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Abstract

We present an improved version of commutator methods for unitary operators under a weak

regularity condition. Once applied to a unitary operator, the method typically leads to the absence

of singularly continuous spectrum and to the local �niteness of point spectrum. Large families of

locally smooth operators are also exhibited. Half of the paper is dedicated to applications, and

a special emphasize is put on the study of cocycles over irrational rotations. It is apparently the

�rst time that commutator methods are applied in the context of rotation algebras, for the study

of their generators.
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1 Introduction

It is commonly accepted that commutator methods (in the sense of E. Mourre) are very e�cient tools

for studying spectral properties of self-adjoint operators. These technics are well developed and have

been formulated with a high degree of optimality in [3]. On the other hand, corresponding approaches

for the study of unitary operators exist but are much less numerous and still at a preliminary stage

of development (see for example [4, 16, 20, 21] and references therein). Accordingly, the aim of this

paper is to extend commutator methods for unitary operators up to an optimality equivalent to the

one reached for self-adjoint operators, and to present some applications.

Up to our knowledge, it is Putnam who presented the �rst application of commutator methods

for unitary operators. His original result [20, Thm. 2.3.2] reads as follows: If U is a unitary operator

in a Hilbert space H and if there exists a bounded self-adjoint operator A in H such that U�AU � A

is strictly positive, then the spectrum of U is purely absolutely continuous. An extension of this

statement to operators A which are only semi-bounded is also presented in that reference. However,

in applications even this assumption of semi-boundedness is often too restrictive, and a �rst attempt

to extend the theory without this condition has been proposed in [4]. To do this, the authors had
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to impose some regularity of U with respect to A. In the language of Mourre theory for self-adjoint

operators, this regularity assumption corresponds to the inclusion U 2 C2(A). Apart from the removal

of the semi-boundedness assumption, the applicability of the theory was also signi�cantly broadened

by requiring a stronger positivity condition, but only locally in the spectrum of U and up to a compact

term. Under these assumptions, the spectrum of U has been shown to consist in an absolute continuous

part together with a possible �nite set of eigenvalues (see [4, Thm. 3.3] for details).

The main goal of the present work is to weaken the regularity assumption of U with respect to A

to get a theory as optimal as the one in the self-adjoint case. Accordingly, we show that all the results

on the spectrum of U hold if a condition only slightly stronger than U 2 C1(A) is imposed; namely,

either if U 2 C1;1(A) and U has a spectral gap, or if U 2 C1+0(A) (see Section 2.1 and Theorem 2.7 for

notations and details). In addition to that result, we also obtain a broader class of locally U -smooth

operators, and thus more general limiting absorption principles for U (see Proposition 2.9). Our proofs

are rather short and natural, thanks to an extensive use of the Cayley transform.

The second half of the paper is dedicated to applications. In Sections 3.1-3.2, we consider pertur-

bations of bilateral shifts as well as perturbations of the free evolution. In both cases, we show that the

regularity assumption can be weaken down to the condition U 2 C1+0(A). This extends signi�cantly

some previous results of [4] in similar situations. Note that any result on the perturbations of the

free evolution is of independent interest since it provides information on the corresponding Floquet

operators (see [4, 12, 13] for more details on this issue).

In Section 3.3, we determine spectral properties of cocycles over irrational rotations. It is appar-

ently the �rst time that commutator methods are applied in the context of rotation algebras, for the

study of their generators. For a class of cocycles inspired by [15, 17], we show that the correspond-

ing unitary operators have purely Lebesgue spectrum. The result is not new [14] but our proof is

completely new and does not rely on the study of the Fourier coe�cients of the spectral measure.

In addition, our approach leads naturally to a limiting absorption principle and to the obtention of

a large class of locally smooth operators. This information could certainly not be deduced from the

study of the Fourier coe�cients alone.

Finally, we treat in Section 3.4 vector �elds on orientable manifolds. Under suitable assumptions,

we show that the unitary operators induced by a general class of complete vector �elds are purely

absolutely continuous. This result complements [20, Sec. 2.9(ii)], where the author considers the case

of unitary operators induced by divergence-free vector �elds on connected open subsets of Rn.

As a conclusion, let us stress that since unitary operators are bounded, the abstract theory de-

velop below is slightly simpler than its self-adjoint counterpart. This feature, together with the fact

that various dynamical systems are described by unitary operators, suggests that the abstract results

obtained so far could be applied in a wide class of situations. For example, it would certainly be of

interest to see if spectral properties of CMV matrices [9, 23], quantum kicked rotors [5, 10], quantized

Henon maps [7, 26, 27] or integral transforms [8, 24] can be studied with commutator methods.

2 Commutator methods for unitary operators

2.1 Regularity with respect to A

We �rst recall some facts borrowed from [3]. Let H be a Hilbert space with norm k � k and scalar

product h � ; � i, and denote by B(H) the set of bounded linear operators in H. Now, let S 2 B(H)

and let A be a self-adjoint operator in H with domain D(A). For any k 2 N, we say that S belongs to

Ck(A), with notation S 2 Ck(A), if the map

R 3 t 7! e�itA S eitA 2 B(H) (2.1)

2



is strongly of class Ck. In the case k = 1, one has S 2 C1(A) if the quadratic form

D(A) 3 ' 7!


A'; S'

�
�


'; SA'

�
2 C

is continuous for the topology induced by H on D(A). The operator corresponding to the continuous

extension of the form is denoted by [A;S] 2 B(H) and veri�es [A;S] = s- lim�!0[A� ; S] with A� :=

(i� )�1(ei�A�1) 2 B(H).

