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A. Two interesting problems that arise in the theory of closed Riemann surfaces are the
following: (i) the computation of algebraic curves representing the surface, and (ii) to decide if the
field of moduli is a field of definition.

In this paper we consider pairs (S ,H), where S is a closed Riemann surface and H is a subgroup of
Aut(S ), the group of automorphisms of S , so that S/H is an orbifold with signature (0; k, kn−1, kn, kn)
where k, n ≥ 2 are integers.

In the case that S is the highest Abelian branched cover of S/H we provide explicit algebraic
curves representing S . In the case that k is an odd prime, we also describe algebraic curves for some
intermediate Abelian covers.

For k = p ≥ 3 a prime and H a p-group, we prove that H is a p-Sylow subgroup of Aut(S ), and
if p ≥ 7 we prove that H is normal in Aut(S ). Also, when n , 3 we prove that the field of moduli
in such cases is a field of definition. If, moreover, S is the highest Abelian branched cover of S/H,
then we compute explicitly the field of moduli.

1. I

A closed Riemann surface S of genus g ≥ 2 may be described by many different objects; for
instance, by algebraic curves (by the Riemann-Roch theorem [8]), by torsion free co-compact
Fuchsian groups (by the Koebe-Poincaré uniformization theorem [16, 17, 20]), by Schottky groups
(by the retrosection theorem [2, 17]), or by certain principally polarized Abelian varieties (by the
Torelli theorem [23, 24]). In general, to provide different explicit representations for the same Rie-
mann surface has been a difficult problem, in spite of huge efforts to solve it. It seems that Burnside
[3] provided the first example of an algebraic curve and a Fuchsian group, both representing the
same Riemann surface. In many cases, the group Aut(S ) of automorphisms of S and its subgroups
play a fundamental role to find algebraic curves representing S . For instance, if S/Aut(S ) has
signature of the form (0; r, s, t), then in general it is not difficult to provide an explicit Fuchsian
group and an explicit algebraic curve, both of them representing S .

A field of definition of S is a subfield K of C for which it is possible to find an irreducible
non-singular projective algebraic curve representing S , defined by polynomials whose coefficients
belongs to K. If C is a algebraic curve describing S , then the field of moduli of S is defined as
the fixed field of the group of field automorphisms σ of C such that C and Cσ are isomorphic,
where Cσ is the algebraic curve defined as the zeroes of the polynomials obtained from the ones
defining C after σ acts on their coefficients. The field of moduli is always contained in any field of
definition, but it may happen that the field of moduli is not a field of definition.

In this article we study closed Riemann surfaces S admitting subgroups H < Aut(S ) so that
S/H has signature (0; k, kn−1, kn, kn), where n, k ≥ 2 are integers. For k = 2 in [4, 9] these type of
surfaces were considered to give examples of closed Riemann admitting topologically equivalent

2000 Mathematics Subject Classification. 30F10, 30F40, 14H37.
The first and third author were supported by Fondecyt grants 1095165 and 1100767. The second author was

supported by Fondecyt grant 1110001 and UTFSM grant 12.11.01.
1
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but conformally non-equivalent cyclic groups of order 2n.
In the general case, if S is the homology cover of S/H, then we compute the field of moduli and
we give explicit algebraic curves for S . These explicit algebraic curves for homology covers allow
us to find algebraic curves for those Riemann surfaces S admitting an Abelian group G < Aut(S )
such that S/G has signature (0; k, kn−1, kn, kn). We describe such a situation for the case that k is a
prime and G � Zk ×Zkn . Also, for k an odd prime, we describe the group Aut(S ) and we prove that
the field of moduli of S is in fact a field of definition.

2. P

2.1. Orbifolds. An orbifold is a tuple O = (S , {(p1, k1), . . . , (pn, kn), . . .}) where (i) S is a Riemann
surface, called the Riemann surface structure of O, (ii) p1, p2, . . . ∈ S is a collection of different
isolated points, called the cone points of O, and (iii) each k j ≥ 2 is an integer, called the cone order
of p j. An orbifold of signature (γ; k1, . . . , kn) is given by an orbifold O = (S , {(p1, k1), ..., (pn, kn)})
where S is a closed Riemann surface of genus γ. An orbifold without cone points is just a Riemann
surface.

A conformal homeomorphism between two orbifolds is a conformal homeomorphism between
the corresponding Riemann surface structures, sending cone points to cone points, and preserving
the cone point orders. If both orbifolds are the same, then we speak about a conformal automor-
phism of the orbifold. We use the notation O1 � O2 to indicate that O1 and O2 are conformally
equivalent orbifolds.

We denote by Autorb(O) the group of conformal automorphisms of O. If S is the conformal
Riemann surface structure of O, then we denote by Aut(S ) its group of conformal automorphisms.
There is a natural inclusion Autorb(O) < Aut(S ), but in general these two groups are different.

If O is an orbifold and H < Autorb(O) acts discontinuously on the Riemann surface structure,
then the quotient O/H may be seen again as an orbifold as follows. We denote by π : O → O/H
the canonical quotient map. A cone point of O/H may be obtained in two different ways. In the
first case, if p ∈ O is not a cone point and it has non-trivial H-stabilizer H(p), then π(p) is a cone
point with order equal to the order of H(p). In the second case, if p ∈ O is a cone point of order n
and its H-stabilizer has order m, then π(p) is a cone point with order equal to nm.

The orbifolds we consider in this paper are the good orbifolds in Thurston’s terminology; they
are obtained as quotient spaces R/F, where R is a Riemann surface and F < Aut(R) is a discontin-
uous group of conformal automorphisms of R. From now on we will identify R/F with O in order
to simplify the notations; we will say that R/F is an orbifold.

2.2. Homology covers. Good orbifolds admit as (branched) universal cover either the Riemann
sphere, the complex plane or the hyperbolic plane; this is a consequence of the classical uni-
formization theorem.

Consider a good orbifold O = (S , {(p1, k1), ..., (pn, kn)}) of signature (γ; k1, ..., kn).
The first (orbifold) fundamental group of O is

(1) πorb
1 (O) =

〈
α1, . . . , αγ, β1, . . . , βγ, δ1, . . . , δn :

γ∏

j=1

[α j, β j]
n∏

k=1

δk = δk1
1 = · · · = δkn

n = 1
〉
,

where π1(S ) =

〈
α1, . . . , αγ, β1, . . . , βγ :

γ∏

j=1

[α j, β j] = 1
〉
, with [a, b] = aba−1b−1, and the element

δ j represents a simple small loop around p j in S − {p1, . . . , pn}, for each j = 1, . . . , n.
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It is clear that to each normal subgroup N of finite index of πorb
1 (O) there corresponds an orbifold

Õ and a finite group H < Autorb(Õ), so that O = Õ/H. Observe that H is isomorphic to πorb
1 (O)/N.

When N = πorb
1 (O)′ (the derived subgroup of πorb

1 (O)), the corresponding cover orbifold Õ is
called the homology orbifold cover of O. We will be interested only in the particular case when the
homology orbifold cover is a closed Riemann surface, in which case we call it the homology cover
of O, and say that O is a homology orbifold.

Clearly, the homology orbifold cover of O is the homology cover if and only if πorb
1 (O)′ has finite

index in πorb
1 (O) and it acts freely on the universal cover space of O. The finite index condition is

equivalent to the condition that the underlying Riemann surface structure of O is the Riemann
sphere; that is, to have γ = 0, and the free action condition is equivalent to the following (see [19])

(2) lcm(k1, . . . , k j−1, k j+1, . . . , kn) = lcm(k1, . . . , kn), ∀ j = 1, . . . , n.

Note that the homology cover (when it exists) is the highest abelian Galois cover of O.

2.3. Fuchsian groups. The basic theory of Fuchsian groups may be found, for instance, in the
classical book by Beardon [1]. A co-compact Fuchsian group acting on the upper half-plane H2

is a discrete group Γ < PSL(2,R) such that H2/Γ is an orbifold of some signature; that is, the
underlying Riemann surface is a closed Riemann surface. It is known that a co-compact Fuchsian
group Γ has a presentation of the form

(3) Γ =

〈
a1, b1, . . . , aγ, bγ, δ1, . . . , δn :

γ∏

j=1

[a j, b j]
n∏

j=1

δ j = δk1
1 = . . . = δkn

n = 1
〉
,

where γ and n are non-negative integers, the k j ≥ 2 are integers, and 2γ − 2 + n −
n∑

j=1

k−1
j > 0.

The tuple (γ; k1, . . . , kn) is known as the signature of Γ (this is the signature of its quotient orbifold
H2/Γ).

An orbifold O is of hyperbolic type if there is a co-compact Fuchsian group Γ so that O �
H2/Γ. By the Poincaré-Koebe uniformization theorem [16, 17, 20], every orbifold with signature
(γ; k1, . . . , kn) is of hyperbolic type if and only if 2γ − 2 + n −∑n

j=1 k−1
j > 0.

By the hyperbolic area of a Fuchsian group Γ (respectively, of a hyperbolic orbifold) of signature
(γ, n; k1, . . . , kn) we refer to the hyperbolic area of a fundamental polygon domain for it; it is given
by

(4) A(Γ) = 2π

2γ − 2 +

n∑

j=1

(1 − 1
k j

)



We say that a co-compact Fuchsian group Γ, with presentation (3), is a homology Fuchsian group
if γ = 0 and it satisfies Maclachlan’s conditions (2). In other words, homology Fuchsian groups
are exactly those co-compact Fuchsian groups providing a Fuchsian uniformization of a hyperbolic
homology orbifold of genus zero. If Γ is a homology Fuchsian group of signature (0; k1, . . . , kn),
then the homology cover of the homology orbifold O = H2/Γ is S = H2/Γ′, where Γ′ denotes the
derived subgroup of Γ.

