ABELIAN VARIETIES WITH HECKE ALGEBRA ACTION
ANGEL CAROCCA AND RUBI E. RODRIGUEZ

ABSTRACT. The action of a finite group G on an abelian variety A induces a decom-
position of A into factors related to the rational irreducible representations of G, the
so called isotypical decomposition of A; when A = JZ is the Jacobian variety of a
curve Z with G-action, for every subgroup H of G there is an induced canonical action
of the corresponding Hecke algebra Q[H\G/H] on the Jacobian of the quotient curve
Zy = Z/H, and a corresponding isotypical decomposition of JZg. These results have
provided geometric and analytic information on the factors appearing in the isotypical
decomposition of JZ and JZpy.

In this paper we show that similar results hold for any abelian variety A with G-
action: for any subgroup H of G there is a natural subvariety Apy of A fixed by H, such
that Q[H\G/H] acts on Ag. We investigate the associated isotypical decomposition
of Ay, and find the decomposition of the analytic and the rational representations of
the action of corresponding Hecke algebra on Ap. We also show that the notion of
Prym variety for covers of curves may be extended to abelian varieties, and describe its
isotypical decomposition with respect to the action of a natural induced subalgebra of its
endomorphism ring. We apply the results to the decomposition of the Jacobian and Prym
varieties of the intermediate cover given by H, in the case of smooth projective curves
with G—action. We work out several examples that give rise to families of principally
polarized abeliana varieties, Jacobian and Prym varieties with large endomorphism rings.

1. INTRODUCTION

Let G be a finite group acting on an abelian variety A; this action induces an algebra
homomorphism ¢ : Q(G] — Endg(A).

Following [L-R] and [Ca-Ro], we define Im(a) = Im(¢p(ma)) C A for any a € Q[G],
where m is any positive integer such that ma € Z[G]. The decomposition of 1 € Q[G]
as the sum of the central orthogonal idempotents e; of Q[G] corresponding to the simple
components of Q[G] induces a G-equivariant isogeny

A~ A x Ay x ..o x A,

where A; = Im(e;), the isotypical decomposition of A, and G acts on A; via the corre-
sponding rational irreducible representation W; of G.
Also, any decomposition of e; as a sum of primitive orthogonal idempotents f;, induces
an isogeny
Ai ~ By x By, x ... x B;,
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Furthermore, the B;,, B;,, ..., B;, are all isogenous to each other. In this way the fol-

lowing G-equivariant isogeny decomposition for A is obtained
A~ Bt x By x ... x B,

The B; were obtained as images of explicit idempotents in Q[G] in [Ca-Ro]. For the
case A = JZ, the Jacobian variety of a smooth projective curve Z with G-action, more
information is known for the B;. For instance, their dimension was obtained in [R], in
terms of the fixed points of G in Z and their stabilizer subgroups.

It was also shown in [L-R] and [Ca-Ro] that if H < N < G are subgroups of G
with intermediate covering F' : Zy — Zy where Zy = Z/H and Zy = Z/M, then the
Jacobians JZg and JZy, as well as the (generalized) Prym variety P(Zy/Zy), defined as
the orthogonal complement of F*(JZy) in JZy, admit similar isogeny decompositions.
In fact, there exist non negative integers h; and p; such that

JZy ~BM" x .. x B"  P(Zy/Zy)~ B x...x B,

It was further shown in [CLRR] and in [E] that the Hecke algebra Q[H\G/H] acts
naturally on JZg.

The decomposition of the induced actions of G on the analytic differentials on Z and
on the first homology of Z into complex irreducible representations of G are known to be
given respectively by the Chevalley-Weil formula and by the Lefschetz fixed point formula
and the Eichler trace formula.

It is the aim of the present paper to generalize the above results to the case of abelian
varieties A with a finite group G action: we associate to each subgroup H < G a canonical
subvariety Ag on which the Hecke algebra Q[H\G/H| acts naturally, describe the isotyp-
ical decomposition of Ay, compute the dimension of its factors, define the (generalized)
Prym variety P(Ag/Ay) associated to subgroups H < N < G and find its isotypical
decomposition under the action of a natural subalgebra of Q[ H\G/H].

Our point of view for doing this is the following: Let G be a finite group acting on an
abelian variety A, and let H be a subgroup of GG. For the central idempotent element of

Q[H]
1
P = 75 h7
P>
consider the abelian subvariety of A given by

Ap = Im(pg).

Let Huo = puQ|Glpy = Q[H\G/H] be the Hecke algebra over Q of H in G; namely
the subalgebra of Q[G] consisting of the Q-valued functions on G that are constant on each
double coset of H in G. In Section 2 we recall the notation and describe the representation
theory of Hy g.

The homomorphism ¢ : Q[G] — Endg(.A) restricts to an algebra homomorphism

’QDH . HH,Q - EndQ(AH)
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In Section 3 we show that the homomorphism ¢y induces an 'H g g-equivariant isogeny
decomposition of Ay into factors related to the rational irreducible representations of
Hu g, the isotypical decomposition of Ay, and in Section 4 we obtain an isogeny decom-
position of these Hy g-invariant factors, of the form

al a2 ar
Apg ~ Bi' x By x ... x By".

In Section 5 we establish relations between the analytic and the rational representation
of G on A and the corresponding representations of the Hecke algebra on Ay.

In Section 6 we show that the notion of a generalized Prym variety for covers of curves
may be extended to abelian varieties; we also describe its isotypical decomposition, and
a natural subalgebra of its endomorphism ring.

In Section 7 we consider the case of curves with G-action and we apply these results to
the Jacobian and Prym varieties of the intermediate cover given by H, as follows.

