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Abstract

We prove (under the condition of A. G. Kushnirenko) that all time changes of the horocycle ow

have purely absolutely continuous spectrum in the orthocomplement of the constant functions.

This provides an answer to a question of A. Katok and J.-P. Thouvenot on the spectral nature of

time changes of horocycle ows. Our proofs rely on positive commutator methods for self-adjoint

operators.
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1 Introduction

The purpose of this note is to provide an answer to a question of A. Katok and J.-P. Thouvenot on

the spectral nature of time changes of horocycle ows.

The set-up is the standard one. Consider the unit tangent bundle M := T 1� of a �nite volume

Riemann surface � of genus � 2. The 3-manifoldM carries a probability measure � which is preserved

by two distinguished one-parameter groups of di�eomorphisms: the horocycle ow fF1;tgt2R and the

geodesic ow fF2;tgt2R. One associates to these ows vector �elds Xj , Lie derivatives LXj
and unitary

groups fUj(t)gt2R in L2(M;�) in the usual way. It is a classical result that the horocycle ow fF1;tgt2R
is strongly mixing (and hence ergodic) [15] and mixing of all orders [19], and that the unitary group

fU1(t)gt2R has countable Lebesgue spectrum [21]. Furthermore, A. G. Kushnirenko [18, Thm. 2] has

proved (when � is compact) that all time changes of the horocycle ow are strongly mixing under a

condition which holds if the time change is su�ciently small in the C1 topology. Namely, if f 2 C1(M)

satis�es f > 0 and f � LX2
(f) > 0, then the ow of the vector �eld fX1 is strongly mixing. This

implies that the unitary group associated to fX1 has purely continuous spectrum, except at 1, where

it has a simple eigenvalue.

Nothing more is known about the spectral properties of the time change fX1 (see the comments

in [4, Sec. 1] and [18, Sec. 1]). However, as pointed out by A. Katok and J.-P. Thouvenot in [17,

Sec. 6.3.1], it looks plausible that the unitary group associated to fX1 has purely absolutely continuous

or Lebesgue spectrum. In fact, A. Katok and J.-P. Thouvenot state as a conjecture the stability of the

countable Lebesgue spectrum (see [17, Conject. 6.8]). In the present note, we give an answer to the

�rst interrogation of these authors by proving that the unitary group associated to fX1 has purely

absolutely continuous spectrum outside f1g under the condition of A. G. Kushnirenko.
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Theory of Quantum and Classical Magnetic Systems" from the Ministerio de Econom��a, Fomento y Turismo.
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Our proof relies on a re�ned version [3, 23] of a commutator method introduced by �E. Mourre

[20]. It uses as a starting point the well-known commutation relation satis�ed by the unitary groups

of the horocycle ow and the geodesic ow:

U2(s)U1(t)U2(�s) = U1(e
s t); s; t 2 R: (1.1)

To some extent, this approach has been suggested to us by the proof of A. G. Kushnirenko itself, since

it already took advantage of commutator identities linking the vector �elds X1; X2 and fX1. We also

aknowledge the inuence of the article [12] on commutator methods for unitary operators, and we

refer to [4, 9, 10, 11, 14, 16, 24] for related works on ergodic and spectral properties of time changes.

In the future, we hope that commutators methods could be used to derive spectral properties of other

classes of ows than the horocycle ows considered here.

Here is a brief description of the note. In Section 2, we recall some de�nitions and results on

positive commutator methods for self-adjoint operators. In Section 3, we introduce a generalisation

of the setting presented above: We consider on an abstract (possibly noncompact) n-manifold vector

�elds X1; X2 and ows fF1;tgt2R; fF2;tgt2R with unitary groups satisfying (1.1). Under an assumption

generalising the one of A. G. Kushnirenko (see Assumption 3.2) we show that the self-adjoint operator

associated to the time change fX1 has purely absolutely continuous spectrum, except at 0, where

it may have an eigenvalue (see Theorem 3.5). We use the theory of Section 2 to prove this result.

