EQUIDISTRIBUTION OF HECKE POINTS ON THE SUPERSINGULAR MODULE

RICARDO MENARES

Abstract

For a fixed prime p, we consider the (finite) set of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$. Hecke operators act on this set. We compute the asymptotic frequence with which a given supersingular elliptic curve visits another under this action.

1. Introduction

Let p be a prime number. We denote by $E=\left\{E_{1}, \ldots, E_{n}\right\}$ the set of isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$. We denote by $S:=\oplus_{i=1}^{n} \mathbb{Z} E_{i}$ the supersingular module in characteristic p (i.e. S is the free abelian group spanned by the elements of E). Hecke operators act on S by

$$
T_{1}:=i d, \quad T_{m}\left(E_{i}\right)=\sum_{C} E_{i} / C, \quad m \geq 2,
$$

where C runs through the subgroup schemes of E_{i} of rank m. This definition is extended by linearity to S and to $S_{\mathbb{R}}:=S \otimes \mathbb{R}$. For an integer $m \geq 1$ we put

$$
B_{i, j}(m)=\mid\left\{C \subset E_{i}, \quad|C|=m \text { et } E_{i} / C \cong E_{j}\right\} \mid .
$$

We have that $T_{m} E_{i}=\sum_{j=1}^{n} B_{i, j}(m) E_{j}$. The the matrix $\left(B_{i, j}(m)\right)_{i, j=1}^{n}$ is known as the Brandt matrix of order m.
For a given $D=\sum_{i=1}^{n} a_{i} E_{i} \in S_{\mathbb{R}}$, we put $\operatorname{deg} D=\sum_{i=1}^{n} a_{i}$. We have that ([4], Propositon 2.7)

$$
\operatorname{deg} T_{m} E_{i}=\sum_{\substack{d \mid m \\ p \nmid d}} d=: \sigma_{p}(m),
$$

leading to define $\operatorname{deg} T_{m}:=\sigma_{p}(m)$.
Let M be the set of probability measures on E. For every $i=1, \ldots, n$, we denote by $\delta_{E_{i}} \in M$ the Dirac measure supported on E_{i}. Let

$$
S^{+}:=\left\{\sum_{i=1}^{n} a_{i} E_{i} \in S_{\mathbb{R}} \text { such that } a_{i} \geq 0\right\}-\{0\}
$$

For any $D=\sum_{i=1}^{n} a_{i} E_{i} \in S^{+}$, we put

$$
\Theta_{D}:=\frac{1}{\operatorname{deg} D} \sum_{i=1}^{n} a_{i} \delta_{E_{i}} .
$$

We have that Θ_{D} is a probability measure on E and every element of M has this form. Hence, there is a natural action of the Hecke operators on M, given by $T_{m} \Theta_{D}:=\Theta_{T_{m} D}$.

Each E_{i} has a finite number of automorphisms. We define

$$
w_{i}:=\left|\operatorname{Aut}\left(E_{i}\right) /\{ \pm 1\}\right|, \quad W:=\sum_{i=1}^{n} \frac{1}{w_{i}} .
$$

The element $e:=\sum_{i=1}^{n} \frac{1}{w_{i}} E_{i} \in S \otimes \mathbb{Q}$ is Eisenstein ([4], p. 139), i.e.

$$
\begin{equation*}
T_{m}(e)=\operatorname{deg} T_{m} e \tag{1.1}
\end{equation*}
$$

We denote by $\Theta:=\Theta_{e}$. Equation (1.1) implies that $T_{m} \Theta=\Theta$ for all $m \geq 1$.
Let $C(E) \cong \mathbb{C}^{n}$ be the space of complex valued functions on E. For $f \in C(E)$, we denote by $\|f\|=\max _{i}\left|f\left(E_{i}\right)\right|$ and $\Theta_{D}(f)=(\operatorname{deg} D)^{-1} \sum a_{i} f\left(E_{i}\right)$. For a positive integer m, we write $m=p^{k} m_{p}$ with $p \nmid m_{p}$. We obtain the following result:

Theorem 1.1. For all $i=1, \ldots, n$, the sequence of measures $\left\{\Theta_{T_{m} E_{i}}\right\}$, where m runs through a set of positive integers such that m_{p} is unbounded, is equidistributed with respect to Θ. More precisely, for all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that for every sequence of integers m such that $m_{p} \rightarrow \infty$, we have that

$$
\left|\Theta_{T_{m} E_{i}}(f)-\Theta(f)\right| \leq C_{\varepsilon}\|f\| n m^{-\frac{1}{2}+\varepsilon} .
$$

We study the asymtotic frequence of the multiplicity of E_{j} inside $T_{m} E_{i}$. That is, the behavoir of the ratio $B_{i, j}(m) / \operatorname{deg}\left(T_{m}\right)$ when m varies. We will prove Theorem 1.1 in the equivalent formulation:

Theorem 1.2. For all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that for every sequence of integers m such that $m_{p} \rightarrow \infty$, we have that

$$
\begin{equation*}
\left|\frac{B_{i, j}(m)}{\operatorname{deg} T_{m}}-\frac{12}{w_{j}(p-1)}\right| \leq C_{\varepsilon} m^{-\frac{1}{2}+\varepsilon} . \tag{1.2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{m_{p} \rightarrow \infty} \frac{B_{i, j}(m)}{\operatorname{deg} T_{m}}=\frac{12}{w_{j}(p-1)} \tag{1.3}
\end{equation*}
$$

The proof of this assertion is found in section 1.2.
Remark 1.3. The equality $\sum_{j=1}^{n} \frac{B_{i, j}(m)}{\operatorname{deg} T_{m}}=1$, combined with equation (1.3) implies the mass formula of Deuring and Eichler:

$$
W=\sum_{j=1}^{n} \frac{1}{w_{j}}=\frac{p-1}{12} .
$$

Theorem 1.1 can be deduced from Theorem 1.2 as follows: remark 1.3 implies that $\Theta=\sum_{j=1}^{n} \frac{12}{w_{j}(p-1)} \delta_{E_{j}}$. Take $f \in C^{0}(E)$. We have that

$$
\left|\Theta_{T_{m} E_{i}}(f)-\Theta(f)\right| \leq\|f\| \sum_{j=1}^{n}\left|\frac{B_{i, j}(m)}{\operatorname{deg} T_{m}}-\frac{12}{w_{j}(p-1)}\right|
$$

Hence, inequality (1.2) implies Theorem 1.1.
Let $h: E \rightarrow E$ be a function. Then h defines an endomorphism of S and of $S_{\mathbb{R}}$ by the rule

$$
h\left(\sum a_{i} E_{i}\right):=\sum a_{i} h\left(E_{i}\right) .
$$

We will also consider the action induced on M by $h^{*} \Theta_{D}:=\Theta_{h(D)}$.
Corollary 1.4. Let $q \neq p$ be a prime number. Let $h: E \rightarrow E$ be a function such that $h \circ T_{q}=T_{q} \circ h$. Then $h^{*} \Theta=\Theta$. In other words, h can be identified with a permutation $\tau \in S_{n}$ by $h\left(E_{i}\right)=E_{\tau(i)}$ and we have that $w_{i}=w_{\tau(i)}$ for all $i=1, \ldots, n$.

Proof: since $T_{q^{k}}$ is a polynomial in T_{q}, we also have that $h \circ T_{q^{k}}=T_{q^{k}} \circ h$. Let $f \in C(E)$. We have that

$$
\begin{align*}
h^{*} \Theta(f) & =\lim _{k \rightarrow \infty} h^{*} \Theta_{T_{q^{k}} E_{1}}(f) \tag{1.4}\\
& =\lim _{k \rightarrow \infty} \Theta_{h \circ T_{q^{k}} E_{1}}(f) \\
& =\lim _{k \rightarrow \infty} \Theta_{T_{q^{k}}\left(h\left(E_{1}\right)\right)}(f) \\
& =\Theta(f), \tag{1.5}
\end{align*}
$$

