict
our exposition to this case.

We start by recalling the definition of functions of class Ck,α(Ω̄). Given an integer k ≥ 0 and α ∈ [0, 1],
the set Ck,α(Ω) is composed by those functions u defined in Ω that are k times differentiable in Ω and u
and all its derivatives up to order k are locally Hölder continuous of exponent α if α > 0, and continuous if
α = 0. The set Ck,α(Ω̄) is composed by those functions u defined in Ω̄ that admit a Ck,α extension to an
open set Ω̃ ⊃ Ω̄.

A proper rigid transformation is an affine map in Rn of the form x 7→ R x + a with R an orthonormal
matrix with determinant 1 and a ∈ Rn. The collection of all proper rigid transformation in Rn is denoted
by SE(n).

The next concept defines an open set of class Ck,α. In this work, the minimum regularity required for Ω
will be Lipschitz, and that is why we assume k + α ≥ 1.

Definition 3.1. Let k ≥ 0 be an integer and α ∈ [0, 1] be such that k + α ≥ 1. We say that the bounded
open set Ω is of class Ck,α when there exist

r > 0, β > 0, m ∈ N, a1, . . . , am ∈ Ck,α([0, r]n−1), A1, . . . ,Am ∈ SE(n)

such that, when we define

Γi := A−1
i

({
(ẑ, zn) ∈ (0, r)n−1 × R : zn = ai(ẑ)

})
,

U+
i := A−1

i

({
(ẑ, zn) ∈ (0, r)n−1 × R : ai(ẑ) < zn < ai(ẑ) + β

})
,

U−i := A−1
i

({
(ẑ, zn) ∈ (0, r)n−1 × R : ai(ẑ)− β < zn < ai(ẑ)

})
,

we have that

∂Ω =
m⋃
i=1

Γi,
m⋃
i=1

U+
i ⊂ Ω and

m⋃
i=1

U−i ⊂ Rn \ Ω̄.

For each i ∈ {1, . . . ,m}, the set Γi is relatively open in ∂Ω, and the sets U+
i and U−i are open. Denote

Ui := U+
i ∪ Γi ∪ U−i , i ∈ {1, . . . ,m},

which is an open set. The collection {Ui}mi=1 is an open cover of ∂Ω. Consider, additionally, any open set
U0 ⊂⊂ Ω such that Ω̄ ⊂

⋃m
i=0 Ui.

For each i ∈ {1, . . . ,m}, define Qi : [0, r]n−1 × [−β, β] → Rn by Qi(ẑ, zn) := (ẑ, ai(ẑ) + zn), and
Gi := A−1

i ◦Qi. Then, Gi is injective and

Gi

(
(0, r)n−1 × (−β, β)

)
= Ui, Gi

(
(0, r)n−1 × (0, β)

)
= U+

i ,

Gi

(
(0, r)n−1 × [0, β)

)
= Γi ∪ U+

i , Gi

(
(0, r)n−1 × {0}

)
= Γi.

It is known that in this case, ∂Ω is an orientable Ck,α manifold, and that for a.e. ẑ ∈ (0, r)n−1, the unit
exterior normal of Ω at Gi(ẑ, 0) is

ν(Gi(ẑ, 0)) =
cof DGi(ẑ, 0)(−en)

|cof DGi(ẑ, 0) en|
=

Λn−1D(Gi|(0,r)n−1×{0})(ẑ, 0)(−en)∣∣Λn−1D(Gi|(0,r)n−1×{0})(ẑ, 0) en
∣∣ . (3.1)

Let π : Rn → Rn−1 be the projection onto the first n − 1 coordinates, and let η : Rn−1 → Rn be
the map η(ẑ) = (ẑ, 0). For any function u defined on Γi, we define the map Li(u) : π(G−1

i (Γi)) → R by
Li(u) = u ◦Gi ◦ η.
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The following criterion is useful: a function u : Ω → R is in W 1,p(Ω) if and only if u ∈ W 1,p(U0) and
u ◦ Gi ∈ W 1,p((0, r)n−1 × (0, β)) for all i ∈ {1, . . . ,m}. Moreover, for a function u defined in U+

i , the
expression

u 7→ ‖u ◦Gi‖W 1,p((0,r)n−1×(0,β)) (3.2)

defines a norm in W 1,p(U+
i ) equivalent to the usual one.

From now on, the minimum regularity for Ω will be C0,1, i.e., Lipschitz. We will only state the regularity
of Ω when more than C0,1 is needed.

Definition 3.2. Let p ≥ 1. We denote by W 1,p(∂Ω) the set of functions u : ∂Ω → R such that Li(u) ∈
W 1,p((0, r)n−1) for all i ∈ {1, . . . ,m}, equipped with the norm

‖u‖W 1,p(∂Ω) :=
m∑
i=1

‖Li(u)‖W 1,p((0,r)n−1) .

Similarly, for each i ∈ {1, . . . ,m}, the space W 1,p(Γi) is the set of functions u : Γi → R such that Li(u) ∈
W 1,p((0, r)n−1), equipped with the norm ‖u‖W 1,p(Γi)

:= ‖Li(u)‖W 1,p((0,r)n−1).

It can be shown that W 1,p(∂Ω) is a Banach space and that its definition and its structure as a Banach
space do not depend on the particular description of ∂Ω given by Definition 3.1.

By Definition 3.2, the map

W 1,p(∂Ω)→W 1,p((0, r)n−1)m

u 7→ (L1(u), . . . ,Lm(u))

is an isometry, with the aid of which one can easily show the following result.

Lemma 3.3. Let p ≥ 1. For each j ∈ N, let uj , u ∈ W 1,p(∂Ω). We have that uj ⇀ u in W 1,p(∂Ω) as
j →∞ if and only if Li(uj) ⇀ Li(u) in W 1,p((0, r)n−1) for all i = 1, . . . ,m.

The following result is well known: it states the density of smooth functions in W 1,p(∂Ω). Its proof relies
on the density of smooth functions in W 1,p((0, r)n−1)m together with a standard use of partitions of unity.

Proposition 3.4. Let p ≥ 1. Assume Ω is of class Ck,α for some integer k ≥ 0 and some α ∈ [0, 1]. Then
Ck,α(∂Ω) is dense in W 1,p(∂Ω).

We finish this section with the following convention. If u ∈ W 1,p(∂Ω) for some p > n − 1, then, by
Morrey’s embedding, u admits a representative that is continuous. Without further mention, we will always
assume that u itself is the continuous representative.

4 Sobolev functions with Sobolev trace

Let p ≥ 1 and u ∈W 1,p(Ω). We denote by u|∂Ω the trace of u on ∂Ω, which is known to belong to Lp(∂Ω).
With a slight abuse of notation, we say that u belongs to W 1,p(∂Ω) when its trace belongs to W 1,p(∂Ω),
and we will write u ∈ W 1,p(∂Ω). With this notation, the intersection space W 1,p(Ω) ∩W 1,p(∂Ω) is the set
of u ∈W 1,p(Ω) such that u|∂Ω ∈W 1,p(∂Ω). It is equipped with the usual norm of an intersection:

‖u‖W 1,p(Ω)∩W 1,p(∂Ω) := ‖u‖W 1,p(Ω) + ‖u‖W 1,p(∂Ω) ,

and a standard reasoning shows that W 1,p(Ω) ∩W 1,p(∂Ω) is a Banach space. Similarly, if Γ is a relatively
open subset of ∂Ω we will use the spaces W 1,p(Γ) and W 1,p(Ω) ∩W 1,p(Γ). The corresponding notation for
Rn-valued functions is W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn).

The following elementary result shows that the extension to (0, r)n−1×(0, β) by projection onto (0, r)n−1×
{0} of a Sobolev function defined on (0, r)n−1 × {0} is itself Sobolev.

6
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Lemma 4.1. Let p ≥ 1. Let r, β > 0 and call D := (0, r)n−1 × (0, β) and Γ := (0, r)n−1 × {0}. Then the
map E : W 1,p(Γ)→W 1,p(D) defined by Eu := u ◦ η ◦ π is linear and bounded. In fact,

∂(Eu)

∂zi
=
∂u

∂zi
◦ η ◦ π, for i = 1, . . . , n− 1, and

∂(Eu)

∂zn
= 0. (4.1)

Moreover, (Eu)|Γ = u.

Proof. Call ũ := Eu. Clearly, ũ ∈ Lp(D), since∫
D

|ũ(z)|p dz = β

∫
(0,r)n−1

|u(ẑ, 0)|p dẑ. (4.2)

Now let ϕ ∈ C1
c (D). Then, for each i ∈ {1, . . . , n− 1},∫

D

ũ(z)
∂ϕ

∂zi
(z) dz =

∫ β

0

∫
(0,r)n−1

u(ẑ, 0)
∂ϕ

∂zi
(ẑ, zn) dẑ dzn

= −
∫ β

0

∫
(0,r)n−1

∂u

∂zi
(ẑ, 0)ϕ(ẑ, zn) dẑ dzn = −

∫
D

∂u

∂zi
(η(π(z)))ϕ(z) dz,

whereas ∫
D

ũ(z)
∂ϕ

∂zn
(z) dz =

∫
(0,r)n−1

u(ẑ, 0)

∫ β

0

∂ϕ

∂zn
(ẑ, zn) dzn dẑ = 0.

Therefore, (4.1) holds. As in (4.2), we have that∫
D

∣∣∣∣ ∂ũ∂zi (z)

∣∣∣∣p dz = β

∫
(0,r)n−1

∣∣∣∣ ∂u∂zi (ẑ, 0)

∣∣∣∣p dẑ, for i = 1, . . . , n− 1. (4.3)

Equalities (4.1), (4.2) and (4.3) show that ũ ∈ W 1,p(D) and that the map E is linear and bounded. As
ũ|Γ = u for every u ∈ W 1,p(Γ) ∩ C(Γ̄), by continuity of the trace operator this equality holds for every
u ∈W 1,p(Γ).

