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Abstract

This article is devoted to the study of classical and new results concerning
equidistant sets, both from the topological and metric point of view. We
start with a review of the most interesting known facts about these sets in the
euclidean space and then we prove that equidistant sets vary continuously with
their focal sets. In the second part we propose a viewpoint in which equidistant
sets can be thought of as natural generalization for conics. Along these lines,
we show that many geometric features of classical conics can be retrieved
in more general equidistant sets. In the Appendix we prove a shadowing
property of equidistant sets and provide sharp estimates. This result should
be of interest for computer simulations.

1 Introduction

The set of points that are equidistant from two given sets in the plane appears na-
turally in many classical geometric situations. Namely, the classical conics, defined
as the level set of a degree 2 real polynomial equation, can always be realized as
the equidistant set to two circles (see section 2). The significance of conics for the
development of Mathematics is incontestable. Each new progress in their study has
represented a breakthrough: the determination of the bounded area by Archimides,
their conception as plane curves by Apollonius, their occurrence as solutions for
movement equations by Kepler, the development of projective and analytic geome-
try by Desargues and Descartes, etc.

In other, let us say, less academic field we find equidistant sets as conventionally
defined frontiers in territorial domain controversies: for instance, the United Nations
Convention on the Law of the Sea (Article 15) establishes that, in absence of any
previous agreement, the delimitation of the territorial sea between countries occurs
exactly on the median line every point of which is equidistant of the nearest points to
each country. The significance of this last situation stresses the necessity of under-
standing the geometric structure of equidistant sets. The study of equidistant sets,
other than conics, arose many decades ago principally with the works of Wilker [9]
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and Loveland [5] (in section 3 we review their main contributions concerning topo-
logical properties of equidistant sets).

In the literature we can find many generalizations of conics. For instance, Groß
and Strempel [4] start from the the usual definition of conics as the set of points in
the plane that have a constant weighted sum of distances to two points (the focal
points) and gave a generalization by allowing more than two focal points, weights
other than ±1 and point sets in higher dimensions. Recently, Vincze and Nagy [8]
proposed that a generalized conic is a set of points with the same average distance
from a point set Γ ⊂ Rn. In this work we present equidistant sets as a natural gene-
ralization of conics making use of the fact that classical conics are equidistant sets
to plane circles (focal sets). Admitting more complicated focal sets we obtain more
complicated equidistant sets (generalized conics). Our purpose is to show that these
generalizations share many geometrical features with their classical ancestors. For
instance, we show that the equidistant set to two disjoint connected compact sets
looks like the branch of a hyperbola in the sense that near the infinity it is asymp-
totic to two rays. We also discuss possible generalizations of ellipses and parabolas.
Additionally we propose some further research directions.

Computational simulations constitute a useful tool for treating equidistant sets.
This task faces two main theoretic issues. The first one deals with the fact that
a computer manipulate only discrete approximations of plane sets (limited by the
memory or screen resolution). In this direction our result about the Hausdorff conti-
nuity of equidistant sets (cf. Theorem 6) is central since it implies that the equidis-
tant set computed by the machine approaches (by increasing the screen resolution
or dedicated memory) to the genuine equidistant set. The second serious computa-
tional issue has to do with the following: remember that the plane is represented
on the screen by a finite array of points (pixels). In order to determine precisely
what points belong to the equidistant set, one needs to compute the respective dis-
tances to the underlying sets (focal sets) and then to decide whether this difference
is equal to zero or not. Strictly speaking, a pixel belongs to the equidistant set if
and only if this difference vanishes. Nevertheless, due to to the discrete character
of this computer screen plane, this absolute zero is virtually impossible. Thus, in
order to obtain a good picture of the equidistant set we need to introduce a more
tolerant criteria. The general situation is as follows: one finds a pixel for which the
difference of the distances to the focal sets is very small and we ask wether or not
this means that we can assume the presence of a point of the equidistant set inside
the region represented by this pixel. Theorem 15 (the Shadowing property, see the
Appendix) provides us with a useful criteria, since it gives a sharp bound on the
distance from a quasi-equidistant point to an authentic equidistant point.

