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Abstract. We consider the unperturbed operator H0 := (−i∇−A)2 + W , self-adjoint in
L2(R2). Here A is a magnetic potential which generates a constant magnetic field b > 0, and
the edge potential W = W is a T -periodic non-constant bounded function depending only
on the first coordinate x ∈ R of (x, y) ∈ R2. Then the spectrum σ(H0) of H0 has a band
structure, the band functions are bT -periodic, and generically there are infinitely many open
gaps in σ(H0). We establish explicit sufficient conditions which guarantee that a given band of
σ(H0) has a positive length, and all the extremal points of the corresponding band function are
non-degenerate. Under these assumptions we consider the perturbed operators H± = H0 ± V

where the electric potential V ∈ L∞(R2) is non-negative and decays at infinity. We investigate
the asymptotic distribution of the discrete spectrum of H± in the spectral gaps of H0. We
introduce an effective Hamiltonian which governs the main asymptotic term; this Hamiltonian
could be interpreted as a 1D Schrödinger operator with infinite-matrix-valued potential. Fur-
ther, we restrict our attention on perturbations V of compact support. We find that there
are infinitely many discrete eigenvalues in any open gap in the spectrum of σ(H0), and the
convergence of these eigenvalues to the corresponding spectral edge is asymptotically Gaussian.
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1 Introduction

The general form of the unperturbed operators we will consider in the article, is

H0 = H0(b,W ) := − ∂2

∂x2
+

(
−i ∂
∂y

− bx

)2

+W (x).

Here b > 0 is the constant magnetic field, and W = W ∈ L∞(R) is an electric potential
independent of y. The self-adjoint operator H0 is defined initially on C∞

0 (R2) and then
is closed in L2(R2). Let F be the partial Fourier transform with respect to y, i.e.

(Fu)(x, k) = (2π)−1/2

∫
R
e−ikyu(x, y)dy, u ∈ L2(R2).

Then we have

FH0F∗ =

∫ ⊕

R
h(k)dk
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where the operator

h(k) := − d2

dx2
+ (bx− k)2 +W (x), k ∈ R,

is self-adjoint in L2(R). Since the multiplier by x ∈ R is relatively compact in the sense
of the quadratic forms with respect to h(0), we easily find that h(k) is a Kato analytic
family (see e.g. [18, Theorem XII.10]).
For w ∈ L2(R) and k ∈ R set (Ukw)(x) := w(x − k/b). Then Uk is a unitary operator
in L2(R), and we have U∗

kh(k)Uk = h̃(k) where

h̃(k) := − d2

dx2
+ b2x2 +W (x+ k/b), k ∈ R.

Evidently, for each k ∈ R the operator h(k) (and, hence, h̃(k)) has a discrete and simple
spectrum. Let {Ej(k)}∞j=1 be the increasing sequence of the eigenvalues of h(k) (and,

hence, of h̃(k)). The general Kato analytic perturbation theory (see [8] or [18]) implies
that Ej(k), j ∈ N, are real analytic functions of k ∈ R. Since Ej(k) depend on the
parameters b and W , we will sometimes write Ej(k; b,W ) instead of Ej(k).
Even though in some parts of the article we will impose more general conditions on W ,
in our main theorems we will assume that W is a periodic function with period T > 0,
which is not identically constant. The explicit expression for the operator h̃(k) implies
that all the functions Ej, j ∈ N, are periodic functions of period τ := bT . Set

E−j = min
k∈[0,τ)

Ej(k), E+
j = max

k∈[0,τ)
Ej(k).

Then we have

σ(H0) =
∞⋃
j=1

[E−j , E+
j ].

We will call the closed intervals [E−j , E+
j ], j ∈ N, the bands of the spectrum of H0. Note

that if for some j ∈ N we have
E+
j < E−j+1, (1.1)

then the interval (E+
j , E−j+1) is an open gap in the spectrum of H0.

Further, assume that the perturbative electric potential V : R2 → R is ∆-compact. A
simple sufficient condition which guarantees the compactness of the operator V (−∆ +
1)−1, is that V ∈ L∞(R2), and

V (x, y) → 0 as x2 + y2 →∞. (1.2)

By the diamagnetic inequality, V is then also a relatively compact perturbation of H0,
and, hence, we have

σess(H0 + V ) = σess(H0) =
∞⋃
j=1

[E−j , E+
j ].
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For simplicity, we will consider perturbations of definite sign. More precisely we will
suppose that V ≥ 0, and will consider the operators H± := H0 ± V . Note that in the
case of positive (resp., negative) perturbations, the discrete eigenvalues of the perturbed
operator which may appear in a given open gap of the spectrum of the unperturbed
operator, may accumulate only to the lower (resp., upper) edge of the gap.
Let T be a self-adjoint linear operator in a Hilbert space. Denote by PO(T ) the spectral
projection of T corresponding to the Borel set O ⊆ R. For λ > 0 set

N−
0 (λ) := rank P(−∞,E−1 −λ)(H−).

Next, fix j ∈ N and assume that (1.1) holds. Pick λ ∈ (0, E−j+1 − E+
j ), and set

N−
j (λ) := rank P(E+

j ,E
−
j+1−λ)(H−),

N+
j (λ) := rank P(E+

j +λ,E−j+1)(H+).

The aim of the article is to investigate the asymptotic behaviour as λ ↓ 0 of the func-
tions N±

j (λ). For definiteness, we consider only the asymptotics of N+
j (λ) while the

asymptotics of N−
j (λ) could be considered in a completely analogous manner.

The paper is organized as follows. In Section 2 we discuss some properties of the band
functions Ej, j ∈ N, necessary for the formulation and the proofs of our main results. In
particular, we obtain explicit conditions which guarantee that for a given j ∈ N we have
E−j < E+

j , and, moreover, that all the extrema of Ej are non-degenerate. These explicit
conditions could be of independent interest for other models and problems involving
similar unperturbed operators.
Section 3 contains the statements of our main results. In Theorems 3.1, 3.3, and Corol-
lary 3.2 we introduce several versions of the effective Hamiltonians which are responsible
for the main asymptotic term as λ ↓ 0 of N+

j (λ), and establish the corresponding asymp-
totic bounds. In Theorem 3.4 we consider compactly supported perturbations V and
prove that if the spectral gap E+

j < E−j+1 is open, then it contains infinitely many discrete
eigenvalues of H+, and the convergence of these eigenvalues to the edge E+

j is asymp-
totically Gaussian provided that all the maxima of Ej are non-degenerate.
The proofs of our main results could be found in Section 4.

