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Abstract

We introduce and analyze a Mixed-FEM and BEM coupling for a three-dimensional fluid-solid
interaction problem. The media are governed by the acoustic and elastodynamic equations in time-
harmonic regime coupled with adequate transmission conditions posed on the interface between
the two media. We employ a dual-mixed variational formulation in the solid, in which the Cauchy
stress tensor and the rotation are the only unknowns, and use the exterior acoustic problem to
deduce a nonlocal boundary condition for this problem. The variational formulation in the solid is
completed with boundary integral equations relating the Cauchy data of the acoustic problem on the
coupling interface. Both the trace and the normal derivative of the pressure appear as boundary
variables in the global FEM-BEM formulation and the pressure in the exterior domain may be
recovered by means of an integral representation formula. A crucial point in our formulation is the
stabilization technique introduced by Hiptmair and co-authors to avoid the well-known instability
issue appearing in the BEM treatment of the exterior Helmholtz problem. The main novelty of this
formulation, with respect to a previous approach, consists in reducing the computational domain
to the solid media and providing a more accurate treatment of the far field effect. We show that a
suitable decomposition of the space of stresses allows the application of the Babuška-Brezzi theory
and the Fredholm alternative for concluding the solvability of the whole coupled problem. The
unknowns of the solid are then approximated by the Arnold-Falk-Winther finite element of order 1,
which yields a conforming Galerkin scheme. The stability and convergence of the discrete method
relies on a stable decomposition of the finite element space used to approximate the stress and also
on a classical result on conforming Galerkin approximations for Fredholm operators of index zero.
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1 Introduction

In this paper we introduce a new numerical scheme to compute the scattered waves and the elastic vi-
brations that take place in the interaction between a bounded solid body and the compressible inviscid
fluid surrounding it, when time–harmonic excitations of the system are imposed. Displacement-based

∗This research was partially supported by BASAL project CMM, Universidad de Chile, by Centro de Investigación
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formulations are generally used in the solid for this interaction problem (see for instance [4], [18], [19],
[20], [21], [25], and [26]). Here we are rather interested in situations in which a direct finite element
approximation of the stresses is needed. Our aim is to provide improvements of the approach using
the dual-mixed formulation introduced in [11, 12, 13].

The interaction problem studied in [11] and [12] refers to a 2D model in which an elastic body is
subject to a given incident wave that travels in the fluid surrounding it. The transmission conditions
hold on the boundary of the solid and they are given by the equilibrium of forces and the equality
of the normal displacements from both media. The original model is simplified a bit more in [11] by
assuming that the fluid occupies an annular region, whence a Robin boundary condition imitating the
behavior of the scattered field at infinity is imposed on its exterior boundary, which must be located
sufficiently far from the obstacle. Then, a dual-mixed approach is used in the solid and the usual primal
method is maintained in the fluid region. In addition, since the first transmission condition mentioned
above becomes essential, it is enforced weakly by means of a Lagrange multiplier. In this way, the
stress tensor in the solid and the pressure in the fluid constitute the main unknowns of the resulting
formulation. A judicious decomposition of the space of stresses renders suitable the application of a
Fredholm alternative for the analysis of the whole coupled problem. The associated discrete scheme
is defined with PEERS [1] elements in the obstacle and the traditional first order Lagrange finite
elements in the fluid domain. The stability and convergence of this Galerkin method also relies on a
stable decomposition of the finite element space used to approximate the stress variable. In [12] the
strategy from [11] is modified and, instead of considering a Robin condition on the exterior boundary,
the far field behavior is imposed exactly through non-local absorbing boundary conditions based on
boundary integral equations. In this case, the exterior boundary may be any parametrizable smooth
closed curve containing the solid. In this way, the discretization procedure proposed in [12] couples the
primal/dual-mixed finite element scheme from [11] with a suitable boundary element method arising
from a combined double and single layer potential representation of the scattered wave (see [9]).

A new finite element method for the 3D version of the interaction problem studied in [11] is analyzed
in [13]. The approach from [11] is simplified by incorporating the equilibrium of forces (see the first
equation in (2.2) below) into the definition of the product space to which the stress σ of the solid
and the pressure p of the fluid belong. This prevents from introducing further unknowns (Lagrange
multipliers) on the boundary of the solid simplifying by the way the saddle point structure of the
problem and reducing the number of unknowns. Moreover, the strategy involving a Lagrange multiplier
on the transmission boundary requires the use of two finite element meshes satisfying a stability
condition between their corresponding mesh sizes, which certainly constitutes a very cumbersome
restriction in 3D computations. The discrete version of the problem is built upon the lowest order
Arnold-Falk-Winther (AFW) element [3] in the solid and Lagrange finite element subspaces of order
1 for the pressure. It is worthwhile to notice here that, because of the coincidence between the
polynomial shape functions approximating σ ν and − pν on the interface, this numerical scheme
generates a conforming finite element subspace for the pair (σ, p). In other words, the essential
transmission condition incorporated in the definition of the continuous space is also satisfied at the
discrete level.

Now, the main purpose of the present paper is to incorporate more efficiently the far-field effects
into the finite element discretization of the 3D problem presented in [13]. We will use the exterior
Helmholtz problem to provide a nonlocal boundary condition for the interior elasticity problem through
a Dirichlet-to-Neumann (DtN) operator associated with the acoustic problem and expressed in terms
of boundary integral operators. It is well known that, if this strategy is not applied carefully, it leads
to a variational formulation that suffers from serious drawbacks. Indeed, the well posedness of the
resulting formulation (at the continuous level) requires regularity assumptions for the interface between
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the two media that may not be fulfilled in practice (cf. [4, 17, 27]). Moreover, the corresponding
numerical method may exhibit an unstable behavior at the vicinity of a countable set of frequencies
(cf. [4, 17, 25]). This is the reason for which the method presented in [12] (in the two dimensional
case) imposes the absorbing boundary conditions on a smooth but arbitrary interface containing the
obstacle in its interior. This procedure enlarges the domain for finite element computations, but the
resulting method does not suffer from the limitations mentioned above.

Our analysis here (for the 3D case) is different, it relays upon the stabilization technique introduced
in [8] and [16]. It permits to reduce the computational domain to the obstacle and gives rise to a
convergent mixed-FEM and BEM scheme that is safe from the spurious modes that appear when the
fluid frequency is related to the Dirichlet eigenvalues of Laplace problem in the interior domain. The
rest of this work is organized as follows. In Sections 2 and 3 we describe the fluid-solid interaction
problem and derive its continuous variational formulation. Then, in Section 4, we show that the
resulting saddle point problem is well posed. Finally, the corresponding Galerkin scheme is analyzed
in Section 5.

We end this section with further notations to be used below. Since in the sequel we deal with
complex valued functions, we let C be the set of complex numbers, use the symbol ı for

√
−1, and

denote by z and |z| the conjugate and modulus, respectively, of each z ∈ C. Also, we let I be
the identity matrix of C3×3, and given τ := (τij), ζ := (ζij) ∈ C3×3, we define the deviator tensor
τ d := τ − 1

3 tr(τ ) I, the tensor product τ : ζ :=
∑3

i,j=1 τij ζij , and the conjugate tensor τ := (τ ij).
In turn, in what follows we utilize standard simplified terminology for Sobolev spaces and norms. In
particular, if O is a domain, S is a closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]3 , Hr(O) := [Hr(O)]3×3 , and Hr(S) := [Hr(S)]3 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote H3

and H3×3, respectively. Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [6]). The space of matrix valued functions whose rows
belong to H(div;O) will be denoted H(div;O). The Hilbert norms of H(div;O) and H(div;O) are
denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O).
Finally, we employ 0 to denote a generic null vector (including the null functional and operator), and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent
of the discretization parameters, which may take different values at different places.

2 The fluid-solid interaction problem

We consider an incident acoustic wave upon a bounded elastic body (obstacle) in R3 that is fully
surrounded by a fluid, and aim to determine both the response of the body and the scattered wave.
We assume that the obstacle is represented by a polyhedron Ω whose boundary is denoted Γ. We
also let Ω+ := R3 \ Ω. We assume that the incident wave and the volume force acting on the body
exhibit a time-harmonic behaviour with frequency ω and amplitudes pi and f , respectively, so that
pi satisfies the Helmholtz equation in Ω+. Hence, we may consider that this interaction problem is
posed in the frequency domain. In this way, and since, following [11], we plan to employ a mixed
variational formulation in the solid, our main unknowns become the amplitude σ : Ω → C3×3 of the

3



Cauchy stress tensor, the amplitude u : Ω → C3 of the displacement field, and the amplitude of the
total (incident + scattered) pressure p := pi + ps : Ω+ → C.

