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Abstract. This paper is devoted to extend the thermodynamic formalism

theory to almost-additive sequences of continuos functions defined over topo-
logically mixing, non compact, countable Markov shifts. Difficulties are two

fold, on the one hand we have to deal with the lack of compactness of the phase

space and on the other with the non-additivity of the sequence potentials. In
this context, based on the work of Sarig and also on the work of Barreira,

we introduce a definition of pressure. We prove that it satisfies the varia-

tional principle and hence it is good definition. Under certain combinatorial
assumptions on the shift space (that of being BIP) we prove the existence and

uniqueness of Gibbs measures. Applications are given, among others, to the

study of maximal Lypaunov exponents of product of matrices and to obtain a
formula for the Hausdorff dimension of certain geometrical constructions.

1. Introduction

This paper has two different starting points. On the one hand, we have the ther-
modynamic formalism developed for sub-additive and almost-additive sequences of
continuous functions. The idea of this theory is to generalise classical results on
thermodynamic formalism replacing the pressure of a continuous function with the
pressure of a sequence of continuous functions. It was Falconer [F1] who introduced
this set of ideas with the purpose of studying dimension theory of non-conformal
systems. Recall that the relation between thermodynamic formalism and dimen-
sion theory has been extensively and successfully exploited ever since the pioneering
work of Bowen [Bo2] (see the books [B4, F2, P, PrU] for recent developments of the
theory). If an expanding dynamical system, T : M → M , is conformal then it is
possible to describe in great detail the Hausdorff dimension of dynamically defined
subsets of the phase space. For instance, making use of the classic thermodynamic
formalism, it is possible to study the size (e.g. Hausdorff dimension) of level sets
determined by pointwise dimension of Gibbs measures or by Lyapunov exponents
(see [B4, Chapter II and III]). The situation is far less developed if no conformal
assumption is made on the system. There are several reasons for this, one of them
being that, in the conformal setting, dynamically defined balls are almost balls and
they form an optimal cover. However, in the non-conformal setting dynamically
defined balls are, at best, ellipses. Therefore, it is likely that the dynamical cover
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is not optimal. This is clearly related to the fact that the natural function used to
estimate the dimension, namely the Jacobian, in the conformal setting satisfies

‖DTm+n(x)‖ = ‖DTm(Tnx)‖‖DTn(x)‖,

where Tn denotes the n−th iterate of the map T and ‖ · ‖ is the operator norm.
Whereas, if the map is not conformal we only have

‖DTm+n(x)‖ ≤ ‖DTm(Tnx)‖‖DTn(x)‖.

Therefore, the sequence defined by φn(x) = log ‖DTn(x)‖ is sub-additive (not ad-
ditive) and a new thermodynamic formalism is required to deal with this situation.
This was the main motivation of Falconer [F1]. This problem has attracted a great
deal of attention over the last two decades and recently interesting developments
have been obtained. We would like to single out the work of Barreira [B1, B2, B3]
among many other substantial contributions to the theory. We will build up on his
work. Our attention will be focused on a particular class of sub-additive sequences,
namely, almost-additive sequences (see Definition 2.1). This condition is satisfied
for example if F = {φn}n denotes the n-fold product of positive matrices and the
associated dynamical system is a (compact) sub-shift of finite type defined over
a finite alphabet (see [Fe1]). Under other cone type conditions this sequence is
almost-additive also in non-compact settings (see Section 7 for precise statements).
This remark immediately leads the way for applications in the dimension theory of
non-conformal dynamical systems. It should be pointed out that even in the com-
pact setting several results we present here are not valid under weaker additivity
assumptions.

Our second starting point is the ergodic theory for countable Markov shifts.
Uniformly hyperbolic dynamical systems have finite Markov partitions, see [Bo3,
Chapter 3] and references therein for the case of discrete time dynamical systems.
That type of coding allows for the proof of a great deal of fundamental results in
ergodic theory. When systems are uniformly hyperbolic in most of the phase space
but not in all of it, sometimes it is still possible to construct Markov partitions,
although this time over countable alphabets. Probably, the best known example
of such a situation being the Manneville-Pomeau map [PM, S2], which is an ex-
panding interval map with a parabolic fixed point. Dynamical systems that can be
coded using countable Markov partitions also occur in the study of one-dimensional
real and complex multimodal maps. Indeed, a successful technique used to study
the ergodic theory of these maps and overcome the lack of hyperbolicity due to
the existence of critical points is the so called inducing procedure (see for example
[BT, IT1, PS, PrR]). Given a multimodal map it is possible to associate an in-
duced map (which is a generalisation of the first return time map) which possesses
a countable Markov partition. The idea is to translate problems to this new system,
solve them and then push the results back. The case of Cr diffeomorphisms defined
over compact orientable smooth surface was recently studied by Sarig [S5]. He con-
structed countable Markov partitions for large invariant sets. While all the above
examples are important, the most natural ones arise in number theory. Indeed,
the Gauss map and the map associated to the Jacobi-Perron algorithm are both
Markov over countable partitions (see [Ma1, Ma2, PW]). The thermodynamic for-
malism for countable Markov shifts has been developed by Mauldin and Urbański
[MU1, MU2] and by Sarig [S1, S2, S3, S4] (see also [FFY, GS]). The main diffi-
culty is that the phase space is no longer compact, therefore fixed point theorems
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used in the compact setting can not be applied here and new techniques have to be
developed.

The aim of this paper is to bring these two theories together. We develop a
thermodynamic formalism for almost-additive sequences of potentials defined over
topologically mixing countable Markov shifts. In doing so, we construct a set of
tools that can be used to tackle a wide range of problems for which, at present
time, no machinery is available. Generalising the work of Barreira [B1, B2, B3], of
Mauldin and Urbański [MU1, MU2] and that of Sarig [S1, S2, S3, S4], we define a
notion of pressure for almost-additive sequences of functions defined over a (non-
compact) countable Markov shift (see Section 2). We prove that this pressure
satisfies the variational principle (see Theorem 3.1). This is an important result
that relates objects of a topological nature (the pressure) with measure theoretic
ones. The problem of the existence of Gibbs measures is also addressed, in Section
4. Under a combinatorial assumption on the shift (that of being BIP) we prove the
existence of Gibbs measures (see Theorem 4.1). We stress that our definition and
the variational principle hold for any topologically mixing countable Markov shift.

As an application of our results, we study the Maximal Lyapunov exponents of
product of matrices (see Section 7). We consider a countable collection of d × d
matrices, {A1, A2, . . . }, and a topologically mixing countable Markov shift (Σ, σ).
If w = (i0, i1, . . . ) ∈ Σ define a sequence of functions by

φn(w) = log ‖Ain−1 · · ·Ai1Ai0‖.

The thermodynamic formalism for such class of sub-additive sequence has been
extensively studied over the last years. Feng, in a series of articles [Fe1, Fe2, Fe3],
has described in great detail the ergodic properties in the case in which (Σ, σ) is a
topologically mixing sub-shift over a finite alphabet. We extend some of his results
to this non-compact setting under a combinatorial assumption on the shift and an
almost-additivity assumption on the sequence.

Another application we obtain is a formula relating the pressure for almost-
additive sequences and the Hausdorff dimension of certain geometric constructions
(see Section 8). We actually generalise results obtained by Barreira [B1].

Finally, a couple of examples are discussed. We obtain an explicit formula for
the pressure of an almost-additive sequence of locally constant functions in the case
of the full-shift (Section 5). We also discuss the thermodynamic formalism of an
almost-additive sequence of continuous functions that naturally arises in the study
of factor maps (see Section 6).

2. Definition of (almost-additive) Gurevich pressure

Let (Σ, σ) be a one-sided Markov shift over a countable alphabet S. This means
that there exists a matrix (tij)S×S of zeros and ones (with no row and no column
made entirely of zeros) such that

Σ =
{
x ∈ SN0 : txixi+1 = 1 for every i ∈ N0

}
.

The shift map σ : Σ → Σ is defined by σ(x) = x′, for x = (xn)∞n=0, x
′ =

(x′n)∞n=0, x
′
n = xn+1 for all n ∈ N0. Sometimes we simply say that (Σ, σ) is a

countable Markov shift. For an admissible word i0 . . . in−1 of length n in Σ, we
define a cylinder set Ci0...in−1 of length n by

Ci0···in−1 = {x ∈ Σ : xj = ij for 0 ≤ j ≤ n− 1} .
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We equip Σ with the topology generated by the cylinders sets. We denote byM the
set of σ-invariant Borel probability measures on Σ. We will always assume (Σ, σ)
to be topologically mixing, that is, for every a, b ∈ S there exists Nab ∈ N such that
for every n > Nab we have Ca ∩ σ−nCb 6= ∅.

Definition 2.1. Let (Σ, σ) be a one-sided countable state Markov shift. For each
n ∈ N, let fn : Σ→ R+ be a continuous function. A sequence F = {log fn}∞n=1 on
Σ is called sub-additive if for every n,m ∈ N, x ∈ Σ, we have

(1) 0 < fn+m(x) ≤ fn(x)fm(σnx).

Recall that if F is a sub-additive sequence, then by Kingman’s sub-additive
ergodic theorem [Ki], there exists a measurable function f with the following prop-
erty: Let µ ∈ M. If log fn : Σ → R ∪ {−∞} for all n ∈ N and (log f1)+ ∈ L1(µ),
then for µ-almost every x ∈ Σ,

lim
n→∞

1
n

log fn(x) = f(x) and lim
n→∞

1
n

∫
log fn(x) dµ =

∫
f(x) dµ.