Two slightly stronger regularity conditions than S 2 C1(A) are provided by the following de�ni-

tions : S belongs to C1;1(A), with notation S 2 C1;1(A), if

Z 1

0

dt

t2


 e�itA S eitA+eitA S e�itA�2S



 <1;

and S belongs to C1+0(A), with notation S 2 C1+0(A), if S 2 C1(A) and

Z 1

0

dt

t



 e�itA[A;S] eitA�[A;S]

 <1:

If we regard C1(A), C1;1(A), C1+0(A) and C2(A) as subspaces of B(H), then we have the following

inclusions C2(A) � C1+0(A) � C1;1(A) � C1(A).

Now, if H is a self-adjoint operator in H with domain D(H), we say that H is of class Ck(A)

(respectively C1;1(A) or C1+0(A)) if (H�i)�1 2 Ck(A) (respectively (H�i)�1 2 C1;1(A) or (H�i)�1 2

C1+0(A)). If H is of class C1(A), then the quadratic form

D(A) 3 ' 7!


A'; (H � i)�1'

�
�


'; (H � i)�1A'

�
2 C

extends continuously to a bounded form de�ned by the operator
�
A; (H� i)�1

�
2 B(H). Furthermore,

the set D(H)\D(A) is a core for H and the quadratic form D(H)\D(A) 3 ' 7!


H';A'

�
�


A';H'

�
is continuous in the topology of D(H) [3, Thm. 6.2.10(b)]. This form extends uniquely to a continuous

quadratic form on D(H) which can be identi�ed with a continuous operator [H;A] from D(H) to the

adjoint space D(H)�. Finally, the following relation holds in B(H) :�
A; (H � i)�1

�
= (H � i)�1[H;A](H � i)�1: (2.2)

2.2 Cayley transform

Let U be a unitary operator in H with spectrum �(U) � T �
�
� 2 C j j�j = 1

	
and (complex) spectral

measure EU ( � ). Our �rst result is a restatement of [4, Thm. 5.1] in the framework of the previous

subsection. The proof is inspired from the corresponding proof in the self-adjoint case [3, Prop. 7.2.10].

Proposition 2.1 (Virial Theorem for U). Let U and A be respectively a unitary and a self-adjoint

operator in H, with U 2 C1(A). Then, EU (f�g)U�[A;U ]EU (f�g) = 0 for each � 2 T. In particular,

one has


';U�[A;U ]'

�
= 0 for each eigenvector ' of U .

Proof. One has to show that if 'j 2 H satis�es U'j = �'j for j = 1; 2, then


'1; U

�[A;U ]'2
�
= 0.

But, since U�'1 = ��'1, this follows from the equalities

'1; U

�[A;U ]'2
�
= lim

�!0



U'1; [A� ; U ]'2

�
= lim

�!0

�

�'1; A��'2

�
�


���'1; A�'2

�	
= 0:
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Corollary 2.2 (Discrete spectrum of U). Let U and A be respectively a unitary and a self-adjoint

operator in H, with U 2 C1(A). Suppose there exist a Borel set � � T, a number a > 0 and a

compact operator K 2 K (H) such that

EU (�)U�[A;U ]EU (�) � aEU (�) +K: (2.3)

Then, the operator U has at most �nitely many eigenvalues in �, each one of �nite multiplicity.

The following proof is standard but we provide it for completeness :

Proof. Let ' 2 H, k'k = 1, be an eigenvector of U with corresponding eigenvalue in �. Then, it

follows from (2.3) and from the Virial theorem that


';K'

�
� �a. Now, assume that the statement

of the corollary is false. Then, there exists an in�nite orthonormal sequence f'jg of eigenvectors of

U in EU (�)H. In particular, one has 'j ! 0 weakly in H as j ! 1. And since K is compact, then

h'j ;K'ji ! 0 as j !1, which contradicts the inequality


'j ;K'j

�
� �a < 0.

When an inequality (2.3) is satis�ed, we say that a Mourre estimate for U holds on �. In the

sequel, we suppose that the assumptions of Corollary 2.2 hold for some open set � � T. Therefore,

there exists � 2 � which is not an eigenvalue of U and the range Ran(1� ��U) of 1� ��U is dense in H.

In particular, the operator

H�' := �i
�
1 + ��U

��
1� ��U

��1
'; ' 2 D(H�) := Ran(1� ��U);

is self-adjoint due to a standard result on the Cayley transform [28, Thm. 8.4(b)], and H� is bounded

if and only if � =2 �(U).

We now prove some simple but useful relations between U and H�.

Lemma 2.3. Suppose that the assumptions of Corollary 2.2 hold for some open set � � T, and

let � 2 � and H� be as above. Then,

(a) the operator H� is of class C
1(A) with

�
A; (H� � i)

�1
�
= � i��

2 [A;U ],

(b) one has [iH�; A] = 2
�
(1� ��U)�1

	�
U�[A;U ] (1� ��U)�1 in B

�
D(H�);D(H�)

�
�
,

(c) if U 2 C1;1(A), then H� is of class C
1;1(A),

(d) if U 2 C1+0(A), then H� is of class C
1+0(A).