In Section 4 we apply this abstract result to the horocycle ow on �nite volume surfaces of constant

negative curvature, taking into account the ergodicity of the horocycle ow. This leads to the desired

result, namely, that the unitary group associated to a time change of the horocycle ow has purely

absolutely continuous spectrum outside f1g, where it has a simple eigenvalue (see Theorem 4.2).

Remark 1.1. After the completion of this note, the author was informed about the work [13]

by G. Forni and C. Ulcigrai on time changes of horocycle ows (not available when this note

was put online). The work [13] establishes (for compact surfaces and for time changes in a

Sobolev space of order > 11=2) the absolute continuity of time changes of horocycle ows without

assuming the condition of A. G. Kushnirenko and also shows that the maximal spectral type is

equivalent to Lebesgue. Here, we establish with other methods (for surfaces of �nite volume and

for time changes of class C2) the absolute continuity of time changes of horocycle ows under

the condition of A. G. Kushnirenko.

2 Positive commutator methods

We recall in this section some facts on positive commutator methods borrowed from [3] and [23] (see

also the original paper [20] of �E. Mourre). Let H be a Hilbert space with norm k � kH and scalar

product h � ; � iH, and denote by B(H) the set of bounded linear operators on H. Let also A be a

self-adjoint operator in H with domain D(A), and S 2 B(H). For any k 2 N, we say that S belongs

to Ck(A), with notation S 2 Ck(A), if the map

R 3 t 7! e�itA S eitA 2 B(H) (2.1)

is strongly of class Ck. In the case k = 1, one has S 2 C1(A) if the quadratic form

D(A) 3 ' 7!


'; iSA'

�
H
�


A'; iS'

�
H
2 C

is continuous for the topology induced by H on D(A). We denote by [iS;A] the bounded operator

associated with the continuous extension of this form, or equivalently the strong derivative of the

function (2.1) at t = 0.
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If H is a self-adjoint operator in H with domain D(H) and spectrum �(H), we say that H is of

class Ck(A) if (H � z)�1 2 Ck(A) for some z 2 C n �(H). If H is of class C1(A), then the quadratic

form

D(A) 3 ' 7!


'; (H � z)�1A'

�
H
�


A'; (H � z)�1'

�
H
2 C

extends continuously to a bounded form de�ned by the operator
�
(H�z)�1; A

�
2 B(H). Furthermore,

the set D(H) \ D(A) is a core for H and the quadratic form

D(H) \ D(A) 3 ' 7!


H';A'

�
H
�


A';H'

�
H
2 C

is continuous in the topology of D(H) [3, Thm. 6.2.10(b)]. This form extends uniquely to a continuous

quadratic form on D(H) which can be identi�ed with a continuous operator [H;A] from D(H) to the

adjoint space D(H)�. In addition, the following relation holds in B(H) (see [3, Eq. (6.2.24)]) :�
(H � z)�1; A

�
= �(H � z)�1[H;A](H � z)�1: (2.2)

Let EH( � ) denote the spectral measure of the self-adjoint operator H, and assume that H is of

class C1(A). Then, the operator EH(J)
�
iH;A

�
EH(J) is bounded and self-adjoint for each bounded

Borel set J � R. If there exists a number a > 0 such that

EH(J)
�
iH;A

�
EH(J) � aEH(J);

then one says that H satis�es a strict Mourre estimate on J . The main consequence of such an estimate

is to imply a limiting absorption principle for H on J if H is also of class C2(A). This in turns implies

that H has no singular spectrum in J . We recall here a version of this result valid even if H has no

spectral gap (see [3, Sec. 7.1.2] and [23, Thm. 0.1] for the most general version of this result) :

Theorem 2.1. Let H and A be self-ajoint operators in a Hilbert space H. Suppose that H is of

class C2(A) and satis�es a strict Mourre estimate on a bounded Borel set J � R. Then, H has

no singular spectrum in J.