Let Z be a smooth projective curve (defined over the field of the complex numbers) on
which G acts, and let Zy denote the quotient of Z by H, for any subgroup H < G. Then
there is a canonical action of the corresponding Hecke algebra Hpy g on JZpy, the Jacobian
variety of Zy. We study this action, and obtain the corresponding isotypical decomposi-
tion of JZy, together with a description of the action on each factor. Formulae analogues
to the Chevalley-Weil formula and for the decomposition of the rational representation
are given.

If N denotes any subgroup of G containing H, there is a natural isogeny

JZy ~JZn x P(Zu/Zn),

where P(Zy/Zy) is the (generalized) Prym variety of the cover Zy — Zy. In Section
8 we describe the induced action on JZy and P(Zy/Zy) by appropriate subalgebras of
H H,Q-

The paper concludes with several examples: the first is the description of a four dimen-
sional family of principally polarized abelian varieties containing no Jacobians, admitting
an action by the symmetric group of degree three; we find their isotypical decomposition,
the decomposition of their analytic and rational actions, and a description of the isotypi-
cal factors in terms of a fixed subvariety and a generalized Prym variety, including their
endomorphism rings.

The second example exhibits a series of Jacobian and classical Prym varieties with
complex multiplication, of dimension 2™~ for each m > 3.

—1(g—1
The third example describes a series of Prym varieties of dimension plp=1)(g ),

2
whose endomorphism ring contains a copy of the square matrices of size p(p — 1)(¢ — 1)
over Q, where p and ¢ are odd prime numbers such that p divides ¢ — 1 but p? does not
divide ¢ — 1.

We suppose throughout that all curves and abelian varieties are defined over the field
of complex numbers. Moreover the curves will always be smooth and projective.
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2. PRELIMINARIES

2.1. The group algebra. Let GG be a finite group. In order to fix the notation, we start
by recalling some basic properties of representations of G and the Hecke algebra associated
to any subgroup H < G (see [C-R], [C-R1] and [Ca-Ro]). For any field F' of characteristic
zero we denote by F[G] the group algebra of G over F'; we identify the elements of F[G]
with the F-valued functions on G. In this paper the field F' will be either the complex
numbers C or the rational numbers Q.

F[G] is a semisimple algebra, whose simple components correspond bijectively with the
elements of the set Irrp(G), the irreducible F-representations of GG, as we now recall.

The central idempotent ey of C[G] that generates the simple subalgebra of C|[G] cor-
responding to a complex irreducible representation V of GG, and the central idempotent
ey of Q[G] that generates the simple subalgebra of Q[G] corresponding to a rational
irreducible representation W of GG, are respectively given by

dimg(V _
(2.1) ey = dime(V) ZXV(Q Yg, and
Gl =
dlIH(c -1
ey = g, /0 (6v Z trKv/Q Xv ))97

geG

where Ky = Q(xv(g9) : ¢ € G) is the character field of V, tr denotes the trace,
and V is a complex irreducible representation of G Galois-associated to W; that is,

W, C = Z V7, where Ly is the field of definition of V.

o€Gal(Ly/Q)
Then the simple algebra C[G]ey affords the complex irreducible representation V with

multiplicity dim¢()V), and
- P ce

V € Irre(G)

affords the regular representation of G.
In particular, the unit in C[G] decomposes as the sum of the central idempotents in

C|[G] as follows.
1G = Z ey.

V €Irre(G)

Similarly, the simple algebra Q[G|eyy, affords the rational irreducible representation W
with multiplicity ny, = dlmi(v where sy, = [Ly : Ky] is the Schur index of V, and V is
a complex irreducible representation Galois-associated to W, and

Q] = @ Q[Glew

W € Irrg(G)

affords the regular representation of G.
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In particular, the unit in Q[G] decomposes as the sum of the central idempotents in

Q[G] as follows.
1G = Z Ew.

W € Irrg(G)

2.2. The Hecke algebra of a subgroup. In this section we recall the notation and
some known facts about the Hecke algebra for a subgroup H of a group G, following

[C-R1] and [Ca-Ro].
Let H be a subgroup of a finite group G. Then the element

1
(2.2) Pr = ﬁ Z h

heH

is the central idempotent of F[H| corresponding to the trivial representation of H. More-
over, the left ideal F[G]py in F[G] affords the F-representation of G induced by the trivial
representation of H. In the sequel we denote this representation by 1.

It is known that (see for instance [Ca-Ro, Lemma 4.3])

Sy
V € Irre(G) V € Irre (G) W e Irrg(G)
where for each complex irreducible representation V of G, V¥ denotes the subspace of
V fixed by H, and for each rational irreducible representation W of GG, V is a complex
irreducible representation Galois-associated to W, and sy is the Schur index of V. Here
(-, )¢ denotes the usual inner product for two complex representations of G.

The F-algebra Hy r = puF|Glpy = F[H\G/H], considered as a subalgebra of F[G],
consists of the F-valued functions on G which are constant on each double coset HgH of
H in G. It is called the Hecke algebra over F' of H in GG, and its unit is pgy.

We now recall that there is a bijection from the set of all irreducible F-representations
U of G such that dimpz(U*) # 0 to the set of all irreducible F-representations U of the
semisimple F-algebra Hpy p (see for instance [C-R1, Chapter 11].

Given U in Irrp(Hp r), the unique irreducible representation U of G such that U=

U, . will be called associated to U. Note that dimp(U) = dimp(U"). Furthermore, if
My is a simple F[G]-module affording U, then py(My) = Mj; is a simple Hpy p-module
affording U.

We now recall some idempotents in Hy p and their properties, that will prove useful
later. For a complete proof see [Ca-Ro, Theorem 4.4].