Definitions and notations. We consider Rn endowed with the classical eu-
clidean distance dist(·, ·). One easily extends the definition to admit the distance

2



between a point and a set. Given two non-empty sets A,B ⊂ Rn we define the
equidistant set to A and B as

{A = B} := {x ∈ R
n : dist(x,A) = dist(x,B)}.

This notation is due to Wilker [9]. We also utilize the word midset as proposed by
Loveland [5]. We say that A and B are the focal sets of the midset {A = B}.

For x ∈ Rn we write Px(A) = {p ∈ A : dist(x,A) = dist(x, p)} the set of foot
points from x to A.

Given two points x, y ∈ Rn we write

[x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1},
and we call it the closed segment between x and y (analogously for [x, y), (x, y], (x, y)).
For r > 0 we write B(x, r), B(x, r), C(x, r) the closed ball, the open ball and the
sphere centered at x with radius r, respectively. For v 6= 0 in Rn we write

[x,∞)v := {x+ tv : t ≥ 0}
for the infinite ray starting at x in the direction of v. We write la,v := [a,∞)−v ∪
[a,∞)v for the entire straight line passing through a in the direction of v.

2 Conics as midsets

In this section we review the definition of the classical conics as the equidistant set
to two circles (possibly degenerating into points or straight lines).

(a) Hyperbola (b) Ellipse (c) Parabola

Figure 1: Classical conics

Hyperbola. Let A = C(0, R) and B = C(1, r) with 0 ≤ r, R and R < 1 − r
(this implies A∩B = ∅). Using complex notation for points in the plane, the midset
{A = B} is composed by points z ∈ C so that

dist(z, A) = dist(z, B)

|z| −R = |z − 1| − r

|z − 0| − |z − 1| = R − r.
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Thus, the midset {A = B} is exactly the locus of points z in the plane so that the
difference of the distance from z to 0 and 1 is constant, that is, the branch of a
hyperbola. In the case R = r we obtain a straight line.

Ellipse. Consider this time two circles A = C(0, R) and B = C(1, r) with
R > 1+r (this implies B lies inside A). The midset {A = B} is composed by points
z ∈ C so that

dist(z, A) = dist(z, B)

R− |z| = |z − 1| − r

|z − 0|+ |z − 1| = R− r.

Thus, the midset {A = B} is a ellipse with focal sets {0} and {1}.

Parabola. The intermediate construction when one of the circles degenerates
into a straight line and the other into a point is one of the most classical examples
of an equidistant set. Namely, a parabola is the locus of points from where the
distances to a fixed point (focus) and to a fixed line (directrix) are equal.

Conversely, we left as an exercise to the reader to show that every ellipse or
branch of hyperbola can be constructed as the midset of two conveniently chosen
circles.

3 Topological properties of midsets

The first part of this section corresponds to a survey of some topological properties
of midsets in Rn. We mainly concentrate in the articles [9] and [5]. At sections 3.1,
A we present new results.

Since the closure A of a non-empty set A ⊂ Rn verifies dist(x,A) = dist(x,A)
for every x ∈ Rn, we can easily conclude that {A = B} = {A = B}, for every
A,B ⊂ Rn. Hence we can restrict us to consider closed sets as focal sets of midsets.
The function

dA : Rn −→ R

x 7−→ dA(x) := dist(x,A)

is continuous and
{A = B} = d−1

A,B(0),

where dA,B(x) := dA(x) − dB(x). We conclude that midsets are always closed sets.
Furthermore, a midset is never empty. Indeed, we can compute the function dA,B

over a continuous path joining A and B in order to obtain a zero for dA,B (in fact,
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it can be shown that every midset is non-empty if and only if the ambient space is
connected). The main theorem in [9] is the following

Theorem 1 (see Theorem 4 in [9]) If A and B are non-empty connected sets,
then {A = B} is connected. �

The following is a simple property, that, at least from the point of view of
applications to sea frontiers, provides the politically correct fact that there is no
region inside the UN’s definition of the sea boundary between two disjoint countries.