3 Spectral analysis of time changes for abstract flows

Let M be a C1 manifold of dimension n � 1 with volume form 
, and let fFj;tgt2R, j = 1; 2, be

(nontrivial) C1 complete ows onM preserving the measure �
 induced by 
. Then, it is known that

the operators

Uj(t)' := ' � Fj;t; ' 2 C1c (M);

de�ne strongly continuous unitary groups fUj(t)gt2R in the Hilbert space H := L2(M;�
) (here

C1c (M) stands for the space of C1 functions with compact support in M). Since C1c (M) is dense in

H and left invariant by fUj(t)gt2R, it follows from Nelson's theorem [2, Prop. 5.3] that the generator

of the group fUj(t)gt2R

Hj' := s- limt!0 it
�1

�
Uj(t)� 1

	
'; ' 2 D(Hj) :=

n
' 2 H j lim

t!0
jtj�1

�Uj(t)� 1
	
'

H
<1

o
is essentially self-adjoint on C1c (M). In fact, a direct calculation shows that

Hj' := �iLXj
'; ' 2 C1c (M);

where Xj is the (divergence-free) vector �eld associated to fFj;tgt2R and LXj
the corresponding Lie

derivative. Now, suppose that there exists a C1 isomorphism e : (R;+)!
�
(0;1); �

�
such that

U2(s)U1(t)U2(�s) = U1
�
e(s) t

�
for all s; t 2 R: (3.1)
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Then, for each t 6= 0, U1(t) has homogeneous Lebesgue spectrum (that is, the spectrum �(H1) of H1

covers R, and �(H1) n f0g is purely Lebesgue with uniform multiplicity, see [17, Prop. 1.23]). Further-

more, if �
(M) < 1, then any constant function on M is an eigenvector of U1(t) with eigenvalue 1

(in some cases, as when the system (M;�
; F1;t) is ergodic, 1 is even a simple eigenvalue of U1(t)). By

applying the strong derivative id=dt at t = 0 in (3.1), one gets that U2(s)H1U2(�s)' = e(s)H1' for

each ' 2 C1c (M). Since C1c (M) is a core for H1, one infers that H1 is H2-homogeneous in the sense

of [7]; namely,

U2(s)H1U2(�s) = e(s)H1 on D(H1): (3.2)

It follows that H1 is of class C
1(H2) with�

iH1; H2

�
= e0(0)H1: (3.3)

Now, consider a C1 vector �eld with the same orientation and colinear to the vector �eld X1, that

is, a vector �eld fX1 where f 2 C
1(M) satis�es f � �f for some �f > 0 and f 2 L1(M). The vector

�eld fX1 has the same integral curves as X1, but with reparametrised time coordinate. Indeed, it is

known (see [8, Chap. 2.2], [16, Sec. 1] and [22, Sec. 5.1]) that the formula

t =

Z h(p;t)

0

ds

f
�
F1;s(p)

� ; (p; t) 2M � R;

de�nes for each p 2 M a strictly increasing function R 3 t 7! h(p; t) 2 R satisfying h(p; 0) = 0 and

limt!�1 h(p; t) = �1. Furthermore, the implicit function theorem implies that the map t 7! h(p; t)

is C1 with d
dth(p; t) = f

�
F1;h(p;t)(p)

�
. Therefore, the function R 3 t 7! eF1;t(p) 2M given by eF1;t(p) :=

F1;h(p;t)(p) satis�es the initial value problem

d

dt
eF1(p; t) = (fX1)eF1(p;t) ; eF1(p; 0) = p;

meaning that f eF1;tgt2R is the ow of fX1. Since the divergence div
=f (fX1) of fX1 with respect to

the volume form 
=f is zero (see [1, Prop. 2.5.23]), the operators

eU1(t)' := ' � eF1;t; ' 2 Cc(M);

de�ne a strongly continuous unitary group
�eU1(t)	t2R in the Hilbert space eH := L2(M;�
=f). Its

generator eH := �iLfX1
is essentially self-adjoint on C1

c (M) � eH due to Nelson's theorem.