It is easy to see that the closure of C∞c (Ω) in W 1,p(Ω)∩W 1,p(∂Ω) is W 1,p
0 (Ω). A more interesting result

is the density of smooth functions in W 1,p(Ω) ∩W 1,p(∂Ω). The key tool for its proof is a result of Fonseca
and Malý [19] that allows one to modify the boundary values of a function without increasing significantly
its norm.

Proposition 4.2. Let p ≥ 1. Let k ≥ 0 be an integer and α ∈ [0, 1] be such that k + α ≥ 1. Let Ω be a
bounded open set with a Ck,α boundary. Then Ck,α(Ω̄) is dense in W 1,p(Ω) ∩W 1,p(∂Ω).

Proof. Let r, β > 0. Call D := (0, r)n−1× (0, β) and Γ := (0, r)n−1×{0}. The first part of the proof consists
in showing that, given u ∈ W 1,p(D) ∩ W 1,p(Γ), there exists a Ck,α(D̄) function arbitrarily close to u in
W 1,p(D) ∩W 1,p(Γ).

As u ∈W 1,p(Γ), the function u|Γ ◦ η is in W 1,p((0, r)n−1). Therefore, there exists a sequence {w̃k}k∈N ⊂
C∞([0, r]n−1) tending to u|Γ ◦ η in W 1,p((0, r)n−1). For each k ∈ N, define wk : D̄ → R as wk := w̃k ◦ π. By
Lemma 4.1, wk ∈W 1,p(D), and it is immediate to see that wk → u|Γ ◦ η ◦ π in W 1,p(D) as k →∞.

For each j, k ∈ N with β j > 2, we apply [19, Lemma 2.4] and find zjk ∈ W 1,p(D) and open sets
Vjk ⊂ (0, r)n−1 × (1/j, β) and Wjk ⊂ (0, r)n−1 × (0, 2/j) such that

D = Vjk ∪Wjk, zjk = u in D \Wjk, zjk = wk in D \ Vjk

and
‖zjk‖W 1,p(Vjk∩Wjk) ≤ C

(
‖u‖W 1,p((0,r)n−1×(1/j,2/j)) + ‖wk‖W 1,p((0,r)n−1×(1/j,2/j))

)
, (4.4)
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for a constant C > 0 not depending on j or k. Obviously, zjk|Γ = wk|Γ, hence

sup
j∈N

lim
k→∞

‖zjk − u‖W 1,p(Γ) = 0. (4.5)

On the other hand, thanks to (4.4),

‖zjk − u‖W 1,p(D) = ‖zjk − u‖W 1,p(Vjk∩Wjk) + ‖wk − u‖W 1,p(Wjk\Vjk)

≤ ‖zjk‖W 1,p(Vjk∩Wjk) + ‖wk‖W 1,p(Wjk\Vjk) + ‖u‖W 1,p(Wjk)

≤ (C + 1)
(
‖u‖W 1,p((0,r)n−1×(0,2/j)) + ‖wk‖W 1,p((0,r)n−1×(0,2/j))

)
,

so

lim sup
k→∞

‖zjk − u‖W 1,p(D) ≤ (C + 1)
(
‖u‖W 1,p((0,r)n−1×(0,2/j)) + ‖u|Γ ◦ η ◦ π‖W 1,p((0,r)n−1×(0,2/j))

)
and, consequently,

lim
j→∞

lim sup
k→∞

‖zjk − u‖W 1,p(D) = 0. (4.6)

Equalities (4.5) and (4.6) show that given ε > 0 there exist j, k ∈ N for which

‖zjk − u‖W 1,p(D)∩W 1,p(Γ) ≤ ε. (4.7)

Observe now that zjk−wk ∈W 1,p(D) with (zjk−wk)|Γ = 0, so there exists f ∈ C∞(D̄) with supp f ∩Γ = ∅
such that ‖f − zjk + wk‖W 1,p(D) ≤ ε. The proof of this fact (see, e.g., [14, Th. 5.5.2], [1, Th. 5.37] or [30,

Th. 15.29]) is usually done for a half-space, but the same proof works for a rectangle, as is in our case with
D. Then, thanks to (4.7), the function f + wk ∈ C∞(D̄) satisfies

‖f + wk − u‖W 1,p(Γ) = ‖zjk − u‖W 1,p(Γ) ≤ ε

and
‖f + wk − u‖W 1,p(D) ≤ ‖f − zjk + wk‖W 1,p(D) + ‖zjk − u‖W 1,p(D) ≤ 2ε.

This proves the result claimed at the beginning of the proof.
Now assume, as in the statement, that Ω is a bounded open set with a Ck,α boundary, and let u ∈

W 1,p(Ω) ∩ W 1,p(∂Ω). We use the notation of Section 3. Then u ◦ Gi ∈ W 1,p(D) ∩ W 1,p(Γ) for each
i ∈ {1, . . . ,m}. Let ε > 0. By the result of the first part of the proof, for each i ∈ {1, . . . ,m} there exists
φi ∈ Ck,α(D̄) such that

‖u ◦Gi − φi‖W 1,p(D)∩W 1,p(Γ) ≤ ε. (4.8)

Moreover, there exists φ0 ∈ C∞c (Ω) such that ‖u− φ0‖W 1,p(U0) ≤ ε. Let {ϕi}mi=0 ⊂ C∞(Rn, [0, 1]) be a

partition of unity as follows: suppϕi ⊂ Ui for each i ∈ {0, . . . ,m} and
∑m
i=0 ϕi = 1 in Ω̄. We define

φ : Ω̄→ R as

φ(x) := ϕ0(x)φ0(x) +
m∑
i=1

x∈Ū+
i

ϕi(x)
(
φi(G

−1
i (x))

)
.

Then φ ∈ Ck,α(Ω̄) and, having in mind that
∑m
i=0 ϕi = 1,

‖u− φ‖W 1,p(Ω) ≤ ‖ϕ0 (u− φ0)‖W 1,p(U0) +
m∑
i=1

∥∥ϕi (u− φi ◦G−1
i

)∥∥
W 1,p(U+

i )

≤ C

(
‖u− φ0‖W 1,p(U0) +

m∑
i=1

∥∥u− φi ◦G−1
i

∥∥
W 1,p(U+

i )

)
,
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where C only depends on the Lipschitz norms of ϕ0, . . . , ϕm. By the equivalence of norms given by (3.2),
we have that, for some constant M > 0 and all i ∈ {1, . . . ,m},∥∥u− φi ◦G−1

i

∥∥
W 1,p(U+

i )
≤M ‖u ◦Gi − φi‖W 1,p(D) ≤M ε,

thanks to (4.8). Similarly,

‖u− φ‖W 1,p(∂Ω) ≤
m∑
i=1

∥∥ϕi (u− φi ◦G−1
i

)∥∥
W 1,p(Γi)

≤ C
m∑
i=1

∥∥u− φi ◦G−1
i

∥∥
W 1,p(Γi)

,

since multiplication by a Lipschitz function is also a continuous operation in W 1,p(Γi). Using now Definition
3.2, we note that∥∥u− φi ◦G−1

i

∥∥
W 1,p(Γi)

= ‖Li(u)− φi ◦ η‖W 1,p((0,r)n−1) = ‖u ◦Gi − φi‖W 1,p(Γ) ≤ ε,

which concludes the proof.

5 A class of functions not admitting cavitation

We define the class of functions that are object of our work.

Definition 5.1. Let p ≥ n− 1.

a) Given u ∈W 1,p(Ω,Rn) with detDu ∈ L1(Ω) and f ∈ C1
c (Ω× Rn,Rn), we define

E(u, f) :=

∫
Ω

[cof Du(x) ·Df(x,u(x)) + detDu(x) div f(x,u(x))] dx. (5.1)

We define Ap(Ω) as the set of u ∈W 1,p(Ω,Rn) such that detDu ∈ L1(Ω) and

E(u, f) = 0 for all f ∈ C1
c (Ω× Rn,Rn). (5.2)

b) Given u ∈W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) and f ∈ C1
c (Ω̄× Rn,Rn), we define

F(u, f) :=

∫
∂Ω

f(x,u(x)) · (Λn−1Du(x)ν(x)) dHn−1(x).

We define Āp(Ω) as the set of u ∈W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) such that detDu ∈ L1(Ω) and E(u, f) =
F(u, f) for all f ∈ C1

c (Ω̄× Rn,Rn).

In equation (5.1), Df(x,y) denotes the derivative of f(·,y) evaluated at x ∈ Ω, while div f(x,y) is the
divergence of f(x, ·) evaluated at y ∈ Rn. When we want to underline the dependence on the domain, we
will sometimes write EΩ(u, f) and F∂Ω(u, f).

The functional E was introduced in [23] to measure the creation of new surface of a deformation. Condition
(5.2) was shown in [25, Th. 4.6] to be equivalent to the requirement that u does not exhibit cavitation, or,
in general [24, Th. 3], that u does not create new surface.

The class Ap(Ω) was introduced by Müller [33] without naming it. It was also used in Giaquinta et al.
[20, Def. 3.2.1.3 and Prop. 3.2.4.1]. Both references, as well as [42, 34, 37, 25], show that it is a suitable class
for doing calculus of variations in nonlinear elasticity. The definition of the class Āp(Ω) is new, although it
has an antecessor in [27].

We observe that condition b) of Definition 5.1 is a global version of condition a). While in [6] it was
studied the local invertibility in the class Ap(Ω), in this paper we study the global invertibility in the class
Āp(Ω). Obviously, Āp(Ω) ⊂ Ap(Ω), whereas by using similar arguments as in [23, Th. 2] (see [38, Lemma
3.3.1] for a full proof), one has that u|U ∈ Āp(U) for any u ∈ Ap(Ω) and “almost all” open sets U ⊂⊂ Ω

9
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h c

Figure 1: Deformation of Example 5.3: cavitation at the boundary with regular trace

with a C2 boundary. In Section 7 we will see that smooth functions up to the boundary are in Āp(Ω), as
well as a large class of Sobolev maps with Sobolev trace.

