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On the dynamics of non-reducible cylindrical vortices
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This work is a natural companion of [10], where the dynamics of cocycles of isometries of R!

over a minimal dynamics (semigroup action) is studied. While [10] is mostly devoted to the case
in which the orbits of the fibered (skew) dynamics are bounded (a condition that turns out to be
equivalent to the existence of a continuous invariant section), here we concentrate on the opposite
(i.e. non-reducible) case. For simplicity, we restrict our attention to actions of Z. Thus, we
consider a minimal homeomorphism T : X → X from a compact metric space X to itself, and
given two continuous functions Ψ : X → O(R!) and ρ : X → R!, we consider the dynamics of the
fibered transformation

(x, v) −→
(

T (x),Ψ(x)v + ρ(x)
)

.

Such a fibered map will be referred to as a cylindrical vortex, a name that is inspired from that
of the classical cylindrical cascades, which correspond to vortices with " = 1 and Ψ(x) = Id, for
all x ∈ X . One of the main difficulties of our study is that cylindrical vortices do not commute
with translations along the fibers. This property holds for cylindrical cascades, and it is actually a
fundamental tool for the study of their dynamical properties (e.g. the classical proof of Gotsschalk-
Hedlund’s theorem [12]).

Our first theorem is a generalization of an old result of Besicovitch [6] to our general framework.
Because of technical reasons, we restrict ourselves to the case where X is locally homogeneous, that
is, for every point x ∈ X and every neighborhood V of x, given y ∈ V there exists a homeomorphism
hV,x,y sending x into y that is the identity outside V . For example, topological manifolds and the
Cantor set are locally homogeneous.

Main Theorem. No cylindrical vortex over a locally homogeneous space is minimal.

It is worth to stress that the statement above refers to two-side minimality. (All along this
work, the word orbit for an homeomorphism refers always to a two-side orbit.) Indeed, the version
of this result for positive minimality follows from an elementary and classical result of Gottschalk;
see [11].

The validity of our Main Theorem in (fiber) dimension 1 is quite natural; for instance, ifX is the
unit circle, then it follows from and important and difficult theorem of Le Calvez and Yoccoz [25].
However, our proof is much simpler and follows the lines of Besicovitch’s, thought it needs a key
modification (we have to consider the case where the linear part of the skew dynamics combines
Id and −Id.)
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In higher dimension, the situation is rather different, and the arguments are of geometric nature.
We follow an strategy initiated by Birkhoff [7], strengthened by Pérez-Marco [22] for germs of 2-
dimensional homeomorphisms fixing the origin, and adapted by the third-named author for fibered
holomorphic maps [23]. Basically, the idea consists in attaching to each cylindrical vortex a totally
invariant compact set “at infinity”, which allows concluding the non-minimality. The existence
of such a compact set is established by an argument of approximation of the base dynamics by
periodic ones.

Although non-reducible cylindrical vortices cannot be minimal, they may admit minimal in-
variant closed subsets. This is for example the case if there are discrete orbits. However, in the
case of a 1-dimensional cascade, the existence of such an orbit gives raise to a nonzero drift. The
rest of this work deals with zero-drift cylindrical vortices. After slightly extending a result due to
Matsumoto and Shishikura to this setting (c.f. Proposition 7), we show how subtle is the higher-
dimensional case. As a concrete example, we construct a 2-dimensional, topologically transitive
cylindrical vortex over an irrational rotation of the circle such that the angle rotation along the
fibers is constant and rationally independent of that on the basis. We close this work by discussing
the arithmetic properties of the pairs of angles thus obtained. As a straighforward application of
the KAM theory, we show that these pairs must satisfy a Liouville type condition provided the
corresponding function ρ is smooth.

1 Non minimality of cylindrical vortices

1.1 The 1-dimensional case

In this section we prove that 1-dimensional cylindrical vortices cannot be minimal. To do this,
we need to distinguish three cases: when the linear part of the skew dynamics is the identity
everywhere, when it coincides with −Id everywhere, and when it combines Id and −Id. The first
case was settled by Besicovitch [6]. The second case follows by slightly modifying Besicovitch’s
arguments. Finally, the third case can be reduced to the second one.

We start by (recalling and) slightly modifying Besicovitch’s proof.1 Consider a cylindrical
cascade

F : (x, v) $→
(

T (x), v + ρ(x)
)

,

and denote by Π the projection of X × R on R. Obviously, if (the Π-projection of) the orbit of
a point is bounded either from above or from below, then F cannot be minimal. Assume next
that all the orbits are unbounded from above and from below. We will show that, in this case, all
the orbits are proper as maps from Z into X × R (compare §2.1). Indeed, if the orbit of a point
(x, v) ∈ X ×R is (unbounded from above and from below and) not proper, then by examining all
possible cases one easily convinces that we may choose three sequences of integers nj < n′

j < n′′
j

1We do this in order to avoid the use of the fact that if F is minimal then, a-priori, it must have a dense orbit.
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such that either

lim
j→∞

Π(F nj(x, v)) = lim
j→∞

Π(F n′′

j (x, v)) belongs to [−∞,+∞),

Π(F n′

j(x, v)) > j, and Π(F n′

j(x, v)) = max
nj≤n≤n′′

j

Π(F n(x, v)).
(1)

or

lim
j→∞

Π(F nj(x, v)) = lim
j→∞

Π(F n′′

j (x, v)) belongs to (−∞,+∞],

Π(F n′

j (x, v)) < −j, and Π(F n′

j (x, v)) = min
nj≤n≤n′′

j

Π(F n(x, v)).
(2)

Let us first consider the case (1). Set, for every nj − n′
j ≤ n ≤ n′′

j − n′
j ,

zj,n := F n′

j+n
(

x, v −Π(F n′

j (x, v))
)

.

We have:

zj,0 = (x, 0), for every j ∈ N, (3)

zj,n = F n(zj,0), Π(zj,n) ≤ 0, for every nj − n′
j ≤ n ≤ n′′

j − n′
j , and (4)

nj − n′
j → −∞, n′′

j − n′
j → +∞, as j → +∞. (5)

Due to (3), passing to a subsequence, we may assume that zj,0 converges to a point z0 := (x0, 0).
By (4), zj,n converges to zn := F n(z0), for every n ∈ Z. Finally, using (4) and (5), one may easily
see that the orbit {zn}n∈Z remains bounded from above by zero, which contradicts our assumption.
Similarly, in case (2), one may conclude the existence of a point whose orbit remains bounded from
below by zero, which again contradicts our assumption.

Consider now a cylindrical vortex of type

F : (x, v) $→
(

T (x),−v + ρ(x)
)

.