Proposition 2 (see [9]) Let A,B ⊂ R
n be two disjoint non-empty sets. Then the

midset {A = B} has empty interior.

Proof. Let x ∈ {A = B} and let pA 6= pB be foot points in Px(A),Px(B)
respectively. We claim that for any x̃ ∈ [pA, x) we have

dist(x̃, A) < dist(x̃, B). (1)

Indeed, the closed ballB(x, dist(x,A)) strictly contains the closed ballB(x̃, dist(x̃, A)).
But dist(x̃, pA) = dist(x̃, A), which implies that there is no point ofB inB(x̃, dist(x̃, A))
and then we have (1). The inequality (1) tell us in particular that x̃ /∈ {A = B},
and the proposition follows by picking x̃ as close to x as necessary. �

Remark 3 Notice above that dist(x̃, A) = dist(x,A) − dist(x, x̃) and (1) can be
improved to

dist(x̃, B) > dist(x,A)− dist(x, x̃). (2)

Continuing with the topological properties of midsets, we concentrate in the case
when the focal sets A,B are disjoint compact connected non-empty sets. In that
case one has

Theorem 4

i) (see [1]) If A,B ⊂ R2 then the midset {A = B} is a topological 1−manifold.

ii) (see [5]) For A,B ⊂ Rn with n 6= 2 the above result is no longer true in general.
However, for every n, if A is convex then {A = B} is topologically equivalent
to an open set of the sphere Sn−1. Furthermore, the midset {A = B} is
homeomorphic to the sphere Sn−1 if and only if A is convex and lies in the
interior of the convex hull of B. �

A geometrical objet that is closely related to midsets is the so called ε−boundary
of a set A ∈ Rn

∂ε(A) := {x ∈ R
n : dist(x,A) = ε} .

In fact one has the relation

{A = B} =
⋃

ε≥0

(∂ε(A) ∩ ∂ε(B)) .
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These sets have been studied widely in [2], [3] and recently in [7]. A deeper relation
between midsets and ε−boundaries is indebted to Loveland:

Theorem 5 (see [5]) If A,B are disjoint closes sets of Rn, A is convex and ε > 0,
then {A = B} is homeomorphic to an open subset of ∂ε(A). �

3.1 Continuity of midsets

Let (X, distX) be a compact metric space. For A ⊂ X and ε > 0 we denote by

B(A, ε) := {x ∈ X : distX(x,A) < ε}.

the ε-neighborhood ofA. The Hausdorff distance between two compact setsK1, K2 ⊂
X is

distH(K1, K2) := inf{ε > 0 : K1 ⊂ B(K2, ε) and K2 ⊂ B(K1, ε)}.

This distance defines a topology on the space K(X), of compact subsets of X . With
this topology K(X) is itself a compact space (see for instance [6]). Given a conver-
gent sequence An ∈ K(X), the Hausdorff limit is characterized as the set of points
that are limits of sequences xn ∈ An.

In general the equidistant sets are closed but not necessarily bounded sets. In
order to treat with compact sets and use the Hausdorff topology, we are going
to consider restrictions of equidistant sets to a large enough ball containing both
focal sets. Let R be a large positive number and A,B be compact sets so that
A ∪B ⊂ B(0, R). We write

{A = B}R := {A = B} ∩ B(0, R).

We are interested in the continuity of the application

MidR : K(B(0, R))×K(B(0, R)) −→ K(B(0, R))

(A,B) 7−→ {A = B}R.

Theorem 6 If A ∩B = ∅ then (A,B) is a continuity point of MidR.

Proof. Let {An}n∈N, {Bn}n∈N be two sequences in K(B(0, R)) so that

An → A and Bn → B.