Due to the density in C1
c (Ω×Rn,Rn) of sums of functions of separate variables (see, e.g., [31, Cor. 1.6.5]),

one can see that condition (5.2) is equivalent to∫
Ω

[cof Du(x) · (g(u(x))⊗Dφ(x)) + detDu(x)φ(x) div g(u(x))] dx = 0, (5.3)

for all φ ∈ C1
c (Ω) and g ∈ C1

c (Rn,Rn) (this equivalence was also proved in [25, Th. 4.6]). Similarly, condition
E(u, f) = F(u, f) for all f ∈ C1

c (Ω̄× Rn,Rn) is equivalent to

E(u, φg) = F(u, φg) for all φ ∈ C1(Ω̄) and g ∈ C1
c (Rn,Rn), (5.4)

where φg ∈ C1
c (Ω̄× Rn,Rn) denotes the function (φg)(x,y) = φ(x) g(y).

In the following examples we show how functions in Āp(Ω) do not exhibit cavitation at the boundary.

Example 5.2 (Cavitation at the boundary with discontinuous trace). Consider r : [0, 1]→ R of class C1 with
inf r′ > 0 and r(0) > 0. Let Ω := {x ∈ Rn : |x| < 1, xn > 0} and define u : Ω→ Rn as

u(x) := r(|x|) x

|x|
.

It is easy to check (see [4, Lemma 4.1], if necessary) that u ∈ W 1,p(Ω,Rn) if and only if p < n, and
u ∈ W 1,p(∂Ω,Rn) if and only if p < n − 1. Therefore, when p is required to be p ≥ n − 1, we have that
u /∈ Āp(Ω).

The essence of the previous example is that u|∂Ω is discontinuous. Now we show an example, taken from
Müller and Spector [35, Sect. 11], in which a cavity is formed at the boundary, yet the trace of the function
is regular.

Example 5.3 (Cavitation at the boundary with regular trace). Let Ω = (−1, 1)× (0, 1). Define h : Ω → R2

as

h(x) :=
|x|∞ + 3

4|x|∞
x,

where |·|∞ stands for the max-norm of a vector, and c : R2 → R2 as

c(x1, x2) :=

{
(sgnx1(1− 4(1− |x1|)(1− x2)), x2) if x2 <

3
4 ,

(x1, x2) if x2 ≥ 3
4 .

Consider u := c ◦ h; see Figure 1 for its representation. What happens here is that, after the cavity has
been formed at the boundary (map h), the body is stretched in a vicinity of the cavity so as to close it (map
c). Then u ∈ W 1,p(Ω,R2) for all p < 2. Moreover, u is injective a.e. and detDu > 0 a.e. As u is locally
Lipschitz in Ω, we have that u ∈ Ap(Ω). We also have that u|∂Ω = id|∂Ω, so in particular u ∈W 1,p(∂Ω,R2)
for all p ≥ 1. We shall show that u /∈ Āp(Ω). Note that id ∈ Āp(Ω) (by Lemma 7.1 below, or just by a
straightforward calculation), hence for any f ∈ C1

c (Ω̄× R2,R2) we have that

E(id, f) = F(id, f) = F(u, f).

10
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h s ĉ

Figure 2: Deformation of Example 5.4: leakage at the boundary

Consequently, in order to show that u /∈ Āp(Ω) it suffices to check that E(id, f) 6= E(u, f). For this, we
choose an f ∈ C1

c (Ω̄× R2,R2) such that f(x,y) = 1
2y for (x,y) ∈ Ω̄× Ω̄, and note that u(Ω̄) ⊂ Ω̄. For this

choice we have

E(id, f) =

∫
Ω

dx = L2(Ω) = 2 and E(u, f) =

∫
Ω

detDu dx = L2(u(Ω)) =
23

16
.

In the last example, taken again from [35, Sect. 11], we show a deformation presenting leakage at the
boundary, and see how functions in Āp(Ω) cannot exhibit this phenomenon.

Example 5.4 (Leakage at the boundary). Let Ω and h be as in Example 5.3. Define s : R2 → R2 as

s(x1, x2) :=

{
(x1, 1− (1− x2)(7− 8|x1|)) if |x1| < 3

4 ,

(x1, x2) if |x1| ≥ 3
4 ,

and ĉ : R2 → R2 as

ĉ(x1, x2) :=


(sgnx1(1− 4(1− |x1|))(1− x2), x2) if 0 ≤ x2 <

3
4 ,

3
4 < |x1|,(

8x1x2

4x2+3 , x2

)
if |x1| < 4x2+3

8 , 0 ≤ x2 <
3
4 ,(

−8x1x2

4x2+3 , x2

)
if |x1| < 4x2+3

8 , − 1
4 < x2 ≤ 0,

(x1, x2) elsewhere.

Consider u := ĉ◦s◦h; see Figure 2 for its representation. We can see the process of leakage at the boundary:
a cavity is first formed at the boundary (map h), then material close to the surface of the cavity is stretched
down (map s) and then the material closes the cavity but leaves part of the material outside the boundary
(map ĉ). One can check that u ∈ W 1,p(Ω,R2) for all p < 2, u is injective a.e., detDu > 0 a.e., u is locally
Lipschitz in Ω and u|∂Ω = id|∂Ω. Reasoning as in Example 5.3, in order to show that u /∈ Āp(Ω) it suffices
to check that L2(Ω) 6= L2(u(Ω)). In this case we have L2(Ω) = 2 and L2(u(Ω)) = 35

16 .

Traditionally, the way that a model prohibits cavitation at the boundary and leakage at the boundary
has been to assume an extension ũ of u to an open set Ω̃ ⊃ Ω̄ so that ũ does not present cavitation in Ω̃.
Moreover, ũ was assumed to be a diffeomorphism in Ω̃ \ Ω̄; see [42, 40, 41, 22, 27, 28]. With the examples
above, we can see that the class Āp(Ω) also avoids cavitation and leakage at the boundary, in principle,
without the need of any extension. Nevertheless, we will in fact prove in the next section that Āp(Ω)

functions can be extended to an Ω̃ by a function without cavities on Ω̃.

6 Extension

In this section we prove that functions in Āp(Ω) can be extended to an open set Ω̃ ⊃ Ω̄ by a function in

Ap(Ω̃). We start with a continuation of Lemma 4.1; recall the maps π and η of Section 3.
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Lemma 6.1. Let p ≥ 1. Let r, β > 0 and call D := (0, r)n−1×(0, β) and Γ := (0, r)n−1×{0}. Then the map
E : W 1,p(Γ,Rn)→W 1,p(D,Rn) defined by Eu := u ◦ η ◦ π is linear and bounded. Moreover, detD(Eu) = 0
and (Eu)|Γ = u. If, in addition, Λn−1Du en ∈ Lq(Γ,Rn) for some q ≥ 1 then cof D(Eu) ∈ Lq(D,Rn×n)
and ‖cof D(Eu)‖Lq(D,Rn×n) = β1/q ‖Λn−1Du en‖Lq(Γ,Rn).

Proof. Call ũ := Eu. By Lemma 4.1, E is linear and bounded,

∂ũ

∂zi
=
∂u

∂zi
◦ η ◦ π, for i ∈ {1, . . . , n− 1}, and

∂ũ

∂zn
= 0, (6.1)

which imply that detDũ = 0. It was also shown in Lemma 4.1 that (Eu)|Γ = u.
Now assume Λn−1Du en ∈ Lq(Γ,Rn) for some q ≥ 1. Equalities (6.1) can be written as Dũ(z) =

Du(ẑ, 0) ◦ η ◦ π for a.e. z ∈ D. Moreover, for a.e. ẑ ∈ (0, r)n−1, the map Du(ẑ, 0) ◦ η ◦ π : Rn → Rn is a
linear extension of the map Du(ẑ, 0) : Rn−1 × {0} → Rn. Therefore, by (2.2),

Λn−1Du(ẑ, 0) en = cof Dũ(z) en. (6.2)

Consequently,∫
D

|cof Dũ(z) en|q dz = β

∫
(0,r)n−1

|Λn−1Du(ẑ, 0) en|q dẑ = β ‖Λn−1Du en‖qLq(Γ,Rn) .

On the other hand,
cof Dũ(z) ei = 0, i ∈ {1, . . . , n− 1}, (6.3)

for a.e. z ∈ (0, r)n−1 × (0, β), due to (6.1). Therefore, ‖cof Dũ‖qLq(D,Rn×n) = β ‖Λn−1Du en‖qLq(Γ,Rn).

The extension that we seek requires the following property for our domains (see [35, Sect. 9]).

Definition 6.2. We say that the open set Ω is extendable if Ω is bounded, has a Lipschitz boundary and
there exist a set N with ∂Ω ⊂ N ⊂ Rn \Ω, a δ > 0 and a bi-Lipschitz homeomorphism w : ∂Ω× (−δ, 0]→ N
onto N such that w(x, 0) = x for all x ∈ ∂Ω.

It is known that C2 open sets are extendable (see, e.g., [13, Th. 16.25.2]); in fact, so are C1,1 open sets
(see, e.g., [12, Th. 4.3.2]) and one can show that the assumption of piecewise C1,1 suffices.

It is important to notice that, in the context of Definition 6.2, the set Ω ∪ N is open. To see that, we
recall Section 3 and, for each i ∈ {1, . . . ,m}, define φi : Ui → Rn as

φi(x) :=

{
x if x ∈ U+

i

w
(
Gi(ẑ, 0), δβ zn

)
if x = Gi(ẑ, zn) for some (ẑ, zn) ∈ (0, r)n−1 × (−β, 0].

It is immediate to check that φi is a homeomorphism. Consequently, by the invariance of domain theorem,
φi(Ui) is open. Now, φi(Ui) = U+

i ∪w (Γi × (−δ, 0]), and, hence, the set

U0 ∪
m⋃
i=1

(
U+
i ∪w (Γi × (−δ, 0])

)
= Ω ∪w (∂Ω× (−δ, 0]) = Ω ∪N

is open.
The fundamental extension property of this section is part b) of the following proposition.