Set G := F 2. This is a fibered transformation over the non-necessarily minimal map T 2. Clearly,
if G has a bounded orbit, then the same holds for F , which violates our hypothesis. If not, then
the arguments given so far show that either:
– there is a point z∗0 = (x0, v) whose G-orbit is bounded from above, or
– there is a point z∗0 = (x0, v) whose G-orbit is bounded from below, or
– all the G-orbits are proper.

In the first case, we let
h := sup

n∈Z
Π
(

F n(x0, v)
)

.

With obvious notation, for every w ∈ R, we have

orbF (x0, w) = orbG(x0, w)
⋃

F
(

orbG(x0, w)
)

⊂ X × (−∞, w + h]
⋃

F (X × (−∞, w + h])

⊂ X ×
(

− ∞, w + h+ ‖ρ‖
]

⋃

X ×
[

− w − h − ‖ρ‖,+∞
)

.
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Taking v0 := −1 − h − ‖ρ‖, we see that the orbit of (x0, v0) avoids X × (−1, 1). In particular,
F is not minimal. The second case can be treated similarly. Finally, since F is a proper map, if
the G-orbit of (x, v) is proper, then its F -orbit orbF (x0, w) = orbG(x0, w)∪ F

(

orbG(x0, w)
)

is also
proper, and F cannot be minimal neither.

Finally, consider a general 1-dimensional cylindrical vortex

F : (x, v) $→
(

T (x),Ψ(x)(v) + ρ(x)
)

,

where linear part Ψ(x) can be either Id or −Id at each point.2 Denote by Y ⊂ X the preimage of
{−Id} under Ψ. This is a clopen set. Assuming that it is nonempty, the map FY induced from F
by the first-return map TY to the set Y has the form

FY (x, v) =
(

TY (x),−v + ρ̃(x)
)

,

where ρ̃ : Y → R. Since T is a minimal homeomorphism, the same must hold for TY . Therefore,
FY is a cylindrical vortex of the type considered in the second case, thus it cannot be minimal.
Now, every point in Y ×R that does not have a dense orbit for FY also fails to have a dense orbit
under F , since Y c × R is a closed set. Therefore, F is not minimal, and this concludes the proof
of the Main Theorem for " = 1.

1.2 The case of higher dimension

In [7], to each local planar homeomorphism fixing the origin, Birkhoff associated a forward-
invariant compact set touching the boundary of the definition domain. In the holomorphic case, this
construction was refined in [22] by Pérez-Marco, who constructed a completely invariant compact
set touching the boundary. In this section, we construct a Birkhoff/Pérez-Marco like set at infinity
(a B/P-M set, for short) for cyclindrical vortices of dimension d ≥ 2. To do this, we follow the
strategy developed by the third-named author in [23], where he extends the construction of Pérez-
Marco to fibered holomorphic maps. Next, we use the B/P-M sets to show the non-minimality of
these vortices. It is worth mentioning that this last idea is not completely new, as Besikovitch’s
work [6] already includes a remark relating forward non-minimality of cylindrical cascades to the
existence of Birkhoff invariant sets.

Given d ≥ 2, let I : R! → R! be an affine Euclidean isometry, that is,

Iv = Ψv + ρ

for certain Ψ ∈ O(R!) and ρ ∈ R!. This isometry extends continuously to the one-point compact-
ification R! ∪ {∞} by letting I∞ = ∞. We will show that the infinity is not an isolated point as
an invariant object. More precisely, we will show that given an open, bounded set U , there exists
a closed set containing ∞ that is completely invariant under I, touches the boundary ∂U , and is
contained in R! \ U . We introduce a terminology for this. We say that K is a B/P-M set for I
avoiding U if the following conditions hold:

2For a nice discussion of the measure-theoretical cohomological properties of such a map, see [21].
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1. K ⊂ R! \ U .

2. K ∪ {∞} is compact and connected for the one point compactification topology of R!.

3. I(K) = I−1(K) = K.

4. K ∩ ∂U -= ∅.

Proposition 1 For any open, bounded set U ⊂ R! and any affine isometry I : R! → R!, there
exists a B/P-M set K for I avoiding U .

To prove this proposition, we need an elementary lemma.

Lemma 2 If the claim of Proposition 1 holds for I2 and any open, bounded set U ⊂ R!, then it
also holds for I.

Proof. Set U := U ∪ I(U). This is an open, bounded set. By hypothesis, there exists a B/P-M set
K for I2 avoiding U . Letting K := K ∪ I−1(K), it is not hard to check that K is a B/P-M set for
I avoiding U . !

Proof of Proposition 1. We start with the case d = 2. Due to the lemma above, we only need to
consider two cases:

• Ψ = IdR2: Take two parallel lines in the direction of ρ touching the boundary of the open
set U , and such that U lies in between the band determined by these two lines. Then choose
K as being the union of the two semi-planes that form the complement of this band. (See
Figure 1.)

• Ψ equals the counterclockwise rotation Rα of angle α -= 0: The isometry I fixes the point
v0 := (Id−Rα)−1ρ, and I corresponds to the rotation of angle α centered at this point. Let
B be the smallest open ball centered at this point and containing U . We then may choose
K := Bc. (See Figure 2.)

When d = 3, in a suitable orthonormal basis, the isometry may written in the form

Iv =

[

Ψ̃
1

]

v +





a
b
0



+





0
0
c





for some linear isometry Ψ̃ of R2. Let Ũ be the orthogonal projection of U onto R2, and let K̃ a
B/P-M set for Ĩ = Ψ̃+ [a b]T avoiding Ũ . (Such a set is known to exist because the case " = 2 has
already been settled.) Then K := K̃ × R is a B/P-M set avoiding U .

Assume now that the proposition holds for " = k−1 and " = k, and consider the case " = k+1.
In a suitable orthonormal basis, the isometry may be written in the form

Iv =

[

Ψ̃
Ψ̂

]

v +















a1
...

ak−1

0
0















+















0
...
0
ak
ak+1














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where Ψ̃, Ψ̂ are linear isometries of Rk−1 and R2, respectively. Let Ũ be the orthogonal projection
of U onto Rk−1, and let K̃ be a B/P-M invariant for Ĩ = Ψ̃ +[ a1 · · ·ak−1]T avoiding Ũ . Then
K := K̃ × R2 is a B/P-M set for I avoiding U . !

In what follows, we give an analog of the preceding proposition for fibered isometries. More
precisely, we consider a cylindrical vortex F : X × R! → X × R! over a minimal homeomorphism
T : X → X . We say that an open, bounded set U ⊂ X ×R! is a tube for F if for every x ∈ X , the
fiber Ux is nonempty. A closed set K is a B/P-M set for F avoiding U if the following conditions
hold:

1. K ⊂
(

X × R!
)

\ U .