Proof. Since (H� � i)
�1 = i

2 (1�
��U), one gets for any ' 2 D(A)


A'; (H� � i)
�1'

�
�


'; (H� � i)

�1A'
�
=


A'; i2 (1�

��U)'
�
�


'; i2 (1�

��U)A'
�

= � i��
2

�

A';U'

�
�


';UA'

�	
= � i��

2



'; [A;U ]'

�
;

which implies point (a). Then, a successive use of (2.2) and point (a) lead to the following equalities

in B
�
D(H�);D(H�)

�
�
:

i[H�; A] = i(H� � i)
�
A; (H� � i)

�1
�
(H� � i) = �2 ��(1� ��U)�1[A;U ](1� ��U)�1

= 2(1� �U�)�1U�[A;U ](1� ��U)�1

= 2
�
(1� ��U)�1

	�
U�[A;U ] (1� ��U)�1;
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which imply point (b). Point (c) follows from a direct calculation using the equality (H� � i)�1 =
i
2 (1�

��U) which gives

Z 1

0

dt

t2


 e�itA(H� � i)

�1 eitA+eitA(H� � i)
�1 e�itA�2(H� � i)

�1




=
1

2

Z 1

0

dt

t2


 e�itA U eitA+eitA U e�itA�2U



:
The proof of point (d) is similar.

Remark 2.4. Due to the simple relation (H� � i)�1 = i
2 (1 �

��U), any regularity property of U

with respect to A is equivalent to the same regularity property of (H� � i)�1 with respect to A.

In particular, if U belongs to one regularity class introduced in [3, Ch. 5], then the resolvent

(H�� i)
�1 belongs to the same regularity class. This observation might be useful in applications.

Before moving to the next statement, we make two simple observations on the spectrum �(H�)

and the spectral measure EH� ( �) of H�. First, �
0 2 �(U) if and only if �i 1+

���0

1����0
2 �(H�) and � 2 �(H�)

if and only if � �+i��i 2 �(U) (in particular, the point �0 = � corresponds, as in a stereographic projection

with origin �, to the points � = �1). Second, for any bounded Borel set I � R, the operator EH� (I)

belongs to B
�
H;D(H�)

�
and extends by duality to an element of B

�
D(H�)

�;H
�
.

We are now ready to show that a Mourre estimate for U implies a Mourre estimate for H� :

Proposition 2.5 (Mourre estimate for H�). Suppose that the assumptions of Corollary 2.2 hold

for some open set � � T, and let � 2 � and H� be as above. Then, for any bounded Borel set

I �
�
� i 1+

���0

1����0
j �0 2 �

	
there exists a compact operator K 0 2 K (H) such that

EH� (I) [iH�; A]E
H� (I) � a

2 E
H� (I) +K 0; (2.4)

with a > 0 as in (2.3).

Proof. We know from Lemma 2.3(b) that

EH� (I) [iH�; A]E
H� (I) = 2EH� (I)

�
(1� ��U)�1

	�
U�[A;U ] (1� ��U)�1EH� (I):

Since (H� � z)
�1 and U commute for each z 2 C n R, one has

(1� ��U)�1EH� (I) = EH� (I)(1� ��U)�1EH� (I):

So, this relation together with its adjoint imply that

EH� (I) [iH�; A]E
H� (I) = 2EH� (I)

�
(1� ��U)�1

	�
EH� (I)U�[A;U ]EH� (I)(1� ��U)�1EH� (I):

Since EH� (I) = EU (�)EH� (I), it follows from the Mourre estimate for U that

EH� (I) [iH�; A]E
H� (I) � 2aEH� (I)

�
(1� ��U)�1

	�
(1� ��U)�1EH� (I) +K 0

with K 0 2 K (H). One concludes by noting that
�
(1� ��U)�1

	�
(1� ��U)�1 = 1

4 jH� � ij
2 � 1

4 holds on

EH� (I)H.

We now prove a limiting absorption principle for the operator H� on the Besov space G :=�
D(A);H

�
1=2;1

de�ned by real interpolation [3, Ch. 2]. We give two versions of the result: one if we

know that U has a spectral gap and another if we don't know it. We use the notation �p(H�) for the

point spectrum of H�.
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Proposition 2.6 (Limiting absorption principle forH�). Suppose that the assumptions of Corollary

2.2 hold for some open set � � T, and let � 2 � and H� be as above. Assume also that

(i) U has a spectral gap and U 2 C1;1(A) or (ii) U 2 C1+0(A).

Then, in any open bounded set I �
�
� i 1+

���0

1����0
j �0 2 �

	
the operator H� has at most �nitely

many eigenvalues, each one of �nite multiplicity. Furthermore, for each � 2 I n�p(H�) the limits

lim"&0(H� � � � i")�1 exist in the weak* topology of B(G;G�), uniformly in � on each compact

subset of I n �p(H�). As a corollary, H� has no singularly continuous spectrum in I.

If U has a spectral gap, then the assumption U 2 C1;1(A) of (i) is known to be optimal for H�

on the Besov scale Cs;p(A) (see the Appendix 7.B of [3]). The assumption U 2 C1+0(A) of (ii) is

su�cient if U has no gap, but it is slightly stronger than the C1;1-condition. Another approach not

requiring the existence of a gap exists and its regularity assumption is closer to the C1;1-condition

than the C1+0-condition. However, its implementation is more involved since it requires the invariance

of certain domain under the group generated by A. So, we have decided not to present it for simplicity

(see however [3, Sec. 7.5] for details).

Proof of Proposition 2.6. One �rst observes that H� has at most �nitely many eigenvalues in I, each

one of �nite multiplicity. Indeed, this follows either from the corresponding statement for U obtained

in Corollary 2.2, or from the Mourre estimate (2.4) and [3, Cor. 7.2.11]. Then, we know from [3,

Lemma 7.2.12] that a strict Mourre estimate holds locally on I n�p(H�); that is, for any � 2 I n�p(H�)

and any � 2
�
0; a2

�
, there exists " > 0 such that

EH� (�; ") [iH�; A]E
H� (�; ") �

�
a
2 � �

�
EH� (�; ");

where EH� (�; ") := EH�

�
(�� "; �+ ")

�
.