In the next lemma, we introduce two auxiliary operators which will be useful for the spectral

analysis of eH.

Lemma 3.1. Let f 2 C1(M) be such that f � �f for some �f > 0 and f 2 L1(M). Then,

(a) The operator

U : H ! eH; ' 7! f1=2';

is unitary with adjoint U � : eH ! H given by U � = f�1=2 .

(b) The operator

H' := f1=2H1f
1=2'; ' 2 C1

c (M);

is essentially self-adjoint in H, and the closure of H (which we denote by the same symbol)

is unitarily equivalent to eH.
(c) For each z 2 C nR, the operator H1+ zf

�1 is invertible with bounded inverse, and satis�es

(H + z)�1 = f�1=2
�
H1 + zf�1

��1
f�1=2: (3.4)
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Proof. Point (a) follows from a direct calculation taking into account the boundedness of f from below

and from above. For (b), observe that

H' = f�1=2fH1f
1=2' = U � eHU '

for each ' 2 U �C1
c (M). So, H is essentially self-adjoint on U �C1

c (M) � C1
c (M), and the closure of H

is unitarily equivalent to eH. To prove (c), take z � �+ i� 2 C n R, ' 2 D
�
H1 + zf�1

�
� D(H1) and

f'ng � C1c (M) such that limn k'� 'nkD(H1) = 0. Then, it follows from (b) that

�H1 + zf�1
�
'
2
H
= lim

n

f�1=2(H + z)f�1=2'n
2
H
� inf

p2M
f�2(p)�2

'2
H
;

and thus H1 + zf�1 is invertible with bounded inverse (see [2, Lemma 3.1]). Now, to show (3.4), take

 = (H + z)� with � 2 C1
c (M), observe that

(H + z)�1 � f�1=2
�
H1 + zf�1

��1
f�1=2 = 0; (3.5)

and then use the density of (H + z)C1
c (M) in H to extend the identity (3.5) to all of H.

The operators H and eH are unitarily equivalent due to Lemma 3.1(b). Therefore, one can either

work with H in H or with eH in eH to determine the spectral properties associated with the time change

fX1. For convenience, we present in the sequel our results for the operator H. We start by collecting

all the necessary assumptions on the function f .

Assumption 3.2 (Time change). The function f 2 C2(M) is such that

(i) f � �f for some �f > 0,

(ii) the functions f;LX1
(f);LX2

(f), LX1

�
LX2

(f)
�
and LX2

�
LX2

(f)
�
belong to L1(M),

(iii) the function g :=
e0(0)f �LX2

(f)

2f
satis�es g � �g for some �g > 0.

If M is compact, then (ii) is automatically veri�ed and (i) and (iii) are satis�ed if f and e0(0)f �

LX2
(f) are strictly positive functions. Therefore, Assumption 3.2 reduces to the assumptions of A. G.

Kushnirenko [18, Thm. 2].

In the next lemma, we prove regularity properties of H and H2 with respect to H2 which will be

useful when deriving the strict Mourre estimate.

Lemma 3.3. Let f satisfy Assumption 3.2, take � 2 f�1=2;�1g and let z 2 C n R. Then,

(a) the multiplication operators g� and f� satisfy g�; f� 2 C1(H2) and g
� 2 C1(H) with

�
ig�; H2

�
= ��g��1LX2

(g);
�
if�; H2

�
= ��f��1LX2

(f) and
�
ig�; H

�
= ��fg��1LX1

(g);

(b) (H + z)�1 2 C1(H2) with
�
i(H + z)�1; H2

�
= �(H + z)�1(Hg + gH)(H + z)�1,

(c)
�
H2+1

��1
2 C1(H2) with

�
i
�
H2+1

��1
; H2

�
= �

�
H2+1

��1�
H2g+2HgH + gH2

��
H2+1

��1
,

(d)
�
H2 + 1

��1
2 C2(H2).