Proposition 6.3. Let p ≥ 1. Let Ω be an extendable open set. Then there exist an open set Ω̃ ⊃ Ω̄ and
a linear bounded operator E : W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) → W 1,p(Ω̃,Rn) such that Eu = u a.e. in Ω,
detD(Eu) = 0 a.e. in Ω̃ \ Ω and the following hold:

12
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a) If Λn−1Duν ∈ Lq(∂Ω,Rn) for some q ≥ 1 then cof D(Eu) ∈ Lq(Ω̃ \ Ω,Rn×n) and

‖cof D(Eu)‖Lq(Ω̃\Ω,Rn×n) ≤ C ‖Λn−1Duν‖Lq(∂Ω,Rn)

for some constant C > 0 independent of u.

b) Let p ≥ n− 1. Then, u ∈ Āp(Ω) if and only if Eu ∈ Ap(Ω̃).

Proof. Let N and w be as in Definition 6.2. Define the open set Ω̃ := Ω ∪ N . Let π̃ : ∂Ω × (−δ, 0] → ∂Ω
denote the projection onto ∂Ω. Define ũ : Ω̃→ Rn as

ũ :=

{
u in Ω,

u|∂Ω ◦ π̃ ◦w−1 in N.

Recall the notation of Section 3. Fix i ∈ {1, . . . ,m} and notice (thanks to the invariance of domain theorem
and the use of the map Gi◦η) that w(Γi×(−δ, 0)) is open. We show first that ũ ∈W 1,p(w(Γi×(−δ, 0)),Rn).
The process is better understood with the following commutative diagram:

w(Γi × (−δ, 0))
w−1

- Γi × (−δ, 0)
π̃ - Γi

u|∂Ω- Rn

(0, r)n−1 × (−δ, 0)

(Gi◦η)×id
6

π-
ψi

-

(0, r)n−1,

Gi◦η
6

Li(u)

-
(6.4)

where ψi :=
(
(Gi ◦ η)−1 × id(−δ,0)

)
◦w−1. A key observation is that ψi is a bi-Lipschitz homeomorphism

between open sets of Rn. By Definition 3.2, Li(u) ∈ W 1,p((0, r)n−1,Rn), so Li(u) ◦ π ∈ W 1,p((0, r)n−1 ×
{0},Rn). By Lemma 6.1, Li(u) ◦π ∈W 1,p((0, r)n−1× (−δ, 0),Rn), since π ◦ η ◦π = π. As ψi is bi-Lipschitz,
we obtain, having in mind the commutativity of diagram (6.4), that ũ ∈ W 1,p(w(Γi × (−δ, 0)),Rn). Since
this is true for all i ∈ {1, . . . ,m}, we conclude that ũ is Sobolev W 1,p in

m⋃
i=1

w(Γi × (−δ, 0)) = w(∂Ω× (−δ, 0)) = N \ ∂Ω.

It is immediate to check that the map u 7→ ũ is linear, and the same reasoning above, as well as Definition
3.2, show that, for some constants c1, c2 > 0,

‖ũ‖W 1,p(N\∂Ω,Rn) ≤
m∑
i=1

∥∥u|∂Ω ◦ π̃ ◦w−1
∥∥
W 1,p(w(Γi×(−δ,0)),Rn)

≤ c1
m∑
i=1

‖Li(u) ◦ π‖W 1,p((0,r)n−1×(−δ,0),Rn)

≤ c2
m∑
i=1

‖Li(u) ◦ π‖W 1,p((0,r)n−1×{0},Rn) = c2

m∑
i=1

‖Li(u)‖W 1,p((0,r)n−1,Rn) = c2 ‖u‖W 1,p(∂Ω,Rn) ,

so the map u 7→ ũ is bounded from W 1,p(∂Ω,Rn) to W 1,p(N \ ∂Ω,Rn). Now, the trace of ũ|N\∂Ω on ∂Ω
is u|∂Ω: this is obvious if u|∂Ω is continuous and follows from the continuity of the trace operator for any
u ∈W 1,p(∂Ω,Rn). Therefore, ũ ∈W 1,p(Ω̃,Rn) and the map E : W 1,p(Ω,Rn)∩W 1,p(∂Ω,Rn)→W 1,p(Ω̃,Rn)
defined as Eu := ũ is linear and bounded.

By Lemma 6.1, detD(Li(u) ◦ π) = 0 a.e. in (0, r)n−1 × (−δ, 0). By the chain rule and the fact that ψi
is bi-Lipschitz, we infer that detDũ = 0 a.e. in w(Γi × (−δ, 0)). Since this is true for all i ∈ {1, . . . ,m}, we
conclude that detDũ = 0 a.e. in Ω̃ \ Ω.

Now we show a) and, accordingly, assume that Λn−1Duν ∈ Lq(∂Ω,Rn). Fix i ∈ {1, . . . ,m} and recall
that Li(u) ◦ π ∈W 1,p((0, r)n−1 × {0},Rn). Now we prove Λn−1D(Li(u) ◦ π) en ∈ Lq((0, r)n−1 × {0},Rn).

We have that Gi : (0, r)n−1×{0} → Γi is a bi-Lipschitz homeomorphism. Therefore, for a.e. ẑ ∈ (0, r)n−1,
the linear map DGi(ẑ, 0) : Rn−1×{0} → TGi(ẑ,0)Γi is an isomorphism, where TGi(ẑ,0)Γi denotes the tangent
space of Γi at Gi(ẑ, 0). Consequently, the linear map Λn−1DGi(ẑ, 0) : Λn−1(Rn−1×{0})→ Λn−1(TGi(ẑ,0)Γi)

13
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is also an isomorphism. With the identifications Λn−1(Rn−1 × {0}) with the space spanned by en and
Λn−1(TGi(ẑ,0)Γi) with the space spanned by ν(Gi(ẑ, 0)) (a unit normal vector of Γi at Gi(ẑ, 0)), we have
that the linear map Λn−1DGi(ẑ, 0) acts by multiplication by ±|Λn−1DGi(ẑ, 0) en|. On the other hand, as
Gi is bi-Lipschitz, we have that

ess sup
ẑ∈(0,r)n−1

|Λn−1DGi(ẑ, 0) en| <∞.

Moreover, the same reasoning also applies to G−1
i . In conclusion, an Rn-valued Sobolev map v defined in

(0, r)n−1×{0} satisfies Λn−1Dv en ∈ Lq((0, r)n−1×{0},Rn) if and only if Λn−1D(v◦G−1
i )ν ∈ Lq(Γi,Rn); in

addition, their Lq norms are comparable. Since we are assuming Λn−1D(u|∂Ω)ν ∈ Lq(∂Ω,Rn), we have that
Λn−1D(u|Γi

)ν ∈ Lq(Γi,Rn) and, consequently, Λn−1D(Li(u) ◦ π) en ∈ Lq((0, r)n−1 × {0},Rn). Moreover,
the Lq norms of Λn−1D(u|Γi)ν and Λn−1D(Li(u) ◦ π) en are comparable.

Once we know Λn−1D(Li(u) ◦ π) en ∈ Lq((0, r)n−1 ×{0},Rn), we can apply Lemma 6.1 and obtain that
cof D(Li(u) ◦ π) ∈ Lq((0, r)n−1 × (−δ, 0),Rn×n). Moreover, the Lq norm of cof D(Li(u) ◦ π) is comparable
to the Lq norm of Λn−1D(Li(u) ◦ π) en. By the chain rule and the fact that ψi is bi-Lipschitz, we infer that
cof Dũ ∈ Lq(w(Γi × (−δ, 0)),Rn×n). Moreover, the Lq norm of cof Dũ is comparable to the Lq norm of
cof D(Li(u) ◦ π). As this is true for all i ∈ {1, . . . ,m}, we conclude that cof Dũ ∈ Lq(Ω̃ \ Ω,Rn×n) and the
estimate of a) follows.

Now we show b) and, first, assume u ∈ Āp(Ω). Let φ̃ ∈ C1
c (Ω̃) and g ∈ C1

c (Rn,Rn). Thanks to (5.3),

in order to show that ũ ∈ Ap(Ω̃) it remains to see that E(ũ, φ̃g) = 0. For each i ∈ {1, . . . ,m} let Γ′i be a
relatively open set of ∂Ω such that Γ′i ⊂ Γi, the family {Γ′i}mi=1 is disjoint and

Hn−1

(
∂Ω \

m⋃
i=1

Γ′i

)
= 0.

Call I ′i := (Gi ◦ η)−1(Γ′i). As u ∈ Āp(Ω), we have

E(ũ, φ̃g) = EΩ(u, φ̃g) + EN (ũ, φ̃g) = F∂Ω(u, φ̃g) + EN (ũ, φ̃g) =
m∑
i=1

(
FΓ′i

(u, φ̃g) + Ew(Γ′i×(−δ,0))(ũ, φ̃g)
)
.

Now fix i ∈ {1, . . . ,m} and define Fi : (0, r)n−1 × (−δ, 0) → w(Γi × (−δ, 0)) as Fi := ψ−1
i , i.e., Fi =

w ◦
(
(Gi ◦ η)× id(−δ,0)

)
. Then Fi is a bi-Lipschitz homeomorphism between open sets of Rn. We claim

that detDFi > 0 a.e.; in order to show that, it is enough to check that Fi preserves the orientation, that is,
the normals. More explicitly, it suffices to show that for a.e. ẑ ∈ (0, r)n−1, the unit exterior normal of Ω at
Fi(ẑ, 0) is a positive multiple of Λn−1D(Fi|(0,r)n−1×{0})(ẑ, 0)(−en). Thanks to Definition 6.2, we have that

Fi|(0,r)n−1×{0} = Gi|(0,r)n−1×{0}. (6.5)

Therefore, Λn−1D(Fi|(0,r)n−1×{0})(ẑ, 0) = Λn−1D(Gi|(0,r)n−1×{0})(ẑ, 0) for a.e. ẑ ∈ (0, r)n−1. According to
(3.1), the exterior normal at Fi(ẑ, 0) is a positive multiple of Λn−1DFi(ẑ, 0)(−en). We thus conclude that
detDFi > 0 a.e.