Once this preliminary observation is made, the limiting absorption principle under assumption (i)

follows from Lemma 2.3(c), Proposition 2.5 and [3, Thm. 7.4.1], while the same result under assumption

(ii) follows from Lemma 2.3(d), Proposition 2.5 and [22, Thm. 0.1].

The statement on the singularly continuous spectrum of H� in I is then a standard consequence

of the limiting absorption principle and the �niteness of �p(H�) in I.

2.3 Absolute continuity of U

We are now in a position to prove our main result on the spectrum of U :

Theorem 2.7 (Spectral properties of U). Let U and A be respectively a unitary and a self-adjoint

operator in H. Assume either that U has a spectral gap and U 2 C1;1(A), or that U 2 C1+0(A).

Suppose also that there exist an open set � � T, a number a > 0 and a compact operator

K 2 K (H) such that

EU (�)U�[A;U ]EU (�) � aEU (�) +K: (2.5)

Then, U has at most �nitely many eigenvalues in �, each one of �nite multiplicity, and U has

no singularly continuous spectrum in �.

Proof. The properties of the eigenvalues of U in � follow directly from Corollary 2.2. Now, take

�1 2 � n �p(U). Then, we get from Proposition 2.6 and the correspondence between the spectral

measures of U and H�1 (see [6, Prop. 5.3.10]) that U has no singularly continuous spectrum in � n V1,

where V1 � � is any closed neighborhood of �1. The same argument with �2 2 � n �p(U) such that

�2 6= �1, implies that U has no singularly continuous spectrum in � n V2, where V2 � � is any closed

neighborhood of �2. Therefore, if V1 and V2 are chosen small enough, one has � = (� n V1) [ (� n V2)

and thus U has no singularly continuous spectrum in �.
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Remark 2.8. If the inequality (2.5) holds with K = 0, then the operator U has only purely abso-

lutely continuous spectrum in � (no point spectrum). Indeed, under this stronger assumption,

the inequality (2.4) is satis�ed with K 0 = 0, and thus a strict Mourre estimate holds for H� locally

on �. The statement of Proposition 2.6 can then be strengthened accordingly, and so does the

statement of Theorem 2.7.

Our next goal is to exhibit locally U -smooth operators in our setting. Mimicking the corresponding

de�nition in the self-adjoint case, we say that an operator B 2 B(H) is locally U -smooth on an open

set � � T if for each closed set �0 � �X
n2Z



BUnEU (�0)


2 <1: (2.6)

We also recall from [4, Thm. 2.2] that (2.6) is equivalent to

sup
z2D; '2H; k'k=1

��
';B �(U; z)EU (�0)B�'
��� <1;

with D � C the open unit disk and �(U; z) :=
�
1� zU�

��1
�
�
1� �z�1U�

��1
the unitary version of the

di�erence of resolvents. Note that if �0 = T in (2.6), then B is globally U -smooth in the usual sense

[16, Sec. 7].

Now, let us observe that for z 2 C with jzj 6= 1 one has

(1� zU�)�1 =

�
1� z��

H� � i

H� + i

��1
=
H� + i

1� ��z

�
H� + i

1 + ��z

1� ��z

��1
;

which implies that

�(U; z) =
�
1� jzj2

��
1� zU�

��1�
(1� zU�)�1

	�
=
�
1� jzj2

�H� + i

1� ��z

�
H� + i

1� ��z

���
H� + i

1 + ��z

1� ��z

��1��
H� + i

1 + ��z

1� ��z

��1��

=
�
1� jzj2

� H2
� + 1

j1� ��zj2

�
H� + i

1 + ��z

1� ��z

��1�
H� + i

1 + ��z

1� ��z

��1
:

Moreover, let �0 � T n f�g be closed, and consider the closed bounded set J � R given by

J :=

�
�i

1 + ���0

1� ���0
j �0 2 �0

�
:

Since EU (�0) = EH� (J), it follows that

H2
�E

U (�0) = H2
�E

H� (J) = �(H�)E
H� (J) = �(H�)E

U (�0)

for some function � 2 C1(R;R) with compact support. As a consequence, one infers that

�(U; z)EU (�0) =
�
1� jzj2

��(H�) + 1

j1� ��zj2

�
H� + i

1 + ��z

1� ��z

��1�
H� + i

1 + ��z

1� ��z

��1
EU (�0); (2.7)

where �(H�) 2 C1(A) if H� is of class C1(A), due to [3, Thm. 6.2.5]. Under the same regularity

assumption on H�, let us also observe that for any s 2 [0; 1) the operator

hAi�s
�
�(H�) + 1

�
hAis with hAi :=

p
1 + A2;

de�ned on D
�
hAis

�
, extends continuously to an element of B(H) (see [3, Prop. 5.3.1]). With these

preparations done, we can prove the existence of a large class of locally U -smooth operators :
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Proposition 2.9 (Locally U -smooth operators). Suppose that the assumptions of Theorem 2.7

hold for some open set � � T. Then, each operator B 2 B(H) which extends continuously to an

element of B
�
D(hAis)�;H

�
for some s > 1=2 is locally U-smooth on � n �p(U).

Proof. We can set B = hAi�s and s 2 (1=2; 1) without lost of generality. So, we give the proof in this

context.