Define En := {An = Bn}R ∈ K(B(0, R)). A compactness argument allows to assume
that there exists E ∈ K(B(0, R)) so that En → E. We affirm that {A = B}R = E.
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• Let e ∈ E. There exists sequences en ∈ En, an ∈ An, bn ∈ Bn and two points
a ∈ A, b ∈ B so that

dist(en, an) = dist(en, An) = dist(en, Bn) = dist(en, bn) (3)

with en → e, an → a and bn → b. We claim that dist(e, A) = dist(e, a).
Assume otherwise that there is a point ã ∈ A so that dist(e, ã) < dist(e, a).
There exists a sequence ãn ∈ An with ãn → ã. But (3) implies

dist(en, an) ≤ dist(en, ãn),

that leads dist(e, a) ≤ dist(e, ã). In a similar way one shows dist(e, B) =
dist(e, b). Taking limit in (3) we get dist(e, A) = dist(e, B) and then E ⊂
{A = B}R.

• Let m ∈ {A = B}R and an ∈ An, bn ∈ Bn verifying

dist(m,An) = dist(m, an),

dist(m,Bn) = dist(m, bn).

Passing to a subsequence if necessary there exist a ∈ A, b ∈ B so that an → a
and bn → b. Then

dist(m, an) = dist(m,An) → dist(m, a), (4)

dist(m, bn) = dist(m,Bn) → dist(m, b). (5)

From this one has

lim
n→∞

dist(m,An)− dist(m,Bn) = 0.

Passing to a subsequence (or interchanging the roles of An and Bn) we can
assume that dist(m,An)− dist(m,Bn) increases to zero. Let t ≥ 0. We define
mt ∈ [m, b] so that dist(m,mt) = t. Define fn(t) = dist(mt, An)−dist(mt, Bn).
Let ε > 0. We claim that there exists ñ ∈ N so that fn(ε) > 0 for every n ≥ ñ.
Indeed, we know that

dist(mε, B) = dist(m,B)− ε,

dist(mε, A) > dist(m,A)− ε.

Notice that the second inequality above follows from (2) (here we use the
hypothesis A ∩ B = ∅). From these we obtain dist(mε, A)− dist(mε, B) > 0.
Since fn(ε) → dist(mε, A) − dist(meps, B) > 0 our claim holds. Using that
fn(0) ≤ 0 for every n ≥ ñ we can pick mn ∈ [m,mε] so that fn(mn) = 0,
that is mn ∈ {An = Bn}. This construction holds for every ε > 0, and then
a diagonal sequence argument allows to construct a sequence mn ∈ En with
mn → m. That is, m ∈ limEn = E, and finally {A = B}R ⊂ E. �
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4 Midsets as generalized conics

In section 2 we have seen how the classical conics can be realized as equidistant sets
with circular focal sets. In this section we want to interpret equidistant sets as na-
tural generalizations of conics when admitting focal sets that are more complicated
than circles. We concentrate in recovering geometric properties from conics to more
general midsets.

(a) Hyperbola (b) Ellipse (c) Parabola

Figure 2: Generalized conics

Generalized hyperbolas. In section 2 we have seen that a branch of a hyper-
bola can be realized as the midset of two disjoint circles. In this section we show that
replacing these two discs by two disjoint enough compact connected sets we recover
a midset that asymptotically resembles a branch of a hyperbola. Indeed, we show
that far enough from these focal sets the midset consists in two disjoint continuous
curves that go to infinity approaching asymptotically to two different directions in
the plane. This is the content of Theorem 12 bellow.

We require some additional definitions and notation. Let ~r = [a,∞)v be a ray
starting at a ∈ R

2 in direction v ∈ R
2, with ‖v‖ = 1. Pick v⊥ so that {v, v⊥} is a

positive orthonormal basis for R2. For ε > 0 we define the tube of width ε around ~r
as

tubε(~r) :=
{

a + tv + sv⊥ : t ≥ 0, |s| ≤ ε
}

We say that a set M has an asymptotic end in the direction of ~r if there exists ε > 0
so that the set Mε,~r = M ∩ tubε(~r) verifies the two following conditions:

i) The orthogonal projection from Mε,~r to ~r is a bijection.

ii) If we write Mε,~r using the parameters (t, s) of the tube tubε(~r), then the point
(i) above yields a function

s : [0,∞) −→ [−ε, ε]

t 7−→ s(t)
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in such a way that Mε,~r coincides with the graph of s. The second requirement
is that

lim
t→∞

s(t) = 0.