Definition 2.2. Let (Σ, σ) be a one-sided countable state Markov shift. For each
n ∈ N, let fn : Σ → R+ be a continuous function. A sequence F = {log fn}∞n=1

on Σ is called almost-additive if there exists a constant C ≥ 0 such that for every
n,m ∈ N, x ∈ Σ, we have

(2) fn(x)fm(σnx)e−C ≤ fn+m(x),

and

(3) fn+m(x) ≤ fn(x)fm(σnx)eC .

In most parts of this paper, we will assume the sequence F to be almost-additive.
It should be pointed out that even in the compact setting several results we present
here are not valid under weaker assumptions.

One of the important ingredients in thermodynamic formalism is the regularity
assumptions on the (sequence of) continuous functions. Several results depend
upon this hypothesis. In the rest of paper, we will always assume the following
regularity conditions.

Definition 2.3. Let (Σ, σ) be a one-sided countable Markov shift. For each n ∈ N,
let fn : Σ → R+ be continuous. A sequence F = {log fn}∞n=1 on Σ is called a
Bowen sequence if there exists M ∈ R+ such that

(4) sup{An : n ∈ N} ≤M,

where

An = sup
{
fn(x)
fn(y)

: x, y ∈ Σ, xi = yi for 0 ≤ i ≤ n− 1
}
.

The definition above is related to a regularity assumption introduced by Bowen
when studying classic thermodynamic formalism. Indeed, for f ∈ C(Σ), let Vn(f) :=
sup{|f(x) − f(x′)| : x, x′ ∈ Σ, xi = x′i, 0 ≤ i ≤ n − 1} and σnf :=

∑n−1
i=0 f ◦ σi.

The Bowen class is defined by {f ∈ C(Σ) : supn∈N Vn(σnf) <∞} (see [Bo1, W4]).
Most of the thermodynamic formalism for continuous functions is well developed
when the function belongs to the Bowen class. We can think of a Bowen sequence
as the natural generalisation of a function belonging to the Bowen class.

We also remark that our definition of Bowen sequence restricted to a compact set
is equivalent to the definition of sequences of bounded variation given by Barreira
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in [B2] (see also [M] for similar conditions). It is plausible that results presented
in Sections 2 and 3 can be extended to a larger class of sequences of continuous
functions satisfying a tempered condition of the type limn→∞An/n = 0 (see [B2]
for more about this condition).

The aim of this section is to provide a good definition of pressure for almost-
additive sequences of continuous functions defined over a countable Markov shift.
There exist several definitions of pressure for sub-additive (and hence for almost-
additive) sequences defined over compact spaces. Indeed, Falconer [F1] gave a
definition that behaves well for sub-shifts of finite type defined over finite alphabets.
Cao, Feng and Huang [CFH] gave one based on (n, ε)−sets and Barreira [B1, B2]
studied a definition using the theory of dimension-like characteristics developed by
Pesin [P]. Mummert also gave a definition in the same spirit [M]. We stress that
our situation completely differs from the above since our phase space is no longer
compact. It is important that our definition does not depend upon the metric
(as in the case of Cao et al [CFH]), so that it satisfies a variational principle (for
a discussion of this issue see Section 3). Also note that we cannot continuously
extend F to any compactification of the space Σ (which is what is needed if we
want to extend the definitions of Barreira [B1, B2] or Mummert [M]) because the
sequence F is not assumed to be bounded. Finally, note that if we extend the
definition given by Falconer [F1] to the countable Markov shift setting, then only
a narrow class of shifts would satisfy the variational principle (see [Gu1, Gu2]).

For countable Markov shifts, the thermodynamic formalism has been developed
by Mauldin and Urbański [MU1, MU2] for a certain class of Markov shifts with
combinatorics close to that of the full-shift and in full generality by Sarig [S1, S2,
S3, S4]. The definition we propose is both a generalisation of the Gurevich pressure
for Markov shifts over a countable alphabet introduced by Sarig in [S1] and the
pressure for almost-additive sequences on compact spaces introduced independently
by Barreira in [B2] and by Mummert [M].

Definition 2.4. Let (Σ, σ) be a topologically mixing countable state Markov shift.
For a ∈ S and an almost-additive Bowen sequence F = {log fn}∞n=1 on Σ, we define
the partition function by

(5) Zn(F , a) =
∑
σnx=x

fn(x)χCa
(x),

where χCa(x) is the characteristic function of the cylinder Ca.

Definition 2.5. Let (Σ, σ) be a topologically mixing countable state Markov shift.
The Gurevich pressure of an almost-additive sequence F on Σ is defined by

(6) P (F) = lim
n→∞

1
n

logZn(F , a).

The limit in equation (6) exists and does not depend on the choice of a ∈ S.
Indeed, see Theorem 2.1 for details.

Remark 2.1. If f : Σ→ R is a continuous function of summable variations, define
the additive sequence F = {log fn}∞n=1 where fn(x) = ef(x)+f(σx)+···+f(σn−1x) for
every n ∈ N, x ∈ Σ. Then the (almost-additive) Gurevich pressure of F coincides
with the Gurevich pressure of f defined by Sarig in [S1]. Also, if the Markov shift
(Σ, σ) is defined over a finite alphabet, then the (almost-additive) Gurevich pressure
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coincides with the almost-additive pressure introduced by Barreira in [B2](compare
also with Mummert’s definition in [M]).

The rest of this section is devoted to prove that the Gurevich pressure is actually
well defined (see Theorem 2.1). Throughout the rest of this section, we assume that
S is a countable alphabet and (Σ, σ) is a topologically mixing countable Markov
shift. For a Bowen sequence F = {log fn}∞n=1 on Σ, we let M and An, n ∈ N be
defined as in Definition 2.3. Our main goal in this section is to prove the following
theorem.

Theorem 2.1. Let F = {log fn}∞n=1 be an almost-additive Bowen sequence on Σ.
Then for a ∈ S,

(1) The limit

lim
n→∞

1
n

logZn(F , a)

exists and it is not minus infinity.
(2) If ‖Lf11‖∞ <∞, then

lim
n→∞

1
n

logZn(F , a) 6=∞.

(3) The limit

lim
n→∞

1
n

logZn(F , a)

is independent of the symbol a ∈ S.

To prove Theorem 2.1 we need the following Lemmas.

Lemma 2.1. Let F = {log fn}∞n=1 be a Bowen sequence on Σ that satisfies equation
(2). Then there exists a constant k ∈ R such that for every a ∈ S, n,m ∈ N, we
have

Zn(F , a)Zm(F , a) ≤ Zn+m(F , a)ek.

Proof. For a ∈ S, let x ∈ Σ ∩ Ca be a periodic point of period n, that is σnx = x.
Then we can write x = (x0, x1, . . . , xn−1, x0, x1, . . . ), where x0 = a. Let A denote
the admissible word x0 . . . xn−1. Consider now x̃ ∈ Σ∩Ca, a periodic point of period
m. Again, we can write x̃ = (x̃0, x̃1, . . . , x̃m−1, x̃0, x̃1 . . . ), where x̃0 = a. Let B
denote the admissible word x̃0 . . . x̃m−1. Let us consider now the point x′ ∈ Σ∩Ca
obtained by concatenating the admissible words A and B, that is

x′ = ABABABABABAB · · · := (AB)∞.

Clearly σn+mx′ = x′. Since F satisfies equation (2), we obtain

e−Cfn(x′)fm(σnx′) ≤ fn+m(x′),

which implies that

e−Cfn(x′)fm(σnx′)fn(x)fm(x̃) ≤ fn+m(x′)fn(x)fm(x̃).

Hence

fn(x)fm(x̃) ≤ eCfn+m(x′)
fn(x)fm(x̃)

fn(x′)fm(σnx′)
.

Since for every 0 ≤ i ≤ m− 1 we have (σnx′)i = x̃i, we obtain

fn(x)fm(x̃) ≤ eCfn+m(x′)AnAm ≤ eCM2fn+m(x′).

The result now follows setting ek = eCM2. �
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Let F = {log fn}∞n=1 be a sequence of continuous functions on Σ and let m ∈ N.
For w : Σ→ R a continuous function, we define

(LmFw) (x) :=
∑

σmz=x

fm(z)w(z) for x ∈ Σ.

Let Y ⊂ Σ be a topologically mixing finite state Markov shift. Then for a sequence
F|Y := {log fn|Y }∞n=1, we have(

LmF|Y w
)

(y) =
∑

σmz=y

fm(z)w(z)χY (z) for y ∈ Y.

Lemma 2.2. Let F = {log fn}∞n=1 be a Bowen sequence on Σ. Let Y ⊂ Σ be a
topologically mixing finite state Markov shift such that Y ∩ Ca 6= ∅, a ∈ S. Define

Zn(Y,F , a) =
∑
σnx=x

fn(x)χCa∩Y (x).

Then for each a ∈ S, x ∈ Ca ∩ Y, n ∈ N,
1
M
LnF|Y (χCa

) (x) ≤ Zn(Y,F , a) ≤MLnF|Y (χCa
) (x).

Proof. For a ∈ S, let x ∈ Ca ∩ Y and write x = ax̃. Then

LnF|Y (χCa) (ax̃) =
∑

σnz=ax̃

fn|Y (z)χCa∩Y (z) =
∑

z∈Y,z=az1z2...zn−1ax̃

fn|Y (z).