2 Basic spectral properties of H0

In this section we describe some spectral properties of the unperturbed operator H0

needed for the formulation and the proofs of the main results.
First we recall a simple condition on W , which guarantees that (1.1) holds true for all
j ∈ N. Note that if W = 0, then the eigenvalues Ej are independent of k, and their
explicit form is well-known:

Ej(k; b, 0) = Ej(b, 0) = b(2j − 1), k ∈ R, j ∈ N.
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Set
W− := ess infx∈RW (x), W+ := ess supx∈RW (x).

By the mini-max principle,

b(2j − 1) +W− ≤ Ej(k; b,W ) ≤ b(2j − 1) +W+, k ∈ R, j ∈ N,

and, hence,
[E−j , E+

j ] ⊆ [b(2j − 1) +W−, b(2j − 1) +W+], j ∈ N.

Thus, a sufficient (but not always necessary) condition which guarantees that (1.1) holds
for all j ∈ N, is

W+ −W− < 2b. (2.1)

Fix j ∈ N. The asymptotics as λ ↓ 0 of N±
j (λ) depends crucially on the set

M±
j :=

{
k ∈ [0, τ) |Ej(k) = E±j

}
,

and the behaviour of Ej in a vicinity of this set. Even though we investigate for defi-
niteness only the asymptotics of N+

j , here it is convenient to consider both sets M±
j .

First of all, we assume that the band function Ej is not identically constant. Corollary
2.3 below contains an explicit sufficient condition for this.
Further, since the functions Ej are periodic, non-constant, and real-analytic, every set

M±
j , j ∈ N, is non-empty and finite, i.e. M±

j =
{
k±α,j
}A±j
α=1

, A±
j ∈ N. Moreover, for each

k±α,j ∈M±
j there exists l = l(k±α,j) ∈ N such that

dsEj
dks

(k±α,j) = 0, s = 1, . . . , 2l − 1, and ∓ d2lEj
dk2l

(k±α,j) > 0.

If l(k±α,j) = 1 for some k±α,j ∈M±
j , we say that k±α,j is a non-degenerate point, and set

µ±α,j := ∓1

2
E ′′
j (k

±
α,j). (2.2)

Fix j ∈ N. Denote by πj(k) is the orthogonal projection onto Ker (h(k)− Ej(k)).

Lemma 2.1. Let W ∈ L∞(R,R). Fix j ∈ N. Then there exists a real eigenfunction
ψj(·; k) ∈ Ran πj(k) = Ker (h(k)−Ej(k)) such that ‖ψj(·; k)‖L2(R) = 1, and the mapping

R 3 k 7→ ψj(·; k) ∈ L2(R) (2.3)

is analytic.

Proof. Our argument will follow the main lines of the proof of [6, Lemma 2.3 (v)], which
on its turn is based on [18, Theorem XII.12] (see also the original work [7]). Since the
coefficients of the differential operator h(k) are real, there exists a real eigenfunction
ψj(·; 0) ∈ Ran πj(0) such that ‖ψj(·; 0)‖L2(R) = 1. On the other hand, [18, Theorem
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XII.12] implies that for k in a complex vicinity of the real axis, there exists an analytic
family of invertible bounded operators ω(k) such that

ωj(k)πj(0) = πj(k)ωj(k). (2.4)

Moreover, for real k, the operators ωj(k) can be chosen to be unitary. Following the
argument in the proof of [6, Lemma 2.3 (v)], we find that in our case of a differential
operator with real coefficients, the operator ωj(k) can be chosen to be real and unitary
for real k. Set

ψj(·; k) := ωj(k)ψj(·; 0).

Evidently, for k ∈ R, the function ψj(·; k) is real, and ‖ψj(·; k)‖L2(R) = 1, while (2.4)
implies that the mapping defined in (2.3) is analytic.

In the sequel we will use the canonical representation

πj(k) = 〈·, ψj(·; k)〉ψj(·; k)

with an eigenfunction ψj(·; k) satisfying the properties described in Lemma 2.1. Put

π̃j(k) := Ukπj(k)U
∗
k , k ∈ R, j ∈ N.

Then we have
π̃j(k) := 〈·, ψ̃j(·; k)〉ψ̃j(·; k), (2.5)

where ψ̃j(·; k) = U∗
kψj(·; k), or in other words,

ψ̃j(x; k) = ψj(x+ k/b; k), x ∈ R, k ∈ R, j ∈ N.

Evidently, the function ψ̃j(·; k) satisfies the equation

−∂
2ψ̃j
∂x2

(x; k) + b2x2ψ̃j(x; k) +W (x+ k/b)ψ̃j(x; k) = Ej(k)ψ̃j(x; k). (2.6)

Moreover, ‖ψ̃j(·; k)‖L2(R) = 1.

Proposition 2.2. Let W = W ∈ C2(R) ∩ L∞(R) with W ′,W ′′ ∈ L∞(R). Suppose
that W ′(x0) > 0 (resp., W ′(x0) < 0) for some x0 ∈ R. Pick j ∈ N. Then there exists
b0 = b0(W, j) such that b > b0 implies E ′

j(bx0; b,W ) > 0 (resp., E ′
j(bx0; b,W ) < 0).