Let �0 ( � n �p(U) be closed and �x � 2 � n f�p(U) [�0g. Let also O0 � D be an open set with

closure cl(O0) satisfying

�0 � cl(O0) \ T � � n
�
�p(U) [ f�g

�
:

Then, one infers from the de�nition of �(U; z) that

sup
z2DnO0



�(U; z)EU (�0)


 <1: (2.8)

We can thus restrict our attention to the case z 2 O0. But, we know from (2.7) that

hAi�s�(U; z)EU (�0)hAi�s

= hAi�s
�
�(H�) + 1

�
hAis

�
1� jzj2

j1� ��zj2
hAi�s

�
H� + i

1 + ��z

1� ��z

��1�
H� + i

1 + ��z

1� ��z

��1
EU (�0)hAi�s

�
;

for some � 2 C1(R;R) with compact support. Furthermore, we know that hAi�s
�
�(H�) + 1

�
hAis

de�ned on D
�
hAis

�
extends continuously to an element of B(H). So, we can further restrict our

attention to the operator within the curly brackets for z 2 O0.

Using the notations " := Im
�
� i 1+

��z
1���z

�
� jzj2�1

j1���zj2
and � := Re

�
� i 1+

��z
1���z

�
� � 2 Im(��z)

j1���zj2
, one gets the

following bound for the norm the operator within the curly brackets :

j"jhAi�s�H� � �� i"
��1�

H� � �+ i"
��1

EU (�0)hAi�s


 � j"j



hAi�s(H� � �� i")
�1


2: (2.9)

Now, the set V :=
�
� i 1+

��z
1���z

j z 2 cl(O0) \ T
	
is one of the compact subsets of R n �p(H�) mentioned

in Proposition 2.6. Hence, one infers from Proposition 2.6 that

sup
z2O0

j"j


hAi�s(H� � �� i")

�1


2 = sup

z2O0



 Im
�
hAi�s(H� � �� i")

�1hAi�s
	



� sup
z2O0





hAi�s
�
H� + i

1 + ��z

1� ��z

��1
hAi�s






<1:

This bound, together with (2.8) and (2.9), implies the claim since any closed subset of � n �p(U) is at

most the union of two closed sets as �0.

To close the section, we give a corollary on the perturbations of U which is useful for applications.

For shortness, we state the result in the C1+0(A) case :

Corollary 2.10 (Perturbations of U). Let A be a self-adjoint operator in H and let U and V be

unitary operators in H, with U; V 2 C1+0(A). Suppose that there exist an open set � � T, a

number a > 0 and a compact operator K 2 K (H) such that

EU (�)U�[A;U ]EU (�) � aEU (�) +K: (2.10)

In addition, assume that V � 1 and [A; V ] belong to K (H). Then, V U has at most �nitely many

eigenvalues in any closed subset of �, each one of �nite multiplicity, and V U has no singularly

continuous spectrum in �.
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Note that since UV = U(V U) U�, the operators UV and V U are unitarily equivalent and thus

have the same spectral properties.

Proof. The product V U belongs to C1+0(A), since U and V belong to C1+0(A) (see [3, Prop. 5.2.3(b)]).

Furthermore, a direct computation using the inclusion [A; V ] 2 K (H) implies that

(V U)�[A; V U ]� U�[A;U ] 2 K (H): (2.11)

Now, since V U � U = (V � 1)U is compact, it follows from an application of the Stone-Weierstrass

theorem that �(V U) � �(U) is compact for any � 2 C(T). Therefore, for any � 2 C(T;R) satisfying

�(U) = �(U)EU (�), one infers from (2.10) and (2.11) that

�(V U)(V U)�[A; V U ]�(V U) = �(U)EU (�)U�[A;U ]EU (�)�(U)+K1 � a�2(U)+K2 = a�2(V U)+K3;

with K1;K2;K3 2 K (H). Since for each open set �0 � T with closure in �, one can �nd � 2 C(T;R)

such that �(U) = �(U)EU (�) and EV U (�0) = EV U (�0)�(V U), it follows that

EV U (�0)(V U)�[A; V U ]EV U (�0) = EV U (�0)�(V U)(V U)�[A; V U ]�(V U)EV U (�0) � aEV U (�0) +K4;

with K4 2 K (H). Thus, the claims for V U follow directly from Theorem 2.7.

Example 2.11. A typical choice for the perturbation V in Corollary 2.10 is V = eiB with

B = B� 2 K (H) satisfying B 2 C1+0(A) and [A;B] 2 K (H). Indeed, in such case we know

from [3, Prop. 5.1.5] that Bk 2 C1(A) and that
�
A;Bk

�
=
Pk�1

`=0 B
k�1�`[A;B]B` for each k 2 N�.

Therefore, one has for each ' 2 D(A)



A'; eiB '

�
�


'; eiB A'

�
=
X
k�1

ik

k!



A';Bk'

�
�


';BkA'

�
=

*
';
X
k�1

ik

k!

k�1X
`=0

Bk�1�`[A;B]B`'

+
;

where
P

k�1
ik

k!

Pk�1
`=0 B

k�1�`[A;B]B` is a norm convergent sum of compact operators. It follows

that eiB 2 C1(A) with
�
A; eiB

�
=
P

k�1
ik

k!

Pk�1
`=0 B

k�1�`[A;B]B` 2 K (H). Then, a simple calcula-

tion using the expression for
�
A; eiB

�
, the inclusion B 2 C1+0(A) and the fact that C1+0(A) is a

Banach space, shows that eiB 2 C1+0(A). Since one also has eiB �1 2 K (H), all the assumptions

on V of Corollary 2.10 are satis�ed.