Changing variables and using that detDũ = 0 in Ω̃ \ Ω, we have

Ew(Γ′i×(−δ,0))(ũ, φ̃g) = EFi(I′i×(−δ,0))(ũ, φ̃g) =

∫
Fi(I′i×(−δ,0))

g(ũ(x)) ·
(

cof Dũ(x)Dφ̃(x)
)

dx

=

∫
I′i×(−δ,0)

g(ũ(Fi(z))) ·
(

cof Dũ(Fi(z))Dφ̃(Fi(z))
)

detDFi(z) dz.

(6.6)

Now we observe that for a.e. z ∈ I ′i × (−δ, 0),

cof Dũ(Fi(z))Dφ̃(Fi(z)) detDFi(z) = cof D (ũ ◦ Fi) (z)D
(
φ̃ ◦ Fi

)
(z),

14
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because of formula (2.1), as well as the chain rule. Now define fi := (u|∂Ω ◦Fi)|I′i×{0}. Then (ũ◦Fi)(ẑ, zn) =
fi(ẑ, 0) for any (ẑ, zn) ∈ I ′i × (−δ, 0). Therefore, as in (6.2)–(6.3), for any (ẑ, zn) ∈ I ′i × (−δ, 0),

cof D (ũ ◦ Fi) (ẑ, zn) ei = 0 for i ∈ {1, . . . , n− 1}, and cof D (ũ ◦ Fi) (ẑ, zn) en = Λn−1Dfi(ẑ, 0) en.

Consequently,

cof D (ũ ◦ Fi) (ẑ, zn)D
(
φ̃ ◦ Fi

)
(ẑ, zn) =

∂(φ̃ ◦ Fi)

∂zn
(ẑ, zn) Λn−1Dfi(ẑ, 0) en

and, hence, thanks to (6.6) and the fundamental theorem of Calculus,

Ew(Γ′i×(−δ,0))(ũ, φ̃g) =

∫
I′i

g(fi(ẑ, 0)) · (Λn−1Dfi(ẑ, 0) en)

∫ 0

−δ

∂(φ̃ ◦ Fi)

∂zn
(ẑ, zn) dzn dẑ

=

∫
I′i

(φ̃ ◦ Fi)(ẑ, 0) g(fi(ẑ, 0)) · (Λn−1Dfi(ẑ, 0) en) dẑ.

(6.7)

Now we compute FΓ′i
(u, φ̃g) through the change of variables given by G−1

i : Γ′i → I ′i × {0}; applying
Proposition 2.2 we obtain

FΓ′i
(u, φ̃g) =

∫
Γ′i

φ̃(x) g(u(x)) · Λn−1Du(x)ν(x) dHn−1(x)

=

∫
I′i×{0}

φ̃(Gi(z)) g(u(Gi(z))) · Λn−1Du(Gi(z))ν(Gi(z))

|Λn−1D(G−1
i |Γ′i)(Gi(z))ν(Gi(z))|

dHn−1(z).

(6.8)

Now, using (3.1) and (6.5), we have that, for Hn−1-a.e. z ∈ I ′i × {0},

Λn−1Du(Gi(z))ν(Gi(z))

|Λn−1D(G−1
i |Γ′i)(Gi(z))ν(Gi(z))|

=
Λn−1Du(Gi(z)) Λn−1D(Gi|I′i×{0})(z)(−en)

|Λn−1D(G−1
i |Γ′i)(Gi(z)) Λn−1D(Gi|I′i×{0})(z) en|

=
Λn−1D(u ◦Gi|I′i×{0})(z)(−en)

|en|
= Λn−1Dfi(z)(−en).

(6.9)

Therefore, using again (6.5),

FΓ′i
(u, φ̃g) =

∫
I′i×{0}

φ̃(Gi(z)) g(u(Gi(z))) · Λn−1Dfi(z)(−en) dHn−1(z)

=

∫
I′i×{0}

φ̃(Fi(z)) g(fi(z)) · Λn−1Dfi(z)(−en) dHn−1(z).

(6.10)

Comparing (6.7) and (6.10), we conclude that FΓ′i
(u, φ̃g)+Ew(Γ′i×(−δ,0))(ũ, φ̃g) = 0 and, hence E(ũ, φ̃g) = 0.

Now we prove the converse, so we assume ũ ∈ Ap(Ω̃). Let φ ∈ C1(Ω̄) and g ∈ C1
c (Rn,Rn). Due to (5.4),

we want to show that EΩ(u, φg) = F∂Ω(u, φg). We consider any extension φ̃ ∈ C1
c (Ω̃) of φ. As ũ ∈ Ap(Ω̃),

we have
0 = EΩ̃(ũ, φ̃g) = EΩ(u, φg) + EN (ũ, φ̃g).

The calculation of EN (ũ, φ̃g) done in the first part of the proof of b) remains valid, and is summarized as

EN (ũ, φ̃g) =
m∑
i=1

Ew(Γ′i×(−δ,0))(ũ, φ̃g) = −
m∑
i=1

FΓ′i
(u, φ̃g) = −F∂Ω(u, φ̃g).

Therefore, EΩ(u, φg) = F∂Ω(u, φg) and u ∈ Āp(Ω).
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7 Regular functions are included

The classical approach to the existence of minimizers in nonlinear elasticity for polyconvex integrands (see
[2]) is based on the satisfaction of Piola’s identity Div cof Du = 0, its consequence DetDu = detDu (see
(1.1)) and its generalization (1.2). Thus, much of the work in nonlinear elasticity developed in the last
decades has focused on ascertaining sufficient conditions for the validity of (1.1) or (1.2). The fact that
functions u in W 1,p(Ω,Rn) for p ≥ n satisfy (1.1) is due to [39]. This equality was rediscovered by [2], who
also proved it in the case p ≥ n − 1 and cof Du ∈ Lq(Ω,Rn×n) with q ≥ p

p−1 . The case p ≥ n − 1 and

q ≥ n
n−1 was covered in [37].

In our context, functions in Āp(Ω) require the satisfaction of (1.2) not only in the sense of distributions,
but when it is multiplied by a φ ∈ C∞(Ω̄) and integrated by parts (see (1.4)). In this section we prove the
analogue of the results mentioned above [39, 2, 37] to our case. We start with C1 functions.

Lemma 7.1. Let p ≥ n− 1. Then C1(Ω̄,Rn) ⊂ Āp(Ω).

Proof. Let f ∈ C1
c (Ω̄×Rn,Rn). Assume first that u ∈ C2(Ω̄,Rn). Then, as a consequence of Piola’s identity,

for all x ∈ Ω̄,

div f(x,u(x)) detDu(x) +Df(x,u(x)) · cof Du(x) = Div [(adjDu(x)) f(x,u(x))] ,

hence by the divergence theorem we obtain E(u, f) = F(u, f).
Now assume u ∈ C1(Ω̄,Rn), and consider an extension ũ ∈ C1(Ω̃,Rn) of u to an open set Ω̃ containing

Ω̄. By mollification, there exist an open set Ω′ ⊂ Ω̃ containing Ω̄ and a sequence {uj}j∈N in C∞(Ω′,Rn)
such that uj → u and Duj → Du, as j →∞, uniformly in compact subsets of Ω′. By the result of the first
part of the proof, EΩ(uj , f) = F∂Ω(uj , f) for all j ∈ N. On the other hand, the convergences above imply
limj→∞ EΩ(uj , f) = EΩ(u, f) and limj→∞ F∂Ω(uj , f) = F∂Ω(u, f).

With the aid of Proposition 4.2, we can easily prove that W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) is contained in
Āp(Ω) when p ≥ n.

Proposition 7.2. Let Ω be a bounded open set of Rn of class C1 and let p ≥ n. Then W 1,p(Ω,Rn) ∩
W 1,p(∂Ω,Rn) ⊂ Āp(Ω).

Proof. Let u ∈ W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) and f ∈ C1
c (Ω̄ × Rn,Rn). By Proposition 4.2, there exists a

sequence {uj}j∈N ⊂ C1(Ω̄,Rn) such that uj → u in W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn), a.e. in Ω and Hn−1-a.e.
in ∂Ω. Hence

cof Duj → cof Du in L
p

n−1 (Ω,Rn×n), detDuj → detDu in L
p
n (Ω),

cof Duj ν → cof Duν in L
p

n−1 (∂Ω,Rn), f(x,uj(x))→ f(x,u(x)) a.e. x ∈ Ω,

Df(x,uj(x))→ Df(x,u(x)) a.e. x ∈ Ω, f(x,uj(x))→ f(x,u(x)) Hn−1-a.e. x ∈ ∂Ω

as j → ∞. By Lemma 7.1, E(uj , f) = F(uj , f) for all j ∈ N. Taking limits as j → ∞, by a standard
convergence result (see, e.g., [18, Prop. 2.61]), we obtain E(u, f) = F(u, f).

The passage from p ≥ n to p ≥ n− 1 is as follows; we adapt the proof of [33, Lemma 2].

Proposition 7.3. Let Ω be a bounded open set of class C1. Let p ≥ n − 1 and q ≥ p
p−1 . Then {u ∈

W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) : cof Du ∈ Lq(Ω,Rn×n)} ⊂ Āp(Ω).

Proof. Formula (2.1) and Hölder’s inequality imply that detDu ∈ L1(Ω).
First we show that for all v,b ∈ C1(Ω̄,Rn) one has∫

Ω

cof Dv ·Db =

∫
∂Ω

b · (cof Dv ν) . (7.1)
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Formula (7.1) immediately holds under the assumption v ∈ C2(Ω̄,Rn), since, as a consequence of Piola’s
identity Div cof Dv = 0 we have

Db(x) · cof Dv(x) = Div [(adjDv(x)) b(x)] , x ∈ Ω̄,

and (7.1) follows by an integration by parts. If v ∈ C1(Ω̄,Rn), by approximation with C2 functions, as in
the proof of Lemma 7.1, we obtain that (7.1) is valid for v ∈ C1(Ω̄,Rn).