2.4. Fields of moduli and fields of definition. As a consequence of the Implicit Function Theo-
rem, every irreducible non-singular projective algebraic curve defines a closed Riemann surface;
conversely, by the Riemann-Roch Theorem, every closed Riemann surface may be described by an
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irreducible non-singular projective algebraic curve. It is this equivalence which allows the work at
the analytical and at the algebraic settings in a parallel way.

Let C be an irreducible non-singular projective algebraic curve, say defined by homogeneous
polynomials P1,. . . , Pr, each one with coefficients in a subfield K < C. Let g denote the genus
of the closed Riemann surface corresponding to C. If σ ∈ Aut(C/Q), the group of field automor-
phisms of C, then we may consider the new polynomials Pσ

1 ,. . . , Pσ
r , where the coefficients of Pσ

j
are the corresponding images under σ of the coefficients of the original polynomial P j. The alge-
braic curve Cσ, defined by these new polynomials, is still an irreducible non-singular projective
algebraic curve, and it defines a new closed Riemann surface of genus g. It is not difficult to see
that if C̃ is another irreducible non-singular projective algebraic curve that is birationally equiva-
lent to C, then Cσ and C̃σ are also birationally equivalent. Therefore, a natural action of Aut(C/Q)
is defined on the moduli space of genus g. The stabilizer of the moduli class of C under such action
is the subgroup

KC = {σ ∈ Aut(C/Q) : C � Cσ} < Aut(C/Q).

The fixed field of KC, denoted byM(C), is called the field of moduli of C.
A subfield K of C is called a field of definition of C if there is an irreducible non-singular

projective algebraic curve C̃ defined over K which is birationally equivalent to C. At this point it
is important to note that it is not clear that given a field of definition L < C of C there is a smaller
subfield F < L which is again a field of definition of C.

The field of moduliM(C) is contained in any field of definition of C, and it coincides with the
intersection of all fields of definitions of C [18]. Moreover, there is a field of definition of C which
is an extension of finite degree of the field of moduli [6, 11].

If g = 0, then C � P1, so in this case M(C) = Q is a field of definition. If g = 1, then C
is equivalent to an (affine) elliptic curve Eη = {y2 = x(x − 1)(x − η)}, where η ∈ C − {0, 1}. If
j(η) = (1 − η + η2)3/η2(η − 1)2 is its j-invariant and a(η) = 27 j(η)/( j(η) − 1), then Eη is also
described by Dη = {y2 = 4x3 − a(η)x − a(η)}. It follows that Q( j(η)) is a field of definition for Eη.
Moreover, if σ ∈ Aut(C/Q) and Eσ

η = Eσ(η) is conformally equivalent to Eη, then they must have
the same j-invariant; that is, σ( j(η)) = j(η). It follows that M(C) = M(Eη) = Q( j(η)) is also a
field of definition.

In genus g ≥ 2, the situation is more difficult. There are examples for which the field of moduli
is not a field of definition [7, 15, 21]; all of the examples there are hyperelliptic curves. It is stated
in [7] that there are examples of non-hyperelliptic Riemann surfaces with the same properties, but
no explicit one was given. An explicit example of a non-hyperelliptic Riemann surface of genus
g = 17 which cannot be defined over R and whose field of moduli is inside R is given in [13] (this
example is related to the hyperelliptic example in [7]).

A. Weil [24] provided the following sufficient and necessary conditions for the moduli field to
be a field of definition.

Theorem 1 ([24]). Let C be an irreducible non-singular projective algebraic curve defined over
a finite Galois extension L of its field of moduli M(C). If for every σ ∈ Aut(L/M(C)) there
is a biholomorphism fσ : C → Cσ defined over L such that the compatibility condition fτσ =

f τσ ◦ fτ holds for all σ, τ ∈ Aut(L/M(C)), then there exists an irreducible non-singular projective
algebraic curve E defined overM(C) and there exists a biregular map R : C → E, defined over L,
such that Rσ ◦ fσ = R.
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As a consequence of Theorem 1, it follows that if C has no non-trivial automorphism, then it
may be defined over its field of moduli. Unfortunately, if C has non-trivial automorphisms, then
it is a very difficult task to verify if Weil’s conditions hold. But if C/Aut(C) has signature of the
form (0; a, b, c) (quasiplatonic surfaces, or platonic if some cone order is equal to 2), then C may
be defined over its field of moduli [5, 25].

Consider a (branched) holomorphic covering between closed Riemann surfaces, say f : X → Y .
Assume X and Y are given by fixed algebraic curves and that Y is defined over M(X). For each
σ ∈ Aut(C/M(X)) we may consider the (branched) holomorphic covering f σ : Xσ → Yσ = Y . We
say that they are equivalent, denoted by { f σ : Xσ → Y} � { f : X → Y}, if there is a holomorphic
isomorphism φσ : X → Xσ so that f σ ◦ φσ = f . The field of moduli of f : X → Y , denoted by
M( f : X → Y), is the fixed field of the subgroup

K( f : X → Y) = {σ ∈ Aut(C/M(X)) : { f σ : Xσ → Y} � { f : X → Y}} .
It is clear from the definition thatM(X) <M( f : X → Y), but in general they may be different

fields. For the particular case that Y = X/Aut(X) and X has genus at least two, the following is
well known (a direct consequence of Theorem 1).

Theorem 2 (Dèbes-Emsalem [6]). If X is an irreducible non-singular projective algebraic curve
of genus g ≥ 2, then there exists an irreducible non-singular projective algebraic curve B, defined
over M(X), and there exists a Galois cover f : X → B, with Aut(X) as Deck group, so that
M( f : X → B) = M(X). Moreover, if B f denotes the branch locus of f and if B − B f contains
at least oneM(X)-rational point, thenM(X) is also a field of definition of X. Such a curve B is
called a canonical model of X/Aut(X).

3. M R

Let S be a closed Riemann surface and let H1,H2 < Aut(S ). We say that H1 and H2 are (weakly)
topologically equivalent (respectively, conformally equivalent) if there is an orientation preserving
self-homeomorphism (respectively, conformal automorphism) h : S → S so that H2 = f H1 f −1. If
H < Aut(S ), then we denote by AutH(S ) the normalizer of H in Aut(S ).

3.1. p-groups of automorphisms. We are interested in regular pn+1-covers of orbifolds of type
(0; p, pn−1, pn, pn), where n ≥ 2 and p is an odd prime.

The interest in these type of examples is that in [4, 9] it has been constructed examples of
closed Riemann surfaces S admitting topologically equivalent but conformally non-equivalent
cyclic groups of order 2n+1, where n ≥ 2, so the quotient of S by the 2-group generated these
two cyclic subgroups is an orbifold with signature (0; 2, 2n, 2n+1, 2n+1).

Let S be a closed Riemann surface and let H < Aut(S ) be a p-group such that S/H has signature
of the form (0; p, pn−1, pn, pn), with n ≥ 2. There is a regular branched cover P : S → Ĉ, with H
as Deck group.

If n ≥ 3, then (up to left composition by a suitable Möbius transformation) we may assume that
the branch values of P are∞ of order p, 0 of order pn−1, and 1 and some λ ∈ C− {0, 1} are the ones
of order pn. In this case, the choice of λ is not unique, but the only other possible choice is 1/λ.

If n = 2, then again (up to left composition by a suitable Möbius transformation) we may assume
that the branch values of P of order p are∞ and 0, the ones of order pn are 1 and some λ ∈ C−{0, 1}.
Again the choice of λ is not unique, but the only other possible choice is 1/λ.
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Theorem 3. Let p ≥ 3 be a prime and let n ≥ 2 be an integer. Consider a closed Riemann surface
S with a subgroup H < Aut(S ) such that H is a p-group with S/H of signature (0; p, pn−1, pn, pn).
Let λ ∈ C − {0, 1} be as defined above. Then the following properties hold.

(1) H is a p-Sylow subgroups of Aut(S ). In particular, if H1,H2 < Aut(S ) are p-groups
with S/H j of signature (0; p, pn−1, pn, pn), with n ≥ 2, then H1 and H2 are conformally
equivalent.

(2) If n ≥ 3, then
(a) AutH(S ) = H, for λ , −1.
(b) [AutH(S ) : H] ∈ {1, 2}, for λ = −1.

(3) If n = 2, then
(a) [AutH(S ) : H] ∈ {1, 2}, for λ , −1.
(b) [AutH(S ) : H] ∈ {1, 2, 4}, for λ = −1.

(4) If p ≥ p0, where
(a) p0 = 7 for n = 2, and
(b) p0 = 5 for n ≥ 3,

then AutH(S ) = Aut(S ).

Remark 4. In the case λ = −1 and n ≥ 3, part (2) of Theorem 3 asserts that either AutH(S ) = H
or [AutH(S ) : H] = 2. In the last case, S/AutH(S ) has signature (0; 2p, 2pn−1, pn), which is a
maximal signature [22], so AutH(S ) = Aut(S ).

3.2. Normality condition. Let S be a closed Riemann surface and H < Aut(S ). Let M(S ,H)
denote the locus in the moduli spaceM(S ) of S consisting of those classes of Riemann surfaces
Ŝ admitting a group Ĥ of conformal automorphisms, which is topologically equivalent to H. In
general, one should expect thatM(S ,H) is a singular variety. The following shows that this is not
the case if H is a p-group and S/H has signature (0; p, pn−1, pn, pn).