Remark 7

i) Notice that the function s defined above is continuous since its graph is a closed
set.

ii) The reader can notice that every ray ~p ⊂ ~r induces an asymptotic end just by
considering the suitable restriction. Even though one can formalize properly
using an equivalence relation, we are going to consider all these ends as the
same one.

Let K ⊂ R2 be a compact set. We say that the straight line l = lb,w is a supporting
line for K if l ∩ K 6= ∅ and K is located entirely in one of the two half-planes
defined by l. We say that x ∈ l ∩K is a right extreme point if l ∩K is contained in
[b,∞)−w (analogously we define an left extreme point). A supporting line has always
both types of extreme points, and they coincide if and only if the intersection l ∩K
contains only one point.

Lemma 8 Let ε > 0. Assume that K ⊂ {(x, y) | x ≤ ε , y ≤ 0}. For h > 0 we
define fh(x) = dist ((x, h), K). The function fh is strictly increasing for x ≥ ε.

Proof. Let x2 > x1 ≥ ε and let p2 ∈ P(x2,h)(K) be a foot point. We have

fh(x1) ≤ dist((x1, h), p2) < dist((x2, h), p2) = fh(x2).

Indeed, the first inequality comes from the definition of fh(x1) and the strict in-
equality is due to x2 > x1. �

In what follows we are going to consider two compact sets A,B and a common
supporting line l so that both sets are located in the same half-plane determined by
l. For simplicity we assume that l is the real line and (−1, 0) is the right extreme
point of A and (1, 0) is the left extreme point of B. Let ε > 0 small enough. We
assume that

A ⊂ {(x, y) : x ≤ −1 + ε , y ≤ 0}, (6)

B ⊂ {(x, y) : x ≥ 1− ε , y ≤ 0}. (7)

Lemma 9 Under the above hypotheses, for every h > 0 there exists a unique x(h) ∈
[−1, 1] so that

dist((x(h), h), A) = dist((x(h), h), B). (8)

Moreover, x(h) belongs to (−ε, ε).
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Proof. Since (−1, 0) ∈ A, we know that for every (x, y) ∈ {x ≤ −ε , y ≥ 0} one
has

dist((x, y), A) < dist((x, y), B).

Similarly we obtain that for every (x, y) ∈ {x ≥ ε , y ≥ 0} one has

dist((x, y), A) > dist((x, y), B).

Then the continuity of the function fh defined in Lemma 8 gives at least one point
x(h) ∈ (eps, ε) satisfying the equality (8). Applying the conclusion of Lemma 8 we
see that the function

x 7−→ dist((x, h), A)− dist((x, h), B)

is strictly increasing for x ∈ [−1 + ε, 1− ε]. We then deduce the unicity of x(h) as
required. �

We apply the above Lemma in order to characterize asymptotically the midset
of two focal sets with a common supporting line. Notice that in the hypotheses of
the next Proposition we drop conditions (6) and (7).

Proposition 10 Consider two disjoint compact sets A,B and a common supporting
line l so that both sets are located in the same half-plane determined by l. For
simplicity we assume that l is the real line and (−1, 0) is the right extreme point of
A and (1, 0) is the left extreme point of B. For every ε > 0 there exists h̃ = h̃(ε) > 0
such that for every h > h̃ there exists x(h) ∈ (−ε, ε) so that the following holds

{A = B} ∩ {(x, h) : x ∈ [−1, 1]} = {(x(h), h)}.