Let u ∈ W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) satisfy cof Du ∈ Lq(Ω,Rn×n). By Proposition 4.2, there exists a
sequence {vj}j∈N ⊂ C1(Ω̄,Rn) such that vj → u in W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn). Therefore, cof Dvj →
cof Du in L1(Ω,Rn×n) and cof Dvj ν → Λn−1Duν in L1(∂Ω,Rn). Passing to the limit in (7.1) (with v
replaced with vj) we obtain that ∫

Ω

cof Du ·Db =

∫
∂Ω

b · (Λn−1Duν) . (7.2)

Now consider a ∈ W 1,p(Ω,Rn) ∩ W 1,p(∂Ω,Rn). By Proposition 4.2, there exists a sequence {bj}j∈N ⊂
C1(Ω̄,Rn) such that bj → a in W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn). Therefore, Dbj → Da in Lp(Ω,Rn×n) and
bj → a in Lp(∂Ω,Rn). Passing to the limit in (7.2) (with b replaced with bj) we obtain that∫

Ω

cof Du ·Da =

∫
∂Ω

a · (Λn−1Duν) . (7.3)

Now let φ ∈ C1(Ω̄) and g ∈ C1
c (Rn,Rn), and define a := φ (g ◦ u). By the chain rule for Sobolev

functions, g ◦ u ∈ W 1,p(Ω,Rn) so a ∈ W 1,p(Ω,Rn); the same argument shows that a ∈ W 1,p(∂Ω,Rn).
Therefore, a ∈W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) and, moreover,

Da = (g ◦ u)⊗Dφ+ φ (Dg ◦ u)Du.

Plugging this expression in (7.3) yields∫
Ω

cof Du · ((g ◦ u)⊗Dφ+ φ (Dg ◦ u)Du) =

∫
∂Ω

φ (g ◦ u) · (Λn−1Duν) .

Now, using (2.1) we obtain that

cof Du · (φ (Dg ◦ u)Du) = φdetDu (div g ◦ u) ,

which shows that E(u, φg) = F(u, φg). Thus (see (5.4)), u ∈ Āp(Ω).

In the case p < n, the reduction from the exponent q ≥ p
p−1 to q ≥ n

n−1 is more delicate and cannot

be based solely on an approximation argument. Instead of adapting the proof of [37], we use the extension
property of Proposition 6.3 to provide a quick derivation of the following result from that of [37].

Proposition 7.4. Let Ω be an extendable open set. Let p ≥ n− 1 and q ≥ n
n−1 . Then {u ∈W 1,p(Ω,Rn) ∩

W 1,p(∂Ω,Rn) : cof Du ∈ Lq(Ω,Rn×n), Λn−1Duν ∈ Lq(∂Ω,Rn)} ⊂ Āp(Ω).

Proof. Let u ∈W 1,p(Ω,Rn)∩W 1,p(∂Ω,Rn) be such that cof Du ∈ Lq(Ω,Rn×n) and Λn−1Duν ∈ Lq(∂Ω,Rn).
Taking determinants in (2.1) show that detDu ∈ L1(Ω); see [37, Eq. (1.4)], if necessary. Let ũ be the ex-
tension of u to an open set Ω̃ ⊃ Ω̄ given by Proposition 6.3. We then have that ũ ∈ W 1,p(Ω̃,Rn) and
cof Dũ ∈ Lq(Ω̃,Rn×n). By the result of [37, Th. 3.2], ũ ∈ Ap(Ω̃). Again by Proposition 6.3, u ∈ Āp(Ω).
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8 Boundedness

In this section we prove that functions u ∈ Āp(Ω) with detDu ≥ 0 a.e. are bounded. This is the global
version of [6, Th. 4.1], where it was proved that functions u ∈ Ap(Ω) with detDu ≥ 0 a.e. are locally
bounded.

We start with the definition of topological image (see [42]). Given u ∈ C(∂Ω,Rn), we define imT(u,Ω)
as the set of y ∈ Rn \ u(∂Ω) such that deg(u,Ω,y) 6= 0. Here deg is the Brouwer degree (see, e.g., [11, 16]).
It is known that deg(u,Ω, ·) is zero in the unbounded component of Rn \ u(∂Ω) (see, e.g., [11, Sect. 5.1]);
consequently, imT(u,Ω) is bounded. It is also open because of the continuity of the degree. Now, given
u ∈ W 1,p(∂Ω,Rn) with p > n− 1, we have that u admits a continuous representative, so that imT(u,Ω) is
also defined.

The following result is due to [36, Prop. 2.1] (see also [35, Prop. 2.1]) and computes the distributional
derivative of the degree.

Proposition 8.1. Let p > n− 1 and u ∈W 1,p(∂Ω,Rn). Then, for all g ∈ C1(Rn,Rn),∫
Rn

div g(y) deg(u,Ω,y) dy =

∫
∂Ω

g(u(x)) · (Λn−1Du(x)ν(x)) dHn−1(x).

We make the following observation about Proposition 2.1.

Remark 8.2. Let u ∈ W 1,1(Ω,Rn) and let Ω0 be the set of Proposition 2.1. This set Ω0 is not uniquely
defined, although it can be given a precise definition (see [35, Eq. (2.10)]). We fix any Ω0 with that property,
and note that in this paper the specific choice of Ω0 is not relevant because of the following properties:

a) Any Ω′0 ⊂ Ω0 with Ln(Ω \ Ω′0) = 0 satisfies the same properties of Proposition 2.1.

b) If Ω1 is another subset of Ω with the properties listed in Proposition 2.1, then for any measurable A ⊂ Ω,
we have that u(A ∩ Ω0) = u(A ∩ Ω1) a.e., and the two definitions of Nu,A corresponding to Ω0 and Ω1

coincide a.e.

We now define the geometric image (see [35]).

Definition 8.3. Given u ∈ W 1,1(Ω,Rn), let Ω0 be the set of Proposition 2.1. We define the geometric
image of Ω under u, denoted by imG(u,Ω), as u(Ω0).

With these definitions, we are able to present the main result of this section; its proof follows that of [6,
Th. 4.1]. Recall the function Nu from Proposition 2.1.

Proposition 8.4. Let p > n − 1. If u ∈ Āp(Ω) with detDu ≥ 0 a.e. then deg(u,Ω, ·) = Nu a.e.,
imG(u,Ω) = imT(u,Ω) a.e. and u ∈ L∞(Ω,Rn).

Proof. Fix g ∈ C1
c (Rn,Rn) and consider g also as a function in C1

c (Ω̄×Rn,Rn) with no dependence on the
first set of variables. Using Proposition 8.1, we find that∫

Rn

div g(y) deg(u,Ω,y) dy =

∫
∂Ω

g(u(x)) · (cof Du(x)ν(x)) dHn−1(x) = F(u,g).

On the other hand, by Proposition 2.1, and using that u ∈ Āp(Ω),∫
Rn

div g(y)Nu(y) dy =

∫
Ω

div g(u(x)) detDu(x) dx = E(u,g) = F(u,g).

We thus obtain that ∫
Rn

div g(y) deg(u,Ω,y) dy =

∫
Rn

div g(y)Nu(y) dy.

This equality being true for all g ∈ C1
c (Rn,Rn) means that the distributional derivatives of deg(u,Ω, ·) and

Nu coincide, so there exists c ∈ Z such that Nu − deg(u,Ω, ·) = c a.e.
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Now we show that imG(u,Ω) ⊂ imT(u,Ω) a.e. Notice, by the classic result of [32] (see also [42, Th. 1] or
[35, Prop. 2.7]), that Ln(u(∂Ω)) = 0. For all y ∈ imG(u,Ω) \ (imT(u,Ω) ∪ u(∂Ω)) we have Nu(y) ≥ 1 and
deg(u,Ω,y) = 0, so if

Ln(imG(u,Ω) \ imT(u,Ω)) > 0 (8.1)

we would obtain c ≥ 1. Thus, for a.e. y ∈ Rn \ imT(u,Ω) we would have deg(u,Ω,y) = 0, so Nu(y) = c ≥ 1
and, hence, y ∈ imG(u,Ω). Therefore, Rn \ imT(u,Ω) ⊂ imG(u,Ω) a.e., so, using that imT(u,Ω) is bounded,
as well as Proposition 2.1,

∞ = Ln (Rn \ imT(u,Ω)) ≤ Ln (imG(u,Ω)) ≤
∫

imG(u,Ω)

Nu(y) dy =

∫
Ω

detDu(x) dx,

which contradicts the fact that detDu ∈ L1(Ω); this contradiction comes from assumption (8.1). Thus,
imG(u,Ω) ⊂ imT(u,Ω) a.e.; consequently, u ∈ L∞(Ω,Rn).

Now, for a.e. y ∈ Rn \ imT(u,Ω) we have deg(u,Ω,y) = 0, y /∈ imG(u,Ω) and, hence, Nu(y) = 0. Thus
c = 0 and, hence, deg(u,Ω, ·) = Nu a.e., which shows imG(u,Ω) = imT(u,Ω) a.e.

9 Global invertibility

The previous section provides us with all the ingredients to prove the global invertibility result of this paper.

Theorem 9.1. Let p > n − 1. Let u,u0 ∈ Āp(Ω) satisfy u|∂Ω = u0|∂Ω, detDu > 0 a.e., detDu0 ≥ 0 a.e.
and u0 is injective a.e. Then u is injective a.e. and imG(u,Ω) = imG(u0,Ω) a.e.

Proof. According to Proposition 8.4, deg(u,Ω, ·) = Nu a.e., deg(u0,Ω, ·) = Nu0
a.e. Now, as the degree only

depends on the boundary values, we have that deg(u,Ω, ·) = deg(u0,Ω, ·). Therefore, Nu = Nu0
a.e. As u0

is injective a.e., there exists Ω1 ⊂ Ω0 with Ln(Ω \ Ω1) = 0 such that u0|Ω1
is injective. Therefore, for all

y ∈ u0(Ω1) there is exactly one x ∈ Ω1 such that u0(x) = y, while for all y /∈ u0(Ω1) there is no x ∈ Ω1 such
that u0(x) = y. Thanks to Remark 8.2, this shows that Nu0 = χimG(u0,Ω) a.e. Altogether, Nu = χimG(u0,Ω)

a.e. Consequently, there exists a set N ⊂ Rn of zero measure such that for all y ∈ imG(u0,Ω) \N we have
Nu(y) = 1 and y ∈ imG(u,Ω), while for all y /∈ imG(u0,Ω) ∪ N we have Nu(y) = 0 and y /∈ imG(u,Ω).
This shows that imG(u,Ω) \N = imG(u0,Ω) \N and that u is injective in

{x ∈ Ω0 : u(x) ∈ imG(u0,Ω) \N} = {x ∈ Ω0 : u(x) /∈ N}.