Proof. By the Feynman-Hellmann formula we have

E ′
j(k; b,W ) =

1

b

∫
R
W ′(x+ k/b)ψ̃j(x; k)

2dx. (2.7)

Pick b > 2‖W‖L∞ and denote by Γj the circle of radius b, centered at b(2j− 1). Denote

by h̃(b, 0) the harmonic oscillator − d2

dx2 + b2x2. Then the interior of Γj contains the
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eigenvalue Ej(k; b,W ) (resp., b(2j − 1)) of the operator h̃(k; b,W ) (resp., of h̃(b, 0)),
while the rest of the spectra of these operators lie in the exterior of Γj. Then, evidently,
(2.7) implies

bE ′
j(k; b,W ) = Tr (W ′(·+ k/b)π̃j(k)) =

1

2πi
Tr

(∫
Γj

W ′(·+ k/b)(h̃(k; b,W )− ω)−1dω

)
=

1

2πi
Tr

(∫
Γj

W ′(·+ k/b)(h̃(b, 0)− ω)−1dω

)
−

1

2πi
Tr

(∫
Γj

W ′(·+ k/b)(h̃(b, 0)− ω)−1W (·+ k/b)(h̃(k; b,W )− ω)−1dω

)
, (2.8)

the contour Γj being run over in clockwise direction. Further, we have

1

2πi
Tr

(∫
Γj

W ′(·+ k/b)(h̃(b, 0)− ω)−1dω

)
=

b1/2
∫

R
W ′(x+ k/b)ϕj(b

1/2x)2dx =

∫
R
W ′(b−1/2y + b−1k)ϕj(y)

2dy =

W ′(b−1k) +

∫
R
(W ′(b−1/2y + b−1k)−W ′(b−1k))ϕj(y)

2dy, (2.9)

where ϕj = ϕj satisfies

−ϕ′′j (x) + x2ϕj(x) = (2j − 1)ϕj(x), ‖ϕj‖L2(R) = 1.

It is well-known that

ϕj(x) = Hj−1(x)e
−x2/2, x ∈ R, j ∈ N,

where Hl, l ∈ Z+, are appropriately normalized Hermite polynomials. Combining (2.8)
and (2.9), we get

E ′
j(k; b,W )− 1

b
W ′(b−1k) =

1

b
(K1 +K2) (2.10)

with

K1 := − 1

2πi
Tr

(∫
Γj

W ′(·+ k/b)(h̃(b, 0)− ω)−1W (·+ k/b)(h̃(k; b,W )− ω)−1dω

)
,

K2 :=

∫
R
(W ′(b−1/2y + b−1k)−W ′(b−1k))ϕj(y)

2dy.
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It is easy to check that we have

|K1| ≤ c1b
−1, |K2| ≤ c2b

−1/2, (2.11)

with

c1 := ‖W‖L∞(R)‖W ′‖L∞(R)

(
∞∑
l=1

(2|l − j| − 1)−2

)1/2( ∑
l∈N:l 6=j

(2|l − j| − 3/2)−2 + 4

)1/2

,

(2.12)

c2 := ‖W ′′‖L∞(R)

∫
R
|y|ϕj(y)2dy. (2.13)

Putting together (2.10) and (2.11), we get∣∣∣∣E ′
j(k; b,W )− 1

b
W ′(b−1k)

∣∣∣∣ ≤ c1b
−2 + c2b

−3/2. (2.14)

Bearing in mind that by hypothesis W ′(x0) > 0 (resp., W ′(x0) < 0), we find that if

b > b0 := max

2‖W‖L∞(R),

(
c2 +

√
c22 + 4c1|W ′(x0)|
2|W ′(x0)|

)2
 , (2.15)

then E ′
j(bx0) > 0 (resp., E ′

j(bx0) < 0).

Proposition 2.2 implies immediately the following

Corollary 2.3. Assume that W satisfies the assumption of Proposition 2.2. Then for
each j ∈ N there exists b0 = b0(j,W ) > 0 such that b > b0 implies that

inf
k∈R

Ej(k; b,W ) < sup
k∈R

Ej(k; b,W ). (2.16)

Remark: The absolute continuity of the spectrum of the operator H0 is equivalent to
the validity of (2.16) for any j ∈ N. Unfortunately, the constant c2 in (2.13), and hence
b0 in (2.15) grow unboundedly as j →∞ so that Corollary 2.3 only implies that for any
a ∈ R there exists b̃0 = b̃0(a,W ) such that the absolute continuity of the spectrum of
the operator H0(b,W ) on the interval (−∞, a) follows from b > b̃0.
Many authors have conjectured the absolute continuity of the spectrum of the Landau
Hamiltonian H0(b, 0) perturbed by generic periodic potentials W : R2 → R such that
the flux of the magnetic field through the unit cell of the lattice of the periods of W is
2π-rational (note, however, that this is evidently false for constant W ). This conjecture
was proved only recently by F. Klopp for a Gδ-dense set of potentialsW which satisfy the
rational-flux condition (see [10]). If W depends only on x, and is periodic, then it always
satisfies the rational-flux condition. Nevertheless, even in this simpler situation, there is
no general proof of the absolute continuity of σ(H0(b,W )) for non-constant periodic W .
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In [1, Theorem 4.0.4, Corollary 4.0.5] the absolute continuity of σ(H0(b,W )) is proven
under an explicit condition on the Fourier coefficients of W , and a smallness assumption
on ‖W‖L∞(R); see also the related results in [4]. One of the difficulties in the proof of
the absolute continuity of σ(H0(b,W )) for general non-constant periodic W : R → R, is
related to the fact that we have

lim
j→∞

(
E±j − b(2j − 1)− 〈W 〉

)
= 0 (2.17)

where 〈W 〉 is the mean value of W (see [9]); in particular, limj→∞
(
E+
j − E−j

)
= 0. On

the other hand, (2.17) implies as a by-product that for j ∈ N large enough, inequality
(1.1) is valid even if (2.1) does not hold true.

Proposition 2.4. Let W = W ∈ C3(R) ∩ L∞(R) with W ′,W ′′,W ′′′ ∈ L∞(R). Suppose
that W ′′(x0) > 0 (resp., W ′′(x0) < 0) for some x0 ∈ R. Pick j ∈ N. Then there exists
b1 = b1(W, j) such that b > b1 implies E ′′

j (bx0; b,W ) > 0 (resp., E ′′
j (bx0; b,W ) < 0).

Proof. First of all, note that

∂ψ̃j
∂k

(x; k) =
∂ψj
∂k

(x+ k/b; k) +
1

b

∂ψj
∂x

(x+ k/b; k).

Applying Lemma 2.1, we conclude that
∂ψ̃j

∂k
(·; k) ∈ L2(R). Calculating the derivative

with respect to k in (2.7), we get

E ′
j(k; b,W ) =

1

b2

∫
R
W ′′(x+ k/b)ψ̃j(x; k)

2dx+
2

b

∫
R
W ′(x+ k/b)

∂ψ̃j
∂k

(x; k)ψ̃j(x; k)dx.