where we have used Theorem 1.1 in (1.4) and (1.5)
The statement Theorem 1.1, using the Hecke invariant measure Θ, has been included to emphasize the analogy with the fact that Hecke orbits are equidistributed on the modular curve $S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ with respect to the hyperbolic measure, which is Hecke invariant (e.g. see [1], Section 2).
1.1. Weight 2 Eisenstein series for $\Gamma_{0}(p)$. The modular curve $X_{0}(p)$ has two cusps, represented by 0 and ∞. We denote by $\Gamma_{\infty}\left(\right.$ resp. $\left.\Gamma_{0}\right)$ the stabilizer of ∞ (resp. 0). The associated weight 2 Eisenstein series are given by

$$
\begin{aligned}
E_{\infty}(z) & =\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(p)} j_{\gamma}(z)^{-2}\left|j_{\gamma}(z)\right|^{-2 \varepsilon} \\
E_{0}(z) & =\frac{1}{2} \lim _{\varepsilon \rightarrow 0^{+}} \sum_{\gamma \in \Gamma_{0} \backslash \Gamma_{0}(p)} j_{\sigma_{0}^{-1} \gamma}(z)^{-2}\left|j_{\sigma_{0}^{-1} \gamma}(z)\right|^{-2 \varepsilon}
\end{aligned}
$$

where $\sigma_{0}=\left(\begin{array}{cc}0 & -1 / \sqrt{p} \\ \sqrt{p} & 0\end{array}\right)$ and $j_{\eta}(z)=c z+f$ for $\eta=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
The functions E_{∞} and E_{0} are weight 2 modular forms for $\Gamma_{0}(p)$ and they are Hecke eigenforms. The Fourier expansions at $i \infty$ are ([5], Theorem 7.2.12, p. 288)

$$
\begin{aligned}
E_{\infty}(z) & =1-\frac{3}{\pi y(p+1)}+\frac{24}{p^{2}-1} \sum_{n=1}^{\infty} b_{n} q^{n} \\
E_{0}(z) & =-\frac{3}{\pi y(p+1)}-\frac{24 p}{p^{2}-1} \sum_{n=1}^{\infty} a_{n} q^{n}
\end{aligned}
$$

with the sequences a_{n} and b_{n} given by:

- if $p \nmid n$, then $a_{n}=b_{n}=\sigma_{1}(n)$
- if $k \geq 1$, then $b_{p^{k}}=p+1-p^{k+1}$ and $a_{p^{k}}=p^{k}$
- if $p \nmid m$ and $k \geq 1$, then $b_{p^{k} m}=-b_{p^{k}} b_{m}$ and $a_{p^{k} m}=a_{p^{k}} a_{m}$.

By taking an appropriate linear combination, we obtain a non cuspidal, holomorphic at $i \infty$ modular form

$$
\begin{aligned}
f_{0}(z) & :=E_{\infty}(z)-E_{0}(z) \\
& =1+\frac{24}{p^{2}-1} \sum_{n=1}^{\infty}\left(p a_{n}+b_{n}\right) q^{n} .
\end{aligned}
$$

Since we have that

$$
\begin{aligned}
\left.E_{\infty}\right|_{\sigma_{0}}(z) & =E_{0}(z) \\
\left.E_{0}\right|_{\sigma_{0}}(z) & =E_{\infty}(z),
\end{aligned}
$$

this shows that f is holomorphic at $\Gamma_{0}(p) 0$ aswell. Since

$$
\operatorname{dim}_{\mathbb{C}} M_{2}\left(\Gamma_{0}(p)\right)=1+\operatorname{dim}_{\mathbb{C}} S_{2}\left(\Gamma_{0}(p)\right)
$$

and since f is holomorphic, non zero and non cuspidal, we have the decomposition

$$
\begin{equation*}
M_{2}\left(\Gamma_{0}(p)\right)=S_{2}\left(\Gamma_{0}(p)\right) \oplus \mathbb{C} f_{0} \tag{1.6}
\end{equation*}
$$