Corollary 5. Let p ≥ 3 be a prime and let n ≥ 2 be an integer. Consider a closed Riemann surface
S and let H < Aut(S ) be a p-group such that S/H has signature (0; p, pn−1, pn, pn). ThenM(S ,H)
is a normal subvariety ofM(S ).

Proof. The normality condition forM(S ,H) is equivalent to the following property: Given any two
pairs (S 1,H1) and (S 2,H2), where S j is a closed Riemann surface (of the same genus as S ) and H j

is a p-group of conformal automorphisms of S j so that S j/H j has signature (0; p, pn−1, pn, pn), and
there is an orientation preserving homeomorphism f : S 1 → S 2 with f H1 f −1 = H2, then f may be
replaced by a biholomorphism with the same properties. This property is exactly what part (1) of
Theorem 3 states.

�

3.3. Homology rigidity.

Corollary 6. Every Riemann orbifold of signature (0; p, pn−1, pn, pn), where p ≥ 3 is a prime and
n ≥ 2 is an integer, is uniquely determined, up to conformal equivalence, by its homology cover
Riemann surface. cover Riemann surface.
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Proof. A consequence of part (1) in Theorem 3. �

Remark 7 (Torelli’s theorem). Let O be a Riemann orbifold of signature (0; p, pn−1, pn, pn), where
p ≥ 3 is a prime and n ≥ 2 is an integer. As any two homology covers of O are conformally
equivalent Riemann surfaces, we may define the Jacobian of O, denoted by J(O), as the Jacobian
of any of these covers. It follows that J(O) is uniquely determined, up to equivalence of principally
polarized Abelian varieties, by O. As a consequence of Torelli’s theorem, J(O) determines the
conformal class of the homology cover of O and, by Corollary 6, it also determines the conformal
class of O. In this way, a kind of Torelli’s theorem is obtained for this class of Riemann orbifolds.
We may wonder how to describe the Jacobian ofO in terms of multivalued holomorphic differential
forms so that it looks more similar to the construction for the case of Riemann surfaces. In order
to do this, we use as homology the orbifold homology group Horb

1 (O) = πorb
1 (O)/πorb

1 (O)′, and as
holomorphic forms those multivalued holomorphic forms whose liftings to the homology cover
define the holomorphic one forms of it.

3.4. Algebraic curves in the Abelian case. Curves for the hyperelliptic homology covers and for
the homology covers of homology orbifolds with triangular signature have been described in [12].
Algebraic curves for the homology covers of orbifolds with signature of the form (0; k, . . . , k) have
been obtained in [10]. We next provide the algebraic curves for the homology covers of orbifolds
with signature (0; k, kn−1, kn, kn), where k, n ≥ 2 are integers. As a consequence of the results in
[12], the homology covers of such orbifolds cannot be hyperelliptic. Note that if R is the homology
cover of such an orbifold O, then O = R/H, where H � Zk × Zkn−1 × Zkn .

Theorem 8. Let k, n ≥ 2 be integers and letO be a Riemann orbifold with signature (0; k, kn−1, kn, kn).
Denote by R an homology cover of O, let H < Aut(R) be so that R/H = O, and let P : R → O be
the Galois cover with H as Deck group. We may assume (up to a Möbius transformation) that the
cone points of O (that is, the branch values of P) are given by the points 0, 1,∞ and λ ∈ C− {0, 1}.
We may also assume that ∞ is the cone point of order k, that 0 is the cone point of order kn−1 and
that 1 and λ are the cone points of order kn.

Then R is represented by the (singular) projective algebraic curve

Cλ :
{

zk
0zkn−k

3 + zkn−1

1 zkn−kn−1

3 + zkn

2 = 0
λzk

0zkn−1−k
3 + zkn−1

1 + zkn−1

3 = 0

}
⊂ P3 ;

H is generated by the projective linear transformations

a0([z0 : z1 : z2 : z3]) = [ρ1z0 : z1 : z2 : z3]
b0([z0 : z1 : z2 : z3]) = [z0 : ρn−1z1 : z2 : z3]
c0([z0 : z1 : z2 : z3]) = [z0 : z1 : ρnz2 : z3],

where ρs = e2πi/ks
, for each positive integer s, and the branched covering map P is represented in

this model by

P([z0 : z1 : z2 : z3]) = −


zkn−1

1

zk
0zkn−1−k

3

 .

The only singular point of the above curve is [1 : 0 : 0 : 0].
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Theorem 8 may be used to find algebraic curves for closed Riemann surfaces S admitting an
Abelian group G < Aut(S ) whose quotient orbifold S/G has signature of the form (0; k, kn−1, kn, kn).
In fact, let Q : S → S/G = O be a regular Abelian branched cover with G as Deck group. Let
R be the homology cover of O, let P : R → O be the regular Abelian branched cover, with Deck
group H < Aut(R). Then there exists a subgroup K < H, acting freely on R and so that G � H/K,
and there exists a regular unbranched cover F : R → S , with K as Deck group, satisfying that
P = Q ◦ F. As we have explicit curves for R and an explicit presentation for H, the classical
invariant theory permits to obtain explicit algebraic curves for S and an explicit presentation of G.
We show an application in the next section.

3.5. Families with Galois group of order pn+1. As mentioned before, we are interested in regular
pn+1-covers of orbifolds of type (0; p, pn−1, pn, pn), where n ≥ 2 and p is an odd prime. In Section
9 we will see that the algebraic structure of the corresponding groups of order pn+1 is restricted
to only two algebraic types: a direct or a semi-direct product of Zpn and Zp. The geometric types
(classified by either geometric signature or generating vector for the corresponding action) are
more varied: four different types are found in each algebraic case.

We study the corresponding families of Riemann surfaces, giving their algebraic curves in the
abelian case.

The next result makes the above more explicit for the case when G � Zp × Zpn , where p is a
prime. As we will see in its proof, this is a heavy computational procedure, but not a hard one.

Theorem 9. Let S be a closed Riemann surface S admitting a group G < Aut(S ) such that
G = 〈A, B : Ap = Bpn

= [A, B] = 1〉 � Zp × Zpn and O = S/G is a Riemann orbifold with signature
(0; p, pn−1, pn, pn), where n ≥ 2 and p is a prime. Let R be an homology cover of O, let H < Aut(R)
be so that R/H = O. Let K < H be the normal subgroup so that S = R/K and G = H/K.

(1) If K � Zpn−1 , then there exist β ∈ {1, 2, . . . , pn−1 − 1}, α ∈ {0, 1, . . . , p − 1} and q ∈
{1, . . . , [(pn − 1)/p]}, with (β, p) = 1 = (p, q), such that a (singular) projective algebraic
curve representation of S is given by either of the following two families.
(a) If α = 0, then there exists λ in C, with λ , 0, 1, such that

S :
{

(λ − 1)wp
0 − wp

1 + wp
3 = 0

(−1)q+1(wp
0 + wp

1)qwpn−1−β
1 + wpn−1

2 wqp−β
3 = 0

}
⊂ P3

and the action of G is generated by the following projective linear transformations

A([w0 : w1 : w2 : w3]) = [ρ1w0 : w1 : w2 : w3]
B([w0 : w1 : w2 : w3]) = [w0 : ρ1w1 : ρpn−1−β

n w2 : w3]

where ρk = e2πi/pk
. The regular branched covering map Q : S → S/G in this model is

represented by

Q([w0 : w1 : w2 : w3]) =
wp

0 + wp
1

wp
0

.

The singular points of the above curve are given by the (p + 1) points [0 : 0 : 1 : 0]
and [1 : 0 : 0 : (1 − λ)1/p].
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(b) If α > 0, then there exists λ in C, with λ , 0, 1, such that

S :



vpn−1

1 +
(−1)q+1

(λ − 1)q (λvp
1 − vp

3)qvpn−1−β
1 vβ−pq

3 = 0

vp
2vp(pr−β)+αp−p

3 +
(−1)α+1

(λ − 1)α+pr−β (vp
0 − vp

3)pr−β(λvp
0 − vp

3)α = 0.


⊂ P3

and the group G is generated by the transformations

A([v0 : v1 : v2 : v3]) = [v0 : v1 : ρpr−β
1 v2 : v3]

B([v0 : v1 : v2 : v3]) = [ρpn−1

n v0 : ρpn−1−β
n v1 : v2 : v3]

The regular branched covering map Q : S → S/G in this model is represented by

Q([v0 : v1 : v2 : v3]) =
λvp

0 − vp
3

vp
0 + vp

3

.

(2) If K � Zpn−2 × Zp, then there exist λ in C, with λ , 0, 1, integers γ, v ∈ {1, . . . , p − 1} such
that a (singular) projective algebraic curve representation of S is provided by the following
plane projective curve


(−1)pn−1(p−γ)

λpn−1(p−γ)+1

(
up

0 + up
2

)pn−1(p−γ)
up2v

1

(
(λ − 1)up

0 − up
2

)
+ upn

1 upn(p−γ−1)+p+p2v
2 = 0

 ⊂ P2.

and the group G is generated by the transformations

A([u0 : u1 : u2]) = [ρ1u0 : u1 : u2]
B([u0 : u1 : u2]) = [u0 : ρnu1 : u2]

The regular branched covering map Q : S → S/G in this model is represented by

Q([u0 : u1 : u2]) =
λup

0

up
0 + up

1

.

3.6. Field of moduli. If S is a closed Riemann surface, then it follows from the Riemann-Roch’s
theorem that S may be described by an irreducible non-singular projective algebraic curve C. It is
clear from the definition that we may define the field of moduli of S as the field of moduli of C and
a field of definition of S as a field of definition of C.