(2.18)
As in the proof of (2.14), we suppose that b > 2‖W‖L∞(R), and find that∣∣∣∣∫

R
W ′′(x+ k/b)ψ̃j(x; k)

2dx−W ′′(k/b)

∣∣∣∣ ≤ c3b
−1 + c4b

−1/2 (2.19)

where the constants c3 and c4 are defined by analogy c1 and c2, replacing W ′ by W ′′ in
(2.12), and W ′′ by W ′′′ in (2.13). Further, obviously,∣∣∣∣∣

∫
R
W ′(x+ k/b)

∂ψ̃j
∂k

(x; k)ψ̃j(x; k)dx

∣∣∣∣∣ ≤ ‖W ′‖L∞(R)

∥∥∥∥∥∂ψ̃j∂k
(·; k)

∥∥∥∥∥
L2(R)

. (2.20)

Since the functions
∂ψ̃j

∂k
(·; k) and ψ̃j(·; k) are orthogonal in L2(R), we find that

∂ψ̃j
∂k

(·; k) = (I − π̃j(k))
∂ψ̃j
∂k

(·; k),
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the orthogonal projection π̃j(k) being defined in (2.5). Deriving equation (2.6) with
respect to k, we easily obtain

∂ψ̃j
∂k

(·; k) = −1

b
(h̃(k)− Ej(k))

−1(I − π̃j(k))W
′(·+ k/b)ψ̃j(·; k), (2.21)

and, hence, ∥∥∥∥∥∂ψ̃j∂k
(·; k)

∥∥∥∥∥
L2(R)

≤ 1

b2
‖W ′‖L∞(R). (2.22)

Putting together (2.18), (2.19), (2.20), and (2.22), we obtain∣∣∣∣E ′′
j (k; b,W )− 1

b2
W ′′(b−1k)

∣∣∣∣ ≤ c5b
−3 + c4b

−5/2

with c5 := c3 + 2‖W ′‖2
L∞(R). Therefore W ′′(x0) > 0 (resp., W ′′(x0) < 0), implies

E ′′
j (bx0) > 0 (resp., E ′′

j (bx0) < 0), provided that

b > b1 := max

2‖W‖L∞(R),

(
c4 +

√
c24 + 4c5|W ′′(x0)|
2|W ′′(x0)|

)2
 .

Remark: Propositions 2.2 – 2.4 show that for large magnetic fields b the band func-
tions Ej, j ∈ N, behave quite similarly to the edge potential W . This behaviour could
be considered as semiclassical.

The combination of Propositions 2.2 – 2.4 easily yields the following

Corollary 2.5. Let W = W ∈ C3(R) be a T -periodic function such that W ′(x) = 0,
x ∈ R, implies W ′′(x) 6= 0. Assume that the sets M±

W := {x ∈ [0, T ) |W (x) = W±}
consist of A±

W ∈ N points. Then for each j ∈ N there exists b2(j,W ) > 0 such that
b > b2 implies that the set M±

j contains exactly A±
W points, and all of them are non-

degenerate.

3 Main Results

3.1 Notations. Auxiliary results

This subsection contains notations used for the statement of our main theorems, and
related auxiliary results needed for their proofs.
Let Xl, l = 1, 2, be two separable Hilbert spaces. By L(X1, X2) (resp., S∞(X1, X2))
we denote the class of bounded (resp., compact) linear operators T : X1 → X2, and by
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Sp(X1, X2), p ∈ [1,∞), the Schatten-von Neumann class of operators T ∈ S∞(X1, X2)

for which ‖T‖p :=
(
Tr (T ∗T )p/2

)1/p
< ∞. If X1 = X2 = X, we will write L(X) and

Sp(X) instead of L(X,X) and Sp(X,X), p ∈ [1,∞], respectively. Let T = T ∗ ∈ S∞(X).
For s > 0 set

n±(s;T ) = rank P(s,∞)(±T );

thus n±(·;T ) are the counting functions respectively of the positive and the negative
eigenvalues of T . Let T ∈ S∞(X1, X2). Put

n∗(s;T ) = n+(s2;T ∗T ), s > 0;

thus n∗(·;T ) is the counting function of the singular numbers of T . We have

n∗(s;T ) = n∗(s;T
∗), s > 0.

Moreover, if X1 = X2 = X, and T = T ∗, we have

n±(s;T ) ≤ n∗(s;T ), s > 0.

Note that the functions n± satisfy Weyl inequalities

n+(s(1 + ε);T1)− n−(sε;T2) ≤ n+(s;T1 + T2) ≤ n+(s(1− ε);T1) + n+(sε;T2), (3.1)

with s > 0 and ε ∈ (0, 1), while the function n∗ satisfies the Ky Fan inequalities

n∗(s(1 + ε);T1)− n∗(sε;T2) ≤ n∗(s;T1 + T2) ≤ n∗(s(1− ε);T1) + n∗(sε;T2), (3.2)

with s > 0 and ε ∈ (0, 1). Finally, for each s > 0 and p ∈ [1,∞) we have

n∗(s;T ) ≤ s−p‖T‖pp. (3.3)

3.2 Effective Hamiltonians

In this subsection, we introduce the effective Hamiltonians which under suitable assump-
tions on W and V govern the main asymptotic term as λ ↓ 0 of N+

j (λ), and establish
the corresponding asymptotic bounds.
In what follows, we assume that V : R2 → R is Lebesgue measurable, and satisfies the
estimates

0 ≤ V (x, y) ≤ C0(1 + |x|)−m1(1 + |y|)−m2 , (x, y) ∈ R2, (3.4)

with some C0 ∈ [0,∞), and ml ∈ (0,∞), l = 1, 2. In particular, (3.4) implies that (1.2)
holds true. Fix j ∈ N. Note that

ψj(x; lτ + k) = ψj(x− lT ; k), x ∈ R, l ∈ Z, k ∈ R, (3.5)

the eigenfunction ψj(·; k) being introduced in Lemma 2.1.
Put A+

j := #M+
j , Sj := {1, . . . , A+

j }. Assume that the set M+
j =

{
k+
α,j

}
α∈Sj

contains
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only non-degenerate points k+
α,j. For λ > 0 define G1(λ) : l2(Z× Sj)⊗ L2(R) → L2(R2)

as the operator with integral kernel

(2π)−1/2V (x, y)1/2ψj(x− lT ; k+
α,j)e

i(k+lτ+k+
α,j)y

(
µ+
α,jk

2 + λ
)−1/2

,

with (l, α) ∈ Z × Sj, k ∈ R, and (x, y) ∈ R2, the quantities µ+
α,j > 0 being defined

in (2.2). It is easy to check that if V satisfies (3.4) with m1 > 1, m2 > 1, then
G1(λ) ∈ S2(l

2(Z× Sj)⊗ L2(R);L2(R2)) for any λ > 0.