The fluid is assumed to be perfect, compressible, and homogeneous, with mass density ρf and

wave number κ :=
ω

v0
, where v0 is the speed of sound in the linearized fluid. In addition, the solid is

supposed to be isotropic and linearly elastic with mass density ρs and Lamé constants µ and λ, which
means, in particular, that the corresponding constitutive equation is given by

σ = C ε(u) in Ω ,

where ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, ∇ is the gradient tensor,

and C is the elasticity operator given by Hooke’s law, that is

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ L2(Ω) . (2.1)

Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns
σ, u, and p satisfy the elastodynamic and acoustic equations in time-harmonic regime, that is:

divσ + κ2
s u = − f in Ω ,

∆p + κ2 p = 0 in Ω+ ,

where the wave number κs of the solid is defined by
√
ρs ω, together with the transmission conditions:

σ ν = − pν on Γ ,

ρf ω
2 u · ν =

∂p

∂ν
on Γ ,

(2.2)

and the behaviour at infinity given by

∂(p− pi)
∂r

− ı κ (p− pi) = o(r−1) , (2.3)

as r := ‖x‖ → +∞, uniformly for all directions
x

‖x‖
. Hereafter, div stands for the usual di-

vergence operator div acting on each row of the tensor, ‖x‖ is the euclidean norm of a vector
x := (x1, x2, x3)t ∈ R3, and ν denotes the unit outward normal on Γ, that is pointing toward Ω+.
The transmission conditions given in (2.2) constitute the equilibrium of forces and the equality of the
normal displacements of the solid and fluid, whereas the equation (2.3) is known as the Sommerfeld
radiation condition. Notice that, as a consequence of (2.3), the outgoing waves are absorbed in the
far field.

It is known that if pi = 0 and f = 0 then p = 0 and u is solution of (see [23])

σ = C ε(u) in Ω ,

divσ + κ2
s u = 0 in Ω ,

σν = 0 on Γ ,

u · ν = 0 on Γ .

(2.4)

It turns out that for certain regions and some frequencies ω = κs√
ρs

, known as Jones frequencies,

problem (2.4) has nontrivial solutions. This seems to be a rare eventuality but we will, in any case,
assume that (2.4) only admits the trivial solution.

4



3 A variational formulation with non-local boundary conditions

Before dealing with the variational formulation of our problem, let us recall some basic properties
of trace operators. First of all, we point out that we will use in the sequel Sobolev spaces Hr(Ω)
and Hr(Γ) of index r ∈ R whose definitions may be found in [24, 27]. We begin by denoting γ− the
interior trace on Γ. In other words, γ− : H1(Ω)→ H1/2(Γ) is the unique bounded operator such that
γ−v = v|Γ for any smooth function v ∈ C∞(Ω). In the unbounded domain Ω+, we consider the space
H1

loc(Ω
+) of distributions u in Ω+ such that ρu ∈ H1(Ω+) for any ρ ∈ C∞0 (Ω+), and define similarly

the exterior trace operator γ+ : H1
loc(Ω

+) → H1/2(Γ). It is well-known that both γ− and γ+ are
surjective. We also recall that H−1/2(Γ) is the dual of H1/2(Γ) and that the bilinear form

〈 ξ, ϕ 〉 :=

∫
Γ
ξϕ ∀ ξ, ϕ ∈ L2(Γ)

can be continuously extended to a duality pairing on H−1/2(Γ) × H1/2(Γ), which is also denoted
throughout the paper by 〈·, ·〉. In turn, the inner product in L2(Γ) is given by 〈 ψ,ϕ 〉. In addition,
we let

H1(∆,Ω) :=
{
v ∈ H1(Ω) : ∆v ∈ L2(Ω)

}
,

and define the interior normal derivative ∂−ν : H1(∆,Ω)→ H−1/2(Γ) by

〈 ∂−νu, ϕ 〉 :=

∫
Ω
∇u · ∇v +

∫
Ω
v∆u

with any v ∈ H1(Ω) such that γ−v = ϕ ∈ H1/2(Γ). Similarly, we let

H1
loc(∆,Ω

+) =
{
v ∈ H1

loc(Ω
+) : ∆v ∈ L2

loc(Ω
+)
}
,

and define the exterior normal derivative ∂+
ν : H1

loc(∆,Ω
+)→ H−1/2(Γ) by

〈 ∂+
νu, ϕ 〉 := −

∫
Ω+

∇u · ∇v −
∫

Ω+

v∆u

with any v ∈ H1
loc(Ω

+) of compact support such that γ+v = ϕ ∈ H1/2(Γ). The minus sign here is
due to the fact that the normal vector is oriented towards the exterior of Ω. Also, we recall that there
exists a unique bounded and onto application γν : H(div; Ω)→ H−1/2(Γ) known as the normal trace
operator and characterized by

〈γν τ , ξ 〉 :=

∫
Ω

v ·div τ +

∫
Ω
τ : ∇v with any v ∈ H1(Ω) such that γ−v = ξ ∈ H1/2(Γ) . (3.1)

Hereafter, γ−v is the usual trace operator γ− acting componentwise. Finally, jumps and averages of
the trace and the normal derivative operators across Γ are denoted

[γu] := γ+u− γ−u, [∂νu] = ∂+
νu− ∂−νu,

{γu} = 1
2(γ+u+ γ−u), and {∂νu} = 1

2(∂+
νu+ ∂−νu) .
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3.1 The variational formulation in the obstacle

In this section we describe the steps to obtain a mixed variational formulation in the solid Ω. We
follow the usual procedure (see [1] ) and introduce the rotation

r := 1
2(∇u− (∇u)t) ∈ L2

asym(Ω)

as a further unknown, where

L2
asym(Ω) :=

{
s ∈ L2(Ω) : st = − s

}
.

The constitutive equation can then be rewritten in the form

C−1 σ = ε(u) = ∇u − r ,

which, multiplying by a function τ ∈ H(div; Ω) and applying (3.1), yields∫
Ω
C−1 σ : τ +

∫
Ω

u · div τ − 〈 γν τ , γ−u 〉 +

∫
Ω
τ : r = 0 . (3.2)

Then, replacing back

u = − 1

κ2
s

(
f + divσ

)
,

into (3.2), gives∫
Ω
C−1 σ : τ − 1

κ2
s

∫
Ω

divσ · div τ − 〈γν τ , γ−u〉Γ +

∫
Ω
τ : r =

1

κ2
s

∫
Ω

f · div τ . (3.3)

¿From now on, the first transmission condition in (2.2), that is γν σ = − (γ+p)ν on Γ will be
imposed by tying the stress variable σ to an additional boundary unknown ψ representing γ+p. More
precisely, we will look for the unknown σ̂ := (σ, ψ) in the closed subspace X of H(div; Ω)×H1/2(Γ)
given by

X :=
{
τ̂ := (τ , ϕ) ∈ H(div; Ω)×H1/2(Γ) : γν τ + ϕν = 0 on Γ

}
,

which is endowed with the norm

‖τ̂‖2X := ‖τ‖2div;Ω + ‖ϕ‖21/2,Γ .

In addition, we also let from now on Y := L2
asym(Ω).

Now, taking the test function in (3.3) as the first component of the pair τ̂ := (τ , ϕ) ∈ X, we find
that this equation becomes∫

Ω
C−1 σ : τ − 1

κ2
s

∫
Ω

divσ · div τ + 〈(γ−u) · ν, ϕ〉Γ +

∫
Ω
τ : r =

1

κ2
s

∫
Ω

f · div τ (3.4)

for all τ̂ := (τ , ϕ) ∈ X. Next, according to the second transmission condition in (2.2), we replace
(γ−u) · ν by 1

ρf ω2 ∂
+
ν p and multiply by −ρf ω2 to obtain from (3.4)

ρf ω
2

{
1

κ2
s

∫
Ω

divσ · div τ −
∫

Ω
C−1 σ : τ −

∫
Ω
τ : r

}
− 〈 ϑ, ϕ 〉 = F0(τ̂ )
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for all τ̂ := (τ , ϕ) ∈ X, where

ϑ := ∂+
ν ps and F0(τ̂ ) := −

ρf ω
2

κ2
s

∫
Ω

f · div τ + 〈 ∂+
ν pi, ϕ 〉.

Recall here that ps is the scattered component of the total pressure p.

Imposing now weakly the symmetry of σ, we arrive at the following variational formulation in the
solid domain: Find (σ̂, r) ∈ X× Y such that

ρf ω
2

{
1

κ2
s

∫
Ω

divσ · div τ −
∫

Ω
C−1 σ : τ

}
− ρf ω

2

∫
Ω
τ : r − 〈 ϑ, ϕ 〉 = F0(τ̂ ) ,

− ρf ω2

∫
Ω
σ : s = 0 ,

(3.5)

for all (τ̂ , s) ∈ X× Y.

3.2 Nonlocal boundary conditions

In order to deal with the problem in the unbounded region, we need to establish some notations and
recall well-known properties of boundary integral operators. We begin with the integral representation
formula

ps = −Ψκ
SL(ϑ) + Ψκ

DL(γ+ps) in Ω+ , (3.6)

where κ is the wave number in the fluid (see definition in Section 2), and Ψκ
SL and Ψκ

DL are the single
layer and double layer potentials, respectively, defined by

Ψκ
SL(ϑ)(x) =

∫
Γ
Gκ(x,y)ϑ(y) dS(y) ∀x ∈ Ω+ ,

and

Ψκ
DL(ϕ)(x) =

∫
Γ
∂ν(y)Gκ(x,y)ϕ(y) dS(y) ∀x ∈ Ω+ ,

with Gκ(x,y), given by

Gκ(x,y) :=
1

4π

exp(ı κ ‖x− y‖)
‖x− y‖

∀x, y ∈ R3, x 6= y ,

being the radial outgoing fundamental solution of the Helmholtz equation in R3.