Lemma 2.1. For each U in Irrp(G), set
(2.4) fo,u = pueu = eupu.
Then

o firu=Tnu;
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° thJ/{ = fHJ,{ = fHJ/{h fO’f’ all h € H,' that iS, fH,L{ € HH,F;'

o fuu =0 if and only if dimp(UT) = 0.

o [fF = C, then the left ideal C[G] fry affords the representation U with multiplicity
If F = Q, then the left ideal Q|G| fuu affords the representation U with mul-

tiplicity ay = dimgi(vH), where sy is the Schur index of V, and V is a complex

irreducible representation Galois-associated to U.

An immediate consequence is the following result.

Corollary 2.2. With notation as in the previous lemma, the central idempotents in Hy
are given by {fuy U € rp(Hur)}, the decomposition of the semisimple algebra Hy
into simple components is given by

HH,F = @ 7_{H,F.]CH,Z/{ = @ fH,Z/{HH,FfH,Lla

Z;VIEII“I“F(HHyF) HEIrrF(HHyF)

the decomposition of the unit py of Hy r into central idempotents is given by

P = Z fr,u,

Z/N{EIrrF(HH,F)

and each simple component Hy rfu u affords the irreducible representation U with mul-
tiplicity

dime(UH), if U is complex irreducible;

Ay = dlm(c(VH)

Y

if U is rational irreducible and V is a complex
Sy
irreducible representation Galois-associated to U .

2.3. A construction of primitive rational idempotents invariant under a sub-
group. We are interested in further decomposing each central idempotent fz; in the
simple algebra Hp o fmu constructed in the previous section, as a sum of H-invariant
orthogonal primitive rational idempotents. We now provide an explicit construction for
these invariant idempotents; they will be used later on to construct the basic blocks in
the isotypical decomposition of the canonical abelian subvariety Ag associated to the
subgroup H, for the abelian variety A with action of the group G.

We recall from [Ca-Ro, Corollary 3.6] that for each rational irreducible representation
W of G, explicit orthogonal primitive idempotents f;, 1 < j7 < n, may be found such that

6W:f1—|——|—fn
For each subgroup H < G, multiplying this last equality on the right by py we obtain

faw = fipg+...+ fupn.
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However, the f; py need not be idempotents (some mat be zero), they may generate the

same ideal, and this is not the sought decomposition. To find this decomposition, set
dim(c(VH)

J; = Q|G]f;jpu, and renumber the f; so that the first ayy = of them satisfy

fipum # 0, where V is a complex irreducible representation Galois-;ssociated to W, and
also so that J; # Jj for 1 < j # k < ayy. Lemma 2.1 implies that one can find precisely
ayy of the ideals J; satisfying these conditions.

Then each J; is a minimal left ideal in the simple algebra Q[G] fuw, for 1 < j < ayy,
and

(2.5) QG| fuw = é Jj.

Hence there exist unique primitive idempotents {v;}72] in Q[G] fp,w such that each v;
generates J; and

(26) .fH,W =v1+...+ Vayy -

Note that each v; is invariant under right multiplication by any h in H, since J; is; v; is
also invariant under right multiplication, because hv; is in J;, the left hand side of (2.6)
is invariant under multiplication by any h, and the decomposition (2.6) is unique.

Therefore v; € Hp g, and it is also a primitive idempotent there, as follows from [C-R,
Corollary 11.23]. We have thus shown how to explicitly construct the required H-invariant
primitive idempotents v; in Hp g satistying (2.6).

3. THE ISOTYPICAL DECOMPOSITION OF Ay

Let G be a finite group acting on an abelian variety A; this action induces an algebra

homomorphism
Y : Q[G] — Endg(A).

Since this homomorphism is canonical, we will denote the elements of Q[G] and their
images by the same letter. As mentioned in the introduction, for any o € Q[G] we define
Im(a) = Im(¢(ma)) C A where m is some positive integer such that ma € Z[G]. Tt is
clear that Im(«) is an abelian subvariety of .4, which does not depend on m.

Let H be a subgroup of GG. Consider the subvariety of A given by

Ag =Im(pg).

We call Ay the canonical subvariety of A fixed by H.

It is clear that H acts trivially on Ay, and that in the case H is a normal subgroup of G
the factor group G/H acts on Ay. In the general case H < GG, consider the Hecke algebra
Huo = puQ|G]py; then the homomorphism v restricts to an algebra homomorphism

(31) IDH . HH,@ — EIldQ(.AH)

In order to study the action of Hy g on Apg, it is useful to make a few comments about
the structure of the Hecke algebra of H in G.
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Let Irrg(G) = {Wi, Wa, ..., W,} be the set of all rational irreducible representations
of G. Consider Tx the representation of GG induced by the trivial representation of H.
Recall from (2.3) that Ty decomposes as follows

Ty ZaW @aWo @ ... D a, WV, ,

. dime (VH . . . . . .
with a; = 22V where V), is a complex irreducible representation Galois-associated to

sy,
Wi .
Let (renumbering if necessary) {Wy, Wh, ..., W, } denote the set of all rational irreducible
representations W, such that a; # 0. We recall from Section 2.2 that there is a bijection

from this set to the set {Wl, Wy, .. W,} of all rational irreducible representations of Hy .
According to Corollary 2.2, the unit py € Hpy g decomposes as follows

(3.2) pa = faw, + fow, + o+ fow,
with fz )y, the unit in the simple subalgebra of Hy g corresponding to VA\Z

Proposition 3.1. Set Ay, 5 = Im(fuw,) € Ay for i =1,....t. Then

(1) The subvarieties Ay, 5, are Hpg-invariant, and the action of Hyg on Ay 5. is

given by the representation W;; in fact, the homomorphism 1y of (3.1) restricts
to

Yrw, - frw,; (QG]) fuw, — Endg(Ay 53,)-

(2) There is an Hpyg-equivariant isogeny
(3.3) Ay, X Ay, X o X Ay, — An

As in [L-R] for the case of a group action, we call (3.3) the isotypical decomposition of
Apg. Tt is unique up to permutation of the factors.