Theorem 3.1. Let W ∈ L∞(R; R) be a T -periodic function. Let V satisfy (3.4) with
m1 > 1, m2 > 1. Fix j ∈ N. Assume that (1.1) holds true, and the set M+

j contains
only non-degenerate points. Then for each ε ∈ (0, 1) we have

n∗(1 + ε;G1(λ)) +O(1) ≤ N+
j (λ) ≤ n∗(1− ε;G1(λ)) +O(1), (3.6)

as λ ↓ 0.

The proof of Theorem 3.1 can be found in Subsection 4.1.
Our next goal is to give an equivalent formulation of Theorem 3.1 in the terms of an
explicit effective Hamiltonian. Define the “diagonal” operator µ ∈ L(l2(Z× Sj)) by

(µu)l,α := µ+
α,jul,α, l ∈ Z, α ∈ Sj,

where u := {ul,α}(l,α)∈Z×Sj
∈ l2(Z× Sj). On l2(Z× Sj)⊗H2(R) define the operator

H0 := µ⊗
(
− d2

dy2

)
self-adjoint in l2(Z×Sj)⊗L2(R). Further, define the operator V ∈ L(l2(Z×Sj)⊗L2(R))
by

(Vw)l,α (y) :=
∑

m∈Z, β∈Sj

Vl,α;m,β(y)wm,β(y), y ∈ R,

where

Vl,α;m,β(y) :=
1

2π

∫
R
V (x, y)ψj(x− lT ; k+

α,j)ψj(x−mT ; k+
β,j)dx e

−i((l−m)τ+k+
α,j−k

+
β,j)y,

and w ∈ l2(Z × Sj) ⊗ L2(R). Thus the operator H0 − gV with g ≥ 0, self-adjoint on
Dom(H0), can be interpreted as a Schrödinger operator on the real line with infinite-
matrix-valued attractive potential −gV , and a coupling constant g ≥ 0.
Applying the Birman-Schwinger principle and the inverse Fourier transform with respect
to k ∈ R, we easily find that Theorem 3.1 yields the following

Corollary 3.2. Under the hypotheses of Theorem 3.1 we have

rank P(−∞,−λ)(H0 − (1− ε)V) +O(1) ≤ N+
j (λ) ≤ rank P(−∞,−λ)(H0 − (1 + ε)V) +O(1),

as λ ↓ 0, for any ε ∈ (0, 1).
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Assuming a somewhat faster decay of V as y → ∞, we can obtain an asymptotic
estimate similar to (3.6) involving an operator which is simpler than G1(λ). Define
G2 : l2(Z× Sj) → L2(R2) as the operator with integral kernel(

µ+
α,j

)−1/4
V (x, y)1/2ψj(x− lT ; k+

α,j)e
iy(lτ+k+

α,j), (l, α) ∈ Z× Sj, (x, y) ∈ R2.

Again, if V satisfies (3.4) with m1 > 1, m2 > 1, then G2 ∈ S2(l
2(Z× Sj);L2(R2)).

Theorem 3.3. Let W ∈ L∞(R; R) be a T -periodic function. Let V satisfy (3.4) with
m1 > 1 and m2 > 3. Fix j ∈ N and assume (1.1). Then for each ε ∈ (0, 1) we have

n∗

(
(1 + ε)

√
2
√
λ;G2

)
+O(1) ≤ N+

j (λ) ≤ n∗

(
(1− ε)

√
2
√
λ;G2

)
+O(1), λ ↓ 0.

(3.7)

The proof of Theorem 3.3 can be found in Subsection 4.2.

3.3 Asymptotic bounds of N+
j (λ) for compactly supported V

Theorems 3.1 – 3.3 can be used for the investigation of the asymptotic behaviour as
λ ↓ 0 of N+

j (λ) for a large class of rapidly decaying perturbations V . In this subsection
we concentrate on perturbations of compact support. This choice is motivated by:

• the fact that in this case we prove asymptotically Gaussian (i.e. the fastest known)
convergence of the discrete eigenvalue of the operator H+ to the edge E+

j of the
gap in σ(H0) which is a non-semiclassical behaviour; similar Gaussian convergence
has been recently found in [2] in the case of monotone step-like edge potential W
and additional assumptions of the geometry of suppV ;

• the relation between our results and the numerous recent results on the asymp-
totics of the discrete spectrum for various (electric, magnetic, or geometric) com-
pactly supported perturbations of the Landau Hamiltonian (see e.g. [17, 13, 19,
15, 14, 16]);

• the possible applications in the mathematical theory of the quantum Hall effect and
the related spectral theory of random Anderson-type perturbations of H0(b;W ),
i. e. operators of the form Hω = H0 + Vω where Vω(x) =

∑
m∈Z2 λm(ω)u(x−m),

x ∈ R2, ω ∈ Ω, Ω is a probability space, {λm(ω)}m∈Z2 are i.i.d. random variables,
and u ≥ 0 is the deterministic compactly supported single-site potential; note that
the estimates for the discrete eigenvalues for compactly supported perturbations
of the Landau Hamiltonian obtained in [17] have been successfully applied to
the study of various spectral and dynamical properties of random Anderson-type
perturbations of the same operator (see [3, 12, 5, 11]).
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In order to formulate our last theorem we need the following notations. For t > 0 set
Ent (t) := min{l ∈ N | l ≥ t}. Further, let Ω ⊂ R2 be an open, bounded, non-empty
set. Let V(Ω) be the set of the closed vertical intervals J ⊂ Ω of positive length |J |.
Evidently, V(Ω) 6= ∅. Put

C(Ω) := sup
J∈V(Ω)

1

Ent
(

2π
bT |J |

) .
Note that if J ∈ V(Ω), then there exists a horizontal interval I of positive length, such
that the rectangle I × J is contained in Ω.