2. For each x ∈ X , the fiber Kx ∪ {∞} is compact and connected for the one-point compactifi-
cation topology of R!.

3. F (K) = F−1(K) = K.

4. There exists x∗ ∈ X such that Kx∗ ∩ ∂Ux∗ -= ∅.

We first consider a fibered dynamics over the finite space X := Zp = Z/pZ with the basis
homeomorphism T (j) = j + 1. In other words, given a finite family {I0, I1, . . . , In−1} of affine
isometries of R!, with " ≥ 2, we consider the cylindrical vortex

F : Zp × R! −→ Zp × R!

(j, v) $−→ (j + 1, Ij(v)) .

Proposition 3 For every tube U ⊂ X ×R!, there exists a B/P-M invariant set K for F avoiding
U .

Proof. For simplicity, we only deal with the case p = 2, leaving the (slightly more elaborate)
general case to the reader. Fix two (nonempty) open, bounded subsets U0, U1 of R!, and let

6



U := U0 ∪ I−1
0 (U1). By Proposition 1, there exists a B/P-M invariant set K0 for I1 ◦ I0 avoiding U .

Set K1 := I0(K0). Property 3. in the definition above follows from

(I1 ◦ I0)
−1(K0) = K0,

I−1
0

(

I−1
1 (K0)

)

= K0,

I−1
1 (K0) = I0(K0) = K1.

Since K0 ∩ ∂U -= ∅, either K0 ∩ ∂U0 -= ∅ or K0 ∩ ∂I−1
0 (U1) -= ∅. Since the second condition is

equivalent to K1 ∩ ∂U1 -= ∅, in both cases Property 4. above holds. !

We can now proceed to the general case covered by the Main Theorem. Slightly more generally,
we will say that T : X → X is approximated by homeomorphisms having periodic orbits if there
exists a sequence of homeomorphisms Tn : X → X that converges to T uniformly on X so that
each Tn has a periodic point. Our Main Theorem follows directly from the next two propositions.

Proposition 4 Let X be a locally homogeneous compact metric space. If T : X → X is a minimal
homeomorphism, then T is approximated by homeomorphisms having periodic orbits.

Proof. Given x ∈ X , let Vn be a decreasing sequence of neighborhoods of x converging to {x}. Let
pn ∈ N be the first-return time of x to Vn under T , and let yn := T pnx. Define Tn := hVn,x,yn ◦ T .
Clearly, x is periodic for Tn with period pn. Finally, since Vn → {x}, we have the (uniform)
convergence Tn → T . !

Proposition 5 Let U ⊂ X × R! be a tube. If T : X → X is approximated by homeomorphisms
having periodic orbits, then there exists a B/P-M set for F avoiding U .

Proof. Let x0
n, x

1
n := T (x0

n), . . . , x
p(n)−1
n := T (xp(n)−2

n ) be a periodic orbit of period p(n) of Tn, which
we identify with Zp(n). Let Fn : Zp(n) × R! → Zp(n) × R! be the cylindrical vortex defined by

Fn(x
j
n, v) =

(

xj+1
n ,Ψ(xj

n)v + ρ(xj
n)
)

.

Proposition 3 yields a B/P-M invariant set Kn for Fn avoiding U . Let K̂n ⊂ X×R
!
be the compact

set resulting from Kn by attaching the infinity curve X×{∞} to it, that is, K̂n := K∪(X×{∞}).
Taking an appropriate subsequence, we may assume that there exists a connected compact set

K ⊂ X × R
!
that is the limit of Kn for the Haussdorf topology on compact sets. Since ∂U is a

compact set and, for each n ∈ N, one has Kn ∩ ∂U -= ∅, the intersection K ∩ ∂U is nonempty. We
denote K̂ := K ∪ (X ×{∞}). Since Tn → T uniformly, we have the uniform convergence Fn → F .
Thus, Fn(K̂n) → F (K̂) and F−1

n (K̂n) → F−1(K̂). This implies that F (K) = F−1(K) = K, which
closes the proof. !

1.3 Two possible generalizations

As it is pointed out in the Introduction of [10], the Main Result therein still applies to fibered
isometric actions when the fiber is a CAT(0) proper space. It is very likely that our Main Theorem
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here holds in this context as well. Indeed, there is a general description of isometries of such a
space that allows to give an analog of Proposition 1 for “higher dimensional” CAT(0)-spaces (e.g.
spaces that are not quasi-isometric to the real line). In this situation, this would certainly allow
to perform a similar procedure to get a B/P-M set and show the non-minimality, whereas for the
“1-dimensional case”, it should not be very difficult to adapt the arguments of §1.1. We do not
carry out the details of all of this here because we do not see any interesting application except for
spaces for which the arguments apply without major modifications (e.g. hyperbolic spaces Hn). In
this direction, it is worth pointing out that, though no cylindrical vortex of isometries of H2 over
an irrational rotation is minimal, the action on the product of the circle and the boundary of the
Poincaré disk appears to be minimal in many cases [4].

Perhaps more interesting is trying to settle the infinite dimensional case of the Main Theorem.
Indeed, most of the arguments of §1.2 strongly depend on the fact that the fiber space, namely
R! (the same would apply to proper CAT(0)-spaces) is locally compact. This turns natural the
following

Question. Does there exist a minimal cylindrical vortex with infinite-dimensional fiber ?

Recall that, by [20, Exercise 5.3.15], no isometry of a Hilbert space can be minimal (it cannot
be even topologically transitive “at large scale”). However, isometries without fixed points but
having recurrent points do exist: see [9] and [20, Exercise 5.2.26]. The situation might be compared
with that of general linear maps: in finite dimension, topological transitivity is impossible, while
in infinite dimension, even topological mixing may hold [5].

2 Minimal invariant sets

2.1 Almost-integrability and proper orbits

The next proposition is folklore but difficult to find in the literature stated in this way (compare
[16, 19]); we include the proof just for the convenience of the reader. For the statement, notice
that for a cylindrical cascade F : (x, v) →

(

T (x), v + ρ(x)
)

and each n ∈ N,

F n(x, v) =
(

T n(x), v + ρn(x)
)

,

where ρn denotes the Birkhoff sum

ρn(x) :=
n−1
∑

j=0

ρ
(

T j(x)
)

.

Proposition 6 The following properties are equivalent:

1. There exists a family of continuous sections ϕk : X → R that is almost invariant under the
skew action. In other words, the associate cohomological equation can be solved in reduced
cohomology:

ρ = lim
k→+∞

[

ϕk(T (x)) − ϕk(x)
]

.
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2. We have the uniform convergence

lim sup
n→+∞

∣

∣

∣

ρn(·)
n

∣

∣

∣
= 0.

3. The set of proper orbits has zero µ-measure for every T -invariant probability measure µ.

4. For every T -invariant (ergodic) probability measure µ on X,
∫

X

ρ(x)dµ(x) = 0.