It is well known that the boundary integral operators defined by the following averages

Vκ := {γΨκ
SL} : Hs−1/2(Γ)→ Hs+1/2(Γ), Kκ := {γΨκ

DL} : Hs+1/2(Γ)→ Hs+1/2(Γ),

Kt
κ := {∂νΨκ

SL} : Hs−1/2(Γ)→ Hs−1/2(Γ), Wκ := −{∂νΨκ
DL} : Hs+1/2(Γ)→ Hs−1/2(Γ)

are bounded for any |s| < 1/2. Moreover, the classical jump relations

[γΨκ
SL(ϑ)] = 0, [∂νΨκ

SL(ϑ)] = −ϑ, ∀ϑ ∈ H−1/2(Γ),

[γΨκ
DL(ψ)] = ψ, [∂νΨκ

DL(ψ)] = 0, ∀ψ ∈ H1/2(Γ)

provide the identities

γ±Ψκ
SL = Vκ, ∂±νΨκ

SL = Kt
κ ∓ 1

2 id,

γ±Ψκ
DL = Kκ ± 1

2 id, ∂±νΨκ
DL = −Wκ.

(3.7)
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Hereafter, id denotes the identity operator. Also, it can be shown that Kt
κ is the adjoint of Kκ, i.e.,

〈 χ,Kκϕ 〉 = 〈Kt
κχ, ϕ 〉 ∀ϕ ∈ H1/2(Γ) , ∀χ ∈ H−1/2(Γ) .

The following two lemmas will be essential in the sequel.

Lemma 3.1 The following operators are compact:

Vκ − V0 : H−1/2(Γ) → H1/2(Γ), Kκ −K0 : H1/2(Γ) → H1/2(Γ),

Kt
κ −Kt

0 : H−1/2(Γ) → H−1/2(Γ), Wκ −W0 : H1/2(Γ) → H−1/2(Γ).

Proof. See [27, Lemma 3.9.8].
2

Lemma 3.2 There exists C0 > 0 such that

〈 χ, V0 χ 〉 ≥ C0 ‖χ‖2−1/2,Γ ∀χ ∈ H−1/2(Γ) (3.8)

and

〈W0 ϕ,ϕ 〉 +

∣∣∣∣∫
Γ
ϕ

∣∣∣∣2 ≥ C0 ‖ϕ‖21/2,Γ ∀ϕ ∈ H1/2(Γ) . (3.9)

Proof. See [27, Theorem 3.5.3].
2

Applying γ+ and ∂+
ν to the integral representation formula (3.6) and recalling that ϑ = ∂+

νps and
ψ = γ+p = γ+(ps + pi) we deduce that

ψ − γ+pi =
(

1
2 id + Kκ

)
(ψ − γ+pi) − Vκϑ (3.10)

and
ϑ = −Wκ(ψ − γ+pi) +

(
1
2 id − Kt

κ

)
ϑ . (3.11)

Combining (3.5) with (3.10) and (3.11) leads to the classical symmetric BEM-FEM formulation of
Costabel. However, for the exterior Helmholtz equation, this formulation suffers from spurious modes
when the wave number is related to a Dirichlet eigenvalue of the Laplace operator −∆ in Ω. We
remedy this situation by using the stabilization strategy presented in [16, 8]. To this end we need to
introduce the operator M : H−1(Γ)→ H1(Γ), which, given ξ ∈ H−1(Γ), is characterized by

〈 ∇Γ(Mξ),∇Γϕ 〉+ 〈Mξ,ϕ 〉 = 〈 ξ, ϕ 〉 ∀ϕ ∈ H1(Γ) , (3.12)

where ∇Γ is the tangential gradient operator

∇Γϕ := ν ×
(
∇(γ−1ϕ)× ν

)
∀ϕ ∈ H1/2(Γ) ,

and γ−1 : H1/2(Γ)→ H1(Ω) is any continuous right inverse of γ−. The following result is straightfor-
ward (see [8]).

Lemma 3.3 The operator
M : H−1/2(Γ)→ H1/2(Γ)

is compact and
Re{〈 ξ,Mξ 〉} > 0 ∀ ξ ∈ H−1/2(Γ) \ {0} .
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We now make redundant use of (3.11), rewritten as

(1
2 id +Kt

κ)ϑ+Wκ(ψ − γ+pi) = 0 , (3.13)

in such a way that, given η ∈ R \ {0}, we substitute equation (3.10) by (3.10) + ı ηM
{

(3.13)
}

to
obtain the following relationships between the Cauchy data of the exterior Helmholtz problem:

(1
2 id−Kκ)ψ + Vκϑ+ ıηM

{
(1

2 id +Kt
κ)ϑ + Wκ(ψ − γ+pi)

}
= (1

2 id−Kκ)(γ+pi) ,

−Wκψ + (1
2 id−Kt

κ)ϑ + Wκ(γ+pi) = ϑ.
(3.14)

In order to avoid dealing with a variational formulation involving the operator M := (id−∆Γ)−1 we
follow [16, 8] and introduce the boundary variable

z := −M
{

(1
2 id +Kt

κ)ϑ+Wκ(ψ − γ+pi)
}
∈ H1(Γ)

to transform (3.14) into

(1
2 id−Kκ)ψ + Vκϑ− ıηz = (1

2 id−Kκ)(γ+pi) ,

−Wκψ + (1
2 id−Kt

κ)ϑ+Wκγ
+pi = ϑ,

M−1z + (1
2 id +Kt

κ)ϑ+Wκψ = Wκ(γ+pi) .

(3.15)

Now, replacing ϑ in (3.5) by the second equation from (3.15), and testing the remaining equations
of (3.15) with χ ∈ H−1/2(Γ) and w ∈ H1(Γ), respectively, we arrive at the following variational
formulation of our problem: Find σ̂ := (σ, ψ) ∈ X, (ϑ, z) ∈ H−1/2(Γ)×H1(Γ) and r ∈ Y such that

A(σ̂, τ̂ ) − ρfω
2

∫
Ω
τ : r − 〈 (1

2 id−Kt
κ)ϑ, ϕ 〉 = F (τ̂ ) ∀τ̂ = (τ , ϕ) ∈ X ,

〈 χ, Vκϑ 〉+ 〈 χ, (1
2 id−Kκ)ψ 〉 − ıη 〈 χ, z 〉 = f(χ) ∀χ ∈ H−1/2(Γ),

〈Wκψ,w 〉+ 〈 (1
2 id +Kt

κ)ϑ,w 〉+ b(z, w) = g(w) ∀w ∈ H1(Γ),

− ρfω2

∫
Ω
σ : s = 0 ∀ s ∈ Y ,

(3.16)

where

A(σ̂, τ̂ ) :=
ρfω

2

κ2
s

∫
Ω

divσ · div τ − ρfω
2

∫
Ω
C−1 σ : τ + 〈Wκψ,ϕ 〉, (3.17)

F (τ̂ ) := F0(τ̂ ) + 〈Wκ(γ+pi), ϕ 〉, f(χ) := 〈 χ, (1
2 id−Kκ)(γ+pi) 〉, g(w) := 〈Wκ(γ+pi), w 〉

and, according to (3.12),

b(z, w) := 〈M−1 z, w〉 =

∫
Γ
∇Γz · ∇Γw +

∫
Γ
zw. (3.18)

For economy of notation we introduce the space X̂ := X×H−1/2(Γ)×H1(Γ), and denote its norm by

‖(τ̂ , χ, w)‖2X̂ := ‖τ̂‖2X + ‖χ‖2−1/2,Γ + ‖w‖21,Γ ∀ (τ̂ , χ, w) ∈ X̂ .

Let us also define the bilinear forms A : X̂ × X̂ → C and B : X̂ × Y → C, and the linear functional
F : X̂→ C, by

A((σ̂, ϑ, z), (τ̂ , χ, w)) := A(σ̂, τ̂ ) + 〈 χ, Vκϑ 〉+ b(z, w)− 〈 (1
2 id−Kt

κ)ϑ, ϕ 〉

+ 〈 χ, (1
2 id−Kκ)ψ 〉 − ıη 〈 χ, z 〉+ 〈Wκψ,w 〉+ 〈 (1

2 id +Kt
κ)ϑ,w 〉 ,

(3.19)
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B((τ̂ , χ, w), s) := − ρf ω2

∫
Ω

s : τ , (3.20)

and
F((τ̂ , χ, w)) := F (τ̂ ) + f(χ) + g(w) .

It is now clear that problem (3.16) has the following saddle point structure: Find ((σ̂, ϑ, z), r) ∈ X̂×Y
such that

A((σ̂, ϑ, z), (τ̂ , χ, w)) + B((τ̂ , χ, w), r) = F((τ̂ , χ, w)) ∀ (τ̂ , χ, w) ∈ X̂ ,

B((σ̂, ϑ, z), s) = 0 ∀ s ∈ Y .
(3.21)

It is easy to see that F, A and B are all bounded with constants depending on ω, ρf , ρs, κ, and
κs. Concerning the form A, we also observe from (2.1) that the inverse operator C−1 reduces to

C−1 ζ :=
1

2µ
ζ − λ

3µ (3λ+ 2µ)
tr(ζ) I ∀ ζ ∈ L2(Ω) ,

which implies that∫
Ω
C−1 ζ : τ =

1

2µ

∫
Ω
ζd : τ d +

1

3 (3λ+ 2µ)

∫
Ω

tr(ζ) tr(τ ) ∀ ζ, τ ∈ L2(Ω) ,

and hence ∫
Ω
C−1 ζ : ζ ≥ 1

2µ
‖ζd‖2[L2(Ω)]3×3 ∀ ζ ∈ L2(Ω) . (3.22)

This estimate will be useful for our analysis below.