Proof. (a) Simple computations using the linearity of LX2
and the bound f � �f imply that

LX2
(f1=2) = 1

2 f
�1=2LX2

(f):
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Thus, one has for each ' 2 C1c (M)



H2'; f

1=2'
�
H
�


'; f1=2H2'

�
H
=



';

�
H2; f

1=2
�
'
�
H
=



';� i

2 f
�1=2LX2

(f)'
�
H
:

Since f�1=2LX2
(f) 2 L1(M), it follows by the density of C1c (M) in D(H2), that f

1=2 2 C1(H2) with�
H2; f

1=2
�
= � i

2 f
�1=2LX2

(f). The other identities can be shown similarly.

(b) Let t 2 R and ' 2 H. Then, one infers from Equations (3.2) and (3.4) that

e�itH2(H + z)�1 eitH2 '

= e�itH2 f�1=2 eitH2

�
e(t)H1 + z e�itH2 f�1 eitH2

��1
e�itH2 f�1=2 eitH2 ':

So, one gets from point (a), Equation (3.4) and Lemma 3.1(b) that

d

dt
e�itH2(H + z)�1 eitH2 '

���
t=0

=
�
if�1=2; H2

��
H1 + zf�1

��1
f�1=2'+ f�1=2

�
H1 + zf�1

��1�
if�1=2; H2

�
'

� f�1=2
�
H1 + zf�1

��1�
e0(0)H1 + z

�
if�1; H2

�	�
H1 + zf�1

��1
f�1=2'

=
1

2
f�1LX2

(f)(H + z)�1'+
1

2
(H + z)�1f�1LX2

(f)'

� (H + z)�1
�
e0(0)H + zf�1LX2

(f)
	
(H + z)�1'

=
1

2
(H + z)�1Hf�1LX2

(f)(H + z)�1'+
1

2
(H + z)�1f�1LX2

(f)H(H + z)�1'

� (H + z)�1e0(0)H(H + z)�1'

= �(H + z)�1(Hg + gH)(H + z)�1';

which implies the claim.

(c) Let ' 2 H. Then, it follows from point (b) that

d

dt
e�itH2

�
H2 + 1

��1
eitH2 '

���
t=0

=
d

dt
e�itH2(H + i)�1 eitH2 e�itH2(H � i)�1 eitH2 '

���
t=0

= �(H + i)�1(Hg + gH)(H + i)�1(H � i)�1'� (H + i)�1(H � i)�1(Hg + gH)(H � i)�1'

= �
�
H2 + 1

��1�
H2g + 2HgH + gH2

��
H2 + 1

��1
';

which implies the claim.

(d) Direct computations using point (c) show that

�
i(H2 + 1)�1; H2

�
= �(H2 + 1)�1

�
(H2 + 1)g + 2(H + i)g(H � i) + 2i(H + i)g � 2ig(H � i) + g(H2 + 1)

	
(H2 + 1)�1

= �2Re
�
g(H2 + 1)�1 + 2i(H � i)�1g(H2 + 1)�1 + (H � i)�1g(H + i)�1

	
:

Morevover, we know from points (a)-(c) that the operators (H2 + 1)�1, (H + i)�1, g and (H � i)�1

belong to C1(H2). So, one infers from standard results on the space C1(H2) (see [3, Prop. 5.1.5]) that�
i(H2 + 1)�1; H2

�
also belongs to C1(H2).

In order to apply the theory of Section 2, one has to prove at some point a positive commutator

estimate. Usually, one proves it for the operator H under study. But in our case, the commutator�
iH;H2

�
= Hg + gH appearing in Lemma 3.3(b) (which is the simplest nontrivial commutator in
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our set-up) does not exhibit any explicit positivity. By contrast, the commutator
�
iH2; H2

�
= H2g +

2HgH + gH2 of Lemma 3.3(c) is made of the positive operators g, H2 and HgH, and thus
�
iH2; H2

�
is more likely to be positive as a whole. The formalisation of this intuition is the content of the next

lemma.