Proof. We give the proof of more implications than necessary because they will useful for the
further discussion of general cylindrical vortices.
1 . → 2 . Given ε > 0, let k = k(ε) be such that for all x ∈ X ,

∣

∣ρ(x) − [ϕk(T (x)) − ϕk(x)
∣

∣ ≤ ε.

For each n ∈ N,
∣

∣ρn(x) − [ϕk(T
n(x)) − ϕk(x)]

∣

∣ ≤ nε,

thus
∣

∣

∣

ρn(x)

n

∣

∣

∣
≤ 2‖ϕk‖∞

n
+ ε.

Passing to the limit, this yields, with an uniform rate,

lim sup
n→+∞

∣

∣

∣

ρn(x)

n

∣

∣

∣
≤ ε.

Since this holds for all ε > 0, we have the desired uniform convergence to zero.
2 . → 1 . For each k ∈ N, let

ϕk(x) := −ρ1(x) + ρ2(x) + · · ·+ ρk(x)

k
.

We have

ϕk(T (x)) − ϕk(x) =
1

k

k
∑

j=1

[

ρj(x) − ρj(T (x))
]

=
1

k

k
∑

j=1

[

ρ(x) − ρ(T j(x))
]

= ρ(x) − ρk(T (x))

k
,

and the last expression converges uniformly to ρ(x).
1 . → 4 . For every T -invariant probability measure µ and each k ∈ N, we have

∫

X

[

ϕk(T (x)) − ϕ(x)
]

dµ = 0.

Thus,
∫

X

ρdµ =

∫

X

lim
k

[

ϕk ◦ T − ϕ
]

dµ = lim
k

∫

X

[

ϕk(T (x)) − ϕ(x)
]

dµ = 0.

9



4 . → 1 . Let L be the closure of the subspace of C(X) spanned by the functions of the form ϕ◦T−ϕ,
where ϕ ∈ C(X). If ρ does not belong to L, the Hann-Banach separation theorem provides us with
a linear functional I that restricted to L is zero and I(ρ) = 1. Such an I comes from integration
with respect to a signed probability measure on X . Since I(L) = {0}, this measure is T -invariant.
Finally, the Hann decomposition theorem yields an invariant probability measure for which the
integral of ρ is nonzero.
2 . → 3 . This implication directly follows from a classical lemma due to Kesten [14] (it can be also
derived from a well-known lemma of Atkison [2]).
3 . → 4 . This follows directly from the Birkhoff ergodic theorem. !

We will say that the cylindrical cascade F above is almost-reducible if the equivalent conditions
of the preceding proposition hold. The situation for a cylindrical vortex

F : (x, v) →
(

T (x),Ψ(x)(v) + ρ(x)
)

is less transparent. First, in order to introduce a drift-like condition, notice that if we define
ρn : X → R (and Ψn : X → O(R!)) by

F n(x, v) =:
(

T n(x),Ψn(x)(v) + ρn(x)
)

,

then for all m,n in Z, we have

ρm+n(x) = Ψn(T
m(x))

(

ρm(x)
)

+ ρn(T
m(x)).

In particular,
∥

∥ρm+n(x)
∥

∥ ≤
∥

∥ρm(x)
∥

∥+
∥

∥ρn(T
m(x))

∥

∥.

By the sub-additive ergodic theorem [15], for every T -invariant ergodic probability measure µ, the
value of

‖ρn(x)‖
n

converges to a limit (drift) D = D(µ) for µ-almost every point x ∈ X .
The main difference here is that Proposition 6 does not extend to cylindrical vortices, even to

those with Ψ ≡ Id. More precisely, the equivalence between conditions 1. and 2. still holds with
an analogous (direct) proof. Nevertheless, all the arguments relying on ergodic type theorems fail.
As a matter of example, let us consider Yoccoz’ example from [25]. This is an irrational rotation
of the 2-torus T : (x, y) $→ (x + α, y + β) together with two continuous functions ρ̂ = ρ̂(x) and
ρ̌ = ρ̌(y), both of zero integral, such that for almost every (x, y) ∈ T2,

lim
n→±∞

[

|ρ̂n(x)|+ |ρ̌n(y)|
]

= ∞.

Then letting Ψ ≡ Id and ρ := (ρ̂, ρ̌), the induced cylindrical vortex F on T2 ×R2 has almost every
orbit is proper. However, for every point (x, y) ∈ T2, we have

lim sup
n→+∞

‖ρn(x, y)‖
n

= lim sup
n→+∞

|ρ̂n(x)| + |ρ̌n(y)|
n

= 0,

where the convergence is uniform in (x, y). In particular, D = D(Leb) = 0.
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2.2 On a theorem of Matsumoto and Shishikura

One of the major interests on proper orbits is that they are nontrivial minimal invariant closed
sets. It easily follows from Denjoy-Koksma’s inequality that for any almost-reducible cylindrical
cascade over an irrational circle rotation, there is no such orbit provided that the function ρ has
finite total variation (without the last assumption, proper orbits may appear; see [24] and [6];
see also [17] for recent simpler examples). Actually, as it is shown by Matsumoto and Shishikura
in [18], no nonempty, proper, minimal invariant closed set can appear in this situation. A slight
extension of this result is our next

Proposition 7 Let F be an almost-reducible, 1-dimensional cylindrical vortex over an irrational
rotation of the circle. If the corresponding function ρ has finite total variation, then F admits no
nonempty, proper, minimal invariant closed set.

Proof. Let F : (x, v) →
(

x + α,−v + ρ(x)
)

be a cylindrical vortex satisfying the hypothesis. (If
Ψ ≡ Id, then Matsumoto-Shishikura’s result applies.) Since F is assumed to be almost-reducible,
the same must hold for F 2. Notice that F 2 is a cylindrical cascade to which Matsumoto-Shishikura’s
theorem applies.

Let C -= ∅ be a nonempty minimal closed F -invariant subset of T1 × R. Given (x, v) ∈ C,
denote by C(x,v) the closure of its (full) orbit under F 2. We will show below that either C is F 2-
minimal or C(x0,v0) is F

2-minimal for some (x0, v0). Before showing this, notice that the previous
remark yields either C = X×R or C(x0,v0) = X×R, respectively. Since C(x0,v0) ⊂ C, in the second
case we still have C = T1 × R, as we wanted to check.

Assume that no C(x,v) is F 2-minimal, and let C∗
(x,v) ! C(x,v) be a nonempty closed F 2-invariant

set. Then the set C∗
(x,v) ∪ F (C∗

(x,v)) is nonempty, closed, F -invariant and contained in C. By
minimality, it coincides with C. Now choose (y, w) (depending on (x, v)) in C(x,v) \C∗

(x,v). We must
have (y, w) ∈ F (C∗

(x,v)) ⊂ F (C(x,v)). Thus, the closed set C(x,v) ∩ F (C(x,v)) is nonempty. Since it
is F -invariant, it must coincide with C, and by minimality, this easily implies that C(x,v) = C.
Finally, since this holds for every (x, v) ∈ C, this shows that C is F 2-minimal, which concludes
the proof. !