4 Analysis of the continuous variational formulation

In this section we proceed analogously to [11] and employ a suitable decomposition of X to show that
(3.21) becomes a compact perturbation of a well-posed problem. For this purpose, we now need to
introduce a projector defined in terms of an auxiliary Neumann boundary value problem in Ω.

4.1 The associated projector

Let RM(Ω) be the space of rigid body motions in Ω, that is

RM(Ω) :=
{

v : Ω→ C3 : v(x) = a + b× x ∀x ∈ Ω , a, b ∈ C3
}
,

and let M : L2(Ω)→ RM(Ω) be the associated orthogonal projector. Then, given τ̂ = (τ , ϕ) ∈ X, we
consider the boundary value problem

σ̃ = C ε(ũ) in Ω , div σ̃ = div τ + v(τ̂ ) in Ω ,

γν σ̃ = −ϕν on Γ , ũ ∈ (id−M)(L2(Ω)) ,
(4.1)

where C ε(ũ) is defined according to (2.1) and v(τ̂ ) ∈ RM(Ω) is characterized by∫
Ω

v(τ̂ ) ·w = −〈 ϕν, γ−w 〉 −
∫

Ω
w · div τ ∀w ∈ RM(Ω) .
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Note that v(τ̂ ) is just an auxiliary rigid motion that is needed to guarantee the usual compatibility
condition required for the Neumann problem (4.1) (cf. [5, Theorem 9.2.30]) and that the orthogonality
condition on ũ is required for uniqueness. The well-posedness of (4.1) is already well known (see,
e.g. [2, Section 11.7, Theorem 11.7] or [12, Section 3, Theorem 3.1]). In addition, owing to the
regularity result for the elasticity problem with Neumann boundary conditions (see [10]), we know
that (σ̃, ũ) ∈ Hε(Ω)×H1+ε(Ω), for some ε > 0, and there holds

‖σ̃‖ε,Ω + ‖ũ‖1+ε,Ω ≤ C
{
‖div τ‖0,Ω + ‖ϕ‖1/2,Γ

}
. (4.2)

Note that the embedding H1/2(Γ) ↪→ L2(Γ) is used here to bound ‖ϕν‖0,Γ by C ‖ϕ‖1/2,Γ.

We now introduce the linear operators P : X→ H(div; Ω) and P : X→ X defined by

P (τ̂ ) := σ̃ and P(τ̂ ) := (P (τ̂ ), ϕ) ∀ τ̂ = (τ , ϕ) ∈ X , (4.3)

where σ̃ := C ε(ũ) and ũ is the unique solution of (4.1). It is clear from (4.1) that

P (τ̂ )t = P (τ̂ ) in Ω , div (P (τ̂ )) = div τ + v(τ̂ ) in Ω (4.4)

and
γν (P (τ̂ )) = −ϕν on Γ , (4.5)

which confirms that P(τ̂ ) belongs to X. Then, thanks to the continuous dependence result for (4.1),
we find that

‖P (τ̂ )‖div;Ω ≤ C
{
‖div τ‖0,Ω + ‖ϕ‖1/2,Γ

}
∀ τ̂ = (τ , ϕ) ∈ X ,

which shows that P is bounded. Moreover, it is easy to see from (4.1), (4.3), (4.4), and (4.5) that P
is actually a projector, and hence there holds

X = P(X) ⊕ (id−P)(X) . (4.6)

Finally, it is clear from (4.2) that P (τ̂ ) ∈ Hε(Ω) and

‖P (τ̂ )‖ε,Ω ≤ C
{
‖div τ‖0,Ω + ‖ϕ‖1/2,Γ

}
∀ τ̂ = (τ , ϕ) ∈ X . (4.7)

4.2 Well-posedness of the continuous formulation

In order to show that our coupled problem (3.21) is well posed, we now employ the stable decomposition
(4.6) to reformulate it in a more suitable form. We begin by observing, according to (4.4), (4.5), the
symmetry of P (τ̂ ), and the fact that ∇v ∈ L2

asym(Ω) ∀v ∈ RM(Ω), that for all σ̂ = (σ, ψ), τ̂ =
(τ , ϕ) ∈ X there holds∫

Ω

{
divσ − divP (σ̂)

}
· divP (τ̂ ) = −

∫
Ω

v(σ̂) · divP (τ̂ )

=

∫
Ω
∇v(σ̂) : P (τ̂ ) − 〈 γν(P (τ̂ )),v(σ̂) 〉 =

∫
Γ
(v(σ̂) · ν)ϕ .

(4.8)

Then, writing σ̂ = P(σ̂) + (id−P)(σ̂) and τ̂ = P(τ̂ ) + (id−P)(τ̂ ) in (3.17), similarly as we did in
[11], using the identity (4.8), and adding and substracting suitable terms, we find that A (cf. (3.17))
can be decomposed as

A(σ̂, τ̂ ) = A0(σ̂, τ̂ ) + K(σ̂, τ̂ ) ∀ σ̂, τ̂ ∈ X ,
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where A0 : X× X→ C and K : X× X→ C are the bounded and symmetric bilinear forms given by

A0(σ̂, τ̂ ) := A(P(σ̂),P(τ̂ )) − A((id−P)(σ̂), (id−P)(τ̂ )) (4.9)

with

A(σ̂, τ̂ ) := ρf ω
2

∫
Ω
C−1 σ : τ +

ρf ω
2

κ2
s

∫
Ω

divσ · div τ + 〈W0ψ,ϕ 〉 +

{∫
Γ
ψ

} {∫
Γ
ϕ

}
,

(4.10)
and

K(σ̂, τ̂ ) := − 2 ρf ω
2

∫
Ω
C−1 P (σ̂) : P (τ̂ ) − ρf ω

2

∫
Ω
C−1 (σ − P (σ̂)) : P (τ̂ )

− ρf ω
2

∫
Ω
C−1 P (σ̂) : (τ −P(τ̂ )) +

2 ρf ω
2

κ2
s

∫
Ω

v(σ̂) · v(τ̂ ) +
ρf ω

2

κ2
s

∫
Γ

(
v(τ̂ ) · ν

)
ψ

+
ρf ω

2

κ2
s

∫
Γ

(
v(σ̂) · ν

)
ϕ −

{∫
Γ
ψ

} {∫
Γ
ϕ

}
+ 〈 (Wκ −W0)ψ,ϕ 〉,

(4.11)

for all σ̂ = (σ, ψ), τ̂ = (τ , ϕ) ∈ X . The above suggests to decompose A (cf. (3.19)) as

A = A0 + K , (4.12)

where, given (σ̂, ϑ, z), (τ̂ , χ, w) ∈ X̂,

A0((σ̂, ϑ, z), (τ̂ , χ, w)) := A0(σ̂, τ̂ )+〈χ, V0 ϑ〉+b(z, w)−〈(1
2 id−Kt

0 )ϑ, ϕ〉+〈χ, (1
2 id−K0)ψ 〉 , (4.13)

and
K((σ̂, ϑ, z), (τ̂ , χ, w)) := K(σ̂, τ̂ ) + 〈 χ, (Vκ − V0)ϑ 〉 + 〈 (Kt

κ −Kt
0 )ϑ, ϕ 〉

+ 〈 χ, (K0 −Kκ)ψ 〉 − ı η 〈 χ, z 〉 + 〈Wκψ,w 〉 + 〈 (1
2 id +Kt

κ)ϑ,w 〉 .
(4.14)

Next, we let A0 : X̂→ X̂, K : X̂→ X̂, and B : X̂→ Y be the linear and bounded operators induced
by the bilinear forms A0, K, and B, respectively. In addition, we let F ∈ X̂ be the Riesz representant
of F. Hence, using these notations and taking into account the decomposition (4.12), the variational
formulation (3.21) can be rewritten as the following operator equation: Find ((σ̂, ϑ, z), r) ∈ X̂ × Y
such that (

A0 B∗

B 0

) (
(σ̂, ϑ, z)

r

)
+

(
K 0
0 0

) (
(σ̂, ϑ, z)

r

)
=

(
F
0

)
. (4.15)

Throughout the rest of this section we prove that the matrix operators on the left hand side of
(4.15) are invertible and compact, respectively.

Because of the saddle point structure of the matrix operator involving A0 and B, and according
to the classical Babuška-Brezzi theory, we begin the analysis with the inf-sup condition for B.

Lemma 4.1 There exists β > 0 such that

sup
(τ̂ ,χ,w)∈ X̂
(τ̂ ,χ,w)6=0

|B((τ̂ , χ, w), s) |
‖(τ̂ , χ, w)‖X̂

≥ β ‖s‖0,Ω ∀ s ∈ Y .
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Proof. See [3, Lemma 4.1]. 2

Our next goal is to prove that A0 is an isomorphism on the kernel of B. For this purpose, we now
recall the decomposition

H(div; Ω) = H0(div; Ω) ⊕ C I ,

where

H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω

tr(τ ) = 0
}
.

This means that for any τ ∈ H(div; Ω) there exist unique τ 0 ∈ H0(div; Ω) and d ∈ C given by

d :=
1

3 |Ω|

∫
Ω

tr(τ ), where |Ω| denotes the measure of Ω, such that τ = τ 0 + d I .