Theorem 10. Let p ≥ 3 be a prime, n ≥ 3 be an integer, S be a closed Riemann surface, and
H < Aut(S ) be a p-group with S/H of signature (0; p, pn−1, pn, pn). Then S may be defined over
its field of moduli.

Remark 11. Under the hypotheses of Theorem 10, if Autorb(S/H) is non-trivial, then S/H admits
an extra conformal involution J such that (S/H)/〈J〉 is the orbifold whose underlying Riemann
surface is Ĉ, with exactly three cone points (of orders 2p, 2pn−1 and pn). It follows that S is a Belyi
curve and hence it may be defined over a finite extension of Q.

Our next result computes the field of moduli for the homology covers of orbifolds with signature
(0; p, pn−1, pn, pn), where p ≥ 3 is a prime and n ≥ 2.
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Theorem 12. Let p ≥ 3 be a prime and n ≥ 2 be an integer. For each λ ∈ C − {0, 1}, let Cλ as in
Theorem 8 with k = p. Then the following properties hold.

(1) Cλ � Cµ for λ, µ ∈ C − {0, 1} if and only if µ ∈ {λ, 1/λ};
(2) M(Cλ) = Q(λ + λ−1): and
(3) M(Cλ) is a field of definition for Cλ.

Theorem 12 will be proved using arguments similar to those given by Dèbes-Emsalem in the
proof of Theorem 2. In our case, we do not consider the quotient by the full group of automor-
phisms, but just the quotient by the Abelian group H in Theorem 8.

4. P  T 3

4.1. Proof of part (1). As previously noted, there is a regular branched cover P : S → Ĉ, with
H as Deck group, so that its branch values are ∞ of order p, 0 of order pn−1, 1 of order pn and λ
of order pn. Let us denote by Oλ the orbifold whose underlying Riemann surface is Ĉ and whose
cone points are∞ of order p, 0 of order pn−1, 1 of order pn and λ of order pn; that is, Oλ = S/H.

If H is not a p-Sylow subgroup, then there is some H C K < Aut(S ), where K is a p-group and
[K : H] = p. It follows that there is an automorphism of order p ≥ 3 of the orbifold Oλ. As there
are no three cone points with the same order, this is impossible.

4.2. Proof of parts (2) and (3). If n ≥ 3, then it is easy to see that

Autorb(Oλ) =

{ {I}, λ ∈ C − {0,±1},
〈τ(z) = −z〉, λ = −1.

Since AutH(S )/H < Autorb(Oλ), it follows that

AutH(S ) =

{
H, λ ∈ C − {0,±1},
K, λ = −1.

where [K : H] ∈ {1, 2}.
If n = 2, then

Autorb(Oλ) =

{ 〈α(z) = λ/z〉, λ ∈ C − {0,±1},
〈τ(z) = −z, β(z) = −1/z〉, λ = −1.

Again as AutH(S )/H < Autorb(Oλ), it follows that

AutH(S ) =

{
Ĥ, λ ∈ C − {0,±1},
K̂, λ = −1.

where [Ĥ : H] ∈ {1, 2} and [K̂ : H] ∈ {1, 2, 4}.

4.3. Proof of part (4). As a consequence of the results in [14], there exists a prime p0 such that
the group H is a normal subgroup in Aut(S ) for p ≥ p0; that is, Aut(S ) = AutH(S ). Next, we
proceed to prove that p0 may be chosen as desired.

Let p ≥ 3 be any odd prime. We already know that H is a p-Sylow subgroup of Aut(S ) and that
S/H has signature (0; p, pn−1, pn, pn). If S/Aut(S ) has signature of the form (0; a, b, c, d), then it
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follows from Singerman’s list of maximal Fuchsian groups [22] that (0; a, b, c, d) = (0; p, pn−1, pn, pn)
and, in particular, that H = Aut(S ).

Thus we need only take care of the case when S/Aut(S ) has signature of the form (0; r, s, t).
In this case, at least one of the values r, s, t should be a multiple of pn. We may assume t = kpn,
where k is a positive integer. We may also assume that 2 ≤ r ≤ s and, moreover, that if r = 2, then
s ≥ 3. Let D = [Aut(S ) : H]. If D = 2, then clearly AutH(S ) = Aut(S ).

From now on assume that D ≥ 3. Riemann-Hurwitz (hyperbolic area comparison) asserts that

(5) D
(
1 − 1

r
− 1

s
− 1

kpn

)
= 2 − 1

p
− 1

pn−1 −
2
pn ,

where both sides are necessarily positive.

Lemma 13. If
(1) either p ≥ 7, or
(2) p ∈ {3, 5} and n ≥ 3,

then D ≤ 11.

Proof. Assume D ≥ 12. As (r, s) , (2, 2), it follows from (5) that

D
(
1
6
− 1

kpn

)
≤ 2 − 1

p
− 1

pn−1 −
2
pn .

Since
(
1
6
− 1

kpn

)
is positive, the last inequality implies that

k ≤ 12
2 + p + pn−1 .

Therefore, if p ≥ 7 then

k ≤ 12
2 + p + pn−1 ≤

12
2 + 2p

≤ 3
4
< 1,

and if p ∈ {3, 5} and n ≥ 3 then

k ≤ 12
2 + p + pn−1 ≤

12
2 + 3 + 32 ≤

6
7
< 1,

obtaining a contradiction in all cases. �

The following Proposition gives the desired result.

Proposition 14. (1) If n ≥ 2, then p0 ≤ 7.
(2) If n ≥ 3, then p0 ≤ 5.

Proof. Let us denote by Np be the number of p-Sylow subgroups of Aut(S ). We need to prove that
Np = 1, if either (i) p ≥ 7 is prime and n ≥ 2 or if (ii) p ≥ 5 is a prime and n ≥ 3.

As Np ≡ 1 mod p, we may write Np = 1 + pLp, where Lp is a non-negative integer.
If we assume that Np > 1, then Np ≥ 1 + p. As Np divides |Aut(S )| = D|H|, it follows that Np

must divide D.
If p ≥ 11, then Np ≥ 12; as D ≤ 11 by Lemma 13, we obtain a contradiction.
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For the remaining cases, we will make use of the following equality, obtained from (5),

(6)
(
D

(
1 − 1

r
− 1

s

)
− 2

)
pn + pn−1 + p + 2 =

D
k
∈ {1, . . . ,D}.

Note that both sides in this equality are positive integers.
If p = 7, since D ≤ 11 by Lemma 13, we must have that L7 = 1 and N7 = D = 8. If either

r, s ≥ 3 or r = 2 and s ≥ 4, then (
8
(
1 − 1

r
− 1

s

)
− 2

)
≥ 0

and the left side of (6) is bigger than 8, a contradiction to the fact that the right side should be less
or equal to D.

We are left with the case r = 2 and s = 3. But in this case the left side of (6) equals(
8
(
1 − 1

r
− 1

s

)
− 2

)
7n + 7n−1 + 9 < 0,

again a contradiction.

Now we consider p = 5 and n ≥ 3. In this case either (i) L5 = 1 and N5 = D = 6 or (ii) L5 = 2
and N5 = D = 11.

For D = 6, if either (a) r, s ≥ 3 or (b) r = 2 and s ≥ 6, then(
6
(
1 − 1

r
− 1

s

)
− 2

)
≥ 0

and the left side of (6) is bigger than D, a contradiction. The remaining cases are r = 2 and
3 ≤ s ≤ 5. But in these cases we have(

6
(
1 − 1

r
− 1

s

)
− 2

)
5n + 5n−1 + 7 < 0,

again a contradiction.
For D = 11, if either (a) r, s ≥ 3 or (b) r = 2 and s ≥ 4, then(

11
(
1 − 1

r
− 1

s

)
− 2

)
≥ 0

and the left side of (6) is bigger than D, a contradiction. The remaining cases are r = 2 and s = 3, 4.
But in these cases we have (

11
(
1 − 1

r
− 1

s

)
− 2

)
5n + 5n−1 + 7 < 0,

again a contradiction.
�

5. P  T 8

Let R be the homology cover of an orbifold O with signature (0; k, kn−1, kn, kn), where k, n ≥ 2.
The closed Riemann surface R admits a group H < Aut(R), where H � Zk × Zkn−1 × Zkn and such
that R/H = O.

First consider the Riemann orbifold O∗ obtained from O, but assuming all cone points of order
kn. The homology cover of this new orbifold is a closed Riemann surface S admitting a group
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H∗ < Aut(S ), H∗ � Zkn × Zkn × Zkn , and such that O∗ = S/H∗. It is known (see [10]) that an
algebraic curve representation of S is given by

Ĉ :
{

xkn

0 + xkn

1 + xkn

2 = 0
λxkn

0 + xkn

1 + xkn

3 = 0

}
⊂ P3,

that H∗ is generated by the projective transformations

a([x0 : x1 : x2 : x3]) = [ρnx0 : x1 : x2 : x3]

b([x0 : x1 : x2 : x3]) = [x0 : ρnx1 : x2 : x3]
c([x0 : x1 : x2 : x3]) = [x0 : x1 : ρnx2 : x3]

and that the holomorphic map

π : Ĉ → Ĉ : [x0 : x1 : x2 : x3] 7→ −
(

x1

x0

)kn

has degree k3n and is a branched regular cover with H∗ as Deck group. In this case, π(Fix(a)) = ∞,
π(Fix(b)) = 0, π(Fix(c)) = 1 and π(Fix(abc)) = λ.

Now consider the subgroup of H∗ given by K = 〈ak, bkn−1〉 � Zkn−1 × Zk, and set O0 = S/K. The
group H0 = H∗/K is a group of conformal automorphism of O0, H0 � H, and O0/H0 = O∗.