2.3 An interesting family of cylindrical vortices

Following [10, Example 3], given two rationally independent angles α, β and a continuous
function ρ : T1 → C, we consider the cylindrical vortex F : (x, z) $→

(

x+α, eiβz+ ρ(z)
)

on T1 ×C.

Lemma 8 The map F is conservative and has zero drift.

Proof. The function ρn defined so that

F n(x, z) =
(

x+ nα, einβz + ρn(x)
)

(6)

may be rewritten in the form

ρn(x) =
n−1
∑

k=0

ei(n−k−1)βρ(x+ kα) = einβ
n−1
∑

k=0

e−i(k+1)βρ(x+ kα).

11



Up to the factor einβ, this coincides with the nth Birkhoff sum ST
n (χ)(x, 0) at the point (x, 0) ∈ T2

of the function χ(x, y) = e−i(y−β)ρ(x) with respect to the dynamics of the rotation T : T2 → T2 of
angle (α,−β). Indeed,

ST
n (χ)(x, y) =

n−1
∑

k=0

e−i(y−(k+1)β)ρ(x+ kα), ρn(x) = einβST
n (χ)(x, 0). (7)

In particular,
∣

∣

∣

∣

ρn(x)

n

∣

∣

∣

∣

=

∣

∣

∣

∣

ST
n (χ)(x, 0)

n

∣

∣

∣

∣

. (8)

Since α, β are rationally independent, the map T is uniquely ergodic. Since χ is continuous, the
right side member of (8) uniformly converges to

∫

T2

χ(x, y)dxdy =

∫

T1

∫

T1

e−i(y−β)ρ(x)dxdy =

∫

T1

e−i(y−β)dy

∫

T1

ρ(x)dx = 0.

In particular, the drift of F is zero.
To show the conservativity of F notice that, due to Atkinson’s lemma [2], if we fix x ∈ T1 and

ε > 0, there exist x̄ ∈ T1, y ∈ T1, and n ∈ N, such that ST
n (χ)(x̄, y) ≤ ε and

dist(x, x̄) ≤ ε, dist(x̄, x̄+ nα) ≤ ε, dist(y, 0) ≤ ε, dist(y, y − nβ) ≤ ε.

This implies that both nα and nβ are ε-close to zero. Together with (6), (7), and

dist(x, x̄) ≤ ε, ST
n (χ)(x̄, y) ≤ ε,

this implies that, for any z ∈ C, the nth-iterate under F of the (ε, ε)-neighborhood of (x, z) is
(ε, ε(‖z‖ + 1))-close to it. Therefore, F has no wandering open domain. !

As shown by the proof above, the dynamics of F is closely related to the cylindrical cascade G
over T2 × C defined by

G
(

(x, y), z
)

$→
(

(x+ α, y − β), z + ei(y−β)ρ(x)
)

.

Besides (7), both maps are related in that F is a factor of G. Indeed, letting Π: T2 ×C → T1 → C
be the proper map defined by

Π
(

(x, y), z
)

:= (x, e−iyz),

we have
F ◦ Π = Π ◦ G.

These relations allow showing the next

Lemma 9 The map F is reducible if and only if G is.

12



Proof. In view of either the second relation in (7) or the fact that F is a factor of G by a proper
map, this follows as a direct application of the main result of [10]. A direct argument proceeds as
follows.

Recall that for G being reducible we mean that there exists a continuous function ϕ : T2 → C
such that, for all (x, y) ∈ T2,

ϕ(x+ α, y − β) = ϕ(x, y) + ei(y−β)ρ(x).

If this holds, then defining the continuous function ϕ∗ : T1 → C by

ϕ∗(x) :=

∫

T1

e−iyϕ(x, y)dy,

we obtain

ϕ∗(x) =

∫

T1

[

e−iyϕ(x+ α, y − β) − e−iβρ(x)
]

dy

= e−iβ

∫

T1

e−i(y−β)ϕ(x+ α, y − β)dy − e−iβρ(x) = e−iβ
[

ϕ∗(x+ α) − ρ(x)
]

.

Hence
ϕ∗(x+ α) = eiβϕ∗(x) + ρ(x),

which shows that F is reducible.
Conversely, assume that F is reducible, that is, there exists a continuous function ϕ∗ : T1 → C

such that
ϕ∗(x+ α) = eiβϕ∗(x) + ρ(x).

If we multiply by ei(y−β) both sides of this equality, we obtain

ei(y−β)ϕ∗(x+ α) = eiyϕ∗(x) + ei(y−β)ρ(x).

Therefore, if we define ϕ : T2 → C by ϕ(x, y) := eiyϕ∗(x), we have

ϕ(x+ α, y − β) = ϕ(x, y) + ei(y−β)ρ(x),

thus showing that G is integrable. !

A more elaborate relation between F and G is given by the next

Proposition 10 The map F is topologically transitive if and only if G is.

To show (the difficult implication of) this proposition, we will strongly use a deep theorem due
to Atkinson that characterizes the failure of topological transitivity by the existence of reducible
linear factors [3]. In our case, this may be stated as follows:

13



Theorem 11 [Atkinson] Assuming that G is conservative and non-reducible, a necessary and
sufficient condition for its topological transitivity is that there is no θ ∈ T1 such that the 1-
dimensional cylindrical cascade

(

(x, y), t
)

$→
(

x+ α, y − β), t+
〈

eiθ, ei(y−β)ρ(x)
〉)

(9)

is reducible, where 〈·, ·〉 stands for the inner product of vectors in R2 ∼ C.

Proof of Proposition 10. Since F is a factor of G, the map F is topologically transitive whenever
G is.

To prove the converse implication, assume first that (9) is reducible for some θ ∈ T1, that is,
there exists a continuous function ϕ : T2 → R such that, for all (x, y) ∈ T2,

〈eiθ, ei(y−β)ρ(x)〉 = ϕ(x+ α, y − β)− ϕ(x, y).

Then, letting
ϕϑ(x, y) := ϕ(x, y − ϑ),

we have
〈eiθ, ei(y−β)ρ(x)〉 = ϕθ′−θ(x+ α, y − β)− ϕθ′−θ(x, y).

In particular, both cocycles Re(ei(y−β)ρ(x)) = 〈1, ei(y−β)ρ(x)〉 and Im(eiyρ(x)) = 〈i, ei(y−β)ρ(x)〉
are reducible. This obviously yields the reducibility of G, which is contrary to our assumption.