Let x ∈ Ca ∩ Y be such that σnx = x. Then we can write the point x =
(a, x1, . . . , xn−1, a, x1, . . . , xn−1, . . . ). Now set az1z2 . . . zn−1 = ax1 . . . xn−1. In
this way, we have ax1 . . . xn−1ax̃ ∈ Ca ∩ Y . Since F is in the Bowen class,

fn(x)
fn|Y (ax1 . . . xn−1ax̃)

≤M.

Therefore,
Zn(Y,F , a) ≤MLnF|Y (χCa) (x).

In order to prove the other inequality, for ay1 . . . yn−1ax̃ ∈ Y , we define the point
x′ = (a, y1, . . . , yn−1, a, y1 . . . , yn−1, a, . . . ) of period n. In this way, x′ ∈ Ca ∩ Y
and σnx′ = x. Therefore,

fn|Y (ay1 . . . yn−1ax̃)
fn(x′)

≤M.

Hence
1
M
LnF|Y (χCa

) (x) ≤ Zn(Y,F , a).

�

Lemma 2.3. Let F = {log fn}∞n=1 be a Bowen sequence on Σ that satisfies equation
(2) and let Y ⊂ Σ be a topologically mixing finite state Markov shift. Then there
exists β > 0 such that for each a ∈ S, x ∈ Ca ∩ Y, n ∈ N,(

LnF|Y χCa

)
(x) ≥ βne−(n−1)C .

Moreover,

Zn(Y,F , a) ≥ 1
M
βne−(n−1)C ,

and so
Zn(F , a) ≥ 1

M
βne−(n−1)C ,
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where C is defined as in equation ( 2).

Proof. For x ∈ Y ∩ Ca, we have that(
LnF|Y χCa

)
(x) =

∑
σnz=x

fn|Y (z)χCa∩Y (z) =
∑

z∈Y,z=az1...zn−1x

fn|Y (z).

If x = ax̃, we have(
LnF|Y χCa

)
(ax̃) =

∑
z∈Y,z=az1z2...zn−1ax̃

fn|Y (z) ≥ min
z∈Y

fn|Y (z).

By virtue of equation (2) we see that for every x ∈ Σ,

fn(x) ≥ e−Cfn−1(σx)f1(x) ≥ e−2Cfn−2(σ2x)f1(σx)f1(x)
≥ . . .

≥ e−(n−1)Cf1(σn−1x)f1(σn−2x) . . . f1(σx)f1(x).

Since the space Y is compact and invariant, we set β = minz∈Y f1|Y (z). Then, for
every y ∈ Y we have

fn(y) ≥ e−(n−1)Cβn.

From the above equation, we can conclude that(
LnF|Y χCa

)
(x) ≥ βne−(n−1)C .

The above result together with Lemma 2.2 implies that

Zn(Y,F , a) ≥ 1
M
βne−(n−1)C ,

and so

Zn(F , a) ≥ 1
M
βne−(n−1)C .

�

Given f : Σ → R a continuous function, the transfer operator Lf applied to
function g : Σ→ R is formally defined by

(7) (Lfg) (x) :=
∑
σz=x

f(z)g(z) for every x ∈ Σ.

In the following lemma, we will make use of the supremum norm of a continuous
function. For a function g : Σ→ R, define ‖g‖∞ = sup{|g(x)| : x ∈ Σ}.

Lemma 2.4. Let F = {log fn}∞n=1 be a Bowen sequence on Σ that satisfies equation
(3). Then there exists M̃ > 0 such that for any a ∈ S, n ∈ N

Zn(F , a) ≤ M̃eC(n−1)‖Lf11‖n∞,

where C is defined as in equation (3).

Proof. Let a ∈ S. In order to prove this lemma, it suffices to show that there exists
M̃ > 0 such that for every x ∈ Σ,

Zn(F , a) ≤ M̃ (LnF1) (x) ≤ M̃
(
Lnf11

)
(x)eC(n−1) ≤ M̃eC(n−1)‖Lf11‖n∞.

We can show the first inequality using a similar argument as the one used in the
proof of Lemma 2.2 (replace Y by Σ).
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Now we show the second inequality. Note that if x = ax̃ ∈ Ca, we have that

(LnF1) (x) =
∑

σnz=ax̃

fn(z) =
∑

z∈Σ,z=z0z1...zn−1ax̃

fn(z).

From equation (3), we have

fn(z) ≤ eCf1(z)fn−1(σz) ≤ e2Cf1(z)f1(σz)fn−2(σ2z)(8)

≤ e(n−1)Cf1(z)f1(σz) . . . f1(σn−1z).(9)

On the other hand, the iterations of the transfer operator (see equation (7))

(10)
(
Lnf11

)
(x) =

∑
in...i1x∈Σ

f1(i1x)f1(i2i1x) . . . f1(in . . . i1x).

Therefore,

(LnF1) (ax̃) =
∑

σnz=ax̃

fn(z) ≤
∑

σnz=ax̃

f1(z) . . . f1(σn−1z)e(n−1)C (by (8))

=
∑

z∈Σ,z=z0z1...zn−1ax̃

f1(zn−1ax̃)f1(zn−2zn−1ax̃) . . . f1(z0 . . . zn−1ax̃)e(n−1)C

= e(n−1)CLnf11(ax̃) (by (10)) ,

which implies the second inequality. Finally, a direct computation shows that(
Lnf11

)
(x) ≤ ‖Lf11‖n∞ for every x ∈ Ca.

�

Proof of Theorem 2.1 ( 1) ( 2) The fact that the limit exists follows from Lemma
2.1. It follows from Lemmas 2.1 and 2.3 that the limit is not minus infinity. Theorem
2.1 (2) is a consequence of Lemma 2.4.

Proof of Theorem 2.1 ( 3) It is independent of the symbol a ∈ S because (Σ, σ)
is topologically mixing. Indeed, we will prove that given any two symbols a, b ∈ S
there exist constants C ′ > 0 and k(a, b) ∈ N such that

Zn(F , a) ≤ C ′Zn+2k(a,b)(F , b),

from which the result follows.
Let x = (a, x1, x2, . . . , xn−1, a, . . . ) ∈ Ca be a periodic point of period n, that is

σnx = x. Since Σ is topologically mixing, there exists Nba ∈ N such that for any
m ≥ Nba there exists an admissible word of length (m − 1) given by by1 . . . ym−2

such that by1 . . . ym−2a is an admissible word of length m. Similarly, there exists
Nab ∈ N such that for any m ≥ Nab there exists an admissible word of length
(m − 1) given by az1 . . . zm−2 such that az1 . . . zm−2b is an admissible word of
length m. Set k = max{Nba, Nab} and m = k+ 1. Now consider the periodic point
x̃ ∈ Σ satisfying σn+2kx̃ = x̃, where

x̃ = (b, y1, . . . , ym−2, a, x1, x2, . . . , xn−1, a, z1, . . . , zm−2, b, . . . ).

Note that

(11) fn(x) =
fn(x)

fn+2k(x̃)
fn+2k(x̃).



10 GODOFREDO IOMMI AND YUKI YAYAMA

Since F satisfies equation (2), we have that

fn(x)
fn(σkx̃)

≥ fn(x)fk(x̃)
fn+k(x̃)eC

≥ fn(x)fk(x̃)fk(σn+kx̃)
e2Cfn+2k(x̃)

≥
(

fn(x)
e2Cfn+2k(x̃)

)
1
M2

sup
{
fk(u) : u ∈ Cby1...yk−1

}
sup

{
fk(u) : u ∈ Caz1...zk−1

}
.

Recall that fk > 0. Therefore, there exist positive constants C1, C2 such that

C1 ≤ sup
{
fk(u) : u ∈ Cby1...yk−1

}
and C2 ≤ sup

{
fk(u) : u ∈ Caz1...zk−1

}
.

Hence
fn(x)

fn+2k(x̃)
≤ e2CM2

C1C2

fn(x)
fn(σkx̃)

.

Therefore, using inequality (11)

fn(x) ≤ e2CM3

C1C2
fn+2k(x̃).

Thus there exists a constant C ′ > 0 such that∑
σnx=x

fn(x)χCa
(x) ≤ C ′

∑
σn+2kx=x

fn+2k(x)χCb
(x).

.

Remark 2.2. Let us stress that Lemma 2.4 holds under the assumption that the
Bowen sequence F satisfies equation (3). On the other hand, Lemmas 2.1 and 2.3
hold when the Bowen sequence F satisfies equation (2).

3. The variational principle

One of the major results in the classical thermodynamic formalism is that the
topological pressure satisfies the variational principle [W1]. It states that if we
consider a dynamical system defined on a compact metric space and a continuous
function φ the following equality holds,

(12) P (φ) = sup
{
h(µ) +

∫
φ dµ : µ ∈M

}
.

In this context, the topological pressure is defined by means of (n, ε)−separated
sets (see [W2, Chapter 9]). This notion depends upon the metric. Two uniformly
equivalent metrics yield the same value of the pressure (see [W2, p.171] for precise
statement and proofs). Since in the compact setting two equivalent metrics are
uniformly equivalent, the value of the pressure does not depend upon the metric.
Recently, following the same approach, Cao, Feng and Huang [CFH] defined the
pressure and proved the variational principle for sub-additive sequences of continu-
ous functions defined on a compact metric space. Under some strong assumptions
Falconer [F1] also obtained a variational principle. This assumptions were notably
relaxed in the work of Barreira [B2] and Mummert [M].