Our subsequent analysis will strongly depend on the inequalities provided by the following lemmas.

Lemma 4.2 There exists c1 > 0, depending only on Ω, such that

c1 ‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖20,Ω ∀ τ ∈ H(div; Ω) . (4.16)

Proof. See [6, Proposition 3.1, Chapter IV].
2

Lemma 4.3 There exists c2 > 0, depending on c1, κs, ρf , and ω2, such that

Re
{
A(τ̂ , τ̂ )

}
≥ c2 ‖τ̂‖2X ∀ τ̂ ∈ X . (4.17)

Proof. Let τ̂ = (τ , ϕ) ∈ X with τ = τ 0 + d I. We first notice, from the definition of A (cf. (4.10))
and the inequalities (3.22) and (3.9) (cf. Lemma 3.2), that

Re
{
A(τ̂ , τ̂ )

}
≥ C0

{
‖τ d‖20,Ω + ‖div τ‖20,Ω + ‖ϕ‖21/2,Γ

}
. (4.18)

On the other hand, since γν τ = −ϕν on Γ, we see that −ϕν = γν τ 0 + dν in H−1/2(Γ),
from which, applying the trace theorem in H(div; Ω) together with the continuity of the canonical
embeddings L2(Γ) ↪→ H−1/2(Γ) and H1/2(Γ) ↪→ L2(Γ), we deduce that

|d| ‖ν‖−1/2,Γ ≤ ‖γν τ 0‖−1/2,Γ + ‖ϕν‖−1/2,Γ

≤ C1

{
‖τ 0‖div;Ω + ‖ϕ‖1/2,Γ

}
.

It follows that
‖τ‖2div;Ω + ‖ϕ‖21/2,Γ = ‖τ 0‖2div;Ω + 3 d2 |Ω| + ‖ϕ‖21/2,Γ

≤ C2

{
‖τ 0‖2div;Ω + ‖ϕ‖21/2,Γ

}
,

which, thanks to (4.16), yields

‖τ‖2div + ‖ϕ‖21/2,Γ ≤ C3

{
‖τ d‖20,Ω + ‖div τ‖20,Ω + ‖ϕ‖21/2,Γ

}
for all τ̂ = (τ , ϕ) ∈ X. The above estimate and (4.18) imply (4.17) and finish the proof.

2

In what follows we make frequent use of the linear and bounded operator

Ξ := (2 P− id) : X→ X.
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Lemma 4.4 There exists C > 0, depending on c2, such that

Re
{
A0(τ̂ ,Ξ(τ̂ ))

}
≥ C ‖τ̂‖2X ∀ τ̂ := (τ , ϕ) ∈ X . (4.19)

Proof. Since P is a projector we easily observe that

P Ξ(τ̂ ) = P(τ̂ ) and (id−P) Ξ(τ̂ ) = − (id−P)(τ̂ ) ∀ τ̂ ∈ X ,

which, according to the definition of A0 (cf. (4.9)), gives

A0(τ̂ ,Ξ(τ̂ )) = A(P(τ̂ ),P(τ̂ )) + A((id−P)(τ̂ ), (id−P)(τ̂ )) . (4.20)

Hence, the inequality (4.19) follows directly from (4.20), Lemma 4.3, the fact that both P(τ̂ ) and
(id−P)(τ̂ ) belong to X, and the stability of the decomposition (4.6).

2

We now let V̂ be the kernel of B, that is

V̂ :=
{

(τ̂ , χ, w) ∈ X̂ : B(τ̂ , χ, w) = 0
}
,

which, recalling that B(τ̂ , χ, w) := − 1
2 ρf ω

2
(
τ − τ t

)
∀ (τ̂ , χ, w) := ((τ , ϕ), χ, w) ∈ X̂, becomes

V̂ =
{

(τ̂ , χ, w) := ((τ , ϕ), χ, w) ∈ X̂ : τ t = τ
}
.

Hence, we are now in a position to establish the following lemma, which includes, in particular, the
weak coercivity of A0 on V̂.

Lemma 4.5 There exist α, C > 0 such that

Re
{
A0((σ̂, ϑ, z), (Ξ(σ̂), ϑ, z))

}
≥ α ‖(σ̂, ϑ, z)‖2X̂ ∀ (σ̂, ϑ, z) ∈ X̂ , (4.21)

and

sup
(τ̂ ,χ,w)∈V̂

(τ̂ ,χ,w)6=0

|A0((σ̂, ϑ, z), (τ̂ , χ, w)) |
‖(τ̂ , χ, w)‖X̂

≥ C ‖(σ̂, ϑ, z)‖X̂ ∀ (σ̂, ϑ, z) ∈ V̂ . (4.22)

In addition, there holds

sup
(σ̂,ϑ,z)∈V̂

|A0((σ̂, ϑ, z), (τ̂ , χ, w)) | > 0 ∀ (τ̂ , χ, w) ∈ V̂ , (τ̂ , χ, w) 6= 0 . (4.23)

Proof. Having in mind the definition of A0 (cf. (4.13)), recalling that Kt
0 is the adjoint of K0, and

applying (4.19), the inequality (3.8) (cf. Lemma 3.2), and the fact that b(z, z) ≥ c ‖z‖21,Γ ∀ z ∈ H1(Γ)
(cf. (3.18)), we easily deduce the ellipticity-type estimate given by (4.21). Next, since P (τ̂ )t = P (τ̂ )
∀ τ̂ ∈ X (cf. (4.4)), we find that (P(τ̂ ), χ, w), and hence (Ξ(τ̂ ), χ, w), belong to V̂ for any (τ̂ , χ, w) ∈ V̂.
According to the above, for any (σ̂, ϑ, z) ∈ V̂, (σ̂, ϑ, z) 6= 0, we can write

sup
(τ̂ ,χ,w)∈V̂

(τ̂ ,χ,w)6=0

|A0((σ̂, ϑ, z), (τ̂ , χ, w)) |
‖(τ̂ , χ, w)‖X̂

≥ |A0((σ̂, ϑ, z), (Ξ(σ̂), ϑ, z)) |
‖(Ξ(σ̂), ϑ, z)‖X̂

≥

∣∣∣Re
{
A0((σ̂, ϑ, z), (Ξ(σ̂), ϑ, z))

} ∣∣∣
‖(Ξ(σ̂), ϑ, z)‖X̂

,

which, thanks to (4.21) and the boundedness of Ξ, yields straightforwardly the inf-sup condition (4.22).
Finally, the fact that A0((Ξ(σ̂), ϑ, z), (σ̂, ϑ, z)) = A0((σ̂, ϑ, z), (Ξ(σ̂), ϑ, z)) and (4.22) imply (4.23)
and complete the proof. 2
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Lemma 4.6 The operator K : X̂→ X̂ is compact.

Proof. We begin by recalling (cf. (4.7)) that there exists ε > 0 such that P (τ̂ ) ∈ Hε(Ω) for

all τ̂ ∈ X, which, according to the compact imbeddings Hε(Ω)
c
↪→ L2(Ω) and H1/2(Γ)

c
↪→ L2(Γ),

yields the compactness of P : X → L2(Ω) × L2(Γ). It follows that P∗ : L2(Ω) × L2(Γ) → X,
P∗ C−1 P, P∗ C−1 (id − P), and (id − P)∗ C−1 P are all compact. This shows that the operator
induced by the first three terms defining K (cf. (4.11)) becomes compact, and the four following
terms are finite rank operators. Finally, we deduce from Lemma 3.1 and the compactness of the
embedding H1(Γ) ↪→ H1/2(Γ) that the last term defining K, and all the remaning terms appearing in
the definition of K (cf. (4.14)) are compact.

2

We are now able to establish the main result of this section. Some aspects of the proof, mainly
those involving the boundary integral operators, follow very closely the arguments from [16].

Theorem 4.1 Assume that κs√
ρs

is not a Jones frequency. Then, given f ∈ L2(Ω) and a smooth

incident wave pi, there exists a unique solution ((σ̂, ϑ, z), r) ∈ X̂×Y to (3.21) (equivalently (3.16) or
(4.15)). In addition, there exists C > 0 such that

‖((σ̂, ϑ, z), r)‖X̂×Y ≤ C
{
‖f‖0,Ω + ‖γ+pi‖1/2,Γ + ‖∂+

ν pi‖−1/2,Γ

}
.

Proof. We notice that the left hand side of (4.15) constitutes a Fredholm operator of index zero.