Now, if no cylindrical cascade (9) is reducible, then in order to apply Atkinson’s theorem for
concluding that G is topologically transitive, we need to show that G is conservative whenever F
is topologically transitive. To do this, we first notice that the non-wandering set of G is invariant
under both G and the translations on the fibers

(

(x, y), z
)

$→
(

(x, y), z + t
)

, t ∈ C.

Therefore, this set is either empty or the whole space T2 × C. To exhibit a non-wandering point
of G we proceed as follows. Since F is topologically transitive, we may chose a point (x0, z0) in
T1 × C having dense orbit under F . If we denote (xn, zn) := F n(x0, z0), this implies in particular
that there exists a strictly monotone sequence of integers (nk) such that (xnk

, znk
) → (x0, z0) as

k → ∞. Since Π is a proper map, the sequence of subsets Π−1(xnk
, znk

) ⊂ T2 ×C remains inside a
compact set. In particular, there must be a point

(

(x̃0, ỹ0), z̃0
)

∈ Π−1(x0, z0) such that the sequence
(

(x̃nk
, ỹnk

), z̃nk
) := Gnk

(

(x̃0, ỹ0), z̃0
)

accumulates at some point
(

(x̃∞, ỹ∞), z̃∞
)

. As it is easy to
check, every such an accumulation point is non-wandering for G. !

The construction of a map

F : (x, z) $→
(

x+ α, eiβz + ρ(z)
)

that is topologically transitive will be the main issue of the next section. Let us close this section
by pointing out that we do not know whether there exists a cylindrical vortex F of the form above
that is neither reducible nor topologically transitive. This is related to the existence of Yoccoz-
like examples (see [25]) associated to functions of a particular form, which seems to be a difficult
problem. Indeed, the previous arguments easily show the following
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Proposition 12 If F is neither reducible nor topologically transitive, then G is non-conservative.
In particular, the function (x, y) $→ e−i(y−β)ρ(x) does not satisfy the Denjoy-Koksma property.

2.4 A concrete example

Quite surprisingly, to perform our construction we will need a lemma about the density of
a certain set obtained by an arithmetic type construction.3 Given q ∈ N, let t(q) := [ 3

√
q] and

r(q) := [
√
q]. Define p(q) as

p(q) :=

{

t(q)−1 (mod q) if q and t(q) are coprime,
0 otherwise.

Notice that if p(q) -= 0, then p(q) and q are coprime. Now, let

FSq(2, 3) :=

{

(sp(q)

q
,
sp(q)r(q)

q

)

, 1 ≤ s ≤ 2t(q)

}

,

where each coordinate is reduced modulo Z (thus, FSq(2, 3) is though of as a subset of [0, 1]2).
Finally, let us consider the set of frequencies

FS(2, 3) :=
⋃

q∈N

FSq(2, 3).

Lemma 13 The set FS(2, 3) is dense in [0, 1]2.

Proof. For a fixed m ∈ N, let q := m6 + 2m4 +m2 + 1 = (m3 +m)2 + 1. As one readily checks,

t(q) = m2, r(q) = m3 +m.

Since t(q)(m4 + 2m2 + 1) = m6 + 2m4 +m2 = q − 1, we have

t(q)(q − m4 − 2m2 − 1) ≡ 1 (mod q).

Hence,
p(q) = q −m4 − 2m2 − 1 = m6 +m4 − m2.

In particular, modulo Z,
p(q)

q
= − m4 + 2m2 + 1

m6 + 2m4 +m2 + 1
.

Similarly, we have the equality

p(q)r(q)

q
= −(m4 + 2m2 + 1)(m3 +m)

m6 + 2m4 +m2 + 1
= −m7 + 3m5 + 3m3 +m

m6 + 2m4 +m2 + 1
= −m − m5 + 2m3

m6 + 2m4 +m2 + 1
.

3We strongly believe that a much more general result should be true; in particular the set FS(m,n) analogous
to that defined further one should be dense for all m > n. Nevertheless, we were unable to produce a conceptual
proof of this seemingly interesting fact.
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Hence, modulo Z,

(sp(q)

q
,
sp(q)r(q)

q

)

=
(

− s(m4 + 2m2 + 1)

m6 + 2m4 +m2 + 1
,− s(m5 + 2m3)

m6 + 2m4 +m2 + 1

)

.

Let us consider all possible s of the form s(j, k) := jm+k, where j, k range from 1 to m. Notice
that all these values satisfy the restriction 1 ≤ s ≤ 2t(q) = 2m2, and therefore the associated pairs

(

− (jm+ k)(m4 + 2m2 + 1)

m6 + 2m4 +m2 + 1
,−(jm+ k)(m5 + 2m3)

m6 + 2m4 +m2 + 1

)

belong to FS(2, 3). Now, easy computations show that the pair above coincides with

(

− jm5 + km4 + 2jm3 + 2km2 + jm+ k

m6 + f4(m)
,−j − km5 + 2km3 − jm2 − j

m6 + f4(m)

)

where f4 is a degree-4 polynomial. Since both j, k are (positive and) smaller than or equal to m,
for m large-enough, the pair above is very close (modulo Z) to (− j

m ,− k
m) ∼ (1 − j

m , 1 − k
m) with

an error that converges to zero as m → ∞ (independently of j, k). As a consequence, every pair
of rational numbers in [0, 1]2 is contained in FS(2, 3), which shows that this set is dense. !

To construct our desired topologically transitive cylindrical vortex

F : (x, z) $→
(

x+ α, eiβz + ρ(z)
)

,

we will perform a sequence of approximations inspired in the classical Anosov-Katok’s method [1].
More precisely, we will construct a sequence of skew maps

Fk : (θ, z) $→
(

θ + αk, e
iβkz + ρk(θ)

)

, αk ∈ Q, βk ∈ Q,

over periodic rotations so that they converge uniformly on compact sets. The main point consists
in prescribing a sequence of sections ϕk : T1 → C whose images become more and more dense in
larger and larger regions of C and that are invariant under Fk, that is,

ρk(θ) = ϕk(θ + αk) − eiβkϕk(θ).

The construction of the sequence (ϕk) is made so that ϕk := ϕk−1 + ψk, where ψk has the form

ψk(θ) := "k sin(tkθ)e
irkθ.

To perform this construction, we will need to define inductively the sequences ("k), (rk), (tk), (αk)
and (βk). The choice is irrelevant for k = 1 (we just need to impose the condition "1 ≥ 1). Now,
assuming that these values have been already defined for k ∈ N, we let Ck ≥ 1 be a Lipschitz
constant for ϕk and Dk ≥ 1 be the supremum of the norm of ϕk. According to Lemma 13,
we may choose (αk+1, βk+1) := ( sk+1pk+1

qk+1
, rk+1αk+1), where pk+1 is the inverse (modulo qk+1) of

tk+1 := [ 3
√
qk+1] and rk+1 := [

√
qk+1], in such a way that the following conditions are satisfied:
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1. 1 ≤ sk+1 ≤ tk+1.