Theorem 3.4. Let W ∈ L∞(R; R) be a T -periodic function. Suppose that V : R2 →
[0,∞) is a Lebesgue measurable function such that

C−χΩ−(x, y) ≤ V (x, y) ≤ C+χΩ+(x, y), (x, y) ∈ R2, (3.8)

where χΩ± are the characteristic functions of the open, bounded and non-empty sets
Ω± ⊂ R2, and C± ∈ (0,∞) are constants. Fix j ∈ N and assume (1.1). Suppose that
the set M+

j contains only non-degenerate points. Then we have
√

2√
bT
C(Ω−) ≤ lim inf

λ↓0
| lnλ|−1/2N+

j (λ) ≤ lim sup
λ↓0

| lnλ|−1/2N+
j (λ) ≤

√
2√
bT

A+
j (3.9)

where, as earlier, A+
j = #M+

j . In particular, if A+
j = 1, and there exists a closed

vertical interval J ⊂ Ω− of length |J | ≥ 2π
bT so that C(Ω−) = 1, we have

lim
λ↓0

| lnλ|−1/2N+
j (λ) =

√
2√
bT

.

The proof of Theorem 3.4 can be found in Subsection 4.3.

Remarks: (i) Corollary 2.5 guarantees the existence of edge potentials W and mag-
netic fields b for which the set M+

j contains only non-degenerate points, and A+
j = 1.

Thus there exist explicit examples where the assumptions of Theorem 3.4 are met.
(ii) Theorem 3.4 implies that every open gap (E+

j , E−j+1) contains infinitely many discrete
eigenvalues of the operator H+ for generic not identically vanishing decaying perturba-
tions V ≥ 0. By (3.9) the asymptotic rate of the convergence of these eigenvalues is not
faster than Gaussian.

In principle, the analysis of the asymptotic behaviour as λ ↓ 0 of N+
j (λ) without

the non-degeneracy assumption concerning the set M+
j is also feasible but much more

complicated from technical point of view, so that we omit the details. However, we
would just like to note that (k − k+

α,j)
2l = o((k − k+

α,j)
2), as k → k+

α,j, if l ∈ N, l > 1;
hence, the replacement of non-degenerate points k+

α,j ∈ M+
j by degenerate ones does

not decrease the quantity lim infλ↓0 |lnλ|−1/2N+
j (λ) (see below (4.2), (4.3), and (4.4)).

Thus we find that Theorem 3.4 implies the following
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Corollary 3.5. Let W ∈ L∞(R; R) be a T -periodic function. Assume that V : R2 →
[0,∞) is a Lebesgue measurable function which satisfies (1.2) and the lower bound in
(3.8). Fix j ∈ N. Assume that the inequalities E−j < E+

j and (1.1) hold true. Then

0 < lim inf
λ↓0

| lnλ|−1/2N+
j (λ).

In particular, the open gap (E+
j , E−j+1) contains infinitely many discrete eigenvalues of

the operator H+, and the asymptotic convergence of these eigenvalues to the edge E+
j is

not faster than Gaussian.

4 Proofs of the Main Results

4.1 Proof of Theorem 3.1

The Birman-Schwinger principle entails

N+
j (λ) = n−(1;V 1/2(H0 − E+

j − λ)−1V 1/2) +O(1), λ ↓ 0. (4.1)

Choose δ > 0 so small that the intervals Ol,α(δ) := (lτ + k+
α,j − δ, lτ + k+

α,j + δ), l ∈ Z,
α ∈ Sj, are pairwise disjoint. Set Oδ := ∪(l,α)∈Z×Sj

Ol,α(δ). Introduce the orthogonal
projection

Pj,δ := F∗
∫ ⊕

Oδ

πj(k)dkF

acting in L2(R2). Since E+
j is not in the spectrum of the operator H0 restricted to

(I−Pj,δ)Dom(H0), we find that the operator V 1/2(H0−E+
j −λ)−1(I−Pj,δ)V 1/2 converges

in norm as λ ↓ 0 to a compact operator. Therefore, the Weyl inequalities (3.1) easily
imply

n+(1 + ε;V 1/2(E+
j −H0 + λ)−1Pj,δV

1/2) +O(1) ≤

n−(1;V 1/2(H0 − E+
j − λ)−1V 1/2) ≤

n+(1− ε;V 1/2(E+
j −H0 + λ)−1Pj,δV

1/2) +O(1), λ ↓ 0, (4.2)

with ε ∈ (0, 1).
For λ > 0 define T1(λ) : L2(R2) → L2(Oδ) as the operator with integral kernel

(2π)−1/2(E+
j − Ej(k) + λ)−1/2ψj(x; k)e

−ikyV (x, y)1/2, (x, y) ∈ R2, k ∈ Oδ. (4.3)

Then we have
V 1/2(E+

j −H0 + λ)−1Pj,δV
1/2 = T1(λ)∗T1(λ), (4.4)

and hence

n+(s2;V 1/2(E+
j − Ej(k) + λ)−1Pj,δV

1/2) = n∗(s;T1(λ)) = n∗(s;T1(λ)∗), s > 0. (4.5)
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Let W : L2(Oδ) → l2(Z× Sj)⊗ L2(−δ, δ) be the unitary operator defined by

(Wu)l,α(k) := u(k + lτ + k+
α,j), (l, α) ∈ Z× Sj, k ∈ (−δ, δ),

with u ∈ L2(Oδ). Define T2(λ) : l2(Z×Sj)⊗L2(−δ, δ) → L2(R2), λ > 0, as the operator
with integral kernel

(2π)−1/2V (x, y)1/2ψj(x− lT ; k + k+
α,j)e

i(k+lτ+k+
α,j)y(E+

j − Ej(k + k+
α,j) + λ)−1/2,

where (l, α) ∈ Z × Sj, k ∈ (−δ, δ), (x, y) ∈ R2. By (3.5), we have T2(λ)W = T1(λ)∗.
Therefore,

n∗(s;T1(λ)∗) = n∗(s;T2(λ)), s > 0, λ > 0. (4.6)

Define T3(λ) : l2(Z × Sj) ⊗ L2(−δ, δ) → L2(R2), λ > 0, as the operator with integral
kernel