Proof. (1) By Corollary 2.2, fm, is a central idempotent in Hpy g.
Furthermore,

PHIPH (-AH, Wi) = pugpu (fuw; (An)) = fuw, 0ugpu (An)) € Ay 5,

for all g € G. Hence, Ay, 5, is Hpyg-invariant. The second assertion follows from the fact
that the idempotent element fp )y, affords the representation 17\7Z with multiplicity a;.
(2) Since
pu = fuw + fuw, + o+ faw,

and fgy, is a central idempotent in Hp g, the addition map induces the required Hp o-
equivariant isogeny. U
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4. A DECOMPOSITION OF THE COMPONENTS A OF Apg

H, WZ
Let G be a finite group acting on an abelian variety A. Let {W;, Ws, ..., W,.} be the

set of all rational irreducible representations of G. According to [L-R, Prop. 1.1], the
isotypical decomposition of A is given by

A~ Ay, X Ay, X oo X Ay,

where Ay, = Im(ey,) and ey, is the unit of the corresponding simple components of
Q[G]. Also, by [L-R, Th. 2.2] and [Ca-Ro, Section 5] we have

(4.1) A~ By X By, X ... X By,
withn; = din;#w, where V; is a complex irreducible representation of G Galois-associated

to W;. The last isogeny is obtained by considering the decomposition of each ey, as a sum
of primitive orthogonal idempotents f; in the corresponding simple component Q[G]ep,
of Q[G], and letting By, = Im(f;).

Given H a subgroup of G, we are interested to obtain the corresponding decomposition
of the isotypical factors A for the canonical subvariety Apg fixed by H given in
Proposition 3.1:

H7W¢

AH ~ ‘AH,WI X ‘AH,WQ X ... X ‘AH,W{

Let A, ;5 denote any one of them. Then

‘AH,VN\) = Im(fH,W) = Im(pHeW) Q Im(ew) = .AW,

since Ay = Im(eyy) is G-invariant.

According to Section 2.3 we can write fy )y as a sum of primitive orthogonal rational
idempotents in Hp g, all left and right invariant under multiplication by each element of
H | as follows.

(4.2) faw = paew = ewpa = faaiw + ...+ fHaow.

Consider the abelian subvarieties of A, ;5 defined by

(4.3) By ww =Im(frew) C Ay © Aw
for1 <k <a.

Proposition 4.1. Let A, 5 be an isotypical factor of Ay in the decomposition given in
Proposition 3.1 and By, ; as in (4.3). Then

(1) There is an isogeny

B, +=xB

H,1W H72,VNVX”’XB

H, a,VNV - AH,VNV :

(2) The subvarieties By | v, By o3 - -
well as to the corresponding factor By, in (4.1).

oy BH7 ayy re all wsogenous to each other, as
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Proof. (1) According to (4.2) we have

faw = faaw+ ...+ fHaw,

with all fz xw left and right invariant under multiplication by H. Then the addition map
gives an isogeny

B, - xB

H, 10 oo X X By . — ‘AH,W

(2) This assertion follows from the fact that all fg k) are primitive idempotents in the
simple component of Q[G] corresponding to W, and hence the minimal left ideals they
generate are all isomorphic to each other.

O

Combining Propositions 3.1 and 4.1 we obtain the main result of this section

Theorem 4.2. Let G be a finite group acting on an abelian variety A and H be a subgroup

of G. Let {Wl, Wa, ..., W;} be the set of the all irreducible rational representations of the
Hecke algebra Hp .

Then there are subvarieties BH,Wl’BH,Wz’ . "BH,VN\% of the canonical subvariety Ag
fized by H, and an Hyg-equivariant isogeny
~ BM az at
(4.4) An BH,Wl X lS’H’W2 X ... X BH’Wt,
: H
with a; = YY) here sy, is the Schur index of V; and V; is a complex irreducible

Sy

A
representation Galois-associated to W;. Furthermore, the subvarieties B‘;{kw are Hp -
sV VE

invariant, and the action of Hyg on BZ’“W is given by the representation Wy, for all
WVVE
1<k<t

In particular, when H = {1} we obtain Theorem 2.2 of [L-R]; see also [Ca-Ro] Section
D.

5. ANALYTIC AND RATIONAL REPRESENTATIONS

Let G be a finite group acting on an abelian variety .A. This action induces a complex
linear representation p, of the group G on H'(A,C), the analytic representation. Also,
the induced action of G on H'(A,Q) gives a rational linear representation p, of G, the
rational representation.

In this section we study the corresponding complex representation p, of the complex
Hecke algebra Hyc = C[H\G/H] on H'(Ay,C), and rational representation p, of the
rational Hecke algebra Hy o = QH\G/H| on H'(Ay,Q), where H is any subgroup of
G and Ay is the canonical subvariety of A fixed by H.

Remark 5.1. Let p denote the representation of G on H'(A, F') (analytic or rational) and
let M denote an F'[G]-module affording the representation p. By [GR, p. 202, Corollaire],
there are an isomorphism of F[G]-modules

HY(A,F)~M
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and isomorphisms of Hy p-modules
(5.1) HY( Ay, F) ~ H' (A, F)" ~ py(M).

Proposition 5.2. Let G be a finite group acting on an abelian variety A and H a subgroup

of G. Let p, be the analytic representation and p, be the rational representation of G, on
H'(A,C) and H'(A, Q) respectively.