2. qk+1 > q3k, q5/12k+1 ≥ 2k+1qk, q1/12k+1 ≥ 2kq1/12k and qk+1 ≥
[

2(k + 1)
∑k

j=1 "j
√
qj
]3
.

3.
∣

∣αk+1 − αk

∣

∣ ≤ 1
2k+1qk(Ck+Dk

√
qk)

.

Finally, we let "k+1 := q1/12k+1 .

For each k, n in N, we define (ρk)n : T1 → C by

(ρk)n(θ) := ϕk(θ + nαk) − einβkϕk(θ).

Then we have
F n
k (θ, z) =

(

θ + nαk, e
inβkz + (ρk)n(θ)

)

.

The next lemma yields a quantitative estimate for the convergence of the maps Fk as well as some
of their iterates.

Lemma 14 For each k ∈ N and 1 ≤ n ≤ qk,

∣

∣(ρk+1)n − (ρk)n
∣

∣ ≤ "k+1qksk+1

qk+1
+ Ckqk|αk+1 − αk|+Dkqk|βk+1 − βk|. (10)

Proof. Notice that (ρk+1)n(θ) − (ρk)n(θ) equals

ϕk+1(θ + nαk+1) − einβk+1ϕk+1(θ) −
[

ϕk(θ + nαk) − einβkϕk(θ)
]

= ϕk+1(θ + nαk+1) − ϕk(θ + nαk) + einβkϕk(θ) − einβk+1[ϕk(θ) + ψk+1(θ)]

=
[

ψk+1(θ + nαk+1) − eiβk+1ψk+1(θ)
]

+
[

ϕk(θ + nαk+1) − ϕk(θ + nαk)
]

+ ϕk(θ)
[

einβk − einβk+1
]

.

Thus, the value of
∣

∣(ρk+1)n(θ) − (ρk)n(θ)
∣

∣ is smaller than or equal to

"k+1

∣

∣ sin(tk+1(θ+nαk+1))e
irk+1(θ+nαk+1)−einβk+1 sin(tk+1θ)e

irk+1θ
∣

∣+Ckn|αk+1−αk|+Dkn|βk+1−βk|.

The first term of this expression is bounded from above by
∣

∣!k+1e
irk+1(θ+nαk+1)

[

sin(tk+1(θ + nαk+1)) − sin(tk+1θ)
]

+ !k+1 sin(tk+1θ)
[

eirk+1(θ+nαk+1) − ei(nβk+1+rk+1θ)
]
∣

∣

≤ !k+1
(

{tk+1nαk+1}+ |einrk+1αk+1 − einβk+1|
)

.

Since pk+1tk+1 ≡ 1 (mod qk+1), we have

{tk+1nαk+1} =

{

nsk+1tk+1pk+1

qk+1

}

=

{

nsk+1

qk+1

}

.

Moreover, since βk+1 = rk+1αk+1, the term |einrk+1αk+1 − einβk+1| vanishes. We thus obtain

∣

∣(ρk+1)n(θ) − (ρk)n(θ)
∣

∣ ≤ "k+1nsk+1

qk+1
+ Ckn|αk+1 − αk|+Dkn|βk+1 − βk|,

which shows the lemma. !

The next lemma deals with the density of the invariant curve θ $→ (θ, ϕk(θ)) inside a large
region of T1 × C.
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Lemma 15 For every k ≥ 2, the graph of ϕk is ( 1
tk
, !ktkrk

+ 2
tk

∑k−1
j=1 "jrj)-dense in the cylinder

T1 × Ball
(

0, "k −
∑k−1

j=1 "j
)

.

Proof. We first claim that the graph of ψk is ( 1
tk
, !ktkrk

)-dense in T1 × Ball(0, "k). Indeed, given

(θ, z) in this cylinder, there must exist θ̃ ∈
[

θ − 1
2tk

, θ+ 1
2tk

]

such that ψk(θ̃) = |z|. The claim then

follows by noticing that 1
rk

≤ 1
tk

and that for every |s| < 1
rk
,

∣

∣|ψk(θ̃ + s)| − |ψk(θ̃)|
∣

∣ ≤ "k
(

| sin(tk(θ̃ + s))| − | sin(tkθ̃)|
)

≤ "k
tk
rk
.

Now, to deal with the graph of ϕk, we begin by noticing that

|ψ′
j | ≤ "jtj + "jrj ≤ 2"jrj.

Thus, on each interval [m/tk, (m + 1)/tk] ⊂ T1, the oscillation of ϕk−1 is at most 2
tk

∑k−1
j=1 "jrj .

Since

|ϕk−1| ≤
k−1
∑

j=1

"j,

this proves the lemma. !

The next lemma deals with the density of a certain Fk-orbit along the graph of ϕk.

Lemma 16 The set {F n
k (0, 0) : 1 ≤ n ≤ qk} is ( 1

tk
, !ktkrk

+ 2
tk

∑k−1
j=1 "jrj +

8

q2/3k

∑k
j=1 "jrj)-dense in

the cylinder T1 ×Ball
(

0, "k −
∑k−1

j=1 "j
)

.

Proof. Since ϕk is an invariant section for Fk, the set of points we are dealing with coincides with
{(

n
skpk
qk

, ϕk

(

n
skpk
qk

)

)

: 1 ≤ n ≤ qk

}

. (11)

Since pk and qk are coprime and sk ≤ 2tk ≤ 2q1/3k , the projection on the first coordinate of this set

consists of at least q2/3k /2 points uniformly distributed on T1. Therefore, the distance between
two consecutive points of the set (11) is less than or equal to

∫
2(j+1)

q
2/3
k

2j

q
2/3
k

√

1 + ϕ′
k(θ)

2 dθ ≤ 4max |ϕ′
k|

q2/3k

≤
8
∑k

j=1 "jrj

q2/3k

,

and the claim of this lemma follows from that of the preceding one. !

To close the construction, notice that for each 1 ≤ n ≤ qk, the estimate (10) together with the
properties of the inductive construction yield

∣

∣(ρk+1)n − (ρk)n
∣

∣ ≤
q1/12k+1 qkq

1/2
k+1

qk+1
+ qk|αk+1 − αk|

(

Ck +Dkq
1/2
k

)

≤ qk

q5/12k+1

+
1

2k+1
≤ 1

2k
. (12)
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Letting n := 1, this shows that (ρk) is a Cauchy sequence, hence it converges to a continuous
function ρ : T1 → C. Moreover, from Property 3. it follows immediately that (αk) converges to
some angle α ∈ [0, 1]. Similarly, (βk) converges to a certain angle β ∈ [0, 1].