In the non-compact setting, the definition of topological pressure obtained using
(n, ε)−separated sets has several problems. Most notably, equivalent metrics can
yield different values for the topological pressure. Let us stress that the right hand
side of the equality (12) only depends on the Borel structure of the space and not
on the metric. Therefore, a notion of pressure satisfying the variational principle
should not depend upon the metric of the space.
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The definition we proposed in the previous section does not depend on the metric.
We stress again that it is both a generalisation of the notion introduced by Sarig
[S1] and of a formula for the pressure of almost-additive sequences obtained by
Barreira [B2] and Mummert [M] (both of which satisfy a version of equality (12)).
The main result of this section is that the Gurevich pressure satisfies the variational
principle. We also prove that it is well approximated by its restriction to compact
invariant sets.

Recall that, when (Σ, σ) is a topologically mixing finite state Markov shift
and F is an almost-additive sequence on Σ satisfying the tempered condition
limn→∞(logAn)/n = 0 (where An is defined in Definition 2.3), Barreira [B2, The-
orem 2] proved that the pressure he defined satisfies the following formula:

P (F) = lim
n→∞

1
n

log

( ∑
σnx=x

fn(x)

)
.

Thus,

P (F) = lim
n→∞

1
n

log

( ∑
σnx=x

fn(x)

)
= lim
n→∞

1
n

log

( ∑
σnx=x

fn(x)χCa
(x)

)
.

We prove now that the almost-additive pressure defined over a countable Markov
shift can be approximated by the pressure on finite Markov shifts.

Proposition 3.1. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F = {log fn}∞n=1 be an almost-additive Bowen sequence on Σ. Then

P (F) = sup{P (F|Y ) : Y ⊂ Σ a topologically mixing finite state Markov shift}.

Proof. Let Y ⊂ Σ be a topologically mixing finite state Markov shift. Then clearly

P (F|Y ) = lim
n→∞

1
n

log

( ∑
σnx=x

fn(x)χ(Y ∩Ca)(x)

)

≤ lim
n→∞

1
n

log

( ∑
σnx=x

fn(x)χCa
(x)

)
= P (F).

Therefore

P (F) ≥ sup{P (F|Y ) : Y ⊂ Σ a topologically mixing finite state Markov shift}.
In order to prove the reverse inequality, we assume that P (F) <∞. The other case
can be proved in a similar way. The following proof is close to that of Theorem 2
[S1] and we identify a countable alphabet S with N. Since F is an almost-additive
Bowen sequence, let us assume that F satisfies equations (2), (3) and (4). We have

P (F) = lim
n→∞

1
n

logZn(F , a) = sup
n

1
n

logZn(F , a).

Hence given ε > 0, there exists m > C/ε (where C is defined as in Definition 2.1)
m ∈ N such that

P (F) <
1
m

logZm(F , a) + ε.

On the other hand, note that every periodic orbit belongs to a set of the form
Σ ∩ ΣM , where ΣM is the full-shift on M symbols. Therefore,

Zm(F , a) = lim
M→∞

Zm(ΣM ∩ Σ,F , a).
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Clearly the sequence in the limit is increasing in M . Hence, given ε > 0 there exists
M ∈ N such that

1
m

logZm(F , a) <
1
m

logZm(ΣM ∩ Σ,F , a) + ε.

Adding a finite number of states to {1, 2, . . . ,M}, it is possible to construct a
topologically mixing (finite state) Markov shift Y ⊂ Σ such that

1
m

logZm(F , a) <
1
m

logZm(Y,F , a) + ε.

Indeed, this follows since for every symbol i, j belonging to the set {1, 2, · · · ,M},
there exists {bij1 , b

ij
2 , . . . , b

ij
n(i,j)} ⊂ N such that the word ibij1 b

ij
2 . . . bijn(i,j)j is an

admissible word in Σ. Adding all the symbols bijm ∈ N obtained this way and taking
the closure on Σ, we obtain the required topologically mixing finite state Markov
shift Y .

Now set an = logZn(Y, F, a). Then, by equation (2), an + am ≤ an+m + C.
Letting n = km+ r, for r = 0, 1, . . . , k − 1, we obtain

kam + ar
km+ r

≤ akm+r + kC

km+ r
≤ an

n
+ ε.

Letting n→∞, we obtain
1
m

logZm(Y,F , a) ≤ P (F |Y ) + ε.

Therefore, we have
P (F) ≤ P (Y,F) + 3ε.

Hence

P (F) ≤ sup{P (F|Y ) : Y ⊂ Σ a topologically mixing finite state Markov shift }.
�

The following result is a consequence of Proposition 3.1.

Corollary 3.1. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F = {log fn}∞n=1 be an almost-additive Bowen sequence on Σ. Then

P (F) = sup{P (F|K) : K ⊂ Σ compact and σ−1(K) = K}.

Corollary 3.2. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F be an almost-additive Bowen sequence on Σ with ||Lf11||∞ < ∞. Then the
pressure function t 7→ P (tF) is convex.

Proof. The pressure function defined on a compact invariant set is convex. There-
fore, the result follows because the supremum of convex functions is a convex func-
tion. �

Our definition of pressure satisfies the variational principle.

Theorem 3.1. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F be an almost-additive Bowen sequence on Σ, with sup f1 <∞. Then

P (F) = sup
{
h(µ) + lim

n→∞

1
n

∫
log fn dµ : µ ∈M and lim

n→∞

1
n

∫
log fn dµ 6= −∞

}
= sup

{
h(µ) +

∫
lim
n→∞

1
n

log fn dµ : µ ∈M and
∫

lim
n→∞

1
n

log fn dµ 6= −∞
}
.
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Proof. If the pressure is infinite, P (F) =∞, the variational principle holds. Indeed,
by virtue of Proposition 3.1, there exists a sequence of topologically mixing finite
state Markov shifts {Yn}∞n=1, with Yn ⊂ Σ, for every n ∈ N, such that

∞ = P (F) = lim
n→∞

sup
{
h(µ) + lim

n→∞

1
n

∫
log fn dµ : µ ∈MYn

}
≤ sup

{
h(µ) + lim

n→∞

1
n

∫
log fn dµ : µ ∈M and lim

n→∞

1
n

∫
log fn dµ 6= −∞

}
.

In the rest of the proof we will assume P (F) <∞. Since F is almost-additive, we
assume that it satisfies equations (2) and (3). We first show the second equality in
Theorem 3.1 by proving for any µ ∈M,

lim
n→∞

1
n

∫
log fn dµ =

∫
lim
n→∞

1
n

log fn dµ.

To see this, set gn(x) = fn(x)eC . Then {log gn}∞n=1 satisfies the subadditivity
condition (equation (1) in Definition 2.1). Since sup f1 <∞, we have log gn : Σ→
R ∪ {−∞} for all n ∈ N and (log g1)+ ∈ L1(µ). Therefore, Kingman’s subadditive
ergodic theorem implies the result.

Now we will show the first equality. For a compact subset Y ⊂ Σ, denote by
MY the set of σ-invariant Borel probability measures on Y . Note that Barreira [B2]
proved the variational principle for the case when Σ is a finite state Markov shift.
Therefore, by virtue of Proposition 3.1, there exists a sequence of topologically
mixing finite state Markov shifts {Yn}∞n=1, with Yn ⊂ Σ, for every n ∈ N, such that

P (F) = lim
n→∞

P (F|Yn
) = lim

n→∞
sup

{
h(µ) + lim

n→∞

1
n

∫
log fn dµ : µ ∈MYn

}
≤ sup

{
h(µ) + lim

n→∞

1
n

∫
log fn dµ : µ ∈M and lim

n→∞

1
n

∫
log fn dµ 6= −∞

}
.

In order to prove the other inequality, we adapt the proof of [S1, Theorem 3]. We
need a version of [S1, Lemma 4] for sequences of functions. In the following proof, we
identify a countable alphabet S with N. For m ∈ N, set C≥m = {x ∈ Σ : x0 ≥ m}
and let αm = {C1, . . . , Cm−1, C≥m} (see Section 2 for the notation of cylinder sets).
Let µ ∈M. Then

lim
m→∞

(
hµ(σ, αm) + lim

n→∞

1
n

∫
log fn dµ

)
= h(µ) + lim

n→∞

1
n

∫
log fn dµ.
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Fix m ∈ N and set β = αm. Let βn0 =
∨n
i=0 σ

−i(β). For each ai ∈ β, let Ea0...an
:=

∩nk=0σ
−k(ak). For E ∈ βn0 define fn[E] = sup{fn(x) : x ∈ E}. We have that

1
n

(
Hµ(βn0 ) +

∫
log fndµ

)

≤ 1
n

∑
a,b∈β

µ(a ∩ σ−nb)

 ∑
E⊆a∩σ−nb,

E∈βn
0

µ(E|a ∩ σ−nb) log
fn[E]
µ(E)



≤ 1
n

∑
a,b∈β

µ(a ∩ σ−nb) log(
∑

E∈a∩σ−nb
E∈βn

0

fn[E])

+
1
n
Hµ

(
β ∨ σ−nβ

)
,

where the last inequality follows from [W1, Lemma 9.9]. For a, b ∈ β, set

Pn(a, b) =
1
n

log

 ∑
E⊆a∩σ−nb,E∈βn

0

fn[E]

 .

Thus we obtain

(13)
1
n
Hµ(βn0 ) +

1
n

∫
log fndµ ≤

∑
a,b∈β

µ(a ∩ σ−nb)Pn(a, b)

+
2Hµ(β)

n
.