(1) If the decomposition of p, as a sum of complex irreducible representations of G is

given by
Pa = E ny V7
Velrre(G)

then the complex Hecke algebra Hyc acts on H'(Apy, C) with analytic represen-

tation B
ﬁa = Z ny V.
Velrre (Hu,c)

(2) If the decomposition of p, ®q C as a sum of complez irreducible representations of
G is given by
pr ®Q (C - Z m]} V,
Velrre (G)

then the Hecke algebra Hy g acts on H'(Ag, Q) with rational representation p,,
and p,®qgC decomposes as a sum of complex irreducible representations of Hp c
as follows

ﬁr®QC: Z mvﬁ.

17611‘1‘@ (Hu,c)

Proof. Let M = H'(A, F) be the F[G]-module affording the representation p of G, where
p=p, it F=Cand p=p,if F=Q. Then

M = @ nuMu
Uelrp(G)

where M, is a simple F[G]-module affording the representation U € Irrp(G).
According to Section 2.2 and Remark 5.1, H'(Ay, F) ~ pg(M) is an Hy p-module
affording the representation p of Hy p. In this way, we obtain the decomposition

puM)= B mpuMy)= B by
Uelrrp(GQ) aelrrF('HH,F)

where My := py(My) is a simple Hy p-module affording the representation U associated
to U, and the result is proved. O

Remark 5.3. Let G be a group acting on an abelian variety A. Suppose that

Pa = Z an.

Velrre(G)
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Since the regular representation of GG, induced from the trivial representation of the trivial
subgroup {15}, decomposes as

T{lc} = Z dlm(c(V) V,
Velrre(G)
it follows that the dimension of A is given by
(5.2) dimg(A) = pa(le) = Y ny dime(V) = (pa, Ti14}) ;-
Velrre (G)
A similar argument is used to compute the dimension of the canonical subvariety Ay

fixed by a subgroup H of GG, as follows.

Corollary 5.4. Let G be a group acting on an abelian variety A with analytic represen-
tation p,, and let H a subgroup of G.
Then the dimension of Ay is given by

(5.3) dime(Ax) = (po, Tr) g 5
where Ty denotes the representation of G induced by the trivial representation of H.

Proof. Recall from (2.3) that
Tp= Y dimc(VHV= > dimc(V)V.

Velrre(G) Velrre(G)

Then

dime(Ag) = falpr) = Y mydime(V)= Y ny dime(V) = (pa, T -
Velrre (R c) Velrre(G)

O

Note that this dimension depends on the geometry of the action of G on A, and not
only on the abstract group G nor its subgroup H, as seen from the fact that it is computed
from the analytic representation p, of G.

In a similar vein, we can compute the dimension of the B; appearing in the isotypical
decompositions (4.1) and (4.4), as follows.

Corollary 5.5. Let G be a group acting on an abelian variety A, and let H denote a
subgroup of G. Assume that the decomposition of p,®g C as a sum of complex irreducible
representations of G is given by

pr®C= > myV.
Velrre (G)

For any rational irreducible representation w of Huq consider its corresponding iso-
typical factor By, 55 in the decomposition (4.4).
Then
2d1m(c(BH7W) =My Sy |Kv : @| 5
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where sy is the Schur index of V , 'V is a complex irreducible representation of G Galois-
associated to YW, and VWV is the rational irreducible representation of G associated to VV.

Proof. With the given notation, it follows from Proposition 4.1 that dimc(By ;) =
dime¢(Byy) with Byy as in (4.1).
It follows from

WeC= Sy @ Ve

ceGal(Ky/Q)
that
_ _ my
Pr Qg C= Z mylU = Z ; W.
UETrre(G) Welrrg(G)
dimg V
Since p,(G) acts on B,,”Y via the representation ¥V, we obtain the equality
dim¢ V . my . m .
2 T2 Y dime(By) = -2 dime(W @ C) = —2 sy, | Ky - Q| dime(V)
Sy Sy Sy
and the result follows. O

6. COMPLEMENTARY PRYM VARIETY

The simplest case of a group action on a curve was studied in [W] and [M], namely the
group with two elements G' = (j : j2) acting on a curve Z. Then the Jacobian variety
JZ of Z has an involution j acting on it and, furthermore, according to the isotypical
decomposition of JZ, we have

JZ ~ Bl X Bg,
where By = Im(1 + j) and By = Im(1 — j). In this case G acts trivially on By ~ JZg.
This decomposition was already observed and used by Schottky and Jung in [S-J]. Later,
By was called by Mumford the Prym variety P(Z/Zq) of the given cover Z — Zg, where
Zq denotes the quotient of Z by G.

In this section we extend the definition of Prym variety to abelian varieties with group
action.

Remark 6.1. Let GG be a finite group acting on an abelian variety A. Given two subgroups
H and N of G with H < N < @, consider the canonical subvarieties Ay and Ay of A
fixed by H and N respectively. Since

PN = PHPN = PNPH
we have that
Av C Ay and py € HN@ - HH,Q , with Yy : HN@ — End@(AN)

The next result shows the existence of a natural complement of Ay inside of Ay, and
describes a natural subalgebra of ‘Hp g acting on it.
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Theorem 6.2. Let G be a finite group acting on an abelian variety A and consider two
subgroups H and N of G with H < N < G.
For the idempotent q = py —pn € Huo C Q[G], set

P(AH/AN) = Im(q) g AH.
Then
(1) There is an isogeny

AN X P(AH/AN) — AH.

(2) The homomorphism ¢ : Q[G] — Endg(A) restricts to an algebra homomorphism
Vp g Hugq — Endg(P (An/Ax)).