Actually, Lemmata 4.1 and 4.5 imply that

(
A0 B∗

B 0

)
is an isomorphism, and Lemma 4.6 yields

the compactness of

(
K 0
0 0

)
. Hence, we just have to show that problem (3.21) (equivalently (3.16)

or (4.15)) admits a unique solution. Let us then assume that ((σ̂, ϑ, z), r) ∈ X̂×Y solves (3.16) with
f = 0 and pi = 0. We first introduce the variable

u = − 1

κ2
s

divσ ∈ L2(Ω) (4.24)

in the first equation of (3.16), and then, given τ ∈ C∞0 (Ω), test this equation with (τ , 0) ∈ X, to
obtain ∫

Ω
∇u : τ =

∫
Ω
C−1σ : τ +

∫
Ω

r : τ ,

where the first integral is in the distributional sense. This shows that

∇u = C−1σ + r ∈ L2(Ω) , (4.25)

and hence u ∈ H1(Ω). In addition, using from the last equation of (3.16) that σ, and hence C−1σ,
are symmetric, and recalling that r ∈ L2

asym(Ω), the identity (4.25) gives inmediately that C−1σ and r
constitute, respectively, the symmetric and asymmetric components of ∇u, that is

C−1σ = ε(u) and r = 1
2 (∇u− (∇u)t) in Ω . (4.26)

Now, testing the first equation of (3.16) with τ̂ := (τ , ϕ) ∈ X and integrating by parts, we arrive at

−ρf ω2 〈 γντ , γ−u 〉 + 〈Wκψ,ϕ 〉 − 〈 (1
2 id−Kt

κ)ϑ, ϕ 〉 = 0 ,

that is, recalling that γν τ = −ϕν,

ρf ω
2 〈γ−u · ν, ϕ〉 = 〈 (1

2 id−Kt
κ)ϑ − Wκψ,ϕ 〉 ,
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and since the surjectivity of γν guarantees that this holds for each ϕ ∈ H1/2(Γ), we obtain the identity

ρf ω
2 γ−u · ν = (1

2 id − Kt
κ)ϑ−Wκψ . (4.27)

Finally, from the second and third equations of (3.16) we have

ψ = (1
2 id + Kκ)ψ − Vκϑ + ı η z (4.28)

with
z = −M

{
(1

2 id +Kt
κ)ϑ+Wκψ

}
. (4.29)

Note at this point that (4.28) and (4.27) can be rewritten as(
id ı ηM
0 id

)(
1
2 id−Kκ Vκ
Wκ

1
2 id +Kt

κ

)(
ψ
ϑ

)
=

(
0

ϑ − ρf ω
2 γ−u · ν

)
. (4.30)

Let us now introduce the function q : Ω→ C defined by

q(x) := (Ψκ
SLϑ)(x) − (Ψκ

DLψ)(x) ∀x ∈ Ω .

Then, using the trace properties (3.7), we find that(
1
2 id−Kκ Vκ
Wκ

1
2 id +Kt

κ

)(
ψ
ϑ

)
=

(
γ−q
∂−ν q

)
,

which, after applying the operator

(
id ı ηM
0 id

)
and comparing with (4.30), implies that

(
id ı ηM
0 id

)(
γ−q
∂−ν q

)
=

(
0

ϑ − ρf ω
2 γ−u · ν

)
. (4.31)

It follows that q satisfies
−∆q − κ2 q = 0 in Ω ,

γ−q + ı ηM
{
∂−ν q

}
= 0 on Γ ,

(4.32)

where the boundary condition is a consequence of the first equation of (4.31). Testing this Hemholtz
equation with q and integrating by parts yields

‖∇q‖20,Ω − κ2 ‖q‖20,Ω = 〈 ∂−ν q, γ−q 〉 ,

which, using the boundary condition from (4.32), becomes

‖∇q‖20,Ω − κ2 ‖q‖20,Ω = ı η 〈 ∂−ν q,M
(
∂−ν q

)
〉 .

It follows that Re{〈 ∂−ν q,M
(
∂−ν q

)
〉} = 0, which, according to Lemma 3.3, yields ∂−ν q = 0. This

identity and (4.31) imply that

γ−q = 0 and ϑ = ρf ω
2 γ−u · ν on Γ , (4.33)

whence, in particular, (4.27) becomes (1
2 id + Kt

κ)ϑ + Wκψ = 0, and therefore z (cf. (4.29)) vanishes
identically. As a consequence, (4.28) and (4.27) are simplified to(

1
2 id +Kκ −Vκ
−Wκ

1
2 id−Kt

κ

)(
ψ
ϑ

)
=

(
ψ
ϑ

)
. (4.34)

16



Introducing now the function p : Ω+ → C defined by

p(x) := (Ψκ
DLψ)(x) − (Ψκ

SLϑ)(x) ∀x ∈ Ω+ ,

and applying again the trace properties (3.7), we obtain(
1
2 id +Kκ −Vκ
−Wκ

1
2 id−Kt

κ

)(
ψ
ϑ

)
=

(
γ+p
∂+
ν p

)
,

which, compared with (4.34), and using (4.33), gives

γ+p = ψ and ∂+
ν p = ϑ = ρf ω

2 γ−u · ν on Γ . (4.35)

Then, recalling that σ̂ := (σ, ψ) ∈ X, and integrating by parts in Ω, we find that

1

ρf ω2
〈∂+
ν p̄, γ

+p〉 = 〈ψ ν, γ−ū〉 = −〈γν σ, γ−ū〉

= −
∫

Ω
ū · divσ −

∫
Ω
σ : ∇ū = κ2

s ‖u‖20,Ω −
∫

Ω
C ε(u) : ε(ū) ,

which yields

Im
{
〈∂+
ν p̄, γ

+p〉
}

= 0 .

This identity and the fact that p satisfies the Helmholtz equation ∆p + κ2 p = 0 in Ω+ and the
Sommerfeld radiation condition (2.3) with pi = 0, imply, thanks to the Rellich theorem (cf. [9,
Theorem 2.12] or [24, Lemma 9.9]), that p vanishes identically in Ω+. Thus, it is clear from (4.35)
that ψ = 0 and ϑ = 0 on Γ, whence,

γν σ = 0 and γ−u · ν = 0 on Γ .

The above together with (4.24) and the first equation in (4.26) show that u solves (2.4), and therefore,
because of our hypothesis on κs, u must also vanish identically in Ω, which completes the proof.

2

At this point we remark that analogue arguments to those employed in the previous theorem allow
to show that z also vanishes in the original non-homogeneous coupled problem (3.16) (equivalently
(3.21)). In other words, z is an artificial unknown that is introduced in the formulation only to stabilize
the boundary integral equations. A similar situation holds in [16].

5 Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (3.5) and prove its well-posedness.

5.1 Preliminaries

We first let {Th}h>0 be a shape-regular family of triangulations of the polyhedral region Ω̄ by tetrahedra
T of diameter hT with mesh sizes h := max{hT : T ∈ Th }. We denote by {Th(Γ)}h>0 the family of
triangulations induced by {Th}h>0 on Γ. In what follows, C(Γ) is the space of continuous functions
on Γ, and given an integer ` ≥ 0 and a subset S of R3, P`(S) denotes the space of polynomials defined
in S of total degree ≤ `. In addition, following the same terminology described at the end of the
introduction, we denote P`(S) := [P`(S)]3 and P`(S) := [P`(S)]3×3. Then, we define

Hh :=
{
τ h ∈ H(div; Ω) : τ h|T ∈ P1(T ) ∀T ∈ Th

}
,

17



Φh :=
{
ϕh ∈ C(Γ) : ϕh|F ∈ P1(F ) ∀F ∈ Th(Γ)

}
,

Θrh :=
{
χh ∈ L2(Γ) : χh|F ∈ Pr(F ) ∀F ∈ Th(Γ)

}
, r ∈ {0, 1} ,

and introduce the finite element subspaces of X and Y, given, respectively, by

Xh :=
{
τ̂ h = (τ h, ϕh) ∈ Hh × Φh : τ h ν = −ϕh ν on Γ

}
, (5.1)

and
Yh :=

{
sh ∈ Y : sh|T ∈ P0(T ) ∀T ∈ Th

}
.

In addition, throughout the analysis below we will also need the space

Uh :=
{

vh ∈ L2(Ω) : vh|T ∈ P0(T ) ∀T ∈ Th
}
.

Note that Hh×Uh×Yh constitutes the lowest order mixed finite element approximation of the linear
elasticity problem introduced recently by Arnold, Falk and Winther (see [3], [2], [7]).

Hence, the finite element scheme associated to our coupled problem (3.5) is defined as: Find
(σ̂h, ϑh, zh) ∈ X̂h := Xh ×Θ0

h × Φh and rh ∈ Yh such that

A((σ̂h, ϑh, zh), (τ̂ , χ, w)) + B((τ̂ , χ, w), rh) = F((τ̂ , χ, w)) ∀(τ̂ , χ, w) ∈ X̂h ,

B((σ̂h, ϑh, zh), s) = 0 ∀ s ∈ Yh .
(5.2)

The well-posedness of (5.2) will be proved below in Section 5.3. We previously collect in what
remains of this section the approximation properties of the subspaces involved, and then in Section
5.2 we introduce a mixed finite element approximation of the operator P|Xh (cf. (4.3)).

