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Abstract. For a fixed prime p, we consider the (finite) set of supersingular elliptic
curves over Fp. Hecke operators act on this set. We compute the asymptotic frequence
with which a given supersingular elliptic curve visits another under this action.

1. Introduction

Let p be a prime number. We denote by E = {E1, . . . , En} the set of isomorphism
classes of supersingular elliptic curves over Fp. We denote by S := ⊕ni=1ZEi the supersin-
gular module in characteristic p (i.e. S is the free abelian group spanned by the elements
of E). Hecke operators act on S by

T1 := id, Tm(Ei) =
∑
C

Ei/C, m ≥ 2,

where C runs through the subgroup schemes of Ei of rank m. This definition is extended
by linearity to S and to SR := S ⊗ R. For an integer m ≥ 1 we put

Bi,j(m) = |{C ⊂ Ei, |C| = m et Ei/C ∼= Ej}|.

We have that TmEi =
∑n

j=1Bi,j(m)Ej. The the matrix
(
Bi,j(m)

)n
i,j=1

is known as the

Brandt matrix of order m.
For a given D =

∑n
i=1 aiEi ∈ SR, we put degD =

∑n
i=1 ai. We have that ([4],

Propositon 2.7)

deg TmEi =
∑
d|m
p-d

d =: σp(m),

leading to define deg Tm := σp(m).
Let M be the set of probability measures on E. For every i = 1, . . . , n, we denote by

δEi
∈M the Dirac measure supported on Ei. Let

S+ :=
{ n∑

i=1

aiEi ∈ SR such that ai ≥ 0
}
− {0}.

For any D =
∑n

i=1 aiEi ∈ S+, we put

ΘD :=
1

degD

n∑
i=1

aiδEi
.

We have that ΘD is a probability measure on E and every element of M has this form.
Hence, there is a natural action of the Hecke operators on M , given by TmΘD := ΘTmD.

Each Ei has a finite number of automorphisms. We define

wi := |Aut(Ei)/{±1}|, W :=
n∑
i=1

1

wi
.

1



The element e :=
∑n

i=1
1
wi
Ei ∈ S ⊗Q is Eisenstein ([4], p. 139), i.e.

(1.1) Tm(e) = deg Tme.

We denote by Θ := Θe. Equation (1.1) implies that TmΘ = Θ for all m ≥ 1.
Let C(E) ∼= Cn be the space of complex valued functions on E. For f ∈ C(E), we

denote by ‖f‖ = maxi |f(Ei)| and ΘD(f) = (degD)−1
∑
aif(Ei). For a positive integer

m, we write m = pkmp with p - mp. We obtain the following result:

Theorem 1.1. For all i = 1, . . . , n, the sequence of measures {ΘTmEi
}, where m runs

through a set of positive integers such that mp is unbounded, is equidistributed with respect
to Θ. More precisely, for all ε > 0, there exists Cε > 0 such that for every sequence of
integers m such that mp →∞, we have that

|ΘTmEi
(f)−Θ(f)| ≤ Cε‖f‖nm−

1
2

+ε.

We study the asymtotic frequence of the multiplicity of Ej inside TmEi. That is, the
behavoir of the ratio Bi,j(m)/ deg(Tm) when m varies. We will prove Theorem 1.1 in the
equivalent formulation:

Theorem 1.2. For all ε > 0, there exists Cε > 0 such that for every sequence of integers
m such that mp →∞, we have that

(1.2)
∣∣∣Bi,j(m)

deg Tm
− 12

wj(p− 1)

∣∣∣ ≤ Cεm
− 1

2
+ε.

In particular,

(1.3) lim
mp→∞

Bi,j(m)

deg Tm
=

12

wj(p− 1)
.

The proof of this assertion is found in section 1.2.

Remark 1.3. The equality
∑n

j=1
Bi,j(m)

deg Tm
= 1, combined with equation (1.3) implies the

mass formula of Deuring and Eichler:

W =
n∑
j=1

1

wj
=
p− 1

12
.

Theorem 1.1 can be deduced from Theorem 1.2 as follows: remark 1.3 implies that
Θ =

∑n
j=1

12
wj(p−1)

δEj
. Take f ∈ C0(E). We have that

|ΘTmEi
(f)−Θ(f)| ≤ ‖f‖

n∑
j=1

∣∣∣Bi,j(m)

deg Tm
− 12

wj(p− 1)

∣∣∣.
Hence, inequality (1.2) implies Theorem 1.1.
Let h : E → E be a function. Then h defines an endomorphism of S and of SR by the

rule

h
(∑

aiEi
)

:=
∑

aih(Ei).

We will also consider the action induced on M by h∗ΘD := Θh(D).