In what follows, we will obtain an upper bound for lim supn→∞ Pn(a, b). This
bound will be different depending on whether both a and b belong to the set
{C1, . . . , Cm−1} or not. Let M > 0 be such that sup{fn(y)/fn(x) : xi = yi, 0 ≤ i ≤
n− 1} ≤M for all n ∈ N.

Lemma 3.1. Under the assumptions of Theorem 3.1, we have
(1) If a, b 6= C≥m, then lim supn→∞ Pn(a, b) ≤ P (F).
(2) If a = C≥m or b = C≥m, then there exists C ′ ∈ R such that

lim sup
n→∞

Pn(a, b) ≤ C ′.

Proof. Our arguments are similar to those in [S1] and make use of the ideas in
Theorem 2.1 (3). We first show (1). We claim that there exist constants A, k > 0
such that

(14)
∑

E⊆a∩σ−nb,E∈βn
0

fn[E] ≤ A
∑

σn+2kx=x,x∈a

fn+2k(x).

Let Ead1...dn−1b ⊂ a ∩ σ−nb. For convenience, let a = CN1 and b = CN2 , where
1 ≤ N1, N2 ≤ m − 1. Take a point x = (x0, . . . , xn, . . . ) ∈ Ead1...dn−1b such
that fn[Ead1...dn−1b] ≤ 2fn(x). Then x ∈ CN1d̄1d̄2···d̄n−1N2

⊂ Ead1...dn−1b, for some
d̄i ∈ N, Cd̄i

⊆ Cdi
, 1 ≤ i ≤ n − 1. Using the same arguments used to prove

Theorem 2.1 (3), we construct x̃ ∈ CN1 such that σn+2kx̃ = x̃, in the following
way. Since N1d̄1 . . . d̄n−1N2 is an admissible word of length (n+ 1) in Σ, using the
same notation as in the proof of Theorem 2.1 (3) , set k = max{NN1N1 , NN2N1}.
Define y1 . . . yk−1 and z1 . . . zk−1 so that N1y1 . . . yk−1N1 and N2z1 . . . zk−1N1 are
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allowable words in Σ. Set A = N1y1 . . . yk−1N1d̄1 . . . d̄n−1N2z1 . . . zk−1 and define
x̃ = A∞. Clearly,

fn[Ead1...dn−1b] ≤
2fn(x)
fn+2k(x̃)

fn+2k(x̃).

Note that xi = (σkx̃)i for 0 ≤ i ≤ n− 1. Therefore, we obtain

fn(x)
fn(σkx̃)

≤M.

Approximating fn(x)/fn+2k(σkx̃) by an argument similar to that in the proof of
Theorem 2.1 (3), we obtain (14). Therefore, we have

lim sup
n→∞

Pn(a, b) ≤ lim sup
n→∞

1
n

log

 ∑
σn+2kx=x,x∈CN1

fn+2k(x)


= lim
n→∞

1
n

logZ(F , N1) = P (F).

Next we show Lemma 3.1 (2). We consider the case when a = b = C≥m. Other
cases can be shown similarly. Let n ≥ 3 be fixed. Write {E ∈ βn0 : E ⊂ a∩σ−nb} =
∪i,j,kAi,j,k, where

Ai,j,k =
{
Eaid1...djbk ∈ βn0 : a = b = C≥m, d1, dj 6= C≥m

}
,

i+ j + k = n+ 1. We first consider the case when j ≥ 2. For j = 0, 1, we make a
similar argument. Define for each i, j, k,

Si,j,k =
∑

E∈Ai,j,k

fn[E].

We first find an upper bound for Si,j,k. Fix i, j and k. Let Eaid1...djbk ∈ Ai,j,k. For
a point x ∈ Eaid1...djbk , we have by equation (3)

fn(x) ≤ f1(x)fn−1(σx)eC ≤ f1(x)f1(σx)fn−2(σ2x)e2C ≤ .... ≤ ||f1||n−j∞ eC(n−j)fj(σix).

Now let d1 = CN1 , dj = CN2 , 1 ≤ N1, N2 ≤ m− 1 and Eaid1...djbk ∈ Ai,j,k. Take a
point x ∈ Eaid1...djbk such that fn[Eaid1...djbk ] ≤ 2fn(x). Call it x̄aid1...djbk . Then
x̄aid1...djbk ∈ Cx1...xiN1y2...yj−1N2z1...zk

, where xl ≥ m for 1 ≤ l ≤ i, zl ≥ m for
1 ≤ l ≤ k, yl ≥ 1 for 2 ≤ l ≤ j − 1. Therefore,

fn[Eaid1...djbk ] ≤ 2fn(x̄aid1...djbk) ≤ 2||f1||n−j∞ eC(n−j)fj(σix̄aid1...djbk)

≤ 2||f1||n−j∞ eC(n−j) sup{fj(x) : x ∈ CN1y2...yj−1N2}

≤ 2||f1||n−j∞ eC(n−j)Mfj(x),

for any x ∈ CN1y2...yj−1N2 . Consider a point N2z = (N2, z0, . . . , zn, . . . ) ∈ Σ and
let it be fixed. Denote by Bj(Σ) the set of admissible words of length j in Σ. Then
for d1 = CN1 , dj = CN2 ,∑

E
aid1...djbk∈Ai,j,k

fn[Eaid1...djbk ] ≤ 2||f1||n−j∞ eC(n−j)M
∑

x=N1...N2z∈Σ
N1...N2∈Bj(Σ)

fj(x).

By an argument similar to that used to prove Lemma 2.4, we obtain∑
x=N1...N2z∈Σ
N1...N2∈Bj(Σ)

fj(x) ≤ eC(j−1)||f1||∞Lj−1
f1

χCN1
(N2z) ≤ eC(j−1)||f1||∞||Lf11||j−1

∞ .
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Since N1, N2 ∈ {1, . . . ,m− 1}, we have

Si,j,k =
∑
E∈Ai,j,k

fn[E] ≤ 2||f1||n−j∞ eC(n−j)(m− 1)2MeC(j−1)||f1||∞||Lf11||j−1
∞ .

The above inequality also holds for j = 1. For each fixed n, consider j ≥ 1 such
that the right hand side of the above inequality takes the maximal value at j. Call
it jn. For j = 0 (and so i+k = n+1), it is easy to see that Si,0,k ≤ 2||f1||n∞e(n−1)C .
Let

Bn = max{2||f1||n∞e(n−1)C , 2||f1||n−jn∞ eC(n−jn)(m−1)2MeC(jn−1)||f1||∞||Lf11||jn−1
∞ }.

Since 1 ≤ i, k ≤ n+ 1, 0 ≤ j ≤ n− 1

Pn(a, b) =
1
n

log

∑
i,j,k

Si,j,k

 ≤ 1
n

log(n+ 1)3Bn.

Therefore,

lim sup
n→∞

Pn(a, b)

≤ max {log ||f1||∞ + log ||Lf11||∞ + 2C, 2C, log ||f1||∞ + 2C, log ||Lf11||∞ + 2C} .

�

For completeness, we will include the final part of the proof of [S4, Theorem 4.4]
(see also [S1, Theorem 3]). By Lemma 3.1 and (13),

h(µ) + lim
n→∞

1
n

∫
log fndµ ≤ lim sup

n→∞

∑
a,b∈β

µ(a ∩ σ−nb)Pn(a, b)


≤ lim sup

n→∞

P (F)
∑

a,b6=C≥m

µ(a ∩ σ−nb) + C ′
∑

a=C≥m or b=C≥m

µ(a ∩ σ−nb)


≤ P (F) + C ′(µ(C≥m) + µ(σ−n(C≥m))) ≤ P (F) + 2C ′µ(C≥m).

Letting m→∞, we obtain the result. �

The set of σ-invariant Borel probability measures, M, is a very large and com-
plicated convex, non-compact set. Indeed, it strictly contains a countable family of
Poulsen simplexes, that is, infinite dimensional compact and convex sets with the
property that the extreme points are dense in the set. It is therefore a major prob-
lem in the ergodic theory of countable Markov shifts to choose relevant invariant
measures. The variational principle provides a criteria for making that choice.

4. Gibbs measures

In this section, we prove the existence of Gibbs measures for an almost-additive
sequence of continuous functions under certain assumptions. In order to do so,
we require an additional assumption on the combinatorial structure of the Markov
shift. This is a necessary assumption in the classical thermodynamical formalism for
countable Markov shifts (see [MU2, S3]). Let us start with some basic definitions.
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Definition 4.1. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F = {log fn}∞n=1 be an almost-additive sequence on Σ. A measure µ ∈ M is
said to be an equilibrium measure for F if

P (F) = h(µ) + lim
n→∞

1
n

∫
log fn dµ.

Definition 4.2. Let (Σ, σ) be a topologically mixing countable state Markov shift
and F = {log fn}∞n=1 be an almost-additive sequence on Σ. A measure µ ∈ M is
said to be Gibbs for F if there exist constants C0 > 0 and P ∈ R such that for
every n ∈ N and every x ∈ Ci0...in−1 we have

1
C0
≤

µ(Ci0...in−1)
exp(−nP )fn(x)

≤ C0.

There is a special class of Markov shifts having a combinatorial structure similar
to that of the full-shift, that will be important for us.

Definition 4.3. A countable Markov shift (Σ, σ) is said to satisfy the big images
and preimages property (BIP property) if there exists {b1, b2, . . . , bn} in the alphabet
S such that

∀a ∈ S ∃i, j such that tbiatabj = 1.