Thus, imG(u,Ω) = imG(u0,Ω) a.e. Moreover, by Proposition 2.1 and the fact detDu > 0 a.e., we have that
the set {x ∈ Ω0 : u(x) ∈ N} has measure zero. This concludes that u is injective a.e.

Once we know that u is injective, we can define a.e. its inverse. Pointwise definitions of the inverse can
be found in [42, 24, 26, 6], but for our purposes, the following a.e. definition suffices.

Definition 9.2. Let p > n − 1. Let u ∈ Āp(Ω) be injective a.e. Let Ω0 be the set of Proposition 2.1. Let
Ω1 ⊂ Ω0 satisfy Ln(Ω \ Ω1) = 0 and u|Ω1 is injective. The inverse u−1 : imT(u,Ω) → Rn is defined a.e. as
u−1(y) = x, for each y ∈ u(Ω1), and where x ∈ Ω1 satisfies u(x) = y.

As happened with Definition 8.3, the set Ω1 is not uniquely defined, but if Ω′1 is another such set with
the same properties, then the definitions of the inverse corresponding to Ω1 and Ω′1 coincide a.e., since
u(Ω1) = u(Ω′1) = imT(u,Ω) a.e.

The Sobolev regularity of the inverse has been proved in several places under slightly different assump-
tions; see [3, 42, 26]. We present the corresponding result in our context.

Theorem 9.3. Let p > n − 1. Let u ∈ Āp(Ω) be injective a.e. with detDu > 0 a.e. Then u−1 ∈
W 1,1(imT(u,Ω),Rn) and Du−1(y) = Du(u−1(y))−1 for a.e. y ∈ imT(u,Ω).
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Proof. The measurability of u−1 is a consequence of Proposition 2.1. By Definition 9.2, u−1(u(Ω1)) = Ω1,
so u−1 ∈ L∞(imT(u,Ω),Rn).

In order to calculate the distributional derivative of u−1, we let G ∈ C1
c (imT(u,Ω),Rn×n). Call the rows

of G by g1, . . . ,gn. As imT(u,Ω) = u(Ω1) a.e., we can apply Proposition 2.1, as well as the definition of E ,
to obtain∫

imT(u,Ω)

u−1(y) · div G(y) dy =

∫
u(Ω1)

u−1(y) · div G(y) dy =

∫
Ω

x · div G(u(x)) detDu(x) dx

=
n∑
i=1

∫
Ω

xi div gi(u(x)) detDu(x) dx =
n∑
i=1

[
E(u, xi gi)−

∫
Ω

cof Du(x) · (gi(u(x))⊗ ei) dx

]
.

Of course, for each i ∈ {1, . . . , n} we have denoted by xi the map x 7→ xi. As u ∈ Āp(Ω), we have that
E(u, xi gi) = F(u, xi gi). Now, supp G ⊂ imT(u,Ω) and imT(u,Ω) ∩ u(∂Ω) = ∅, so supp G ∩ u(∂Ω) = ∅.
Consequently, G(u(x)) = 0 for all x ∈ ∂Ω and, hence, F(u, xi gi) = 0 for each i ∈ {1, . . . , n}. On the other
hand, changing variables again and using elementary matrix properties, we find that

n∑
i=1

∫
Ω

cof Du(x) · (gi(u(x))⊗ ei) dx =

∫
Ω

adjDu(x) ·G(u(x)) dx

=

∫
imG(u,Ω)

adjDu(u−1(y))

detDu(u−1(y))
·G(y) dy =

∫
imT(u,Ω)

Du(u−1(y))−1 ·G(y) dy.

Altogether, ∫
imT(u,Ω)

u−1(y) · div G(y) dy = −
∫

imT(u,Ω)

Du(u−1(y))−1 ·G(y) dy,

which shows that

Du−1(y) = Du(u−1(y))−1 =
adjDu(u−1(y))

detDu(u−1(y))
, a.e. y ∈ imT(u,Ω).

Using Proposition 2.1 again, we get∫
imT(u,Ω)

∣∣Du−1(y)
∣∣dy =

∫
Ω

|adjDu(x)|dx <∞,

so u−1 ∈W 1,1(imT(u,Ω),Rn), which concludes the proof.

In this paper we have not used Müller and Spector’s [35] condition INV of invertibility. We just mention
that, as a consequence of [6, Lemma 5.1], functions in Ap(Ω) that are injective a.e. automatically satisfy
INV. In particular, the function u of Theorem 9.1 satisfies INV.

In order to apply Theorem 9.1, it is useful to know a sufficient condition for which imT(u0,Ω) = u0(Ω).
The following result is well known, but the usual proof (see, e.g., [16, Th. 3.35]) assumes that u is a homeo-
morphism from Ω̄, so we provide a proof in the case (as in [3, Th. 1]) in which u is only a homeomorphism
from Ω: this allows for self-contact at the boundary ; see [8].

Proposition 9.4. Let u ∈ C(Ω̄,Rn) be such that u|Ω is injective. Then |deg(u,Ω, ·)| = χu(Ω) and
imT(u,Ω) = u(Ω).

Proof. Recall from the invariance of domain theorem that u|Ω is an open map. We first show that u(∂Ω) ∩
u(Ω) = ∅. Indeed, assume, for a contradiction, that there exists y ∈ u(∂Ω) ∩ u(Ω). As y ∈ u(Ω), there
exists an open U ⊂⊂ Ω such that y ∈ u(U). Since y ∈ u(∂Ω), there also exists x ∈ ∂Ω such that y = u(x).
Let {xj}j∈N be a sequence in Ω converging to x. Then u(xj)→ y as j →∞. On the one hand, as u(U) is
open and y ∈ u(U), for j large we have that u(xj) ∈ u(U). On the other hand, since xj → x with x ∈ ∂Ω
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and Ū ∩ ∂Ω = ∅, we have that xj /∈ U for large j. The facts u(xj) ∈ u(U) and xj ∈ Ω \ U contradict the
injectivity of u|Ω. We thus conclude that u(∂Ω) ∩ u(Ω) = ∅.

As a consequence of the existence property of the degree (see, e.g., [11, Th. 3.1(d4)]), if χu(Ω)(y) = 0 for
some y ∈ Rn \ u(∂Ω) then deg(u,Ω,y) = 0; therefore, imT(u,Ω) ⊂ u(Ω). For the other inclusion, assume
y ∈ u(Ω). As shown above, y /∈ u(∂Ω). There exists an open set U ⊂⊂ Ω such that y ∈ u(U). By the
injectivity of u|Ω, we have that y /∈ u(Ω \ U), so y /∈ u(Ω̄ \ U). By the excision property of the degree (see,
e.g., [11, Th. 3.1(d7)]), deg(u, U,y) = deg(u,Ω,y). Now, u|Ū is a homeomorphism onto its image, so, as a
consequence of the product formula for the degree (see, e.g., [16, Th. 3.35]), |deg(u, U,y)| = 1. Therefore,
|deg(u,Ω,y)| = |deg(u, U,y)| = 1 and, hence, y ∈ imT(u,Ω).

We finish this section with a variant of Theorem 9.5. The difference relies that in the next result, the
boundary datum u0 is not assumed to be in Āp(Ω) or satisfy detDu0 ≥ 0 a.e., but instead u0 ∈ C(Ω̄,Rn)
and u0|Ω is injective.

Theorem 9.5. Let p > n − 1. Let u ∈ Āp(Ω) and u0 ∈ C(Ω̄,Rn) satisfy u|∂Ω = u0|∂Ω, detDu > 0 a.e.,
and u0|Ω is injective. Then u is injective a.e. and imG(u,Ω) = u0(Ω) a.e.

Proof. According to Proposition 8.4, deg(u,Ω, ·) = Nu a.e. and imG(u,Ω) = imT(u,Ω) a.e. As the degree
only depends on the boundary values, deg(u,Ω, ·) = deg(u0,Ω, ·) and imT(u,Ω) = imT(u0,Ω). By Proposi-
tion 9.4, |deg(u0,Ω, ·)| = χu0(Ω) and imT(u0,Ω) = u0(Ω). This string of equalities show that Nu = χu0(Ω)

a.e. and imG(u,Ω) = u0(Ω) a.e.
From the equality Nu = χimG(u,Ω) a.e. we infer that there exists a set N ⊂ Rn of zero measure such that

for all y ∈ imG(u,Ω) \ N we have Nu(y) = 1, which shows that u is injective in {x ∈ Ω0 : u(x) /∈ N},
where Ω0 is the set of Definition 8.3. By Proposition 2.1 and the fact detDu > 0 a.e., we have that the set
{x ∈ Ω0 : u(x) ∈ N} has measure zero. This concludes that u is injective a.e.

10 Existence of minimizers

In this final section, we show how the class Āp(Ω) is suitable for proving existence of minimizers in nonlinear
elasticity.

We first show the weak continuity of Λn−1Duν in W 1,p(∂Ω,Rn). This result has been proved in [7,
Prop. 15], but we provide a self-contained proof in our context.

Proposition 10.1. Let p > n − 1. For each j ∈ N, let uj ,u ∈ W 1,p(∂Ω,Rn), and assume that uj ⇀ u in

W 1,p(∂Ω,Rn) as j →∞. Then Λn−1Duj ν ⇀ Λn−1Duν in L
p

n−1 (∂Ω,Rn) as j →∞.

Proof. By Lemma 3.3, Li(uj) ⇀ Li(u) in W 1,p((0, r)n−1) for each i ∈ {1, . . . ,m}. Fix any such i. For each
k ∈ {1, . . . , n}, denote by Mk the number (−1)k+n times the n− 1 minor of an n× (n− 1) matrix obtained
by deleting the row k. A standard property on the weak continuity of the minors (see, e.g., [10, Th. 8.20])

shows that Mk(D(Li(uj))) ⇀ Mk(D(Li(u))) in L
p

n−1 ((0, r)n−1). Now fix any β > 0 and consider the map
Li(uj) ◦ π : (0, r)n−1 × (0, β)→ Rn, which satisfies D(Li(uj) ◦ π)(z) = D(Li(uj))(ẑ) ◦ π and

cof D(Li(uj) ◦ π)(z) =

0 · · · 0 M1(D(Li(uj))(ẑ))
...