3 Applications

3.1 Perturbations of bilateral shifts

Consider a unitary operator U in a Hilbert space H and a subspace M� H such that

M? Un(M) for each n 2 Z n f0g and H =
M
n2Z

Un(M):

Such a unitary operator U , called a bilateral shift on H with wandering subspaceM, appears in various

instances as in F. and M. Riesz theorem or in ergodic theory (see [21, Sec. 3]). Using the notation

' � f'ng for elements of H, we de�ne the (number) operator

A' := fn'ng; ' 2 D(A) :=
�
 2 H j

P
n2Z n

2 k nk
2 <1

	
:

The operator A is self-adjoint since it can be regarded as a maximal multiplication operator acting in

a `2-space. Furthermore, a direct calculation shows that


A ';U'

�
�


';UA '

�
=


';U'

�
for each

' 2 D(A), meaning that U 2 C2(A) � C1+0(A) and that U�[A;U ] = U�U = 1.
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Therefore, we infer from Theorem 2.7 and Remark 2.8 that U has purely absolutely continuous

spectrum, as it is well known. Now, let V be another unitary operator with V 2 C1+0(A), V�1 2 K (H)

and [A; V ] 2 K (H). Then, we deduce from Corollary 2.10 that the operator V U has purely absolutely

continuous spectrum except at a possible �nite number of points in T, where V U has eigenvalues of

�nite multiplicity.

This result generalizes at the same time the results of [21, Sec. 3] and [4, Sec. 4.1] (in Theorem 4.1

of [4], a possible wandering subspace of the Hilbert space L2(Rm) is the set of states having support

in fx+ ty 2 Rm j x � y = 0; t 2 [0; T ]g).

3.2 Perturbations of the free evolution

In this subsection, we present an extension of Theorem 4.2 of [4]. So, for any m 2 N� let H := L2(Rm)

and let Q := (Q1; : : : ; Qm) and P := (P1; : : : ; Pm) be the usual families of momentum and position

operators de�ned by

(Qj')(x) := xj'(x) and (Pj')(x) := �i(@j')(x)

for any Schwartz function ' 2 S (Rm) and x 2 Rm. Our aim is to treat perturbations of the free evolu-

tion U := e�iTP
2

, which is known to have purely absolutely continuous spectrum �(U) = �ac(U) = T

for each T > 0. Following [29, Def. 1.1], we consider the operator

A' :=
1

2

�
(P 2 + 1)�1P �Q+Q � P (P 2 + 1)�1

	
'; ' 2 S (Rm);

which is essentially self-adjoint due to [3, Prop. 7.6.3(a)]. Then, a direct calculation shows that

A ';U'

�
�


';UA '

�
=


'; 2TUP 2(P 2 + 1)�1'

�
for each ' 2 S (Rm), meaning that [A;U ] =

2TUP 2(P 2 + 1)�1 by the density of S (Rm) in D(A). Therefore, one has U 2 C1(A) with U�[A;U ] =

2TP 2(P 2+1)�1, and further computations on S (Rm) show that U 2 C2(A) � C1+0(A). Now, observe

that for any open set � � T with closure cl(�) satisfying cl(�)\f1g = ?, there exists � > 0 such that

EU (�) = EP 2�
[�;1)

�
EU (�)

and

EU (�)U�[A;U ]EU (�) = 2TEU (�)P 2(P 2 + 1)�1EP 2�
[�;1)

�
EU (�) � 2T�(� + 1)�1EU (�):

By combining what precedes together with Corollary 2.10, we obtain the following:

Lemma 3.1. Let V be a unitary operator in H satisfying V 2 C1+0(A), V � 1 2 K (H) and

[A; V ] 2 K (H). Then, the eigenvalues of the operator V U outside f1g are of �nite multiplicity

and can accumulate only at f1g. Furthermore, V U has no singularly continuous spectrum.

3.3 Cocycles over irrational rotations

Consider two unitary operators U and V in a Hilbert space H satisfying, for some irrational � 2 [0; 1),

the commutation relation

UV = e2�i� V U: (3.1)

The universal C�-algebra A� generated by such a pair of unitaries is known as the irrational rotation

algebra [25, Sec. 12.3] and has attracted a lot attention these last years. It is known that both U and

V have full spectrum, that is,

�(U) = �(V ) = T:
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Our aim is to study the nature of the spectrum of U when the pair (U; V ) is the following: Let

H := L2
�
[0; 1)

�
be the L2-space over the interval [0; 1) with addition modulo 1, and let V 2 B(H) be

the unitary operator of multiplication by the independent variable, i.e.

(V ')(x) := e2�ix '(x) for all ' 2 H and a.e. x 2 [0; 1):

Given f : [0; 1) ! R a measurable function, let also U 2 B(H) be the unitary operator associated

with the cocycle f over the rotation by �, i.e.

(U')(x) := e2�if(x) '([x+ �]) for all ' 2 H and a.e. x 2 [0; 1); (3.2)

where [y] := y modulo 1. Then, U and V satisfy the commutation relation (3.1), and the spectrum of

U is either purely punctual, purely singularly continuous or purely Lebesgue [11, Thm. 3] (the precise

nature of the spectrum highly depends on properties of the pair (f; �), see for example [14, 15, 17]).