Lemma 3.4 (Strict Mourre estimate for H2). Let f satisfy Assumption 3.2 and let J be a bounded

Borel set in (0;1). Then,

EH2

(J)
�
iH2; H2

�
EH2

(J) � aEH2

(J) with a := 2�g � inf(J) > 0:

Proof. We know from Equation (2.2) and Lemma 3.3(c) that

EH2

(J)
�
iH2; H2

�
EH2

(J) = EH2

(J)
�
H2g + 2HgH + gH2

�
EH2

(J):

We also know from Assumption 3.2(iii) that

EH2

(J)2HgHEH2

(J) � aEH2

(J) with a = 2�g � inf(J) > 0:

Therefore, it is su�cient to show that EH2

(J)
�
H2g + gH2

�
EH2

(J) � 0.

So, for any " > 0 let H2
" := H2

�
"2H2 + 1

��1
and H�" := H("H � i)�1. Then, the inclusion

g1=2 2 C1(H) of Lemma 3.3(a) implies that

s- lim"&0

�
H�" ; g

1=2
�
= � s- lim"&0("H � i)�1

�
iH; g1=2

�
("H � i)�1 = �i

�
g1=2; H

�
:

Therefore, for each ' 2 H it follows that



';EH2

(J)
�
H2g + gH2

�
EH2

(J)'
�
H

= lim
"&0



';EH2

(J)
�
H2
" g

1=2g1=2 + g1=2g1=2H2
"

�
EH2

(J)'
�
H

= lim
"&0



';EH2

(J)
��
H2
" ; g

1=2
�
g1=2 + 2g1=2H2

" g
1=2 + g1=2

�
g1=2; H2

"

��
EH2

(J)'
�
H

� lim
"&0



';EH2

(J)
��
H2
" ; g

1=2
�
g1=2 + g1=2

�
g1=2; H2

"

��
EH2

(J)'
�
H

= lim
"&0



';EH2

(J)
�
H+
"

�
H�" ; g

1=2
�
g1=2 +

�
H+
" ; g

1=2
�
H�" g

1=2

+ g1=2
�
g1=2; H+

"

�
H�" + g1=2H+

"

�
g1=2; H�"

��
EH2

(J)'
�
H

= lim
"&0



';EH2

(J)
�
H
�
H; g1=2

�
g1=2 +

�
H+
" ; g

1=2
�
g1=2H�" +

�
H+
" ; g

1=2
��
H�" ; g

1=2
�

+ g1=2
�
g1=2; H

�
H +H+

" g
1=2

�
g1=2; H�"

�
+
�
g1=2; H+

"

��
g1=2; H�"

��
EH2

(J)'
�
H

=


';EH2

(J)
�
H
�
H; g1=2

�
g1=2 +

�
H; g1=2

�
g1=2H + 2

�
H; g1=2

�2
+ g1=2

�
g1=2; H

�
H

+Hg1=2
�
g1=2; H

��
EH2

(J)'
�
H

=


';EH2

(J)2
�
H; g1=2

�2
EH2

(J)'
�
H

� 0;

which implies the claim.

Using the previous results for H2, one can �nally determine spectral properties of H :

Theorem 3.5 (Spectral properties of H). Let f satisfy Assumption 3.2. Then, H has purely

absolutely continuous spectrum, except at 0, where it may have an eigenvalue.
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Proof. We know from Lemmas 3.3(d) and 3.4 that
�
H2 + 1

��1
2 C2(H2) and that H2 satis�es a

strict Mourre estimate on each bounded Borel subset of (0;1). It follows by Theorem 2.1 that H2 has

purely absolutely continuous spectrum, except at 0, where it may have an eigenvalue. Accordingly, the

Hilbert space H admits the orthogonal decomposition

H = ker(H2)�Hac(H
2);

with Hac(H
2) the subspace of absolute continuity of H2.