. . .
...

...
0 · · · 0 Mn(D(Li(uj))(ẑ))

 .

Therefore, cof D(Li(uj) ◦ π) ⇀ cof D(Li(u) ◦ π) in L
p

n−1 ((0, r)n−1 × (0, β)) as j → ∞. Moreover, by (2.2),
we have that

Λn−1D(Li(uj) ◦ π|(0,r)n−1×{0})(ẑ, 0) en = cof D(Li(uj) ◦ π)(ẑ, 0) en,

so

Λn−1D(Li(uj) ◦ π|(0,r)n−1×{0}) en ⇀ Λn−1D(Li(u) ◦ π|(0,r)n−1×{0}) en in L
p

n−1 ((0, r)n−1 × {0}) (10.1)
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as j →∞.
In order to show Λn−1Duj ν ⇀ Λn−1Duν in L

p
n−1 (∂Ω,Rn) as j → ∞ it suffices to check that the

convergence holds in L
p

n−1 (Γi,Rn) for each i ∈ {1, . . . ,m}, so fix any such i and consider any ψ ∈ Lq(Γi,Rn),
where q is the conjugate exponent of p

n−1 . Performing the change of variables given by G−1
i : Γi →

(0, r)n−1 × {0}, in a similar way as in (6.8)–(6.9), we have that∫
Γi

ψ(x) · (Λn−1Duj(x)ν(x)) dHn−1(x)

=

∫
(0,r)n−1×{0}

(ψ ◦Gi)(z) ·
(
Λn−1D

(
uj ◦Gi|(0,r)n−1×{0}

)
(z)(−en)

)
dHn−1(z).

(10.2)

Now, ψ ◦ Gi ∈ Lq((0, r)n−1 × {0}), since Gi is bi-Lipschitz. In addition, Gi|(0,r)n−1×{0} = Gi ◦ η ◦
π|(0,r)n−1×{0}, so uj ◦Gi|(0,r)n−1×{0} = Li(uj) ◦π|(0,r)n−1×{0}, and, hence, for Hn−1-a.e. z ∈ (0, r)n−1×{0},

Λn−1D
(
uj ◦Gi|(0,r)n−1×{0}

)
(z)(−en) = Λn−1D(Li(uj) ◦ π|(0,r)n−1×{0})(z) (−en). (10.3)

Now we consider (10.2) and (10.3), and realize that the same formulas hold when u replaces uj . With (10.1)
we conclude that

lim
j→∞

∫
Γi

ψ(x) · (Λn−1Duj(x)ν(x)) dHn−1(x) =

∫
Γi

ψ(x) · (Λn−1Du(x)ν(x)) dHn−1(x).

This shows that Λn−1Duj ν ⇀ Λn−1Duν in L
p

n−1 (Γi,Rn) as j →∞ and concludes the proof.

We present now a compactness result for the class Āp(Ω), which is a consequence of the main result of
[23] (see also [6, Prop. 6.1]).

Proposition 10.2. Let p > n− 1. Let {uj}j∈N ⊂ Āp(Ω) be such that {uj}j∈N is bounded in W 1,p(Ω,Rn)∩
W 1,p(∂Ω,Rn) and {detDuj}j∈N is equiintegrable. Then there exists u ∈ Āp(Ω) such that, for a subsequence,

uj ⇀ u in W 1,p(Ω,Rn) ∩W 1,p(∂Ω,Rn) and detDuj ⇀ detDu in L1(Ω)

as j →∞.

Proof. For a subsequence (not relabelled), we have that there exist u ∈W 1,p(Ω,Rn), v ∈W 1,p(∂Ω,Rn) and
θ ∈ L1(Ω) such that

uj ⇀ u in W 1,p(Ω,Rn), uj ⇀ v in W 1,p(∂Ω,Rn) and detDuj ⇀ θ in L1(Ω).

as j → ∞. Taking a further subsequence, we have that uj → u a.e., while by the weak continuity of the
cofactors (see, e.g., [10, Th. 8.20]) we have that cof Duj ⇀ cof Du in L1(Ω,Rn×n). By the continuity of the
traces, uj |∂Ω ⇀ u|∂Ω in Lp(∂Ω,Rn), hence v = u|∂Ω. Thanks to [23, Th. 3], we have θ = detDu a.e., since
Āp(Ω) functions satisfy (5.2). Now let f ∈ C1

c (Ω̄ × Rn,Rn). The above convergences imply by a standard
result (see, e.g., [18, Prop. 2.61]),

lim
j→∞

E(uj , f) = E(u, f).

On the other hand, by Proposition 10.1, Λn−1Duj ν ⇀ Λn−1Duν in L
p

n−1 (∂Ω,Rn). Moreover, we can
assume, by taking a subsequence, that uj → u Hn−1-a.e. in ∂Ω. Again, a standard convergence result shows
that

lim
j→∞

F(uj , f) = F(u, f).

Since E(uj , f) = F(uj , f), we conclude that E(u, f) = F(u, f) and, consequently, u ∈ Āp(Ω).
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Proposition 10.2 will be used in Theorem 10.3 with more restrictive assumptions; namely, when uj |∂Ω is
the same for all j ∈ N. We have, nevertheless, proved Proposition 10.2 in its generality because in this way
it shows the compactness of Āp(Ω) in the relevant topology.

We have all the ingredients to prove the existence of minimizers in Āp(Ω) for functionals of the form

I(u) =

∫
Ω

W (x,u(x), Du(x)) dx (10.4)

under the key assumption of polyconvexity of W in the last variable. This kind of functionals appear
naturally in the theory of nonlinear elasticity, and much of the work in this area in the last decades has been
focused on proving the existence of minimizers (see, e.g., [2, 33, 20, 21, 34, 37]). In this context, u represents
the deformation of the body, which occupies Ω in its reference configuration. The term W accounts for the
elastic energy (which typically depends only on x and Du) and external forces (which typically depend only
on x and u).

We recall the concept of polyconvexity (see, e.g., [10]). We denote by Rn×n+ the set of n × n matrices
with positive determinant. Let τ be the number of minors of an n× n matrix; we call Rτ+ := Rτ−1 × (0,∞)
and denote by M(F ) ∈ Rτ the collection of all the minors of an F ∈ Rn×n in a given order such that its last
component is detF . A function W0 : Rn×n+ → R is polyconvex if there exists a convex function Φ : Rτ+ → R
such that W0(F ) = Φ(M(F )) for all F ∈ Rn×n+ .

The existence result is as follows. Thanks to Proposition 10.2, its proof is by now standard.

Theorem 10.3. Let p > n − 1. Let u0 ∈ Āp(Ω) be injective a.e. and satisfy detDu0 ≥ 0 a.e. Let
W : Ω× imT(u0,Ω)× Rn×n+ → R satisfy the following conditions:

a) W is Ln × Bn × Bn×n-measurable, where Bn and Bn×n and denote the Borel sigma-algebras in Rn and
Rn×n, respectively.

b) W (x, ·, ·) is lower semicontinuous for a.e. x ∈ Ω.

c) For a.e. x ∈ Ω and every y ∈ imT(u0,Ω), the function W (x,y, ·) is polyconvex.

d) There exist a constant c > 0, an a ∈ L1(Ω) and a Borel function h : (0,∞)→ [0,∞) such that

lim
t↘0

h(t) = lim
t→∞

h(t)

t
=∞

and

W (x,y,F) ≥ a(x) + c |F|p + h(det F) for a.e. x ∈ Ω, all y ∈ imT(u0,Ω) and all F ∈ Rn×n+ .

Let A be the set of u ∈ Āp(Ω) such that detDu > 0 a.e. and u|∂Ω = u0|∂Ω. Suppose A 6= ∅. Define I as in
(10.4) and assume that I is not identically infinity in A. Then there exists a minimizer of I in A, and any
element of A is injective a.e.

Proof. The fact that any element of A is injective a.e. is a consequence of Theorem 9.1.
Let {uj}j∈N be a minimizing sequence of I in A. By Proposition 8.4 and Theorem 9.1, uj(x) ∈ imT(u0,Ω)

for a.e. x ∈ Ω and all j ∈ N. Assumption d) and De la Vallée-Poussin’s criterion imply that {Duj}j∈N
is bounded in Lp(Ω,Rn×n) and {detDuj}j∈N is equiintegrable. By the L∞ bound on {uj}j∈N given by
imT(u0,Ω), we have that {uj}j∈N is bounded in W 1,p(Ω,Rn). By Proposition 10.2, there exists u ∈ Āp(Ω)
such that for a subsequence (not relabelled),

uj ⇀ u in W 1,p(Ω,Rn) and detDuj ⇀ detDu in L1(Ω) as j →∞.

Clearly, detDu ≥ 0 a.e. If detDu were zero in a set A of positive measure, then we would have (for a
subsequence) detDuj → 0 a.e. in A as j → ∞; by d), we would obtain h(detDuj) → ∞ a.e. in A, so, by
Fatou’s lemma and d) again, we would get I(uj)→∞, which is a contradiction. Therefore, detDu > 0 a.e.
Moreover, the boundary condition is also preserved under the limit, so u|∂Ω = u0|∂Ω and, hence, u ∈ A.

A standard lower semicontinuity result for polyconvex functionals (see, e.g., [5, Th. 5.4] or [18, Th. 7.5])
shows that I(u) ≤ lim infj→∞ I(uj). Therefore, u is a minimizer of I in A and the proof is concluded.
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According to Theorem 9.5 and Proposition 9.4, in Theorem 10.3 the assumption that u0 ∈ Āp(Ω) is
injective a.e. and satisfies detDu0 ≥ 0 a.e. can be replaced by u0 ∈ C(Ω̄,Rn) with u0|Ω injective.
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