In the sequel, we treat the case f := m id+h, withm 2 Z�, id : [0; 1)! [0; 1) the identity function

and h : [0; 1)! R an absolutely continuous function satisfying h(0) = h(1). For this, we introduce the

self-adjoint operator P in H de�ned by

P' := �i'0; ' 2 D(P ) :=
�
' 2 H j ' is absolutely continuous; '0 2 L2

�
[0; 1)

�
and '(0) = '(1)

	
:

Then, we observe that an integration by parts gives for each ' 2 D(P ) that

P';U'

�
�


';UP'

�
=


'; 2�

�
m+ h0

�
U'
�
;

with h0 the operator of multiplication by h0. Therefore, if h0 2 L1
�
[0; 1)

�
, one infers that U 2 C1(P )

with U�[P;U ] = 2�
�
m+ h0([ � � �])

�
. Moreover, by imposing some additional condition on the size of

h0, one would also obtain that U�[P;U ] has a de�nite sign (the one of m). However, since this is not

very satisfactory, we shall explain in the next proposition how this additional condition can be avoided

by modifying adequately the conjugate operator P . The trick is based on the ergodic theorem and the

new conjugate operator is of the form

Pn :=
1

n

n�1X
j=0

U�jPU j (3.3)

for some large n 2 N� (see the Appendix for abstract results on the self-adjointness of Pn and on

regularity properties with respect to Pn).

Proposition 3.2. Let f := m id+h, with m 2 Z� and h 2 C1
�
[0; 1);R

�
with h0 Dini-continuous

and h(0) = h(1). Then the operator U , de�ned by (3.2) with � irrational, has a purely Lebesgue

spectrum equal to T. Furthermore, the operator hP i�s is globally U-smooth for any s > 1=2.

Proof. In what follows, we assume without loss of generality that m 2 N� (if m < 0, the same proof

works with P replaced by �P ).

Since h0 is Dini-continuous, h0 2 L1
�
[0; 1)

�
and U 2 C1(P ) as indicated before. Thus, one infers

from the Appendix (with A = P ) that for each n 2 N� the operator Pn, de�ned in (3.3), is self-adjoint

on D(Pn) := D(P ). Moreover, one deduces from Lemma 4.1(a) that U belongs to C1(Pn) with

[Pn; U ] =
1

n

n�1X
j=0

U�j [P;U ]U j =
2�

n

n�1X
j=0

U�j
�
m+ h0

�
U j+1 = 2�U

 
m+

1

n

nX
j=1

h0([ � � j�])

!
:

Thus, one has U�[Pn; U ] = 2�
�
m + 1

n

Pn
j=1 h

0([ � � j�])
�
. Also, since

R 1
0
dxh0(x) = 0, it follows from

the strict ergodicity of the irrational translation by � that
�� 1
n

Pn
j=1 h

0([ � � j�])
�� < 1=2 for n large

enough. So, one deduces that U�
�
Pn; U

�
� � if n is large enough.
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To check that U 2 C1+0(Pn), we observe from Lemma 4.1(b) that it is su�cient to show the

inclusion U 2 C1+0(P ). We also recall that [P;U ] = 2�
�
m + h0

�
U . Therefore, since U satis�es the

condition
R 1
0

dt
t



 e�itP U eitP �U


 <1, one is reduced to showing thatZ 1

0

dt

t



 e�itP (m+ h0) eitP �(m+ h0)


 = Z 1

0

dt

t



 e�itP h0 eitP �h0

 <1:

However, this condition is readily veri�ed since it corresponds to nothing else but the Dini-continuity

of h0. One then concludes by applying Theorem 2.7 and Proposition 2.9, and by taking into account

the equality D(Pn) = D(P ).

The �rst part of Proposition 3.2 is not new; the nature of the spectrum of U was already determined

in [14, 15] under a slightly weaker assumption (h absolutely continuous with h0 of bounded variation).

On the other hand, we have not been able to �nd in the literature any information about globally

U -smooth operators. Therefore, the second part Proposition 3.2 is apparently new.

3.4 Vector fields on manifolds

LetM be a smooth orientable manifold of dimension n � 1 with volume form 
, and let H := L2(M;
)

be the corresponding L2-space. Consider a complete C1 vector �eld X 2 X(M) on M with 
ow

R�M 3 (t; p) 7! Ft(p) 2M . Then, there exists for each t 2 R a unique function det
(Ft) 2 C
1(M ;R)

satisfying F �t 
 = det
(Ft)
, with F
�
t the pullback by Ft (det
(Ft) is the determinant of Ft, see [1,

Def. 2.5.18]). Furthermore, the continuity of the map t 7! Ft( �), together with the fact that F0 = idM
is orientation-preserving, implies that det
(Ft) > 0 on M for all t 2 R. So, one can de�ne for each

t 2 R the operator

Ut' :=
�
det
(Ft)

	1=2
F �t '; ' 2 H;

which is easily shown to be unitary in H (use for example [1, Prop. 2.5.20]). Now, let M0 :=
�
p 2M j

Xp = 0
	
be the set of critical points of X. Then, the subspaces L2(M0;
) and L2(M nM0;
) reduce

Ut, with Ut � L2(M0;
) = 1 and Ut � L2(M nM0;
) unitary. Therefore, we can restrict our attention

to the unitary operator U0
t := Ut � L2(M nM0;
) in H0 := L2(M nM0;
).