(2π)−1/2V (x, y)1/2ψj(x− lT ; k+
α,j)e

i(k+lτ+k+
α,j)y(µ+

α,jk
2 + λ)−1/2,

with (l, α) ∈ Z× Sj, k ∈ (−δ, δ), (x, y) ∈ R2. Then

‖T2(λ)− T3(λ)‖2
2 =

(2π)−1
∑

(l,α)∈Z×Sj

∫
R2

V (x, y)

∫ δ

−δ

∣∣ψj(x− lT ; k + k+
α,j)(E+

j − Ej(k + k+
α,j) + λ)−1/2

−ψj(x− lT ; k+
α,j)(µ

+
α,jk

2 + λ)−1/2
∣∣2 dk dx dy ≤

C1

π

∑
α∈Sj

{∫ δ

−δ

∣∣(E+
j − Ej(k + k+

α,j) + λ)−1/2 − (µ+
α,jk

2 + λ)−1/2
∣∣2 dk+

∫ δ

−δ

(
k−2

∫
R

∣∣ψj(x; k + k+
α,j)− ψj(x; k

+
α,j)
∣∣2 dx) k2(µ+

α,jk
2 + λ)−1dk

}
(4.7)

where the quantity

C1 := C0 max
x∈R

∑
l∈Z

(1 + |x+ lT |)−m1

∫
R
(1 + |y|)−m2dy (4.8)

with C0 being introduced in (3.4), is finite by m1 > 1 and m2 > 1. Since

(E+
j − Ej(k + k+

α,j) + λ)−1/2 − (µ+
α,jk

2 + λ)−1/2 =

Ej(k + k+
α,j)− E+

j + µ+
α,jk

2√
(E+
j − Ej(k + k+

α,j) + λ)(µ+
α,jk

2 + λ)
(√

E+
j − Ej(k + k+

α,j) + λ+
√
µ+
α,jk

2 + λ
) ,

and
Ej(k + k+

α,j)− E+
j + µ+

α,jk
2 = O(k3), k → 0,
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we find that the first term in the braces at the r.h.s of (4.7) is uniformly bounded with
respect to λ > 0. Similarly,

k2(µ+
α,jk

2 + λ)−1 ≤ 1/µ+
α,j, λ > 0, k ∈ R. (4.9)

Further, elementary calculations yield

k−2

∫
R

∣∣ψj(x; k + k+
α,j)− ψj(x; k

+
α,j)
∣∣2 dx ≤ ∫ 1

0

‖π′j(ks+ k+
α,j)‖2ds. (4.10)

Since the orthogonal projection πj(k) depends analytically on k, we find that the com-
bination of (4.9) and (4.10) implies the uniform boundedness with respect to λ > 0 of
the second term in the braces at the r.h.s. of (4.7). Therefore (4.7) yields

‖T2(λ)− T3(λ)‖2 = O(1), λ ↓ 0. (4.11)

Combining (3.2), (3.3) with p = 2, and (4.11), we get

n∗(s(1 + ε);T3(λ)) +O(1) ≤ n∗(s;T2(λ)) ≤ n∗(s(1− ε);T3(λ)) +O(1), λ ↓ 0, (4.12)

with s > 0 and ε ∈ (0, 1). Finally, define T4(λ) : l2(Z × Sj) ⊗ L2(R) → L2(R2), λ > 0,
as the operator with integral kernel

(2π)−1/2V (x, y)1/2ψj(x− lT ; k+
α,j)e

i(k+lτ+k+
α,j)y(µ+

α,jk
2 + λ)−1/2χ(−δ,δ)(k),

where (l, α) ∈ Z × Sj), k ∈ R, (x, y) ∈ R2, and χ(−δ,δ) is the characteristic function of
the interval (−δ, δ). Evidently,

n∗(s;T3(λ)) = n∗(s;T4(λ)), s > 0, λ > 0. (4.13)

At the same time we have
‖T4(λ)− G1(λ)‖2

2 =

1

π

∑
(l,α)∈Z×Sj

∫
R2

V (x, y)ψj(x− lT ; k+
α,j)

2dx dy

∫ ∞

δ

(µ+
α,jk

2 + λ)−1dk ≤ C1

πδ

∑
α∈Sj

1

µ+
α,j

,

the constant C1 being introduced in (4.8). Arguing as in the derivation of (4.12), we get

n∗(s(1 + ε);G1(λ)) +O(1) ≤ n∗(s;T4(λ)) ≤ n∗(s(1− ε);G1(λ)) +O(1), λ ↓ 0, (4.14)

with s > 0 and ε ∈ (0, 1). Putting together (4.1), (4.2), (4.5), (4.6), (4.12), (4.13), and
(4.14), we obtain (3.6).
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4.2 Proof of Theorem 3.3

We have
n∗(s;G1(λ)) = n+(s2;G1(λ)G1(λ)∗), s > 0, λ > 0. (4.15)

The operator M1(λ) := G1(λ)G1(λ)∗ : L2(R2) → L2(R2) admits the integral kernel

√
V (x, y)V (x′, y′)

∑
(l,α)∈Z×Sj

e
−

√
λ/µ+

α,j |y−y
′|

2
√
µ+
α,jλ

ei(lτ+k
+
α,j)(y−y

′)ψj(x− lT ; k+
α,j)ψj(x

′ − lT ; k+
α,j),

with (x, y), (x′, y′) ∈ R2. Define M2(λ) : L2(R2) → L2(R2) as the operator with integral
kernel√

V (x, y)V (x′, y′)
∑

(l,α)∈Z×Sj

1

2
√
µ+
α,jλ

ei(lτ+k
+
α,j)(y−y

′)ψj(x− lT ; k+
α,j)ψj(x

′ − lT ; k+
α,j),

with (x, y), (x′, y′) ∈ R2. Taking into account (3.4) and the elementary inequalities
0 ≤ 1− e−t ≤ t, t ≥ 0, we get

‖M1(λ)−M2(λ)‖2
2 ≤

C2
0 max
α∈Sj

(2µ+
α,j)

−2×

∫
R2

(1 + |x|)−m1(1 + |x′|)−m1

 ∑
(l,α)∈Z×Sj

∣∣ψj(x− lT ; k+
α,j)ψj(x

′ − lT ; k+
α,j)
∣∣2

dxdx′×

∫
R2

(1 + |y|)−m2(1 + |y′|)−m2|y − y′|2dydy′. (4.16)