It was shown by Mauldin and Urbański [MU2] and also by Sarig [S3] that there
is a combinatorial obstruction to the existence of Gibbs measures corresponding to
a continuous function of summable variations. Indeed, if (Σ, σ) is a topologically
mixing countable Markov shift that does not satisfy the BIP property, then no
continuous function can have Gibbs measures. It should also be noticed that in
the compact setting of Markov shifts over a finite alphabet, Gibbs measures are
always equilibrium measures. This is no longer true in the non-compact setting of
countable Markov shifts. Indeed, a Gibbs measure µ for a continuous function φ
could satisfy h(µ) = ∞ and

∫
φ dµ = −∞. In such a situation, the measure µ is

not an equilibrium measure for φ (see [S3] for comments and examples). Of course,
this type of phenomena can also occur in our context.

Note that if F = {log fn}∞n=1 is an almost-additive Bowen sequence defined on
Σ satisfying

∑
a∈S sup f1|Ca < ∞, then implies ||Lf11||∞ < ∞. In particular the

pressure is finite, P (F) <∞, and the variational principle (see Theorem 3.1) holds.
The main result of this section is the following.

Theorem 4.1. Let (Σ, σ) be a topologically mixing countable state Markov shift
with the BIP property. Let F = {log fn}∞n=1 be an almost-additive Bowen sequence
defined on Σ satisfying

∑
a∈S sup f1|Ca

< ∞. Then there is a Gibbs measure µ
for F and it is mixing. Moreover, If h(µ) < ∞, then it is the unique equilibrium
measure for F .

Proof. The proof is inspired on [MU2, Lemma 2.8] and [B2, Lemmas 1, 2 and
Theorem 5]. Those results need to be modified and adapted to the almost-additive
setting and to the case of a non-compact phase space. We identify a countable
alphabet S with the set N.

Since (Σ, σ) is topologically mixing and has the BIP property, there exist k ∈ N
and a finite collection W of admissible words of length k such that for any a, b ∈ S,
there exists w ∈ W such that awb is admissible (see [S3, p.1752] and [MU2]). Let
A be the transition matrix for Σ. By rearranging the set N, there is an increasing
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sequence {ln}∞n=1 such that the matrix A|{1,...,ln}×{1,...,ln} is primitive. Let Yln
be the topologically mixing finite state Markov shift with the transition matrix
A|{1,...,ln}×{1,...,ln}. Then there exists p ∈ N such that for all n ≥ p, Yln contains
all admissible words in W . We denote by Bn(Yl) the set of admissible words of
length n in Yl. Since F is almost-additive, there exists C > 0 such that for each
n,m ∈ N, x ∈ Σ, equations (2) and (3) hold. In the proof of the following claim,
we continue to use W and k defined as above.

Claim 4.1. For Yln ⊂ Σ, n ≥ p, there is a unique equilibrium measure for F|Yln

and it is Gibbs for F|Yln
. Moreover, the constant C0 (see Definition 4.2) can be

chosen in such a way that C0 is independent of Yln .

Proof of the Claim. Since F is a Bowen sequence, we assume that it satisfies equa-
tion (4). Clearly, F|Yln

is an almost-additive Bowen sequence on (Yln , σ|Yln
). There-

fore, the first part of the claim is immediate by [B2, Theorem 5] or [M, Theorem 6].
Slightly modifying the proof of [B2, Lemmas 1, 2 and Theorem 5], we will obtain
the second part of the claim. We only show the first step of the proof to see how
we can get a uniform constant C0. By the assumptions, any admissible word in W
is an admissible word in Yln for all n ≥ p. Fix Yln , n ≥ p, and call it Y . Define
αYn =

∑
i0···in−1∈Bn(Y ) sup{fn|Y (y) : y ∈ Ci0...in−1}. For l ∈ N, let νl be the Borel

probability measure on Y defined by

νl(Ci0...il−1) =
sup{fl|Y (y) : y ∈ Ci0...il−1}

αYl
.

Let n ∈ N and l ≥ n + k. For any admissible words i0 · · · in−1 and j0 . . . jl−k−1

in Y , there exists m0 . . .mk−1 ∈ W such that i0 . . . in−1m0 . . .mk−1j0 . . . jl−k−1

is an admissible word in Y . For w ∈ W , let Nw = sup{fk(z) : z ∈ Cw} and
N̄ = min{Nw : w ∈ W}. For any y = (y0, . . . , yn, . . . ) ∈ Y ⊂ Σ with y0 . . . yk−1 =
w ∈W , we have

Nw
fk|Y (y)

≤M.

By (2) and (4), for each y ∈ Ci0...in−1m0...mk−1j0...jl−k−1 , we have

fl+n|Y (y) ≥ fn|Y (y)fk|Y (σny)fl−k|Y (σn+ky)e−2C

≥ N̄e−2C

M3
sup{fn|Y (y) : y ∈ Ci0...in−1} sup{fl−k|Y (y) : y ∈ Cj0...jl−k−1}.

For each fixed i0 . . . in−1 ∈ Bn(Y ), we have

∑
t0...tl−1

sup{fn+l|Y (y) : y ∈ Ci0...in−1t0...tl−1}

(15)

≥
∑

j0...jl−k−1

N̄e−2C

M3
sup{fn|Y (y) : y ∈ Ci0...in−1} sup{fl−k|Y (y) : y ∈ Cj0...jl−k−1}

(16)

=
N̄e−2C

M3
sup{fn|Y (y) : y ∈ Ci0...in−1}αYl−k.

(17)
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Since αYl ≤ eCαYn αYl−n, we obtain

αYn+l ≥
N̄e−3CαYn α

Y
l

M3αYk
.

We note that by (3)

αYk =
∑

i0...ik−1

sup{fk|Y (z) : z ∈ Ci0...ik−1} ≤ e(k−1)C(
∑
i∈N

f1|Ci)
k <∞.

Therefore, there exists C1 > 0 such that

(18) αYn+l ≥ C1α
Y
n α

Y
l ,

and clearly C1 does not depend on ln. By [B2], we know that

P (F|Y ) = lim
n→∞

1
n

logαYn .

Since
lim
n→∞

1
n

logαYn = inf
n∈N

1
n

log eCαYn ,

we have eCαYn ≥ eP (F|Y )n. Similarly, by (18),

P (F|Y ) = sup
n∈N

1
n

logC1α
Y
n .

Therefore,

(19) C1α
Y
n ≤ eP (F|Y )n ≤ eCαYn .

Using (15), (18) and (19), similar arguments to those in [B2] show that there exist
constants C2, C3 > 0, both independent of ln, such that for all n ∈ N

(20) C2 ≤
νl(Ci0...in−1)

e−nP (Φ(F|Y ))fn|Y (y)
≤ C3, i0 . . . in−1 ∈ Bn(Y ).

Now we take a convergent subsequence {νlk}∞k=1 of {νl}∞l=1 and let ν be the limit
point. Then ν satisfies equation (20) (by replacing νl by ν). Modifying arguments in
[B2] by using the property of bounded variation and the BIP property as seen in the
above arguments, we conclude that we can choose a constant C0 (in Definition 4.2)
for the σY -invariant ergodic Gibbs measure µY for F |Y such that C0 is independent
of ln. �

By the claim above, for each fixed ln,n ≥ p, F|Yln
has a unique equilibrium state

µln which is Gibbs, i.e., for each q ∈ N, there exist C̃1, C̃2 > 0 such that

(21) C̃1 ≤
µln(Ci0···iq−1)

e−qP (F|Yln
)fq|Yln

(y)
≤ C̃2, for y ∈ Ci0...iq−1 , i0 . . . iq−1 ∈ Bq(Yln).

We first show that the sequence {µln}∞n=p of σ-invariant Borel probability measures
on Σ is tight. Let πk : Σ→ N be the projection onto the k-th coordinate. Then for
each a ∈ N,

µln(π−1
k (a)) =

∑
i0...ik−2a∈Bk(Yln )

µln(Ci0···ik−2a)

≤ C̃2

∑
i0...ik−2a∈Bk(Yln ),y∈Ci0...ik−2a

e−kP (F|Yln
)fk|Yln

(y)(by(21)),
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where the summation is taken over a set containing a point y from each cylinder
set Ci0...ik−2a. By (3),

fk|Yln
(y) ≤ fk−1|Yln

(y)f1|Yln

(
σk−1y

)
eC ≤ (sup f1|Ca

) fk−1|Yln
(y)eC .

Thus ∑
i0...ik−2a∈Bk(Yln ),y∈Ci0...ik−2a

fk|Yln
(y)

≤ (sup f1|Ca) eC
∑

i0...ik−2a∈Bk(Yln ),y∈Ci0...ik−2a

fk−1|Yln
(y)

≤ (sup f1|Ca
) eC(k−1)

∑
i0...ik−2a∈Bk(Yln )

(
f1|Yln

(y)f1|Yln
(σy) . . . f1|Yln

(σk−2y)
)

≤ (sup f1|Ca
) eC(k−1)

∑
i0...ik−2a∈Bk(Yln )

sup f1|Ci0
. . . sup f1|Cik−2

≤ (sup f1|Ca) eC(k−1)

(∑
i∈N

sup f1|Ci

)k−1

.

Hence

µln(π−1
k (a)) ≤ C̃2e

−kP (F|Yln
) (sup f1|Ca) eC(k−1)(

∑
i∈N sup f1|Ci)

k−1.

Now set N = P (F|Yl1
) if P (F) < 0, and N = min{−P (F),−|P (F |Yl1

)|} otherwise.
Then we obtain

µln(π−1
k [a+ 1,∞)) ≤ C̃2e

−kN+C(k−1)

(∑
i∈N

sup f1|Ci

)k−1∑
i>a

sup f1|Ci .