Suppose that there exist a function g 2 C1(M nM0;R) and a constant � > 0 such that

dg �X � � and dg �X 2 L1(M nM0;
): (3.4)

Then, the multiplication operator

A' := �g'; ' 2 Cc(M nM0);

is essentially self-adjoint in H0 [19, Ex. 5.1.15], and a direct calculation using the inclusion U0
t Cc(M n

M0) � Cc(M nM0) implies for each ' 2 Cc(M nM0) that

A';U0

t '
�
H0

�


';U0

t A'
�
H0

=


';U0

t

�
U�tAU

0
t � A

�
'
�
H0

= �


';U0

t

�
F ��t g � g

�
'
�
H0

=

�
';U0

t

Z t

0

ds (dg)F�s �XF�s '

�
H0

;

where
R t
0
ds (dg)F�s �XF�s is the multiplication operator by the function p 7!

R t
0
ds (dg)F�s(p) �XF�s(p).

This, together with the density of Cc(M nM0) in D(A) and the second condition of (3.4), implies that

[A;U0
t ] = U0

t

R t
0
ds (dg)F�s � XF�s 2 B(H0) and

�
A; [A;U0

t ]
�
=
� R t

0
ds (dg)F�s � XF�s

�2
2 B(H0). So,

U0
t 2 C

2(A) � C1+0(A), and the �rst condition of (3.4) gives for any t > 0

�
U0
t

���
A;U0

t

�
=

Z t

0

ds (dg)F�s �XF�s � �t:

12



Therefore, we infer from Theorem 2.7 and Remark 2.8 that U0
t is purely absolutely continuous in

H0 for any t > 0 (and thus for all t 6= 0 since U0
�t = (U0

t )
�). In particular, Ut is purely absolutely

continuous in H for any t 6= 0 if the measure ofM0 (relative to 
) is zero. This result complements [20,

Sec. 2.9(ii)], where the author treats the case of unitary operators induced by divergence-free vector

�elds on connected open subsets of Rn.

To conclude this subsection, we exhibit an explicit class of vector �elds on Rn satisfying all of our

assumptions : Take M = Rn and let X 2 X(Rn) be given by

Xx := f(jxj)
x

jxj
; x 2 Rn;

where f 2 C1
�
[0;1);R

�
satis�es limr&0 jf(r)=rj < 1 and �1r � f(r) � �2r + �3 for all r � 0 and

some �1; �2; �3 > 0. Then, we have M0 = f0g, and we know from [18, Rem. 1.8.7] that X is complete.

Therefore, the restriction U0
t := Ut � L2(Rn n f0g;dx) is a well de�ned unitary operator. Now, let

g 2 C1(Rn n f0g;R) be given by g(x) := ln(jxj2). Then, the conditions (3.4) are veri�ed due to the

properties of the function f , and so U0
t is purely absolutely continuous in L2(Rnnf0g;dx) for any t 6= 0.

Since M0 has Lebesgue measure zero, it follows that Ut is purely absolutely continuous in L2(Rn;dx).

This covers for instance the well known case of the dilation group, where f(r) = r.

4 Appendix

In this appendix, we introduce an abstract class of conjugate operators which is useful for the study

of cocycles in Section 3.3.

Let A and U be respectively a self-adjoint and a unitary operator in a Hilbert space H. If U 2

C1(A), then we know from [3, Prop. 5.1.5-5.1.6] that Uk 2 C1(A) for each k 2 Z and UkD(A) = D(A).

Therefore, for each n 2 N� the operator 1
n

Pn�1
j=0 U

�j
�
A;U j

�
is bounded, and the operator

An' :=
1

n

n�1X
j=0

U�jAU j' �
1

n

n�1X
j=0

U�j
�
A;U j

�
'+ A'; ' 2 D(An) := D(A);

is self-adjoint. Furthermore, we have the following result on the regularity of U with respect to An:

Lemma 4.1. Take n 2 N� and let A and U be respectively a self-adjoint and a unitary operator

in a Hilbert space H. Then,

(a) if U 2 C1(A), then U 2 C1(An) with [An; U ] =
1
n

Pn�1
j=0 U

�j [A;U ]U j,

(b) if U 2 C1+0(A), then U 2 C1+0(An).

Proof. (a) Since Uk 2 C1(A) for each k 2 Z, one has for any ' 2 D(An) that



An';U'

�
�


';UAn'

�
=

1

n

n�1X
j=0



';
�
U�jAU j+1 � U1�jAU j

�
'
�
=

1

n

n�1X
j=0



';U�j [A;U ]U j'

�
;

with [A;U ] 2 B(H). This implies the claim.

(b) We know from point (a) that U 2 C1(An) with [An; U ] =
1
n

Pn�1
j=0 U

�j [A;U ]U j . Therefore, it

is su�cient to show for each j 2 f1; : : : ; n� 1g that

Z 1

0

dt

t



 e�itAn Bj e
itAn �Bj



 <1;
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with Bj := U�j [A;U ]U j . But, for each t 2 R and each ' 2 D(A) we have

eitAn '� eitA ' =

Z t

0

ds
d

ds

�
eisAn e�isA�1

�
eitA ' =

i

n

n�1X
k=0

Z t

0

ds eisAn U�k
�
A;Uk

�
ei(t�s)A ':

So, there exists Ct 2 B(H) with kCtk � Const:jtj such that eitAn = eitA+Ct, and thus

Z 1

0

dt

t



 e�itAn Bj e
itAn �Bj



 � Const +

Z 1

0

dt

t



 e�itABj e
itA�Bj



: (4.5)

Now, the integral
R 1
0

dt
t



 e�itAD eitA�D


 is �nite for D = U�j , D = [A;U ] and D = U j due to the

assumption. So, the integral in the r.h.s. of (4.5) is also �nite, and thus the claim is proved.
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