Now, the function � 7! �2 has the Luzin N property on R; namely, if J is a Borel subset of R with

Lebesgue measure zero, then J2 also has Lebesgue measure zero. It follows that Hac(H
2) � Hac(H),

with Hac(H) the subspace of absolute continuity of H (see Proposition 29, Section 3.5.4 of [5]). Since

ker(A2) = ker(A) for all self-adjoint operators A, we thus infer that

H = ker(H2)�Hac(H
2) � ker(H)�Hac(H):

So, one necessarily has H = ker(H) � Hac(H), meaning that H has purely absolutely continuous

spectrum, except at 0, where it may have an eigenvalue.

4 Spectral analysis of time changes of horocycle flows

In this section, we apply the results of Section 3 to time changes of horocycle ows on �nite volume

surfaces of constant negative curvature.

Let � be a �nite volume Riemann surface of genus � 2 and let M := T 1� be the unit tangent

bundle of �. The 3-manifold M carries a probability measure �
 (induced by a canonical volume form


) which is preserved by two distinguished one-parameter groups of di�eomorphisms: the horocycle

ow fF1;tgt2R and the geodesic ow fF2;tgt2R. Both ows correspond to right translations on M

when M is identi�ed with a homogeneous space � n PSL(2;R), for some lattice � in PSL(2;R) (see [6,

Sec. II.3 & Sec. IV.1] for details). We denote by fU1(t)gt2R and fU2(t)gt2R the corresponding unitary

groups in H := L2(M;�
), and we write Xj (resp. Hj) for the vector �eld (resp. self-adjoint generator)

associated to fUj(t)gt2R, j = 1; 2 (see Section 3). It is a classical result that the horocycle ow fF1;tgt2R
is strongly mixing (and hence ergodic) [15] and mixing of all orders [19], and that U1(t) has countable

Lebesgue spectrum for each t 6= 0 (see [17, Prop. 2.2] and [21]). Moreover, the identity (3.1) holds with

e : R! (0;1) the exponential, i.e.

U2(s)U1(t)U2(�s) = U1(e
s t) for all s; t 2 R

(here we consider the negative horocycle ow fF1;tgt2R � fF�1;tgt2R, but everything we say can be

adapted to the positive horocycle ow by inverting a sign, see [6, Rem. IV.1.2]).

Now, consider a time change fX1 of X1 with f 2 C
2(M) satisfying Assumption 3.2 (with e0(0) =

1), let H be the self-adjoint operator as in Lemma 3.1(b), and let eH be the self-adjoint operator

associated to fX1. If M is compact, then Assumption 3.2 reduces to the following:

Assumption 4.1. The functions f 2 C2(M) and f �LX2
(f) 2 C1(M) are strictly positive.

Under Assumption 3.2, the ows fF1;tgt2R, fF2;tgt2R and the function f satisfy all the hypotheses

of Section 3. Therefore, Theorem 3.5 implies that the operator H has purely absolutely continuous

spectrum, except at 0, where it may have an eigenvalue. Since H and eH are unitarily equivalent, this

also holds for the operator eH. Now, the ow fF1;tgt2R is ergodic. So, we know from the theory of

time changes on probability spaces [22, Sec. 5.1] that the time-changed ow f eF1;tgt2R is also ergodic.

Therefore, the operator eH has a simple eigenvalue at 0. Putting these information together, one obtains

the following result :
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Theorem 4.2. Let f satisfy Assumption 3.2 with e0(0) = 1 (or simply Assumption 4.1 if M

is compact). Then, the self-adjoint operator eH associated to the vector �eld fX1 has purely

absolutely continuous spectrum, except at 0, where it has a simple eigenvalue.
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