Given δ ∈ (0, 1], we let Eh : Hδ(Ω) ∩ H(div; Ω) → Hh be the usual BDM interpolation operator
(see [6]), which, given τ ∈ Hδ(Ω) ∩ H(div; Ω) is characterized by the identities∫

F
Eh(τ )ν · p =

∫
F
γν τ · p ∀ p ∈ P1(F ) , ∀F ∈ Th(Γ) . (5.3)

Moreover, the commuting diagram property yields

div(Eh(τ )) = Ph(div τ ) ∀ τ ∈ Hδ(Ω) ∩ H(div; Ω) , (5.4)

where Ph : L2(Ω)→ Uh is the L2(Ω)-orthogonal projector. In addition, it is easy to show, using the
Bramble-Hilbert Lemma and the boundedness of the local interpolation operators on the reference
element T̂ (see, e.g. [15, equation (3.39)]), that there exists C > 0, independent of h, such that for
any τ ∈ Hδ(Ω) ∩ H(div; Ω) there holds

‖τ − Eh(τ )‖0,T ≤ C hδT

{
|τ |δ,T + ‖div τ‖0,T

}
∀T ∈ Th . (5.5)

We now let Πh : H(div; Ω)→ Hh, πh : H1/2(Γ)→ Φh, and Rh : L2(Ω)→ Yh be the corresponding
orthogonal projectors. Then we have (see [6]):

(APσ
h ) For any δ ∈ (0, 1] and for any τ ∈ Hδ(Ω), with div τ ∈ Hδ(Ω), there holds

‖τ −Πh(τ )‖div;Ω ≤ C hδ
{
‖τ‖δ,Ω + ‖div τ‖δ,Ω

}
.
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(APψh ) For any s ∈ (1, 2] and for any ϕ ∈ Hs(Γ) there holds (cf. [27, Theorem 4.3.22] )

‖ϕ− πh(ϕ)‖1/2,Γ ≤ C hs−1/2 ‖ϕ‖s,Γ .

(APϑh) For any 0 ≤ t ≤ s ≤ 1 and for any χ ∈ Hs(Γ), there holds (cf. [27, Theorem 4.3.20])

inf
χh ∈Θ0

h

‖χ− χh‖−t,Γ ≤ C hs+t ‖χ‖s,Γ .

(APr
h) For any ε ∈ (0, 1] and for any s ∈ Hε(Ω) ∩ L2

asym(Ω), there holds

‖s−Rh(s)‖0,Ω ≤ C hε ‖s‖ε,Ω .

(APu
h) For any t ∈ (0, 1] and for any v ∈ Ht(Ω), there holds

‖v − Ph(v)‖0,Ω ≤ C ht ‖v‖t,Ω .

Note here that (APσ
h ) is a consequence of the inequality ‖τ − Πh(τ )‖div;Ω ≤ ‖τ − Eh(τ )‖div;Ω

together with (5.4), (5.5), and (APu
h).

We end this section with an approximation property of our finite element subspace Xh (cf. (5.1)).
For this purpose, we assume from now on that {Th}h>0 is quasi-uniform around Γ. This means that
there exists an open neighborhood of Γ, say ΩΓ, with Lipschitz boundary, and such that the elements
of Th intersecting that region are more or less of the same size. In other words, we define

TΓ,h :=
{
T ∈ Th : T ∩ ΩΓ 6= ∅

}
,

and assume that there exists c > 0, independent of h, such that

max
T∈TΓ,h

hT ≤ c min
T∈TΓ,h

hT ∀h > 0 . (5.6)

Note that this assumption and the shape-regularity property of the meshes imply that Th(Γ), the par-
tition on Γ inherited from Th, is also quasi-uniform, which means that there exists C > 0, independent
of h, such that

hΓ := max
{

diam {F} : F ∈ Th(Γ)
}
≤ C min

{
diam {F} : F ∈ Th(Γ)

}
.

In addition, the quasi-uniformity of Th(Γ) guarantees the inverse inequality on Θ1
h, the subspace of

L2(Γ) given by the piecewise polynomials of degree ≤ 1, that is, in particular,

‖χh‖0,Γ ≤ C h
−1/2
Γ ‖χh‖−1/2,Γ ∀χh ∈ Θ1

h . (5.7)

We are now in a position to establish the following lemma.

Lemma 5.1 There exists C > 0, independent of h, such that for any τ̂ = (τ , ϕ) ∈ X there holds

inf
τ̂h ∈Xh

‖τ̂ − τ̂ h‖X ≤ C
{
‖τ −Πh(τ )‖div;Ω + ‖ϕ− πh(ϕ)‖1/2,Γ

}
. (5.8)
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Proof. Given τ̂ := (τ , ϕ) ∈ X, we let v ∈ H1(Ω) be the unique solution (guaranteed by the
Lax-Milgram Lemma) of the vectorial Laplace problem

∆v =
1

|Ω|

∫
Γ

{
Πh(τ )ν + πh(ϕ)ν

}
in Ω

∂v

∂ν
= Πh(τ )ν + πh(ϕ)ν on Γ ,

∫
Ω

v = 0 ,

(5.9)

whose corresponding continuous dependence result states that

‖v‖1,Ω ≤ C ‖Πh(τ )ν + πh(ϕ)ν‖−1/2,Γ . (5.10)

Since the Neumann datum Πh(τ )ν + πh(ϕ)ν, being a piecewise polynomial of degree ≤ 1, belongs
to Hδ(Γ) for any δ ∈ [0, 1/2), we deduce that we have at least H3/2(Ω)-regularity for the solution v
and (see [14])

‖v‖3/2,Ω ≤ C ‖Πh(τ )ν + πh(ϕ)ν‖0,Γ . (5.11)

Moreover, since Ωint := Ω\ΩΓ is an interior region of Ω, the interior elliptic regularity estimate (see,
e.g. [24, Theorem 4.16]) says that

‖v‖2,Ωint ≤ C ‖Πh(τ )ν + πh(ϕ)ν‖−1/2,Γ . (5.12)

Next, we define ζ := ∇v in Ω, whence ζ ∈ H1/2+δ(Ω), and observe from (5.9) that

div ζ =
1

|Ω|

∫
Γ

{
Πh(τ )ν + πh(ϕ)ν

}
in Ω , and γν ζ = Πh(τ )ν + πh(ϕ)ν on Γ , (5.13)

which, in particular, implies that ζ ∈ H(div; Ω). Hence, we now set

τ̂ h :=
(
Πh(τ )− Eh(ζ), πh(ϕ)

)
∈ Hh × Φh ,

and show that τ̂ h ∈ Xh. In fact, employing the characterization (5.3) and the second identity in
(5.13), we find that for any F ∈ Th(Γ) and for any p ∈ P1(F ), there holds∫

F
Eh(ζ)ν · p =

∫
F
γν ζ · p =

∫
F

{
Πh(τ )ν + πh(ϕ)ν

}
· p

which, noting that
{(

Πh(τ )−Eh(ζ)
)
ν + πh(ϕ)ν

}∣∣∣
F
∈ P1(F ), yields

(
Πh(τ )−Eh(ζ)

)
ν = −πh(ϕ)ν

on Γ.

We now aim to prove (5.8). We first observe, applying the triangle inequality, that

‖τ̂ − τ̂ h‖2X ≤ 2 ‖τ −Πh(τ )‖2div;Ω + 2 ‖Eh(ζ)‖2div;Ω + ‖ϕ− πh(ϕ)‖21/2,Γ . (5.14)

Then, using the first identity in (5.13), which says that div ζ ∈ Uh, and (5.4), we deduce that

‖Eh(ζ)‖2div;Ω = ‖Eh(ζ)‖20,Ω + ‖div ζ‖20,Ω

≤ C0

{
‖Eh(ζ)‖20,Ω + ‖Πh(τ )ν + πh(ϕ)ν‖2−1/2,Γ

}
.

(5.15)

Now, adding and substracting γν τ = −ϕν on Γ, and applying the trace theorem in H(div; Ω), we
find that

‖Πh(τ )ν + πh(ϕ)ν‖−1/2,Γ ≤ ‖γν
(
τ −Πh(τ )

)
‖−1/2,Γ + ‖

(
ϕ − πh(ϕ)

)
ν‖−1/2,Γ

≤ C1

{
‖τ −Πh(τ )‖div;Ω + ‖ϕ − πh(ϕ)‖0,Γ

}
≤ C1

{
‖τ −Πh(τ )‖div;Ω + ‖ϕ− πh(ϕ)‖1/2,Γ

}
.

(5.16)
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It remains to estimate ‖Eh(ζ)‖0,Ω. In fact, defining the sets

ΩΓ,h := ∪
{
T : T ∈ TΓ,h

}
and Ωint

h := Ω\ΩΓ,h ⊆ Ωint ,

and using the stability of Eh when applied to H1(Ωint
h ), and the estimate (5.12), we find that

‖Eh(ζ)‖0,Ω ≤ ‖Eh(ζ)‖0,Ωint
h

+ ‖Eh(ζ)‖0,ΩΓ,h

≤ C2 ‖v‖2,Ωint + ‖Eh(ζ)‖0,ΩΓ,h

≤ C3 ‖Πh(τ )ν + πh(ϕ)ν‖−1/2,Γ + ‖Eh(ζ)‖0,ΩΓ,h
.

(5.17)

In turn, adding and substracting ζ = ∇v, and utilizing the upper bound (5.10), the estimates (5.5)
(with δ = 1/2) and (5.11), the first identity in (5.13), the quasi-uniformity bound (5.6), and the inverse
inequality (5.7), we arrive at

‖Eh(ζ)‖20,ΩΓ,h
≤ C4

{
‖ζ − Eh(ζ)‖20,ΩΓ,h

+ ‖Πh(τ )ν + πh(ϕ)ν‖2−1/2,Γ

}
≤ C5

∑
T∈TΓ,h

hT ‖v‖23/2,T + C5 ‖div ζ‖20,Ω + C4 ‖Πh(τ )ν + πh(ϕ)ν‖2−1/2,Γ

≤ C6 hΓ ‖Πh(τ )ν + πh(ϕ)ν‖20,Γ + C̃4 ‖Πh(τ )ν + πh(ϕ)ν‖2−1/2,Γ

≤ C7 ‖Πh(τ )ν + πh(ϕ)ν‖2−1/2,Γ .