(3) Consider the decomposition of Ay provided by Theorem /.2
Ab ~ By, X By, X .. X By,
Then the following decomposition of P (A /An) holds:
P(Ag/An) ~ BE,Wl X B;in X oo X B,

. dim¢ (VH dimc (VN . . . .
with 0 < ¢; = lmfé . lmfé : ), where V; is a complex irreducible representation
i A

Galois-associated to W;. Furthermore ¢p(qHuoq) acts on Bg,wj by Vﬂ\jj

We call P(Ay/Ay) the complementary Prym variety of Ay inside of Ay (see also
[B-L], p. 125). This result generalizes Proposition 3.7 of [L-R] and Proposition 5.2 and
Corollary 5.4 of [Ca-Ro], where a similar result was proved in the case A = JZ.

Proof. (1) Since the unit py of Hp g decomposes as a sum of idempotent elements in
Hu g as follows

pw =pn + (pPr —pn) =DPN + ¢,
the addition map induces the required isogeny.

(2) The assertion follows from the fact that ¢ is an idempotent in Hy o C Q[G].
(3) The last assertion is an immediate consequence of the following facts

TH:alVVleBagVVQGB...eBatWt, and
TN = b1W1 D bgWg e...P btWt,

dimc (VH)

; N
< > b, = dimg(V; ) 0]
Vi

sy,

We mention the following interesting particular cases of complementary Prym varieties.

Remark 6.3. If H = {1} and {1} # N is any subgroup of G, then
A~ Ay x P(A/AyN);
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in this case, we see that Ay, the canonical subvariety of A fixed by NV, has a complement
given by a projector in Q[G], namely P (A/Ay) = Im(1g — py). Furthermore, if N = G,
then

ANAG X P(.A/Ag),

and G acts trivially on A¢ and non trivially on P (A/Ag), as in the case of classical Prym
varieties.

7. AcTION ON CURVES AND JACOBIANS

In this section we fix a smooth projective curve Z defined over the field of the complex
numbers such that the group G acts on Z. Then G acts on H'(JZ,C), where JZ is the
Jacobian variety of Z, this is p,, the analytic representation of G. The decomposition of p,
into complex irreducible representations of G is provided by the well known Chevalley-Weil
formula, that computes the multiplicity of any given complex irreducible representation
of G in p,.

There is also a natural action of G on H*(JZ,Q) gives p,, the rational representation
of G. The Lefschetz fixed point formula and the Eichler trace formula have been used
by many authors to compute the character of p,, as well as the decomposition of this
representation as a sum of rational representations related to the geometry of the action,
see for instance [E, M, BJ.

Using the fact that the subvariety py(JZ) = (JZ)g of JZ is isogenous to the Jacobian
variety JZp, in this section we study the action of the corresponding Hecke algebra on
JZy by applying the results of Section 5, to the complex representation p, of the complex
Hecke algebra Hyc on H'(JZy,C) and the rational representation p, of the rational
Hecke algebra Hy o on H'(JZy,Q), where H is any subgroup of G and Zp denotes the
quotient of Z by H.

7.1. On Jacobians of intermediate covers given by subgroups. Consider a sub-
group H of G. If we denote the quotients of Z by H and G by Zy and Zg respectively,
we have the following diagram of covers of curves

(7.1) Z
w

n T
o
Za
The group action of G on Z induces an algebra homomorphism
Y : Q[G] — Endg(J2).
As mentioned before, this homomorphism restricts to an algebra homomorphism

(7.2) Y : Hug — Endg(pu(JZ)).
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Now the pull-back map 7}, : JZy — pp(JZ) and the restriction of the norm map
Nm(7gy) : pu(JZ) — JZg are isogenies satisfying Nm(7gy) o nj; = |H|1,z,. This implies
that the composition

1
(7.3) e:Huo — Endg(JZy), ¢ T Nm(7g) o @ omy

is a homomorphism of Q-algebras (see [CLRR| and [E]). Moreover, Remark 5.1 implies
that

e(Huo) = ¥u(Huo).
To end this subsection, we recall the following result on intermediate covers given by a
subgroup, see [R].

Remark 7.1. If f : Z — Zg is a Galois cover of curves, with Galois group G and mon-
odromy (g1, ..., gs), then for any subgroup H of G, the genus of the quotient Zy is given
by

(7.4) 9(Zp) =[G : H|(9(Zc) —1) + 1+ % > (G H] = [H\G/{g;)]) -
j=1

7.2. The analytic representation. Let g; denote an element of G of order c; that
represents the local monodromy of f at the branch point @);. For a given V € Irr¢(G) and
Ce; = exp(2m1/c;) a primitive c;-th root of unity, let Nj;, denote the number of eigenvalues
of V(g;) that are equal to ij . We write (s) = s — | s] for the fractional part of a rational
number s. Then the multiplicity ny of the given complex irreducible representation V in
the analytic representation p, of G is provided by the Chevalley-Weil formula, see [C-W].

Theorem 7.2. (Chevalley-Weil) Let f : Z — Zg be a Galois covering of curves, with
Galois group G, and monodromy (g1, ...,¢s). Let the symbols c; and Ny, be defined as
above.

Then the multiplicity ny of a given complex irreducible representation V of G in the
analytic representation p, of G on H°(Z,QL) is given by

s CJ—].
—k

7.5 = dimc(V)(9(Zg) — 1 N ( — ,
(7.5 = dine)a(%e) -+ -5 w ()

where 1 1s equal to 1 if V is the trivial representation, and equal to 0 otherwise.

Applying Proposition 5.2, we can describe the corresponding result for the complex
representation p, of the complex Hecke algebra Hy c on H'(JZy,C).

Corollary 7.3. Assume the hypotheses of Theorem 7.2, and let H < G. Then the complex
Hecke algebra Hyc acts on H'(JZy,C) with analytic representation

ﬁa = Z ny V )
\N)Elrrc(HH,c)

where ny is given by (7.5) for V the complex irreducible representation associated to V.
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7.3. The rational representation. In this section we study the rational representation
of G given by the action of G on H*(JZ, Q) and the rational representation of Hy g given
by the action of Hy g on H'(JZy,Q).