Clearly, if R0 denotes the underlying Riemann surface structure of the Riemann orbifoldO0, then
R0/H0 is the Riemann orbifoldO. In this way, since any two homology covers ofO are conformally
equivalent, we may assume R = R0.

In order to find an algebraic curve representation for R0 we proceed as follows. First, we consider
the affine curve representation of S defined by x = x0/x3, y = x1/x3 and z = x2/x3; that is,

Ĉ0 =

{
xkn

+ ykn
+ zkn

= 0
λxkn

+ ykn
+ 1 = 0

}
⊂ C3

and the action of H∗ is generated by the linear transformations

a(x, y, z) = (ρnx, y, z)

b(x, y, z) = (x, ρny, z)
c(x, y, z) = (x, y, ρnz)

The subalgebra of 〈ak, bkn−1〉 invariant polynomials, C[x, y, z]〈a
k,bkn−1 〉, is generated by the mono-

mials xkn−1
, yk and z. It follows that the holomorphic map

F : C3 → C3

(x, y, z) 7→ (xkn−1
, yk, z) = (u, v,w)

is a regular branched covering with 〈ak, bkn−1〉 as Deck group, and therefore F(Ĉ0) provides an affine
algebraic curve representation of R, given by

F(Ĉ0) =

{
uk + vkn−1

+ wkn
= 0

λuk + vkn−1
+ 1 = 0

}
⊂ C3 .

where the action of H = H∗/K is generated by

a0(u, v,w) = (ρ1u, v,w),
b0(u, v,w) = (u, ρn−1v,w),
c0(u, v,w) = (u, v, ρnw).
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If we consider the projective space P3 with coordinates [z0 : z1 : z2 : z3], and we set

u =
z0

z3
, v =

z1

z3
, w =

z2

z3
,

then we obtain that R is represented by the projective algebraic curve

C =

{
zk

0zkn−k
3 + zkn−1

1 zkn−kn−1

3 + zkn

2 = 0
λzk

0zkn−1−k
3 + zkn−1

1 + zkn−1

3 = 0

}
⊂ P3.

As the branched covering map P : R→ R/H must satisfy that π = P ◦ F and

F([x0 : x1 : x2 : x3]) = [xkn−1

0 : xk
1xkn−1−k

3 : x2xkn−1−1
3 : xkn−1

3 ] ,

then

P([z0 : z1 : z2 : z3]) = −


zkn−1

1

zk
0zkn−1−k

3

 .

6. P  T 9

Consider a closed Riemann surface S admitting a group G < Aut(S ) such that G � Zp × Zpn

and O = S/G is a Riemann orbifold with signature (0; p, pn−1, pn, pn), where n ≥ 2 and p is an odd
prime. Denote by P : S → O the natural holomorphic branched cover with G as Deck group.

In this section we will find algebraic curves representing S and the action of G on them.
Let R be the homology cover of O, and let Q : R → O = R/H be the branched regular covering

with H as Deck group, where H = Zp × Zpn−1 × Zpn .
Since G is abelian, there is a subgroup K < H such that S = R/K (and hence K acts freely on

R), G = H/K, and there is a regular holomorphic covering T : R → S with K as Deck group and
Q = P ◦ T .

Consider the affine algebraic curve C0 representing R, obtained from Theorem 8 by making
z3 = 1,

C0 =


zp

0 + zpn−1

1 + zpn

2 = 0
λzp

0 + zpn−1

1 + 1 = 0

 ⊂ C
3,

in which case the group H is generated by

a0(z0, z1, z2) = (ρ1z0, z1, z2)
b0(z0, z1, z2) = (z0, ρn−1z1, z2)
c0(z0, z1, z2) = (z0, z1, ρnz2)

6.1. Algebraic structure of K. We next describe the algebraic structure of K. At this point we
should note that, using the model of R given in Theorem 8, the transformations in H acting with
fixed points on S are exactly the ones that belong to 〈a0〉 ∪ 〈b0〉 ∪ 〈c0〉 ∪ 〈a0b0c0〉.
Proposition 15. Consider the algebraic model of (R,H) provided by Theorem 8. Let K < H be
such that K acts freely on R and H/K � Zp × Zpn . Then, either

(1) Zpn−1 � K = 〈aα0b0cpq
0 〉, where (p, q) = 1 and 0 ≤ α ≤ p − 1; or

(2) Zpn−2 × Zp � K = 〈b−p
0 cp2v

0 〉 × 〈a0cpn−1γ
0 〉, where (p, v) = 1 and 1 ≤ γ ≤ p − 1.
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Proof. Consider a surjective homomorphism

Φ : H → J = Zp × Zpn

with K = ker(Φ) acting freely on R. Note that the order of K is pn−1.
Then

a) K ∩ 〈a0〉 = {I}, which implies that Φ(a0) has order p;
b) K ∩ 〈b0〉 = {I}, which implies that Φ(b0) has order pn−1;
c) K ∩ 〈c0〉 = {I}, which implies that Φ(c0) has order pn; and
d) K ∩ 〈a0b0c0〉 = {I}, which implies that Φ(a0)Φ(b0)Φ(c0) has order pn.

Hence the subgroups of J given by 〈Φ(b0)〉 and 〈Φ(c0)〉 have respective indices p2 and p, and
there are two cases to be considered, as follows.

Case i). Assume 〈Φ(b0)〉 ⊂ 〈Φ(c0)〉. Then there exists 1 ≤ u ≤ p − 1 such that Φ(b0) = Φ(cpu
0 ), in

which case h = b0c−pu
0 is an element of K of order pn−1, and therefore K = 〈h〉 is cyclic of the form

given in case (1).

Case ii). Assume 〈Φ(b0)〉 1 〈Φ(c0)〉.
Then we have the following commutative diagram of subgroup inclusions and corresponding

indices
J

〈Φ(c0)〉

p

66mmmmmmmmmmmmmmm
〈Φ(b0)〉

p2

hhQQQQQQQQQQQQQQQ

〈Φ(c0)〉 ∩ 〈Φ(b0)〉
p2

hhPPPPPPPPPPPP p

66nnnnnnnnnnnn

and it follows that
〈Φ(c0)〉 ∩ 〈Φ(b0)〉 = 〈Φ(cp2

0 )〉 = 〈Φ(bp
0)〉 .

Hence there exists v such that h0 = cp2v
0 b−p

0 is in K, and h0 has order pn−2. Also note that
(v, p) = 1, since otherwise an adequate power of h0 would be a nontrivial power of b0 in K. It
follows that there are two possibilities for K, either K � Zpn−1 or K = 〈h0〉 × 〈t〉 � Zpn−2 × Zp.

Subcase K is not cyclic. As previously noted, in this case K = 〈h0〉 × 〈t〉 � Zpn−2 × Zp, where
h0 = cp2v

0 b−p
0 and (p, v) = 1. As t ∈ H has order p, it has the form t = aα0b βpn−2

0 cγpn−1

0 , where
α, β, γ ∈ {0, 1, ..., p − 1}.

Let us assume α = 0. If γ = 0, then t ∈ 〈b0〉. As K acts freely on R, necessarily t = 1 and we get
a contradiction. If (γ, p) = 1, then we may assume t = bβpn−2

0 cpn−1

0 (by considering an appropriate
power of the original t), hence h̃ = th−pn−3

0 = b(β+v)pn−2

0 ∈ K ∩ 〈b0〉. Again, as K acts freely, h̃ must
be trivial, and t would belong to 〈h0〉, again a contradiction. Then we have proved that α > 0.

Since t has order p, we may replace t by a suitable power of it in order to assume that t =

a0bβpn−2

0 cγpn−1

0 .
We now claim that we may assume β = 0. Indeed, if β > 0, then th βpn−3

0 = a0cpn−1(γ+v)
0 is an

element of order p in K that does not belong to 〈h0〉.
Therefore we may write t = a0cpn−1γ, and observe that 1 ≤ γ ≤ p − 1 because K ∩ 〈a0〉 = {I}.

This is case (2).
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Subcase K is cyclic. In this case, K = 〈h〉 � Zpn−1 . Let us write

h = aα0b β
0 cγ0

where α ∈ {0, 1, . . . , p − 1}, β ∈ {0, 1, . . . , pn−1 − 1}, γ ∈ {0, 1, . . . , pn − 1}.
The condition cγpn−1

0 = hpn−1
= 1 ensures that γ ≡ 0 mod p. It follows that either γ = 0 or

γ = psq, where s ∈ {1, . . . ., n − 1} and (p, q) = 1.
Next, we need to ensure that, for δ ∈ {1, 2, . . . , pn−1 − 1}, no power hδ acts with fixed points in

C; that is, hδ < 〈a0〉 ∪ 〈b0〉 ∪ 〈c0〉 ∪ 〈a0b0c0〉.
But if γ = 0 then hp = bpβ

0 is a nontrivial element of the group generated by b0, a contradiction.
Similarly, if s > 1 then hpn−s

= b βpn−s

0 is a nontrivial element of the group generated by b0, a
contradiction.

Therefore h = aα0bβ0cpq
0 , with (p, q) = 1, and it follows that hδ is not in 〈b0〉.

But if β ≡ 0 mod p, then hpn−2
= cqpn−2

is a nontrivial element of the group generated by c0, a
contradiction. Hence (p, β) = 1, and hδ is not in 〈c0〉.

We note that hδ ∈ 〈a0〉 implies that βδ ≡ 0 mod pn−1, and since (β, p) = 1, to have δ ≡ 0
mod pn−1, which is not possible by our choice for δ.