Corollary 1.4. Let q 6= p be a prime number. Let h : E → E be a function such that
h ◦ Tq = Tq ◦ h. Then h∗Θ = Θ. In other words, h can be identified with a permutation
τ ∈ Sn by h(Ei) = Eτ(i) and we have that wi = wτ(i) for all i = 1, . . . , n.
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Proof : since Tqk is a polynomial in Tq, we also have that h◦Tqk = Tqk ◦h. Let f ∈ C(E).
We have that

h∗Θ(f) = lim
k→∞

h∗ΘT
qk
E1(f)(1.4)

= lim
k→∞

Θh◦T
qk
E1(f)

= lim
k→∞

Θ
T
qk

(
h(E1)

)(f)

= Θ(f),(1.5)

where we have used Theorem 1.1 in (1.4) and (1.5) �

The statement Theorem 1.1, using the Hecke invariant measure Θ, has been included to
emphasize the analogy with the fact that Hecke orbits are equidistributed on the modular
curve SL2(Z)\H with respect to the hyperbolic measure, which is Hecke invariant (e.g.
see [1], Section 2).

1.1. Weight 2 Eisenstein series for Γ0(p). The modular curve X0(p) has two cusps,
represented by 0 and ∞. We denote by Γ∞ (resp. Γ0) the stabilizer of ∞ (resp. 0). The
associated weight 2 Eisenstein series are given by

E∞(z) =
1

2
lim
ε→0+

∑
γ∈Γ∞\Γ0(p)

jγ(z)−2|jγ(z)|−2ε

E0(z) =
1

2
lim
ε→0+

∑
γ∈Γ0\Γ0(p)

jσ−1
0 γ(z)−2|jσ−1

0 γ(z)|−2ε,

where σ0 =

(
0 −1/

√
p√

p 0

)
and jη(z) = cz + f for η =

(
a b
c d

)
.

The functions E∞ and E0 are weight 2 modular forms for Γ0(p) and they are Hecke
eigenforms. The Fourier expansions at i∞ are ([5], Theorem 7.2.12, p. 288)

E∞(z) = 1− 3

πy(p+ 1)
+

24

p2 − 1

∞∑
n=1

bnq
n

E0(z) = − 3

πy(p+ 1)
− 24p

p2 − 1

∞∑
n=1

anq
n,

with the sequences an and bn given by:

• if p - n, then an = bn = σ1(n)

• if k ≥ 1, then bpk = p+ 1− pk+1 and apk = pk

• if p - m and k ≥ 1, then bpkm = −bpkbm and apkm = apkam.

By taking an appropriate linear combination, we obtain a non cuspidal, holomorphic
at i∞ modular form

f0(z) := E∞(z)− E0(z)

= 1 +
24

p2 − 1

∞∑
n=1

(pan + bn)qn.
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Since we have that

E∞|σ0(z) = E0(z)

E0|σ0(z) = E∞(z),

this shows that f is holomorphic at Γ0(p)0 aswell. Since

dimCM2(Γ0(p)) = 1 + dimC S2

(
Γ0(p)

)
and since f is holomorphic, non zero and non cuspidal, we have the decomposition

(1.6) M2(Γ0(p)) = S2(Γ0(p))⊕ Cf0.

1.2. Proof of Theorem 1.2. Recall that we write m = pkmp with p - mp. We have that
B(pk) is a permutation matrix of order dividing 2 and that B(m) = B(pk)B(mp) ([4],
Proposition 2.7). It follows that deg(Tm) = deg(Tmp) and that we can define, for each
i = 1, . . . , n, an index i(k) ∈ {1, . . . , n} such that Bi,l(p

k) = δi(k),l. Furthermore, i(k) = i
if k is even. We have that

Bi,j(m)

deg Tm
=

n∑
l=1

Bi,l(p
k)Bl,j(mp)

deg Tmp

=
Bi(k),j(mp)

deg Tmp

.

Hence, to prove Theorem 1.2 we may assume p - m, which is what we will do in what
follows.

Our method is based on the interpretation of the multiplicities Bi,j(m) as Fourier
coefficients of a modular form.

Theorem 1.5. ([4], Proposition 2.3 and [3], Chapter II, Theorem 1) For every 0 ≤ i, j ≤
n, there exists a weight 2 modular form fi,j for Γ0(p) such that its q-expansion at ∞ is

fi,j(z) :=
1

2wj
+
∞∑
m=1

Bi,j(m)qm, q = e2πiz.

Using (1.6), we can decompose

fi,j = g + cf0, g ∈ S2(Γ0(p)), c ∈ C.
Comparing the q-expansions, we get c = 1

2wj
. We have that

g = fi,j − cf0 =
∞∑
m=1

cmq
m,

where

cm = Bi,j(m)− 12

wj(p2 − 1)
(pam + bm).

Since p - m, we have that deg(Tm) = σ1(m) and

cm = Bi,j(m)− 12

wj(p− 1)
σ1(m).
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Hence,

∣∣∣Bi,j(m)

deg Tm
− 12

wj(p− 1)

∣∣∣ =
|cm|
σ1(m)

≤ |cm|
m

.

Using Deligne’s theorem ([2], théorème 8.2, previously Ramanujan’s conjecture), we
have that

cm = Oε(m
1/2+ε),

concluding the proof. �
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