Proof. In order to apply Lemma 9, we need to show that we can recover conditions
(6), (7). Since (−1, 0) is in A, for every h > 0 the foot points P(0,h)(A) belongs to
the closed ball Dh centered at (0, h) and passing through (−1, 0) (the same happens
for P(0,h)(B), for the same ball Dh since also passes trough (1, 0)). In other words
one has

P(0,h)(A) ∪ P(0,h)(B) ⊂ Dh ∩ {(x, y) | y ≤ 0}.
We define

Ah := Dh ∩A , Bh := Dh ∩B.

With these definitions it is clear that

dist((0, h), A) = dist((0, h), Ah),

dist((0, h), B) = dist((0, h), Bh).

We claim that for every ε > 0 there exists h̃ > 0 so that for every h > h̃ one has

Ah ⊂ {(x, y) | x ≤ −1 + ε , y ≤ 0},
Bh ⊂ {(x, y) | x ≥ 1− ε , y ≤ 0}.
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Assume in the contrary that there exists ε̃ > 0 and a sequence (xn, yn) ∈ An with
xn > −1 + ε̃. Notice that (xn, yn) ∈ Dn, then we have

−yn + n ≤
√
n2 + 1.

This and the classical undergraduate limit limn→∞

√
n2 + 1 − n = 0 implies that

yn → 0. Since A is a compact set, there exists a subsequence (xn, yn) converging to
a point (x̃, 0) ∈ A, with x̃ ≥ −1 + ε̃ > −1. This contradicts the fact that (−1, 0) is
the right extreme point of A. We then apply Lemma 9 in order to find x(h) ∈ (−ε, ε)
in the midset {A = B}. It is easy to see that for fixed ε > 0 and h large enough
we have (−ε, h) is closer to A and (ε, h) is closer to B, concluding thus the proof. �

Given two disjoint non-empty compact connected sets A,B, we want to discuss
about the existence of a common supporting line leaving both sets in the same half-
plane. For this we need to remember the concept of convex hull ch(K) of a compact
set K ⊂ R2 defined as the smallest convex set containing K. The convex hull ch(K)
is a convex compact set. Given two disjoint compact convex sets A,B ⊂ R2, it is an
interesting exercise to show that there exist four common supporting lines. Two of
them are called interior common tangents and each one leaves the sets A,B into a
different half-plane. The remaining two supporting lines are called exterior common
tangents and each one leaves both sets into the same half-plane.

Figure 3: Foot points to p lie inside the small chordal region.

Two disjoint non-empty compact connected sets A,B are called ch-disjoint if
ch(A) ∩ ch(B) = ∅. It is easy to see that supporting lines and common supporting
lines of ch(A), ch(B) are also supporting lines and common supporting lines of A,B
respectively. The above discussion directly yields
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Lemma 11 Two non-empty compact connected sets A,B that are ch-disjoint have
two distinct common supporting lines each of one leaves both sets A,B into the same
half-plane . �

Now we can state the main theorem of this section

Theorem 12 (Generalized hyperbola) Let A,B be two non-empty compact con-
nected sets that are ch-disjoint. There exists R > 0 and two disjoint rays ~r1, ~r2 so
that

{A = B} ∩B(0, R)c

consists exactly of two asymptotic ends in the direction of ~r1 and ~r2 respectively.

Proof. The existence of the two different asymptotic ends is due to Proposition 10
and Lemma 11. The remaining part of the proof consists in to show that there is
no other piece of the midset going to infinity. This can be directly deduced from
Theorem 4 part (i) which ensures that the midset {A = B} is homeomorphic to
the real line. We also present a self-contained proof: assume that ~r1, ~r2 are not
parallel and suppose that there exists a sequence xn ∈ {A = B} with |xn| > n. Let
xn = |xn|eiθn be the complex notation for xn. Taking a subsequence if needed, we
can assume that there exists θ̃ ∈ [0, 2π] so that θn → θ̃. Let lθ̃⊥ be a supporting line
for A ∪ B that is orthogonal to the direction θ̃ and so that A ∪ B and {xn}n∈N are
located in different half-planes. We claim that lθ̃⊥ is a common supporting line for
A and B. Indeed, assume for instance that lθ̃⊥ ∩A = ∅. In this case it is easy to see
that for n large enough we should have dist(xn, A) > dist(xn, B), that is impossible
since xn belongs to {A = B}. Hence, θ̃ coincides with the direction of ~r1 (or ~r2) and
necessarily one deduces that {xn} is a subset of the union of the two asymptotic
ends. The case when ~r1, ~r2 are parallel can be easily treated by considering a slight
perturbation Aε of A in the Hausdorff topology in such a way that the above lines
can be applied to Aε, B. We conclude using Theorem 6. �

Remark 13 For simplicity we stated this theorem for ch-disjoint sets, even though
it holds for every pair of compact connected disjoint sets having two supporting lines
each of one leaves both sets in the same half-plane.

Generalized ellipses. In this case we have not much to say. However, the part
(ii) of Theorem 4 serves to recognize some topological reminiscences of ellipses when
the focal sets of the midset are a convex compact set inside a compact set.

Generalized parabolas. A remarkable geometric property of parabolas is that
they are strictly convex in the sense that for any supporting line the asymptotic
behavior at infinity consists in to become more and more separated from the sup-
porting line. In other words, the parabola can be seen as the graph of a continuous
function over the supporting line (a tangent) so that the values of this function tend
to infinity with the parameter of the line (check for instance the parabola y = x2
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and see how the derivatives grow to infinity). We are not going to give a definition
for generalized parabolas . Instead we want to say that midsets sharing some pro-
perties like strict convexity should be considered as some kind of generalization for
parabolas.

Along the lines of the generalized hyperbolas treated in the previous paragraphs,
we want to consider a midset defined by a compact connected focus A (in the place of
the classical focus point) and some disjoint unbounded closed set B playing the role
of the directrix. We also need to require some additional properties like: the ch(B)
does not intersect A (in order to obtain an unbounded midset); there is no common
supporting line for A and B (in order to avoid the existence of an asymptotic ray),
etc. For simplicity we are going to keep B as a straight line, even though the reader
will be able to treat with more general situations.

Proposition 14 Let A ⊂ R2 be a non-empty connected compact set and B be a
disjoint straight line. There exists R > 0 so that for every R ≥ R and every
supporting line l for {A = B} ∩ B(0, R)c one has

lim
s→∞

dist (l, {A = B} ∩B(0, s)c) = ∞.

Sketch of the proof. For this special case where B is a straight line the proof can
be easily obtained from the fact that the midset {A = B} actually is the graph of a
continuous function over B. We left as an exercise to the reader to show that this
function grows faster than any linear map.

We want to outline a proof that fits to more general situations. Assume for
simplicity that B is the real line. The idea is to truncate B and consider the midset
{A = BR}, where BR = [−R,R] ⊂ R. As seen before, this is a generalized hyperbola
that is asymptotic (lets say, to the right) to a ray ~rR that is perpendicular trough the
midpoint of a segment [aR, (R, 0)], for some point aR ∈ A. Since A is compact, the
slope of ~rR grows to infinity with R and the reader can easily complete the details.

�

Concluding remarks. The final part of this paper concentrates in to show that
equidistant sets looks simple at least from the asymptotic point of view. As a future
line of research we suggest to explore how complicated can actually be an equidis-
tant set. As commented in the Introduction, this question should become crucial
since equidistant sets are meant to be used as region boundaries for many real life
situations. For instance, a sea delimitation needs to have some physical properties
in order to make possible its role for the real life. In the measure the equidistant
sets admit more a more intricate structures, it become more and more difficult to
consider these sets as viable frontiers. For example, we suggest the following:

Question: Does there exist an equidistant set in the plane, with connected disjoint
focal sets, having Hausdorff dimension larger than 1? What about other notions of
dimension? How the dimension of the equidistant set depends on the dimension of
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the focal sets?

Question: To characterize all closed sets ofR2 that can be realized as the equidistant
set of two connected disjoint closed sets.