The Lefschetz fixed point formula and the Eichler trace formula are usually used to
prove the following result (see for instance [B], [E] and [M]).

Theorem 7.4. Let f : Z — Zg be a Galois covering of curves, with Galois group G, and
monodromy (g1, ..,9s). Then

(7.6) pr=20+ (29(Za) =2+ ) oy — Y Tigy),
j=1

where Vy denotes the trivial representation of G.
Furthermore, the multiplicity my, of a given complex irreducible representation V' of G
in pr ®g C s given by

(7.7) my = (29(Z¢) — 2 + s) dimg(V Z dime (V99 + 2,

where 1 1s equal to 1 if V is the trivial representation, and equal to O otherwise.

Remark 7.5. The theorem says that the decomposition of p, ®g C as sum of complex
irreducible representations of G is given by

pr®@C: Z va,

Velrre(G)

with my given by (7.7). In particular, we obtain

(78)  29(2)=pel(le) = > my dimg(V)

Velrre(G)
=2+ Z (29(Zg) — 2+ s) dime(V Z dime(V dime¢ (V)
Velrre(G)
=2+2(9(Ze) - DIGI+ (1G] =[G : {9)]),

j=1
and recover the Riemann-Hurwitz formula, where the last equality holds because

Z (dime(V))? = |G| , and Z dime (VY997 dime(V) =[G : (g,)] .-

Velrre(G) Velrre(G)

Applying Proposition 5.2, we obtain the multiplicity of any complex irreducible repre-
sentation of the complex Hecke algebra Hpy ¢ in the decomposition of the representation
obtained by the action of Hyg on H'(JZy, Q).
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Corollary 7.6. Assume the hypotheses of Theorem 7.4, and let H < G. Then the Hecke
algebra Hy o acts on H'(JZy, Q) with a rational representation p, and p,®qC decom-
poses as sum of complex irreducible representations of Hyc as follows

pr®q C = Z my 1% )
ﬁelrrc('HHy(c)
where my, is given by (7.7) for V the complex irreducible representation of G associated

to V.
Remark 7.7. Analogously to (7.8), we obtain (compare with (7.4))

29(Zi) = pelpw) = Y my dime(V)

\;Elrr@ (Hu,c)

=2+ Y |(29(Ze) =2+ s)dime(V) = > dime (V)| dime(VH)

\7EIrrc('HHy(c) Jj=1

=2+2(G: Hl(9(Za) = 1) + Y _ ([G: H] = [H\G/{9;)]) ,

j=1

where the last equality holds because

> dime(V) dime(VY) =[G : H],
Velrre(G)

and

Z dime (V) dimc(VH) = [H\G/(g;)]-

Velrre(G)

8. ISOTYPICAL DECOMPOSITION OF INTERMEDIATE JACOBIANS AND PRYMS

In this Section we extend some results on the isotypical decomposition of Jacobian
and Prym varieties of intermediate covers given by subgroups, in the case of curves with
automorphisms, obtained in [Ca-Ro] and [R].

The (generalized) Prym variety P(X/Y') of any cover of curves f : X — Y is the
orthogonal complement of f*(JY') in JX with respect to the canonical polarization of
JX. In this way we have an isogeny

JX ~JY x P(X/Y)
Assume Z is the Galois cover of f, with Galois group G and let H be a subgroup of G
such that X = Z. Then
JZH ~ JZG X P(ZH/Z(;)
In general, if we consider two subgroups H and N of G with H < N < G, then we have

the following diagram of curves and covers, together with the corresponding diagrams of
Jacobians and homomorphisms.
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Z JZ

\Z =X \ JZ Nm F
~E AN
/ /

Zag=Y JZg

We have already seen that then the Hecke algebras Hpy g and Hyg act on JZy and
JZy respectively; observe that Hy g, as subalgebra of Hy g, acts on F*(JZy) C JZy.
The (generalized) Prym variety P(Zg/Zy) of the cover F': Zy — Zy is the orthogonal
complement of F*(JZy) in JZy with respect to the canonical polarization of JZy. In
this way we have an isogeny

JZH ~ JZN X P(ZH/ZN)

Remark 8.1. Let f : Z — Zg be a Galois cover of curves, with Galois group G, and
monodromy (gi, . ..,gs). Consider two subgroups H and N of G with H < N < G.
Then the following are known results, (for instance see [L-R], [Ca-Ro], [R]).
(1) The isotypical decomposition of JZ is given by
dim¢(Va) dimg (Vr)

JZ ~JZg % By x ... xBy™

since By, ~ JZg for W the trivial representation of G.
(2) The isotypical decomposition of JZy is given by
JZy ~ JZq x By, ™ X ... .x By ™
(3) The isotypical decomposition of P(Zy/Zy) is given as follows.
P(Zu/Zn) ~ By, X ... X By,
(4) For all i > 1 we have

dime(By,) = sv,| K, : Q) (dimdvi)(g(zc;) ~1)+3 (_Z dime (V) - dimav;%))

where V; is a complex irreducible representation Galois-associated to W;, sy, is the Schur
; H : N
index and Ky, is the character field of V;, and ¢; = dlmf\f_vi ) _ dlmf\f_vi ) These facts were

generalized in the previous sections to the case of the abelian varieties with group action.

Remark 8.2. Let f : Z — Zg be a Galois cover of curves, with Galois group G, and
monodromy (g,...,9s). Let W be a rational irreducible representation of G and V a
complex irreducible representation of G Galois-associated to WW. Theorem 7.4 and Remark
8.1 item (4) allow us to determine my, the multiplicity of V in p, ®¢g C, and dimc¢(Byy),
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the dimension of the subvariety By associated to VW in the isotypical decomposition of
JZ. Applying Corollary 5.5, we can verify that

2d1II1(c(Bw) = Sy my |KV : Q|

Our next result provides a relation between the complementary Prym variety defined
in Section 5 and the generalized Prym variety of a cover of curves.