Applying the Cauchy-Schwarz inequality, we obtain

∫
R2

(1 + |x|)−m1(1 + |x′|)−m1

 ∑
(l,α)∈Z×Sj

∣∣ψj(x− lT ; k+
α,j)ψj(x

′ − lT ; k+
α,j)
∣∣2

dxdx′ ≤

A+
j

(
max
x∈R

∑
l∈Z

(1 + |x+ lT |)−m1

)2

<∞ (4.17)

since m1 > 1. Similarly,∫
R2

(1 + |y|)−m2(1 + |y′|)−m2|y − y′|2dydy′ <∞ (4.18)

since m2 > 3. Now, (4.16) – (4.18) imply

‖M1(λ)−M2(λ)‖2 = O(1), λ ↓ 0.
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Arguing again as in the derivation of (4.12), we get

n+(s(1+ ε);M2(λ))+O(1) ≤ n+(s;M1(λ)) ≤ n+(s(1− ε);M2(λ))+O(1), λ ↓ 0, (4.19)

with ε ∈ (0, 1), s > 0. Finally,

M2(λ) =
1

2
√
λ
G2G∗2 , λ > 0,

and, hence,

n+(s2;M2(λ)) = n∗

(
s

√
2
√
λ;G2

)
, s > 0, λ > 0. (4.20)

Now the combination of (3.6), (4.15), (4.19), and (4.20), yields (3.7).

4.3 Proof of Theorem 3.4

In order to prove Theorem 3.4 we need the following

Lemma 4.1. Let W ∈ C1(R) be real-valued periodic function. Then for any bounded
interval I ⊂ R of positive length, and for any k0 ∈ R we have

lim
ξ→±∞

ξ−2 ln

∫
I
ψj(x− ξ; k0)

2dx = −b. (4.21)

Relation (4.21) follows easily from [9, Theorem 1.1], so that we omit the details.

Let Ω ⊂ R2 be an open bounded non-empty set. Define T5(Ω) : l2(Z × Sj) → L2(Ω)
as the operator with integral kernel(

µ+
α,j

)−1/4
ψj(x− lT ; k+

α,j)e
i(lτ+k+

α,j)y, (l, α) ∈ Z× Sj, (x, y) ∈ Ω.

Then (3.8) combined with the mini-max principle implies

n∗(s;C−T5(Ω−)) ≤ n∗(s;G2) ≤ n∗(s;C+T5(Ω+)), s > 0. (4.22)

Let us prove first the upper bound in (3.9). Since the set Ω+ is bounded, it is contained
in some rectangle R+ := I+ × J+ where I+ and J+ are bounded intervals of positive
lengths. Evidently,

n∗(s;T5(Ω+)) ≤ n∗(s;T5(R+)), s > 0. (4.23)

Let M+
3 ∈ S∞(l2(Z× Sj)) be the “diagonal” operator defined by

(M+
3 u)l,α = ν+

l,αul,α, (l, α) ∈ Z× Sj,

where u := {ul,α}(l,α)∈Z×Sj
∈ l2(Z× Sj), and

ν+
l,α := |J+|

∑
β∈Sj

(
µ+
β,j

)−1/2
∑
m∈Z

(m2+1)−1(l2+1)

∫
I+

ψj(x−lT ; k+
α,j)

2dx, (l, α) ∈ Z×Sj.
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Applying the Cauchy-Schwarz inequality, we find that T5(R+)∗T5(R+) ≤ M+
3 , which

combined with the mini-max principle yields

n∗(s

√
2
√
λ;T5(R+)) ≤ n+(s22

√
λ;M+

3 ) =

#
{

(l, α) ∈ Z× Sj | ν+
l,α > s22

√
λ
}
, s > 0, λ > 0. (4.24)

Applying Lemma 4.1, we easily find that

lim
λ↓0

#
{

(l, α) ∈ Z× Sj | ν+
l,α > s

√
λ
}

| lnλ|1/2
=

√
2√
bT

A+
j , s > 0. (4.25)

Combining now (3.7) with the upper bound in (4.22), (4.23), (4.24), and (4.25), we
obtain the upper bound in (3.9).

Finally, we prove the lower bound in (3.9). Let J− be a closed vertical interval of
length q ∈ (0,∞), contained in Ω−. Due to the invariance of H0 with respect to y-
translations, we may assume without any loss of generality that there exists a bounded
interval I− of a positive length, such that I− × (0, q) ⊂ Ω−. Set

L = L(q) := Ent

(
2π

bT q

)
= Ent

(
2π

τq

)
.

Then we have R− := I− × (0, 2π
τL

) ⊂ Ω−, and therefore

n∗(s;T5(Ω−)) ≥ n∗(s;T5(R−)), s > 0. (4.26)

Let M−
3 ∈ S∞(l2(Z)) be the “diagonal” operator defined by

(M−
3 u)m = ν−mum, m ∈ Z,

where u := {um}m∈Z, and

ν−m :=
2π

τL
√
µ+

1,j

∫
I−
ψj(x−mLT ; k+

1,j)
2dx, m ∈ Z.

Restricting the operator T5(R−) onto the subspace{
u := {ul,α}(l,α)∈Z×Sj

∈ l2(Z× Sj) |ul,α = 0 if l 6∈ LZ or α 6= 1
}
,

applying the mini-max principle, and taking into account that∫ 2π
τL

0

eiL(m−m′)τydy =
2π

τL
δm,m′ , m,m′ ∈ Z,
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we easily find that

n∗

(
s

√
2
√
λ;T5(R−)

)
≥ n+

(
s22
√
λ;M−

3

)
= #

{
m ∈ Z | ν−m > s22

√
λ
}

(4.27)

with s > 0 and λ > 0. Utilizing again Lemma 4.1, we get

lim
λ↓0

#
{
m ∈ Z | ν−m > s

√
λ
}

| lnλ|1/2
=

√
2√

bT L(q)
, s > 0. (4.28)

Putting together (3.7), the lower bound in (4.22), (4.26), (4.27), and (4.28), and opti-
mizing with respect to q, we obtain the lower bound in (3.9).

Acknowledgements. The authors were partially supported by the Chilean Sci-
ence Foundation Fondecyt under Grant 1090467, and by Núcleo Cient́ıfico ICM P07-
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