A The Shadowing property

Given two non-empty closed disjoint sets A,B and ε > 0, we define the set of
ε−equidistant points to A and B as

{|A− B| < ε} := {x ∈ R
n : |dist(x,A)− dist(x,B)| < ε} .

This notion is crucial when we deal with computer simulations. Recall that finding
an equidistant point is equivalent to find a zero of a continuous function. In the case
of computer simulations, this function is no longer continuous since it is evaluated
in pixels (a discrete set). In fact, this function in general may have no zero at all.
Then, in order to draw a good picture of the equidistant set we need to check for
points (pixels) so that the difference between the distances to the focal sets is small
enough to guarantee that inside a small neighborhood there is a zero for the contin-
uos function that defines the midset. In conclusion, we look for a set {|A−B| < ε}
for some positive ε that depends on the screen resolution, computer capabilities, etc.
As we will see, the theorem we present here requires a very specific configuration of
the focal sets. Nevertheless, the reader should notice that the result can be applied
to more general situations.

Let x /∈ A ∪ B. We say that x see A separated from B by an angle α if there
exists two supporting lines lA, lB passing through x so that

1. lA is a supporting line for A, and B lies in a different half-plane than A.

2. lB is a supporting line for B, and A lies in a different half-plane than B.

3. The angle formed at x by lA and lB is α.

14



Figure 4: Construction for the proof of Theorem 15

Theorem 15 (Shadowing property) Let A,B be two disjoint non-empty closed
sets . Let ε > 0 and x0 ∈ {|A− B| < ε} so that x0 see A separated from B by an
angle α. Then there exists x1 ∈ {A = B} verifying

dist(x1, x0) <
ε

2

(

ε+ 2d

ε+ d− d cosα

)

,

where d = min{dist(x0, A), dist(x0, B)}.

Proof. Consider f(x) := dB,A(x) = dist(x,B) − dist(x,A) and assume d =
dist(x,A), that is

0 < f(x) < ε.

We look for x1 so that f(x1) = 0. Let b ∈ Px0
(B). We write x(t) as the point on

[x0, b] so that dist(x0, x(t)) = t. Finally we write

g(t) := f(x(t)) = dist(x(t), B)− dist(x(t), A).

Since f(x0) = g(0) we have 0 < g(0) < ε and g(d) < 0 where d = dist(x0, B).
Although we know that there exists t ∈ (0, d) so that g(t) = 0, the function g is
not differentiable in general and we can not estimate directly the size of t. We are
going to construct an upper bound for g in order to get a good estimate. Let a be
the intersection of the circle centered at x0 and radius d with lA as pointed in the
figure 4. For every t we have

dist(x(t), a) ≤ dist(x(t), A). (9)

Define x̃(t) ∈ lB so that dist(x0, x̃(t)) = t (see figure 4.). Thus we have

dist(x̃(t), a) ≤ dist(x(t), A). (10)
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The left term above can be explicitly computed using elementary euclidean geome-
try:

dist(x̃(t), a)2 = d2 + t2 − 2dt cos(α). (11)

Moreover, we know that

dist(x(t), B) = dist(x0, B)− t,

< d+ ε− t. (12)

Using (9, 10, 11, 12) one gets (and define ĝ by)

g(t) < d+ ε− t−
√

d2 + t2 − 2dt cos(α) := ĝ(t). (13)

Notice that ĝ(0) = ε and

t̂ =
ε

2

(

ε+ 2d

ε+ d− d cosα

)

verifies ĝ(t̂) = 0. Finally the inequality (13) help us to find a point t̄ ∈ (0, t̂) so that
f(t̄) = 0. �
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[8] Cs. Vincze and Á. Nagy. An introduction to the theory of generalized conics and their
applications. J. Geom. Phys. 61, (2011), no. 4, 815-828.

[9] J.B. Wilker. Equidistant sets and their connectivity properties. Proceedings of Amer.
Math. Soc. 47, no. 2 (1975), 446-452.

16



Mario Ponce
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