Since
∑
i∈N sup f1|Ci

< ∞, for each given ε > 0, k ∈ N, we can find nk ∈ N with
the property of

C̃2e
−kN+C(k−1)

(∑
i∈N

sup f1|Ci

)k−1 ∑
i>nk

sup f1|Ci
≤ ε

2k
.

Therefore, for any ln, k ∈ N,

µln
(
π−1
k [nk + 1,∞)

)
≤ ε

2k
,

and so

µln

Σ ∩
∏
k≥1

[1, nk]

 ≥ 1−
∑
k≥1

µln
(
π−1
k ([nk + 1,∞))

)
≥ 1− ε.

Since Σ∩
∏
k≥1[1, nk] is a compact subset of Σ, by Prohorov’s theorem, the sequence

{µln}∞n=p is tight. Therefore, there exists a convergent subsequence {µlnk
}∞k=1 of

{µln}∞n=p. We denote by µ a limit point of this subsequence. Since it is a limit point
of a sequence of invariant measures on Σ, µ is also σ-invariant on Σ. By the property
(21), letting ln →∞, we obtain for q ∈ N and each y ∈ Ci0...iq−1 , i0 . . . iq−1 ∈ Bq(Σ),

(22) C̃1 ≤
µ
(
Ci0···iq−1

)
e−qP (F)fq(y)

≤ C̃2.

Therefore, µ is a Gibbs measure for F .
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In order to show that µ is ergodic, we use similar arguments to those used to
prove [B2, Lemma 2]. Let i0 . . . in−1 and j0 . . . jl−1 be fixed admissible words in
Σ. Let k and N̄ be defined as in the proof of claim 4.1. We also define αΣ

n as we
defined αYn by replacing Y by Σ. Then for m− n ≥ k,

µ(Ci0...in−1 ∩ f−m(Cj0...jl−1))

=
∑

i0...in−1k0...km−n−1j0...jl−1∈Bm+l(Σ)

µ(Ci0...in−1k0...km−n−1j0...jl−1)

≥ C̃1e
−(m+l)P (F)

∑
y∈Ci0...in−1k0...km−n−1j0...jl−1

fm(y)fl(σmy)fm−n(σny)e−2C

≥ e−2CC̃1e
−(m+l)P (F)

M2
sup{fn(y) : y ∈ Ci0...in−1} sup{fl(y) : y ∈ Cj0...jl−1}∑

y∈Ci0...in−1k0...km−n−1j0...jl−1

fm−n(σny),

where in the second and third inequalities each summation is taken over a set
containing a point y from each cylinder set Ci0...in−1k0...km−n−1j0...jl−1 in Σ. Then∑

y∈Ci0...in−1k0...km−n−1j0...jl−1

fm−n(σny)

≥ e−2C
∑

y∈Ci0...in−1k0...km−n−1j0...jl−1

fk(σny)fm−n−2k(σn+ky)fk(σm−ky)

≥ e−2CN̄2

M3
αΣ
m−n−2k.

We claim that, for a symbol a ∈ N, there exists a constant C̄ > 0 depending on a
such that

(23) C̄αΣ
n ≤

∑
z∈Ca,σn+2k+1z=z

fn+2k+1(z).

Clearly,
fn+2k+1(z) ≥ fk+1(z)fn(σk+1z)fk(σn+k+1z)e−2C .

Therefore,∑
z∈Ca,σn+2k+1z=z

fn+2k+1(z) ≥ N̄2e−2C

M
sup{f1(z) : z ∈ Ca}

∑
z∈Cz0...zn−1

fn(z)

≥ N̄2e−2C

M2
sup{f1(z) : z ∈ Ca}αΣ

n ,

where the summation in the right hand side of the first inequality is taken over a
set containing a point z from each cylinder set Cz0...zn−1 . This proves (23). By the
definition of the pressure, we obtain

P (F) = lim
n→∞

1
n

logαΣ
n .

Thus we have eCαΣ
n ≥ eP (F)n by using the same proof used to prove Claim 4.1.

Therefore, using (22), it is easy to see that there exists a constant C̃3 > 0 such that

µ(Ci0...in−1 ∩ f−m(Cj0...jl−1)) ≥ C̃3µ(Ci0...in−1)µ(Cj0...jl−1).
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Therefore, µ ergodic and thus it is the unique Gibbs measure for F . If h(µ) <∞,
using the proof of [MU2, Theorem 3.5](replace Snf and P (f) by fn and P (F)
respectively), it is the unique equilibrium measure for F . The fact that the measure
µ is mixing is fairly standard and follows as in the final part of the proof of [B2,
Theorem 5]. �

5. Example 1: The full-shift

Let us consider the full-shift on a countable alphabet, that is (ΣF , σ), where

ΣF := {(xi)∞i=0 : xi ∈ N}.

The good combinatorial properties of this shift allow us to make some explicit
computations. Indeed, let {λj}∞j=1 be a sequence of real numbers such that λj ∈
(0, 1) and

∑∞
j=1 λj < ∞. Let {log cn}∞n=1 be an almost-additive sequence of real

numbers, that is, there exists a constant C > 0 such that

e−Ccncm ≤ cn+m ≤ eCcncm.

For n ∈ N, define fn : ΣF → R by

fn(x) = cnλi0λi1 · · ·λin−1 , for x ∈ Ci0...in−1 .

Let F = {log fn}∞n=1. Then F is an almost-additive Bowen sequence on ΣF . By
definition we have

P (F) = lim
n→∞

1
n

log

 ∑
i0,i1,...,in−1∈N

cnλi0λi1 · · ·λin−1


= lim
n→∞

log cn
n

+ log

( ∞∑
i=1

λi

)
.

Clearly, Proposition 3.1 and the variational principle (Theorem 3.1) hold for F .
Since

∑
i∈N sup f1|Ci

= c1
∑
i∈N λi < ∞, by Theorem 4.1, there exist a Gibbs

measure µ for F which is mixing. If h(µ) < ∞, then it is the unique equilibrium
measure for F .

Similarly, we obtain an explicit formula for the pressure function for tF =
{t log fn}∞n=1, with t ∈ R, namely

P (tF) = lim
n→∞

t log cn
n

+ log

( ∞∑
i=1

λi
t

)
.

In particular, there exists t′ > 0 such that

P (tF) =

{
∞ if t < t′;
finite, if t > t′.

Moreover, for t > t′ the pressure function t → P (tF) is real analytic, convex and
decreasing.
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6. Example 2: A factor map

Let π : Σ1 → Σ2 be a one-block factor map between sub-shifts of finite type
defined over finite alphabets. If the measure µ is an equilibrium measure for φ :
Σ1 → R it is natural to enquire whether the measure π(µ) is an equilibrium measure
for a potential defined on Σ2 related to φ. Walters established such a relation under
the assumption that a so called compensation function to exists (see [W3] for precise
definitions and details). Using sub-additive thermodynamic formalism, Yayama [Y]
was able to establish the same relation between equilibrium measures, without the
need of a compensation function to exists (related results have been obtained by
Feng in [Fe4]). The present example exhibits one of the pathologies that one might
encounter when trying to extend this type of results to the countable Markov shift
setting. The sequence of potentials considered is the ones used in Yayama’s proof
and in this particular case the pressure is infinite. It also shows a natural way of
obtaining almost-additive sequences of potentials.

Let A be the matrix defined by A = (aij)N0×N0 where ai0 = a0j = 1, for all
i, j ∈ N0, and aij = 0 otherwise. Let B be the matrix defined by B = (bij)N×N,
bi1 = b1j = 1, for i, j ∈ N, and bij = 0 otherwise. Let X,Y be the topologically
mixing countable Markov shifts with the BIP property determined by the transition
matrix A,B respectively. Let π : X → Y be a one-block factor map defined by
π(k) = k/2 + 1 if k is even, and π(k) = (k− 1)/2 + 1 if k is odd. For an admissible
word y1 . . . yn of length n on Y, denote by |π−1[y1 . . . yn]| the number of admissible
words of length n in X that are mapped to y1 . . . yn by π. Define φn : Y → R by
φn(y) = |π−1[y1 . . . yn]| and let F = {− log φn}∞n=1. Let A1 be the transition matrix
of the symbols of π−1{1} = {0, 1} and a be the largest eigenvalue of the matrix
A1. It is easy to see that in general a point y in Y is given by y = 1n1i11n2i2 . . . or
y = i11n2i2 . . . , where i1, i2, · · · ≥ 2, n1, n2, · · · ≥ 1 and that there exist C1, C2 > 0
such that for any l ∈ N,

C12lan1+···+nl ≤ |π−1[1n1i11n2 . . . il−11nlil]| ≤ C22lan1+···+nl .

We can approximate the upper bounds and lower bounds of |π−1[1n1i11n2 . . . il−11nl ]|,
|π−1[i11n2 . . . il−11nlil]|, and |π−1[i11n2 . . . il−11nl ]| similarly. Therefore, F is an
almost-additive Bowen sequence on Y and Proposition 3.1 holds. However, since
the entropy of (Y, σ) is infinite and the functions (1/n) log φn are uniformly bounded
(below and above) we have that P (F) =∞.

7. Maximal Lyapunov exponents of product of matrices

Let A,B be two square matrices of size d × d. Let U be the d−dimensional
column vector having each coordinate equal to 1. Consider the following norm

(24) ‖A‖ := U tAU.