The condition hδ ∈ 〈a0b0c0〉 implies that βδ ≡ pqδ mod pn−1, from which (β − pq)δ ≡ 0
mod pn−1, and then δ ≡ 0 mod pn−1, which is not possible by our choice for δ.

By taking an appropriate power of h, we may assume that

K = 〈aα0b0cpq
0 〉,

where (p, q) = 1.
Now note that in this case 1 ≤ α ≤ p−1, since α = 0 implies that Φ(b0) = Φ(c0)−pq is an element

of 〈Φ(c0)〉, which is a contradiction, as we are in case ii). This is case (1). �

6.2. The cyclic case. As a consequence of Proposition 15, we may assume

K = 〈aα0b0cpq
0 〉,

where (p, q) = 1 and α ∈ {0, 1, . . . , p − 1}. Note that

aα0b0cpq
0 (z0, z1, z2) = (ρα1z0, ρn−1z1, ρ

q
n−1z2).

6.2.1. The case α = 0. We next search for polynomials in C[z0, z1, z2]K . We first note that z0 ∈
C[z0, z1, z2]K . Next, we search for polynomials of the form zu

1zv
2 ∈ C[z0, z1, z2]K , where u, v ∈

{0, 1, . . . , pn−1}. The invariance property obligates to have that the values u and v must satisfy the
relation

u + vq ≡ 0 mod pn−1.

As (p, q) = 1, we have that some of those polynomials are given by

zpn−1

1 , zpn−1

2 , zq
1zpn−1−1

2 .

Let us consider the holomorphic map

F : C3 → C4

F(z0, z1, z2) = (z0, z
pn−1

1 , zpn−1

2 , zq
1zpn−1−1

2 ) = (x1, x2, x3, x4).
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Let us note that x4/x3 = zq
1/z2. As (pn−1, q) = 1, it follows the existence of integers a, b so that

aq + bpn−1 = 1, that is, z1 = (zq
1)a(zpn−1

1 )b = (x4/x3)axb
2. It follows that z1 is uniquely determined

by the tuple (x1, x2, x3, x4) and a choice for z2. In particular, as z0 is uniquely determined by x1,
one sees that the map F has degree pn−1 and it is K-invariant. In this way, an affine algebraic curve
defining F(C0) is given by

F(C0) =



xp
1 + x2 + xp

3 = 0
λxp

1 + x2 + 1 = 0
xpn−1

4 − xq
2xpn−1−1

3 = 0


⊂ C4

and a projective one is provided by taking x1 = y0/y4, x2 = y1/y4, x3 = y2/y4, x4 = y3/y4, where
[y0 : y1 : y2 : y3, y4] ∈ P4, as follows



yp
0 + y1yp−1

4 + yp
2 = 0

λyp
0 + y1yp−1

4 + yp
4 = 0

ypn−1

3 − yq
1ypn−1−1

2 y1−q
4 = 0


⊂ P4

The map F is, in projective coordinates, given as

F([z0 : z1 : z2 : z3]) = [z0zpn−1−1
3 : zpn−1

1 : zpn−1

2 : zq
1zpn−1−1

2 z1−q
3 : zpn−1

3 ] = [y0 : y1 : y2 : y3 : y4].

As, by the first equality above,

y1 = −

yp

0 + yp
2

yp−1
4

 ,

the above also provides the (bi-rational) algebraic curve
{

(λ − 1)yp
0 − yp

2 + yp
4 = 0

(−1)q+1(yp
0 + yp

2)qypn−1−1
2 + ypn−1

3 yqp−1
4 = 0

}
⊂ P3.

By making the change of coordinates w0 = y0, w1 = y2, w2 = y3, w3 = y4, the above is written as
follows {

(λ − 1)wp
0 − wp

1 + wp
3 = 0

(−1)q+1(wp
0 + wp

1)qwpn−1−1
1 + wpn−1

2 wqp−1
3 = 0

}
⊂ P3

and the map F is given as

F([z0 : z1 : z2 : z3]) = [z0zpn−1−1
3 : zpn−1

2 : zq
1zpn−1−1

2 z1−q
3 : zpn−1

3 ] = [w0 : w1 : w2 : w3].

In this case, the group G = H/K is generated by the transformations

A1([w0 : w1 : w2 : w3]) = [ρ1w0 : w1 : w2 : w3]
B1([w0 : w1 : w2 : w3]) = [w0 : w1 : ρq

n−1w2 : w3]
C1([w0 : w1 : w2 : w3]) = [w0 : ρ1w1 : ρpn−1−1

n w2 : w3]

Notice that the elements A = A1 and B = C1 also generates G as desired. As the branched
covering map Q : S → S/G must satisfy that P = Q ◦ F, where P : R → R/H is (as in Theorem
8) given by

P([z0 : z1 : z2 : z3]) = −


zpn−1

1

zp
0zpn−1−p

3

 ,
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and since

−


zpn−1

1

zp
0zpn−1−p

3

 = −

y1yp−1

4

yp
0

 =
yp

0 + yp
2

yp
0

=
wp

0 + wp
1

wp
0

,

we obtain

Q([w0 : w1 : w2 : w3]) =
wp

0 + wp
1

wp
0

.

6.2.2. The case α ∈ {1, 2 . . . , p − 1}. Next, we search for polynomials of the form zt
0zu

1zv
2 ∈

C[z0, z1, z2]K , where t ∈ {0, 1, . . . , p − 1} and u, v ∈ {0, 1, . . . , pn−1}. The invariance property obli-
gates to have that the values u and v must satisfy the relation

tαpn−2 + u + vq ≡ 0 mod pn−1.

As (p, q) = (α, p) = 1, we have that some of those polynomials are given by

zp
0 , zpn−1

1 , zpn−1

2 , zq
1zpn−1−1

2 , zp−1
0 zαpn−2

1 .

Let us consider the holomorphic map

F : C3 → C5

F(z0, z1, z2) = (zp
0 , z

pn−1

1 , zpn−1

2 , zq
1zpn−1−1

2 , zp−1
0 zαpn−2

1 ) = (x1, x2, x3, x4, x5).

Let us note that x4/x3 = zq
1/z2. As (pn−1, q) = 1, it follows the existence of integers a, b so

that aq + bpn−1 = 1, from where z1 = (zq
1)a(zpn−1

1 )b = (x4/x3)axb
2z2. It follows that z1 is uniquely

determined by the tuple (x1, x2, x3, x4, x5) and a choice for z2.
As zp

0 is uniquely determined by x1, and zp−1
0 zαpn−2

1 is uniquely determined by x2, x3, x4, x5 and a
choice of z2, we have that z0 is also uniquely determined by the previous data.

All the above permits to see that the map F has degree pn−1 and it is K-invariant. In this way, an
affine algebraic curve defining F(C0) is given by

F(C0) =



x1 + x2 + xp
3 = 0

λx1 + x2 + 1 = 0
xpn−1

4 − xq
2xpn−1−1

3 = 0
xp

5 − xp−1
1 xα2 = 0.


⊂ C5

We may write x2 = −(x1 + xp
3). In this way, writing u1 = x1, u2 = x3, u3 = x4 and u4 = x5, the

above curve is 

(λ − 1)u1 − up
2 + 1 = 0

upn−1

3 + (−1)q+1(u1 + up
2)qupn−1−1

2 = 0
up

4 + (−1)α+1up−1
1 (u1 + up

2)α = 0.


⊂ C4

Now, we may write

u1 =
1

λ − 1
(up

2 − 1),

and setting y1 = u2, y2 = u3 and y3 = u4, the above curve is


ypn−1

2 +
(−1)q+1

(λ − 1)q (λyp
1 − 1)qypn−1−1

1 = 0

yp
3 +

(−1)α+1

(λ − 1)α+p−1 (yp
1 − 1)p−1(λyp

1 − 1)α = 0.


⊂ C3
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and F is of the form

F(z0, z1, z2) = (zpn−1

2 , zq
1zpn−1−1

2 , zp−1
0 zαpn−2

1 ) = (y1, y2, y3).

Writing y1 = v0/v3, y2 = v1/v3 and y3 = v2/v3, we obtain the projective model


vpn−1

1 vpq−1
3 +

(−1)q+1

(λ − 1)q (λvp
0 − vp

3)qvpn−1−1
0 = 0

vp
2vp2+p(α−2)

3 +
(−1)α+1

(λ − 1)α+p−1 (vp
0 − vp

3)p−1(λvp
0 − vp

3)α = 0.


⊂ P3

and for n ≥ 3 we have that max{pn−1, pn−1 + q − 1, αpn−2 + p − 1} = pn−1 + q − 1 and therefore
F : P3 → P3 is given as follows.

F([z0 : z1 : z2 : z3]) = [zpn−1

2 zq−1
3 : zq

1zpn−1−1
2 : zp−1

0 zαpn−2

1 zpn−1+q−p−αpn−2

3 : zpn−1+q−1
3 ] .

In the case n = 2 a similar formula may be given for F; the maximum value above is p + q − 1
if q ≥ α and p + α − 1 otherwise.

Continuing with n ≥ 3, the group G = H/K is generated by the transformations

A2([v0 : v1 : v2 : v3]) = [v0 : v1 : ρp−1
1 v2 : v3]

B2([v0 : v1 : v2 : v3]) = [v0 : ρq
n−1v1 : ρα1 v2 : v3]

C2([v0 : v1 : v2 : v3]) = [ρ1v0 : ρpn−1−1
n v1 : v2 : v3]

Notice that the elements A = A2 and B = C2 also generates G as desired. As the branched
covering map Q : S → S/G must satisfy that P = Q ◦ F, where P : R → R/H is (as in Theorem
8) given by

P([z0 : z1 : z2 : z3]) = −


zpn−1

1

zp
0zpn−1−p

3

 = −
(

x2

x1

)
=

u1 + up
2

u1
=

= 1 +
(λ − 1)up

2

(up
2 − 1)

= 1 +
(λ − 1)yp

1

(yp
1 − 1)

=

= 1 +
(λ − 1)vp

0

vp
0 − vp

3

,

we obtain

Q([v0 : v1 : v2 : v3]) =
λvp

0 − vp
3

vp
0 + vp

3

.