1.2. Proof of Theorem 1.2. Recall that we write $m=p^{k} m_{p}$ with $p \nmid m_{p}$. We have that $B\left(p^{k}\right)$ is a permutation matrix of order dividing 2 and that $B(m)=B\left(p^{k}\right) B\left(m_{p}\right)$ ([4], Proposition 2.7). It follows that $\operatorname{deg}\left(T_{m}\right)=\operatorname{deg}\left(T_{m_{p}}\right)$ and that we can define, for each $i=1, \ldots, n$, an index $i(k) \in\{1, \ldots, n\}$ such that $B_{i, l}\left(p^{k}\right)=\delta_{i(k), l}$. Furthermore, $i(k)=i$ if k is even. We have that

$$
\begin{aligned}
\frac{B_{i, j}(m)}{\operatorname{deg} T_{m}} & =\sum_{l=1}^{n} \frac{B_{i, l}\left(p^{k}\right) B_{l, j}\left(m_{p}\right)}{\operatorname{deg} T_{m_{p}}} \\
& =\frac{B_{i(k), j}\left(m_{p}\right)}{\operatorname{deg} T_{m_{p}}}
\end{aligned}
$$

Hence, to prove Theorem 1.2 we may assume $p \nmid m$, which is what we will do in what follows.

Our method is based on the interpretation of the multiplicities $B_{i, j}(m)$ as Fourier coefficients of a modular form.

Theorem 1.5. ([4], Proposition 2.3 and [3], Chapter II, Theorem 1) For every $0 \leq i, j \leq$ n, there exists a weight 2 modular form $f_{i, j}$ for $\Gamma_{0}(p)$ such that its q-expansion at ∞ is

$$
f_{i, j}(z):=\frac{1}{2 w_{j}}+\sum_{m=1}^{\infty} B_{i, j}(m) q^{m}, \quad q=e^{2 \pi i z} .
$$

Using (1.6), we can decompose

$$
f_{i, j}=g+c f_{0}, \quad g \in S_{2}\left(\Gamma_{0}(p)\right), \quad c \in \mathbb{C} .
$$

Comparing the q-expansions, we get $c=\frac{1}{2 w_{j}}$. We have that

$$
g=f_{i, j}-c f_{0}=\sum_{m=1}^{\infty} c_{m} q^{m},
$$

where

$$
c_{m}=B_{i, j}(m)-\frac{12}{w_{j}\left(p^{2}-1\right)}\left(p a_{m}+b_{m}\right) .
$$

Since $p \nmid m$, we have that $\operatorname{deg}\left(T_{m}\right)=\sigma_{1}(m)$ and

$$
c_{m}=B_{i, j}(m)-\frac{12}{w_{j}(p-1)} \sigma_{1}(m) .
$$

Hence,

$$
\begin{aligned}
\left|\frac{B_{i, j}(m)}{\operatorname{deg} T_{m}}-\frac{12}{w_{j}(p-1)}\right| & =\frac{\left|c_{m}\right|}{\sigma_{1}(m)} \\
& \leq \frac{\left|c_{m}\right|}{m}
\end{aligned}
$$

Using Deligne's theorem ([2], théorème 8.2, previously Ramanujan's conjecture), we have that

$$
c_{m}=O_{\varepsilon}\left(m^{1 / 2+\varepsilon}\right)
$$

concluding the proof.

References

[1] Laurent Clozel and Emmanuel Ullmo. Équidistribution des points de Hecke. In Contributions to automorphic forms, geometry, and number theory, pages 193-254. Johns Hopkins Univ. Press, Baltimore, MD, 2004.
[2] Pierre Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273-307, 1974.
[3] M. Eichler. The basis problem for modular forms and the traces of the Hecke operators. In Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 75-151. Lecture Notes in Math., Vol. 320. Springer, Berlin, 1973.
[4] Benedict H. Gross. Heights and the special values of L-series. In Number theory (Montreal, Que., 1985), volume 7 of CMS Conf. Proc., pages 115-187. Amer. Math. Soc., Providence, RI, 1987.
[5] Toshitsune Miyake. Modular forms. Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda.

Facultad de Matemáticas, PUC, Vicuña Mackenna 4860, Santiago, Chile
E-mail address: rmenares@mat.puc.cl