Let {A1, A2, . . . } be a countable collection of d × d matrices and let (Σ, σ) be a
topologically mixing countable Markov shift. If w = (i0, i1, . . . ) ∈ Σ, define the
sequence of functions by

φn(w) = ‖Ain−1 · · ·Ai1Ai0‖.

Since
‖AB‖ ≤ ‖A‖‖B‖,
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the sequence F = {log φn}∞n=1 is sub-additive on Σ. The study of this type of
functions began with the work of Bellman [Be] and flourished with the seminal
work of Furstenberg and Kesten [FK] who in 1960 considered the case of finitely
many square matrices {A1, A2, . . . , Am} and the full-shift on m symbols. They
proved that if µ ∈ M is ergodic then µ-almost everywhere the following equality
holds:

lim
n→∞

1
n

∫
log φn dµ = lim

n→∞

1
n

log φn(w).

Kingman [Ki], eight years later, proved his famous sub-additive ergodic theorem
from which the above result follows. The number

λ(w) := lim
n→∞

1
n

log φn(w),

is called Maximal Lyapunov exponent of w, whenever the limit exists. It is a funda-
mental dynamical quantity whose study arises in a wide range of different context,
e.g. Schrödinger operators [AJ], smooth cocycles [AV], Hausdorff dimension of mea-
sures [Fe3]. Actually, its effective computation is also of interest [Po]. Recently, in a
series of papers Feng [Fe1, Fe2, Fe3] studied dimension theory and thermodynamic
formalism for maps M : Σ→ L(Rd,Rd), where L(Rd,Rd) denotes the space of d×d
matrices. The techniques developed in the previous section allow us to generalise
some of the results obtained by Feng to this non-compact setting.

In this generality, the sequence {log φn}∞n=1 is only sub-additive (not necessarily
almost-additive) and the shift (Σ, σ) need not to satisfy the BIP property. Un-
der certain additional assumptions, we are able to prove the existence of Gibbs
measures.

Proposition 7.1. Let (Σ, σ) be a countable Markov shift satisfying the BIP con-
dition. Let {A1, A2, . . . } be a countable collection of d× d matrices having strictly
positive entries. For n ∈ N, define φn : Σ→ R by

φn(w) = ‖Ain−1 · · ·Ai1Ai0‖

for w = (i0, i1, . . . ) ∈ Σ. If F = {log φn}∞n=1 is an almost-additive sequence on Σ
with

∑∞
i=1 ‖Ai‖ <∞, then

P (F) = sup
{
h(µ) + lim

n→∞

1
n

∫
log φn dµ : µ ∈M and lim

n→∞

1
n

∫
log φndµ 6= −∞

}
,

and there exists a Gibbs measure µ for F which is mixing.

Proof. Note that the continuous functions φn are locally constant over cylinders of
length n. Therefore, the Bowen condition is satisfied. Moreover,∑

a∈S
supφ1|Ca

=
∞∑
i=1

‖Ai‖ <∞.

Since the system satisfies the BIP condition, the result follows from Theorem 4.1.
�

Remark 7.1. If the measure µ in Proposition 7.1 is such that h(µ) < ∞, then µ
is the unique equilibrium measure for F .

The assumption
∑∞
i=1 ‖Ai‖ < ∞ implies that limn→∞ ‖An‖ = 0. Therefore,

almost-additivity cannot be obtained (in general) as in [Fe1, Lemma 2.1], even if
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all the entries are positive. Nevertheless, the same proof obtained by Feng in [Fe1,
Lemma 2.1] gives us

Lemma 7.1. Let {A1, A2, . . . } be a countable collection of d × d matrices having
strictly positive entries. Suppose there exists a constant C > 0 with the property
that for every k ∈ N the following holds:

mini,j(Ak)i,j
maxi,j(Ak)i,j

≥ C.

Then the sequence F = {log φn}∞n=1 is almost-additive on Σ, where φn : Σ → R is
defined as in Proposition 7.1 .

The above condition is related to the cone condition studied by Barreira and
Gelfert in [BG]. Alternative conditions ensuring almost-additivity of F have been
obtained by Feng [Fe3, Proposition 2.8] and, in a slightly different setting, by
Falconer and Sloan [FS, Corollary 2.3].

Remark 7.2. Under the assumptions of Proposition 7.1, there exists a positive
number t′ > 0 such that the pressure function t→ P (tF) has the following form:

P (tF) =

{
∞ if t < t′;
finite, convex and decreasing if t > t′.

8. A Bowen formula

In this section, we apply the results obtained in order to prove a formula that
relates the pressure with the Hausdorff dimension of a geometric construction. This
formula generalises previous results by Barreira [B1] to the countable setting.

Let us consider the following geometric construction in the interval. For every
n ∈ N, let ∆n ⊂ [0, 1] be a closed interval of length rn. Assume that the intervals
do not overlap, that is, if m 6= n then ∆m ∩∆n = ∅. For each k ∈ N, choose again
a family of non-overlapping closed intervals {∆kn}n∈N with ∆kn ⊂ ∆k. Denote
the length of ∆kn by rkn. Iterating this procedure, for each interval ∆i0...in−1 ,
we obtain a countable family of non-overlapping closed intervals {∆i0...in−1m}m∈N
with ∆i0...in−1m ⊂ ∆i0...in−1 . Denote by ri0...in−1m the length of {∆i0...in−1m}. We
define the limit set

K =
∞⋂
n=1

⋃
(i0···in−1)

∆i0...in−1 .

This geometric construction can be coded by a full-shift on a countable alphabet
(ΣF , σ). That is, there exists a homeomorphism ψ : ΣF → K.

Denote by φn : Σ → R the function defined by φn(x) = log ri0...in−1 if x ∈
Ci0...in−1 and by F = {φn}∞n=1.

Theorem 8.1. Let K be a geometric construction as above. Assume that there
exists C > 0 such that for every n,m ∈ N

ri0...in−1rin···im−1e
−C ≤ ri0···in+m−1 ≤ ri0...in−1rin···im−1e

C .

Then
dimH(K) = inf{t ∈ R : P (tF) ≤ 0}.
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Proof. Let us start with the lower bound. We consider a subset of Kn ⊂ K defined
by the projection of ψ restricted to the compact sub-shift Σn ⊂ Σ, where Σn is the
full-shift on {1, 2, . . . , n}. Denote by

Rn := min{r1, r2, . . . , rn}.

By the almost-additivity assumption on the radii we obtain that if ij ∈ {1, 2, . . . , n}
then

ri0i2...in
ri0i2...in−1

≥ Rne−C := δn

Then, a result proved by Barreira in [B1] (see also [B4, p.35]) implies that

dimH Kn = tKn
,

where tKn
∈ R is the unique root of the equation P (tF|Kn

) = 0. By the approxi-
mation property of the pressure (see Theorem 3.1), we obtain that

lim
n→∞

dimH Kn = inf{t ∈ R : P (tF) ≤ 0}.

Since Kn ⊂ K, this proves the lower bound.

In order to prove the upper bound, we make use of the natural cover. Let s ∈ R
be such that inf{t ∈ R : P (tF) ≤ 0} < s. Since the pressure of sF is negative there
exists L < 0 such that

lim
n→∞

1
n

log
∑

(i0...in−1)∈Nn

(ri0...in−1)s = P (sF) < L < 0.

Hence, for sufficiently large values of n ∈ N we have that∑
(i0...in−1)∈Nn

(ri0...in−1)s < enL.

Since L < 0 we have that limn→∞ enL = 0. Note that for each n ∈ N the family
{∆i0...in−1 : i0 . . . in−1 ∈ Nn} is a cover of K. Moreover, as n tends to infinity the
diameters of the sets ∆i0...in−1 converge to zero. This implies that the s−Hausdorff
measure of K is zero. Therefore, we obtain the desired upper bound. �

It should be pointed out that, even in the additive case, it can happen that the
equation P (tK) = 0 does not have a root (see the work of Mauldin and Urbański
[MU1] and that of Iommi [Io] for explicit examples).

Remark 8.1. If the equation P (tF) = 0 has a root and the Gibbs measure cor-
responding to (dimH K)F is an equilibrium measure, then we obtain an almost-
additive version of Ledrappier-Young formula (see [LY]) . Indeed,

P ((dimH K)F) = h(µ) + dimH K
(

lim
n→∞

1
n

∫
φn dµ

)
= 0.

Therefore,

dimH K = − h(µ)
limn→∞

1
n

∫
φn dµ

.
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[Gu2] B.M. Gurevič Shift entropy and Markov measures in the path space of a denumerable graph.

Soviet.Math.Dokl. 11, 744-747 (1970).
[GS] B.M. Gurevich, S.V. Savchenko, Thermodynamic formalism for symbolic Markov chains with

a countable number of states. (Russian) Uspekhi Mat. Nauk 53 (1998), no. 2(320), 3–106;
translation in Russian Math. Surveys 53 (1998), no. 2, 245-344.

[Io] G. Iommi Multifractal Analysis for countable Markov shifts Ergodic Theory and Dynam.

Systems vol. 25 no. 6, 1881-1907 (2005).
[IT1] G. Iommi, M. Todd, Natural equilibrium states for multimodal maps. Communications in

Mathematical Physics 300, 65-94 (2010).



28 GODOFREDO IOMMI AND YUKI YAYAMA

[Ki] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc.

Ser. B 30 (1968) 499-510.

[LY] Ledrappier, F.; Young, L.-S. The metric entropy of diffeomorphisms. II. Relations between
entropy, exponents and dimension. Ann. of Math. (2) 122 (1985), no. 3, 540–574.
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