6.3. The non-cyclic case. In this case,

K = 〈b−p
0 cp2v

0 , a0cγpn−1

0 〉,
where (p, v) = 1 and γ ∈ {1, 2, . . . , p − 1}.

We have that
b−p

0 cp2v
0 (z0, z1, z2) = (z0, ρ

−1
n−2z1, ρ

v
n−2z2)

a0cγpn−1

0 (z0, z1, z2) = (ρ1z0, z1, ρ
γ
1z2)

Clearly, zA
0 zB

1 zC
2 ∈ C[z0, z1, z2]K if and only if

{
A + Cγ ≡ 0 mod p
Cv − B ≡ 0 mod pn−2.
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In this way,

zp
0 , z

pn−2

1 , zp−γ
0 zv

1z2 ∈ C[z0, z1, z2]K .

Let us consider the map

F : C3 → C3

F(z0, z1, z2) = (zp
0 , z

pn−2

1 , zp−γ
0 zv

1z2) = (x1, x2, x3).

If we fix (x1, x2, x3), then we have p choices for z0 (zp
0 = x1) and pn−2 choices for z1 (zpn−2

1 = x2).
Once we have made such choices, the value of z2 is uniquely determined from zp−γ

0 zv
1z2 = x3. It

follows that F has degree pn−1 and is K-invariant us desired.
The algebraic curve F(C0) is provided by

F(C0) =

{
xpn−1(p−γ)

1 xp2v
2 (x1 + xp

2) + xpn

3 = 0
λx1 + xp

2 + 1 = 0

}
⊂ C3.

As

x1 = − (1 + xP
2 )

λ

this curve is also represented by, taking y1 = x2 and y2 = x3,


(−1)pn−1(p−γ)

λpn−1(p−γ)

(
1 + yp

1

)pn−1(p−γ)
yp2v

1

(
yp

1 −
(1 + yp

1)
λ

)
+ ypn

2 = 0
 ⊂ C2.

A projectivization of this plane curve is given by, using the projective coordinates [u0 : u1 : u2] ∈
P2 and taking y1 = u0/u2 and y2 = u1/u2, the following one


(−1)pn−1(p−γ)

λpn−1(p−γ)+1

(
up

0 + up
2

)pn−1(p−γ)
up2v

1

(
(λ − 1)up

0 − up
2

)
+ upn

1 upn(p−γ−1)+p+p2v
2 = 0

 ⊂ P2.

In this case, the transformations a0, b0 and c0 define the transformations

A3([u0 : u1 : u2]) = [u0 : ρp−γ
1 u1 : u2]

B3([u0 : u1 : u2]) = [ρ1u0 : ρv
n−1u1 : u2]

C3([u0 : u1 : u2]) = [u0 : ρnu1 : u2]

Notice that the elements A = C−vp
3 B3 and B = C3 also generates G as desired. As

P(z0, z1, z2) = −


zpn−1

1

zp
0

 =
λyp

1

1 + yp
1

,

we obtain that

Q([u0 : u1 : u2]) =
λup

0

up
0 + up

1

.
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7. P  T 10

Let C be a non-singular projective algebraic curve admitting a p-group H of conformal automor-
phisms of C with C/H of signature (0; p, pn−1, pn, pn) and let P : C → C/H = Ĉ be a holomorphic
branched covering with H as Deck group. We may assume the branch values of P are given by ∞
or order p, 0 of order pn−1 and 1 and λ ∈ C − {0, 1} the ones of order pn. We notice that

Autorb(S/H) =

{ {I}, λ , −1
〈J(z) = −z〉, λ = −1.

Let KC = {σ ∈ Aut(C/Q) : Cσ � C}. For each σ ∈ KC there is a biholomorphism fσ : C → Cσ.
As Hσ is unique up to conjugation in Aut(Cσ), by Theorem 3, we may assume that fσH f −1

σ = Hσ.
It follows that there is a Möbius transformation Mσ so that Pσ ◦ fσ = Mσ ◦ P. The transformation
Mσ is uniquely determined by fσ. As Mσ must preserve the cone points and their orders, it follows
that Mσ(∞) = ∞, Mσ(0) = 0 and that {1, λσ} = {Mσ(1),Mσ(λ)}, where λσ ∈ C − {0, 1} is branch
value of order pn of Pσ : Cσ → Ĉ (in fact, λσ = σ(λ)). It follows that either (i) Mσ = I, in which
case λσ = λ or (ii) Mσ(z) = z/λ, in which case λσ = 1/λ.

7.1. Let us assume, from now on, that λ , −1.

Lemma 16. Let λ , −1 and σ ∈ KC. If there is another biholomorphism f̂σ : C → Cσ such that
f̂σH f̂ −1

σ = Hσ, then f̂σ = h ◦ fσ, for some h ∈ H.

Proof. If there is another biholomorphism f̂σ : C → Cσ such that f̂σH f̂ −1
σ = Hσ, then f −1

σ ◦ f̂σ ∈
Aut(C) normalizes H. In this way, f −1

σ ◦ f̂σ induces an element of Autorb(S/H). As this last group
is trivial, we obtain that f −1

σ ◦ f̂σ ∈ H. �

As a consequence of Lemma 16, Mσ is uniquely determined by σ and, in particular, the col-
lection {Mσ : σ ∈ KC} satisfies Weil’s conditions in Theorem 1. Hence, there is an isomorphism
R : Ĉ→ B, where B is defined overM(C), with the property that R = Rσ ◦ Mσ for every σ ∈ KC.

Let us consider the Galois cover Q : C → B, where Q = R ◦ P. We note that, for σ ∈ KC, it
holds that (as Pσ = P)

Qσ ◦ fσ = Rσ ◦ Pσ ◦ fσ = R ◦ M−1
σ ◦ Mσ ◦ P ◦ f −1

σ ◦ fσ = R ◦ P = Q.
Now we follow Dèbes-Emsalem’s arguments [6]. Assume we are able to find a point b ∈ B

which isM(C)-rational and so that b is not a branch value of the Galois covering Q. Fix a point c ∈
C so that Q(c) = b. It follows that the H-stabilizer of c is trivial. We have the points σ(c), fσ(c) ∈
Cσ. As

Qσ(σ(c)) = σ(Q(c)) = σ(b) = b,
and

Qσ( fσ(c)) = Q(c) = b,
it follows that there is some hσ ∈ H so that hσ( fσ(c)) = σ(c). Moreover, as a consequence of
Lemma 16 and the fact that c has trivial stabilizer in H, such hσ ∈ H is unique. In this way, we
may assume that fσ(c) = σ(c) and, by the above, such an isomorphism is uniquely determined by
σ. Again, by the uniqueness, this new family { fσ : σ ∈ Kλ} satisfies Weil’s conditions and, by
Theorem 1, C is definable over its field of moduli.
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In this way, in order to finish our proof, we only need to find a M(C)-rational point on B
outside the branch set. This is equivalent to find a point r ∈ Ĉ − {∞, 0, 1, λ} with the property that
R(r) = σ(R(r)), for every σ ∈ KC. As σ(R(r)) = Rσ(σ(r)) = R(M−1

σ (σ(r))), we need to find a point
r ∈ C − {0, 1, λ} such that

Mσ(r) = σ(r).

In this way, we need to find a point r ∈ C − {0, 1, λ} so that
(1) if σ(λ) = λ, then σ(r) = r; and
(2) if σ(λ) = 1/λ, then σ(r) = r/λ.

Condition (1) asserts that we need to find r ∈ Q(λ). Clearly, any point of the form r = α(1 + λ),
where α ∈ Q satisfies (1) and (2).

7.2. Let us now consider the case λ = −1. We have, see Remark 4, that either (i) AutH(C) = H
or (ii) Aut(C) = AutH(C) and [Aut(C) : H] = 2.

In case (i) we may proceed as in the case λ , −1 as Lemma 16 still valid in this situation (the
normalizer of H in Aut(C) is H).

In case (ii) we have that C/Aut(C) = (C/H)/〈J〉, that is, C is quasiplatonic, so it is defined over
its field of moduli.

8. P  T 12

Since

Cλ =


zp

0zpn−p
3 + zpn−1

1 zpn−pn−1

3 + zpn

2 = 0
λzp

0zpn−1−p
3 + zpn−1

1 + zpn−1

3 = 0

 ⊂ P
3

and

P([z0 : z1 : z2 : z3]) = −


zkn−1

1

zk
0zkn−1−k

3

 ,

then, for each σ ∈ Aut(C/Q), one has that Cσ
λ = Cσ(λ) and Pσ = P.

Let Kλ = {σ ∈ Aut(C/Q) : Cλ � Cσ(λ)}, soM(Cλ) = Fix(Kλ).
If σ ∈ Kλ, then there is an isomorphism fσ : Cλ → Cσ(λ). As a consequence of Theorem 3, we

may assume fσH f −1
σ = H. So, there is a Möbius transformation Mσ such that Mσ ◦ P = Pσ ◦ fσ.