Checking that the limit map F : (x, z) $→
(

x+ α, eiβz + ρ(z)
)

is topologically transitive is not
very difficult. Indeed, from Property 2. it follows that

1

tk

k−1
∑

j=1

"jrj ≤ 2

q1/3k

k−1
∑

j=1

"jq
1/2
j ≤ 1

k
.

Moreover,

1

q2/3k

k
∑

j=1

"jrj ≤ 1

tk

k−1
∑

j=1

"jrj +
"krk

q2/3k

≤ 1

k
+

"k

q1/6k

=
1

k
+

1

q1/12k

.

The last two inequalities combined with Lemma 16 imply that {F n
k (0, 0) : 1 ≤ n ≤ qk} is (εk, δk)-

dense in the cylinder T1 × Ball
(

0, "k −
∑k−1

j=1 "j
)

for certain sequences (εk), (δk) converging to

zero as k goes to infinite. Since F n
k (0, 0) =

(

nαk, (ρk)n(0)
)

, using (12) and the estimate (valid for
1 ≤ n ≤ qk)

∣

∣nαk − nαk+1

∣

∣ ≤ qk

2k+1qk(Ck +Dk)q
1/2
k

≤ 1

2k+1
,

we conclude that the orbit of (0, 0) under the limit map F is dense in T1 × Ball
(

0, "k −
∑k−1

j=1 "j
)

for every k ∈ N. Finally, since Property 2. yields

k−1
∑

j=1

"j ≤ (k − 1)"k−1 = (k − 1)q1/12k−1 ≤ q1/12k

2
=

"k
2
,

we have that "k −
∑k−1

j=1 "j ≥ !k
2 goes to infinite together with k, thus showing that the F -orbit

of (0, 0) is dense in the whole space T1 × C.
It remains to show that α and β are rationally independent. Actually, we do not know whether

this is always true, but we can ensure it provided that the sequence (qk) satisfies a supplementary
condition.

Lemma 17 If the sequence (qk) satisfies

4.
∑∞

j=k |αj+1 − αj |+
∑∞

j=k |βj+1 − βj | < 1
kqk

,

then α and β are rationally independent.

Proof. Since pk ≤ qk, if we consider the representatives of αk and βk in [0, 1], then we have

αk =
pk
qk
, βk = rkαk =

rkpk
qk

− nk, where nk ∈ Z.
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Assume that (p, q, r) -= (0, 0, 0) is 3-uple of integers such that pα+ qβ+ r = 0. On the one hand,

|pαk + qβk + r| = |p(αk − α) + q(βk − β) + pα + qβ + r|
= |p(αk − α) + q(βk − β)|
≤ |p|

∑

j≥k

|αj+1 − αj |+ |q|
∑

j≥k

|βj+1 − βj |.

On the other hand, if

pαk + qβk + r = p
pk
qk

+ q
(rkpk

qk
− nk

)

+ r

equals zero, then
pk(p+ qrk) = qk(qnk − r).

Since pk and qk are coprime, this implies that qk must divide p+ qrk. Nevertheless, since rk ≤ √
qk

and (p, q) -= (0, 0), this is impossible for a large-enough k. Therefore, for a large-enough k ∈ N,
the value of pαk + qβk + r is nonzero, and hence

|pαk + qβk + r| =
∣

∣

∣

∣

p(pk −mkqk) + q(rkpk − nkqk) + rqk
qk

∣

∣

∣

∣

≥ 1

qk
.

Therefore,
1

qk
≤ |p|

∑

j≥k

|αj+1 − αj|+ |q|
∑

j≥k

|βj+1 − βj|,

which contradicts Property 4. for k larger than |p| and |q|. !

3 Reducibility v/s arithmetic properties of the rotation
angles

Although the preceding construction provides us with a pair of angles (α, β) that are rationally
independent, it also suggests that β is very fast approximated by multiples of α. As we next show,
this is the case of every non-reducible smooth cylindrical vortex. What follows is inspired (and
may be deduced almost directly) from [13].

We say that a pair (α, β) ∈ T1×T1 satisfies a type-1 Diophantine condition, and write (α, β) ∈
CD1, if there exist C > 0 and τ ≥ 0 such that for every n ∈ Z,

∣

∣ei(nα−β) − 1
∣

∣ ≥ C

n1+τ
.

For a fixed α ∈ T1, denote by CDα
1 the set of β ∈ T1 such that (α, β) belongs to CD1. Standard

arguments show the next

Lemma 18 The set CDα
1 is a countable union of closed sets with empty interior and has full

Lebesgue measure.
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The next proposition is nothing but a straightforward application of the classical baby-KAM
theorem.

Proposition 19 If ρ : T → C is a C∞-function, then for every (α, β) ∈ CD1 the cylindrical vortex

F : (θ, z) $−→
(

θ + α, eiβz + ρ(θ)
)

is reducible.

Proof. Recall that reducibility is equivalent to the existence of a continuous solution to the coho-
mological equation

ϕ(θ + α)− eiβϕ(θ) = ρ(θ). (13)

At the level of Fourier series expansion, this is equivalent to that, for all n ∈ Z,

ϕ̂n =
ρ̂n

einα − eiβ
,

where ϕ̂n and ρ̂n stand for the Fourier coefficients of φ and ρ, respectively. Since ρ is a C∞-function,
ρ̂n decreases faster than any polynomial in n. The type-1 Diophantine condition on (α, β) allows
us to conclude that the coefficients ϕ̂n defined by the previous equality also decrease faster than
any polynomial. Therefore, they correspond to the coefficients of a C∞-function which solves our
cohomological equation. !

A better result relating the differentiability classes of ρ and the solution ϕ can be stated as
follows:

Proposition 20 [Herman] Let ρ be a Cr-function. If (α, β) ∈ CD1 is such that the associated
τ ≥ 0 satisfies r > τ + 1 and s := r − 1 − τ is not an integer, then the solution ϕ to the equation
(13) is a Cs-function.

Finally, concerning the case of “Liouville pairs”, we have the following

Proposition 21 If (α, β) satisfies no type-1 Diophantine condition, then there exists a C∞-
function ρ : T1 → C such that the equation (13) has no measurable solution. Moreover, ρ can
be chosen so that the coefficients ρ̂n

(einα−eiβ) do not correspond to those of any distribution.
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[19] J. Moulin-Ollagnier & D. Pinchon. Systèmes dynamiques topologiques I. Étude des limites de
cobords. Bulletin de la S.M.F. 105 (1977), 405-414.

[20] A. Navas. Groups of Circle Diffeomorphisms. Chicago Lectures in Mathematics (2011).

[21] G. Ochs & V.I. Oseledets. Topological fixed point theorems do not hold for random dynamical systems.
J. Dynam. Differential Equations 11 (1999), 583-593.
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