Theorem 8.3. Let f : Z — Zg be a Galois cover of curves, with Galois group G and
Y Q[G] — Endg(JZ) the induced algebra homomorphism. Consider two subgroups H
and N of G with H < N < G, and set ¢ =pyg — pn. Then

P(Zu/Zn) ~ P(JZ)u/(JZ)N) = Im(q);

that is, the generalized Prym variety P(Zy/Zy) is isogenous to the complementary Prym
of (JZ)y inside of (JZ)y, the abelian subvarieties of JZ fized by N and H respectively.

In particular, according to Theorem 6.2, we have an algebra homomorphism
Qﬂp . qQ[G] q — El’ldQ(P (ZH/ZN))

Proof. This is an immediate consequence of Theorem 6.2 and item (3) of Remark 8.1. [

9. EXAMPLES

Ezample 9.1. Let G = (a,b / a® = b*> = abab = 1) be the symmetric group of degree
three, and consider the integral representation ¢ of G given by

00 01 00 01
01 00 01 00
ola)=11 ¢ o o o= 4 o 1 ¢
0 0 0 10 00

1
and the symplectic representation 6 of G, given by

0:G—Sp(8,Z), 6(g)= ( #9) (g )

The existence of Riemann matrices fixed under the action of §(G) was shown in [CGR]. In
this way we obtain a four dimensional family F of principally polarized abelian varieties
of dimension four admitting the given G—action. Let A € F. We have that

pa:¢:2V0—|—V2 and pr:2¢:4V0+2V2,

where ) is the trivial representation and Vs is the irreducible representation of degree
two of G.

Applying Corollary 5.5, we have that
dlm(c(Bo) =2 ; dlm(c(BQ) = 1, and A ~ Bo X 822.

Since dim¢(By) = 2, it follows from the Riemann-Hurwitz equation that A is not a
Jacobian variety.
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Consider the subgroup H = (b) of G. Then Ty = Vo+Vs and Ay ~ Agx P(An/Ag)
where Ag = By and P(Ag/Ag) ~ Bs

FExample 9.2. Consider the group
Gm = {a,b|a®" =b*=1,bab = a%)

where m >3 and d = 2™~ — 1 (note that d> = 1 mod 2™). As a semidirect product of
the subgroup (a) by the subgroup (b), G,, is a group of order 2™,
Consider the complex irreducible representations of G defined for all odd numbers k
such that 1 <k <2™ —1 by
0 1
1 0)°

= (G &) we=(

where £ is a primitive 2™-th-root of unity.
Then

(T, Ve)eg =1

for the subgroup H = (b) < G,, and all k as above.
Consider Z — P! a Galois covering with Galois group G,, ramified over 3 points of P,
with monodromy g; = a, go = b and g3 = (ab)™!. These curves were studied in [CLR].
Applying the Chevalley-Weil formula, the multiplicity of V; in the analytic represen-
tation p, on H'(JZ,C) is ny, = 1 for all odd numbers k such that 1 <k <2m72 —1 .
Hence

om— 2 -1 om— 2 -1

Z Vi, and ¢(Z) = Z dime(Vy) = ¢(2m—2> _ gm-2

k odd k odd

Therefore the analytic representation p, of the Hecke algebra Hyc on H'(JZg,C) de-
composes as follows

om— 2 —1 om— 2 —1
Z Vi, and g(Zy) = pa(pu) Z dime(Vy) = ¢(2m72) = 2773,
kkodd k odld

where 17;6 is the associated representation of Vj, and dimc(ljk) =1.
Since

<T<a>, Vk>(; =0 and <T(ab>> Vk)G =0

for all odd numbers k such that 1 < k£ < 2™ — 1, the multiplicity my of V} in p, ®g C
(and of Vi in p; ®¢ C) is given by

my, = (=2 + 3) dime(V4) Zdlmc )=1.
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Let W be the rational irreducible representation of G obtained as
9m 1
W=> Vi
k=1
k odd

Then the action of Hy g on JZg ~ By is given by W, and the action of G on JZ ~ B3,
is given by W.

Example 9.3. Let p and ¢ be odd prime numbers such that p /¢ —1 but p* t¢— 1.
Consider the group G of order ¢p? given by

G={(a, b/ a’=b" =1, b ab=d")

where 1 <k <qg and kP =1 mod q. The group G has five rational irreducible
representations. Among them we consider W, and Wjs such that

. . -1
dimg(Wy) =q — 1 dimcVy=p||Ky, : Q| = (4 5 ) sy, =1

. . —1)(p—1 ’
dimg(Ws) =p(p —1)(¢ — 1) | dimc Vs = p | |Ky, : Q| = % Sy, =P

where V; is a complex irreducible representation Galois-associated to W;.

Consider Z — P! a Galois covering with Galois group G ramified over 3 points of P! with
monodromy ¢g; = a, go = b and g3 = (ab)™!. Let H = {lg} and N = (b?). Then,
according to (7.4) we have

9(Z) =1+ %qu - %pQ g | gzw =222 2)2(q —D,

by Remark 8.1 we have

JZNBfXB5 JZNNBf JZNJZNXP(Z/ZN) P(Z/ZN)NB5 s

and by Corollary 5.5 we have

~D@-1)

dime(P(2/2y)) = 22—

Finally, applying Theorem 6.2 we obtain that
M, (Q) = ¢p (1 — pn)Q[G|(1e — pn)) € Endo(P (Z/Zy)), withu=p(p—1)(¢—1).
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