(5.18)

Finally, (5.14), (5.15), (5.16), (5.17) and (5.18) finish the proof.
2

5.2 A mixed finite element approximation of P|Xh
In what follows we introduce uniformly bounded linear operators Ph : Xh → Xh so that Ph(τ̂ h)
becomes a suitable discrete approximation of P(τ̂ h) for any τ̂ h := (τ h, ϕh) ∈ Xh, and then provide
the corresponding estimate for the error ‖P(τ̂ h) − Ph(τ̂ h)‖div;Ω.

Given τ̂ h = (τ h, ϕh) ∈ Xh ⊆ X, we first recall from (4.1) and (4.3) that

P (τ̂ h) = σ̃ and P(τ̂ h) = (P (τ̂ h), ϕh) , (5.19)

where σ̃ := C ε(ũ) and ũ is the unique solution of the problem

σ̃ = C ε(ũ) in Ω , div σ̃ = div τ h + v(τ̂ h) in Ω ,

γν σ̃ = −ϕh ν on Γ , ũ ∈ (id−M)(L2(Ω)) .
(5.20)

Then, proceeding analogously to [13, Section 5.2], we let (σ̃h, ũh, r̃h) ∈ Hh × (id−M)(Uh)× Yh be
the usual mixed finite element approximation of the solution of (5.20) and define

Ph(τ̂ h) := σ̃h and Ph(τ̂ h) := (Ph(τ̂ h), ϕh) .

It is not difficult to show, as in [13, Section 5.2, Theorem 5.1 and eq. (5.27)], that there hold

‖Ph(τ̂ h)‖div;Ω ≤ C
{
‖τ h‖div;Ω + ‖ϕh‖1/2,Γ

}
, (5.21)

21



Ph(τ̂ h)ν = −ϕh ν on Γ and

∫
Ω
Ph(τ̂ h) : s̃h = 0 ∀ s̃h ∈ Yh . (5.22)

It is clear that (5.21) yields the uniform boundedness of Ph, while the first equation of (5.22) guarantees
that Ph(τ̂ h) belongs to Xh. In addition, following the same arguments of the proof of [13, Lemma 5.4],
that is using the definition (5.19), the commuting diagram identity (5.4), the approximation properties
(5.5), (APu

h), and (APr
h), and the regularity estimate for (5.20) (cf. (4.2), (4.7)), we can prove the

following error estimate.

Lemma 5.2 Let ε > 0 be the parameter defining the regularity of the solution of (5.20). Then, there
exists C > 0, independent of h, such that for any τ̂ h := (τ h, ϕh) ∈ Xh there holds

‖P(τ̂ h) − Ph(τ̂ h)‖div;Ω ≤ C hε
{
‖div τ h‖0,Ω + ‖ϕh‖1/2,Γ

}
. (5.23)

5.3 Well-posedness of the discrete formulation

In this section we prove the well-posedness of our mixed finite element scheme (5.2). To this end,
as established by a classical result on projection methods for Fredholm operators of index zero (see,
e.g. [22, Theorem 13.7]), it suffices to show that the Galerkin scheme associated to the isomorphism(

A0 B∗

B 0

)
is well-posed. Therefore, in what follows we prove that B (cf. (3.20)) and A0 (cf. (4.13))

satisfy the corresponding inf-sup conditions on the finite element subspace Xh × Yh, thus providing
the discrete analogues of Lemmata 4.1 and 4.5.

We begin with the discrete inf-sup condition for B.

Lemma 5.3 There exists β > 0, independent of h, such that for any sh ∈ Yh, there holds

sup
(τ̂h,χh,wh)∈ X̂h
(τ̂h,χh,wh)6=0

|B((τ̂ h, χh, wh), sh) |
‖(τ̂ h, χh, wh)‖X̂

≥ β ‖sh‖0,Ω .

Proof. It suffices to note that B((τ̂ h, χh, wh), sh) = − ρf ω2

∫
Ω
τ h : sh and then apply the inf-sup

condition given by [13, Lemma 5.5]. 2

We now let V̂h be the discrete kernel of B, that is

V̂h :=
{

(τ̂ h, χh, wh) ∈ X̂h : B((τ̂ h, χh, wh), sh) = 0 ∀ sh ∈ Yh
}

=
{

(τ̂ h, χh, wh) ∈ X̂h :

∫
Ω
τ h : sh = 0 ∀ sh ∈ Yh

}
.

Then, the discrete weak coercivity of A0 is established as follows.

Lemma 5.4 There exist C, h1 > 0, independent of h, such that for any h ≤ h1 there holds

sup
(σ̂h,ϑh,zh)∈V̂h
(σ̂h,ϑh,zh)6=0

|A0((τ̂ h, χh, wh), (σ̂h, ϑh, zh)) |
‖(σ̂h, ϑh, zh)‖X̂

≥ C ‖(τ̂ h, χh, wh)‖X̂ ∀ (τ̂ h, χh, wh) ∈ V̂h . (5.24)
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Proof. Let us introduce the linear and bounded operator Ξh := (2 Ph − id) : Xh → Xh, which
constitutes a natural discrete approximation of the operator Ξ := (2 P − id) : X → X (cf. Section
4.2). It follows from (5.23) (cf. Lemma 5.2) that for any τ̂ h := (τ h, ϕh) ∈ Xh there holds

‖Ξ(τ̂ h) − Ξh(τ̂ h)‖div;Ω ≤ C hε
{
‖div τ h‖0,Ω + ‖ϕh‖1/2,Γ

}
≤ C hε ‖τ̂ h‖X .

Then, adding and substracting (Ξ(τ̂ h), χh, wh)), using the boundedness of A0, and applying the
inequality (4.21) (cf. Lemma 4.5), we find that for any (τ̂ h, χh, wh) ∈ X̂h there holds∣∣∣Re

{
A0((τ̂ h, χh, wh), (Ξh(τ̂ h), χh, wh))

}∣∣∣
≥

∣∣∣Re
{
A0((τ̂ h, χh, wh), (Ξ(τ̂ h), χh, wh))

}∣∣∣− C hε‖τ̂ h‖2X
≥

{
α − C hε

}
‖(τ̂ h, χh, wh)‖2X̂ ,

from which we deduce the existence of c, h1 > 0 such that for any h ≤ h1 there holds∣∣∣Re
{
A0((τ̂ h, χh, wh), (Ξh(τ̂ h), χh, wh))

} ∣∣∣ ≥ c ‖(τ̂ h, χh, wh)‖2X̂ ∀ (τ̂ h, χh, wh) ∈ X̂h . (5.25)

Note, thanks to this inequality, that (Ξh(τ̂ h), χh, wh)) 6= 0 for each (τ̂ h, χh, wh) 6= 0. Furthermore,
the second equation of (5.22) and the above characterization of V̂h imply that (Ξh(τ̂ h), χh, wh) ∈ V̂h
for any (τ̂ h, χh, wh) ∈ V̂h. In this way, the discrete inf-sup condition (5.24) follows straightforwardly
from (5.25) and the uniform boundedness of Ξh. 2

The well-posedness and convergence of the discrete scheme (5.2) can now be established.

Theorem 5.1 Assume that problem (2.4) has only the trivial solution. Let h1 > 0 be the constant
provided by Lemma 5.4. Then, there exists h0 ∈ (0, h1] such that for any h ≤ h0, the mixed finite
element scheme (5.2) has a unique solution ((σ̂h, ϑh, zh), rh) ∈ X̂h × Yh. In addition, there exist
C1, C2 > 0, independent of h, such that

‖((σ̂h, ϑh, zh), rh)‖X̂×Y ≤ C ‖F|X̂h‖ ≤ C1

{
‖f‖0,Ω + ‖∂+

ν pi‖−1/2,Γ + ‖γ+pi‖1/2,Γ
}

and
‖((σ̂, ϑ, z), r) − (σ̂h, ϑh, zh), rh)‖X̂×Y

≤ C2 inf
((τ̂h,χh,wh),sh)∈X̂h×Yh

‖((σ̂, ϑ, z), r) − ((τ̂ h, χh, wh), sh)‖X̂×Y .
(5.26)

Furthermore, if there exists δ ∈ (0, 1] such that σ ∈ Hδ(Ω), divσ ∈ Hδ(Ω), ψ ∈ H1/2+δ(Γ), ϑ ∈
H−1/2+δ(Γ), and r ∈ Hδ(Ω), then there holds

‖((σ̂, ϑ, z), r) − ((σ̂h, ϑh, zh), rh)‖X̂×Y

≤ C3 h
δ
{
‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖ψ‖1/2+δ,Γ + ‖ϑ‖−1/2+δ,Γ + ‖r‖δ,Ω

}
,

(5.27)

with a constant C3 > 0, independent of h.

Proof. Thanks to Theorem 4.1 and Lemmata 5.3 and 5.4, the proof of the first part is a direct
application of [22, Theorem 13.7], whereas the rate of convergence (5.27) follows directly from the Céa

estimate (5.26), the fact that z = 0, and the approximation properties (APσ
h ), (APψh ), (APϑh), (APr

h),
and the one for Xh given by Lemma 5.1 (cf. (5.8)). 2
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