As Mσ must preserve the cone points and their orders, one has that

Mσ(∞) = ∞, Mσ(0) = 0, Mσ{1, λ} = {1, σ(λ)}.
It follows, from the the two first equalities in the above, that Mσ(z) = Lz, for a suitable L ∈

C − {0}. The equality Mσ{1, λ} = {1, σ(λ)} asserts that either (1) L = 1 and σ(λ) = λ or (2)
L = σ(λ) and σ(λ) = 1/λ. As a consequence, we have proved (1) and (2).

Part (3) is consequence of Theorem 10.

9. G    pn+1

In this section, we consider those groups G of order |G| = pn+1 acting on compact Riemann
surfaces with signature (0; p, pn−1, pn, pn), for any odd prime p.

The algebraic structure for these groups is determined by the following result.
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Proposition 17. Let p be an odd prime number and let G < Aut(S ) be a group of order |G| = pn+1

acting on a compact Riemann surface S with S/G of signature (0; p, pn−1, pn, pn).
Then G is isomorphic to either

(1)
Zpn × Zp , or

(2)
〈x, y : xpn

= yp = 1, y−1xy = xpn−1+1〉 .

Remark 18. Note that in the first case we have provided, in Theorem 9, algebraic curves for S .
In the second case explicit algebraic curves are more complicated, but we will study this problem
elsewhere.

Proof. First notice that G has a presentation of the form

G =

〈
x1, x2, x3, x4 : xpn

1 = xpn

2 = xpn−1

3 = xp
4 = x1x2x3x4 = 1,R

〉

where R denotes other relations.
Therefore G cannot be cyclic, since otherwise it could not be generated by elements of the given

orders.
Moreover, G has a cyclic subgroup of order pn, which is normal because it has index p, and

therefore G is isomorphic to
G � Zpn oσ Zp = 〈x〉 oσ 〈y〉

where σ(x) = xu with up = 1 mod pn. The only solutions for u are u = 1 and the powers of
u = pn−1 + 1, and the result follows. �

Remark 19. We will denote the groups appearing in Proposition 17 as follows.

(7) Gu =
〈
x, y : xpn

= yp = 1, y−1xy = xu
〉

with u = 1 or u = 1 + pn−1, and we will study the families of algebraic curves admitting Gu actions
with signature (0; pn, pn, pn−1, p).

Lemma 20. Consider the groups Gu given by (7) and

(8) Γ =

〈
a0, b0, c0 d0 : ap

0 = bpn−1

0 = cpn

0 = dpn

0 = a0b0c0d0 = 1
〉
.

Assume Φ : Γ� Gu is an epimorphism such that K = ker Φ is torsion-free.
Then either

I) K =
〈〈

b0c−pq
0 a−α0 , a−1

0 c0a0c−us

0

〉〉
, with 0 ≤ α ≤ p − 1, 0 < s < p and (q, p) = 1, or

II) K =

〈〈
a0c−pn−1v

0 , bp
0c−p2q

0 , b−1
0 c0b0c−us

0

〉〉
, with 1 ≤ v ≤ p − 1, 0 < s < p and (q, p) = 1 ,

where 〈〈·〉〉 denotes the normal closure in Γ.

Proof. Since K is torsion-free, we obtain that
a) K ∩ 〈a0〉 = {1}, and it follows that y1 = Φ(a0) has order p;
b) K ∩ 〈b0〉 = {1}, and it follows that y2 = Φ(b0) has order pn−1;
c) K ∩ 〈c0〉 = {1}, and it follows that y3 = Φ(c0) has order pn;
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d) K ∩ 〈a0b0c0〉 = {1}, and it follows that y4 = Φ(d0) has order pn.

Since Φ is an epimorphism, {y1, y2, y3, y4} generate Gu. But clearly y4 = (y1y2y3)−1, and therefore
{y1, y2, y3} generate Gu.

We now examine the following two cases separately.

Case I) Suppose 〈y1, y3〉 = Gu.

We have that Gu = 〈y3〉 ous 〈y1〉 for some 0 < s < p. Also y2 = yα1ypq
3 with (q, p) = 1. Hence

y2y−pq
3 y−α1 = Φ(b0c−pq

0 a−α0 ) = 1 and it follows that b0c−pq
0 a−α0 ∈ K.

Furthermore Φ(a−1
0 c0a0c−us

0 ) = y−1
1 y3y1y−us

3 = 1 and it follows that a−1
0 c0a0c−us

0 ∈ K.
Then, checking the order of Γ/〈〈b0c−pq

0 a−α0 , a0c−1
0 a−1

0 c−us

0 〉〉, we obtain the required

K =
〈〈

b0c−pq
0 a−α0 , a0c−1

0 a−1
0 c−us

0

〉〉
.

Case II) Suppose 〈y1, y3〉 < Gu.

Then y1 = ypn−1v
3 with (v, p) = 1, since 〈y3〉 is a maximal subgroup of Gu. Hence

a0c−pn−1v
0 ∈ K.

It this case 〈y2, y3〉 = Gu = 〈y3〉 ous 〈y2〉 for some 0 < s < p. Hence y−1
2 y3y2y−us

3 = 1 from
where b−1

0 c0b0c−us

0 ∈ K.
Finally, yp

2 = yp2q
3 with (q, p) = 1, from where bp

0c−p2q
0 ∈ K.

Again, checking the order of Γ/〈〈a0c−pn−1v
0 , bp

0c−p2q
0 , b−1

0 c0b0c−us

0 〉〉
we obtain K = 〈〈a0c−pn−1v

0 , bp
0c−p2q

0 , b−1
0 c0b0c−us

0 〉〉. �

Considering the above notation for the elements y1 = Φ(a0), y2 = Φ(b0), y3 = Φ(c0) and
y4 = Φ(d0) in Gu, we have the following result, which states that examples for both cases as
Proposition 17 exist, by the Riemann existence theorem.

Corollary 21. If the group Gu, with u = 1 or u = 1+ pn−1, acts on a compact Riemann surface with
signature (0; p, pn−1, pn, pn), then a generating vector for the action may be chosen to be exactly of
one of the following forms.

a) (y1, yα1 ypq
3 , y3, y

−1−pq
3 y−1−α

1 ), with (q, p) = 1 and 1 ≤ α ≤ p − 2.
b) (y1, y

pq
3 , y3, y

−1−pq
3 y−1

1 ), with (q, p) = 1.
c) (y1, y−1

1 ypq
3 , y3, y

−1−pq
3 ), with (q, p) = 1

d) (ypn−1 v
3 , y2, y3, y

−1−pn−1 v
3 y−1

2 )

In the first three cases the order of y1 is p, the order of y3 is pn and y−1
1 y3y1 = yus

3 with 0 < s < p.
In the last case y2 has order pn−1, y3 has order pn, yp

2 = yq p2

3 and y−1
2 y3y2 = yus

3 with 0 < s < p.



ORBIFOLDS WITH SIGNATURE (0; k, kn−1, kn, kn) 25

The following table gives the genera of some intermediate curves, where gL denotes the genus
of the quotient of S by the subgroup L ≤ Aut(S ).

generating vector u = 1 + pn−1 u = 1
(y1, yα1 ypq

3 , y3, y
−1−pq
3 y−1−α

1 ) g〈y3〉 =
p−1

2 g〈y3〉 =
p−1

2
g〈y−1−pq

3 y−1−α
1 〉 =

p−1
2 g〈y−1−pq

3 y−1−α
1 〉 =

p−1
2

g〈y1〉 =
2pn−pn−2(2p−1)−p

2 g〈y1〉 =
pn−p

2

g〈yp
3 〉 = p2 − 2p + 1 g〈yp

3 〉 = p2 − 2p + 1
g〈yp

3 ,y1〉 = 0 g〈yp
3 ,y1〉 = 0

gM = p − 1 gM = p − 1
(y1, y

pq
3 , y3, y

−1−pq
3 y−1

1 ) g〈y3〉 = 0 g〈y3〉 = 0
g〈y−1−pq

3 y−1
1 〉

= 0 g〈y−1−pq
3 y−1

1 〉
= 0

g〈y1〉 =
2pn−pn−2(2p−1)−p

2 g〈y1〉 =
pn−p

2

g〈yp
3 〉 =

p2−3p
2 + 1 g〈yp

3 〉 =
p2−3p

2 + 1

g〈yp
3 ,y1〉 = 0 g〈yp

3 ,y1〉 = 0
gM =

p−1
2 gM =

p−1
2

(y1, y−1
1 ypq

3 , y3, y
−1−pq
3 ) g〈y3〉 = 0 g〈y3〉 = 0

g〈y−1−pq
3 〉 = 0 g〈y−1−pq

3 〉 = 0

g〈y1〉 =
2pn−pn−2(2p−1)−p

2 g〈y1〉 =
pn−p

2

g〈yp
3 〉 = p2 − 2p + 1 g〈yp

3 〉 = p2 − 2p + 1
g〈yp

3 ,y1〉 = 0 g〈yp
3 ,y1〉 = 0

gM = p − 1 gM = p − 1

(ypn−1 v
3 , y2, y3, y

−1−pn−1 v
3 y−1

2 ) g〈y3〉 = 0 g〈y3〉 = 0
g〈y−1−pn−1 v

3 y−1
2 〉

= 0 g〈y−1−pn−1 v
3 y−1

2 〉
= 0

g〈y1〉 =
2pn−pn−1−p

2 g〈y1〉 =
2pn−pn−1−p

2

g〈yp
3 〉 =

p2−3p
2 + 1 g〈yp

3 〉 =
p2−3p

2 + 1

g〈yp
3 ,y1〉 = 0 g〈yp

3 ,y1〉 = 0
gM =

p−1
2 gM =

p−1
2

where M is any cyclic maximal subgroup acting freely.
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