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Abstract. We extend the recent radial symmetry results by Pisante [23] and Millot & Pisante
[19] (who show that all entire solutions of the vector-valued Ginzburg-Landau equations in supercon-
ductivity theory, in the three-dimensional space, are comprised of the well-known class of equivariant
solutions) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low
temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the re-
stricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this
characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for
sufficiently low temperatures.
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1. Introduction. Nematic liquid crystals are anisotropic liquids with long-range
orientational ordering [8, 22]. Continuum theories for nematics e.g. Oseen-Frank,
Ericksen and Landau-de Gennes theories, have received considerable attention in the
mathematical literature [5, 11, 14], of which the Landau-de Gennes theory is the most
general. The Landau-de Gennes theory is popular in the context of studying intricate
defect patterns in nematic textures. However, it is remarkable that the Landau-de
Gennes theory predicts no analytic singularities for the corresponding equilibria and
a rigorous mathematical description of defects in the Landau-de Gennes framework
is missing to date.

We study the model problem of nematics confined to a spherical droplet subject
to radial anchoring conditions. This problem has been widely studied in the literature
and there are (at least) two competing equilibria: (i) the radial-hedgehog solution and
(ii) the biaxial torus solution [9, 25]. The radial-hedgehog solution is purely uniaxial
everywhere, except for an isolated defect at the droplet centre, in the sense that the
constituent molecules have perfect radial alignment everywhere away from the centre.
The biaxial torus solution does not have perfect radial symmetry, the constituent
molecules have two distinguished directions of alignment around the droplet centre
and hence, we have a high degree of biaxiality around the centre. The instability of
the radial-hedgehog solution has been demonstrated for sufficiently low temperatures
[9, 18] and it is known that the biaxial torus solution has lower free-energy than the
radial-hedgehog solution in the low temperature limit. However, this does not exclude
the existence of other competing uniaxial solutions, in the low temperature regime,
which may potentially have lower energy than the biaxial torus solution.

There are two principal aims of this paper: (i) to obtain a complete characteri-
zation of all uniaxial equilibria, within the Landau-de Gennes framework, in the low
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temperature limit and (ii) to prove the non-existence of globally stable purely uniaxial
equilibria for sufficiently low temperatures, in the Landau-de Gennes framework. To
accomplish (i), we adapt results on the equivariant Ginzburg-Landau vortex in arbi-
trary dimensions [23] to the Landau-de Gennes framework. More precisely, in [23],
the author studies entire solutions u : RN → RN of the Ginzburg-Landau equations

∆u + u
(
1− |u|2

)
= 0

for N ≥ 3. One of the central results in [23] is the following:
Theorem [23]: Let N ≥ 3 and let u ∈ W 1,2

loc

(
RN ;RN

)
∩ L4

loc

(
RN ;RN

)
be an entire

solution of the Ginzburg-Landau equations. The following statements are equivalent -
(a) u satisfies |u(x)| → 1 as |x| → ∞, deg∞u = ±1 and

E (u, BR) =

∫
B(0,R)

1

2
|∇u|2 +

1

4

(
1− |u|2

)2
dV =

1

2

N − 1

N − 2

∣∣SN−1
∣∣RN−2 + o(RN−2)

as R → ∞, where B(0, R) ⊂ RN is the N -dimensional ball of radius R centered at
the origin and |SN−1| is the surface area of the N -dimensional unit sphere
(b) up to a translation on the domain and an orthogonal transformation on the image,
u is O(N)-equivariant i.e. u (x) = x

|x|f(|x|) where f : RN → [0, 1) is the unique

solution of an explicit boundary-value problem.
We work in the low temperature limit and after a suitable re-scaling, the study of

global Landau-de Gennes minimizers in the restricted class of uniaxial states reduces
to the study of entire solutions of the tensor-valued Ginzburg-Landau equations (see
equation (2.28) below). This is a well-posed problem and the radial anchoring condi-
tions are an example of a topologically non-trivial boundary condition with non-zero
topological degree. The correct energy bound (as in (a) above) is ensured by the
energy minimality in the restricted class of uniaxial states in the Landau-de Gennes
framework. Of key importance in our analysis is the concept of a limiting harmonic
map. We demonstrate that any sequence of purely uniaxial global Landau-de Gennes
minimizers converges strongly, in W 1,2, to a limiting harmonic map [16]. This strong
convergence result contains information about the location of defects in uniaxial min-
imizers and as a consequence, all defects are concentrated near the droplet centre for
sufficiently low temperatures. We are then able to prove that for all sufficiently low
temperatures, global Landau-de Gennes minimizers, in the restricted class of uniaxial
states, can be approximated arbitrarily closely (up to an orthogonal transformation)
by the well-studied radial-hedgehog solution.

To accomplish (ii), we study the second variation of the Landau-de Gennes energy
as in [9] and use the characterization of global uniaxial Landau-de Gennes minimiz-
ers in terms of the radial-hedgehog solution above. This is sufficient to demonstrate
that global Landau-de Gennes minimizers in the restricted class of uniaxial states
lose stability with respect to biaxial perturbations, when we move to sufficiently low
temperatures. The paper is organized as follows. In Section 2, we recall the main
mathematical constituents of the Landau-de Gennes theory and state our principal
results. In Section 3, we obtain results and estimates for global Landau-de Gennes
minimizers under the restriction of uniaxiality, in the low temperature limit. In Sec-
tion 4, we use the division trick, as introduced in [20] and used in [23], to obtain a
characterization of global Landau-de Gennes minimizers, under the constraint of uni-
axiality, in terms of the well-known radial-hedgehog solution. Finally, in Section 5,
we relax the constraint of uniaxiality and use a second variation argument to demon-
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strate the non-existence of purely uniaxial global Landau-de Gennes minimizers for
this model problem, for sufficiently low temperatures.

2. Statement of Results. Let B (0, R0) ⊂ R3 denote a three-dimensional
spherical droplet of radius R0 > 0, centered at the origin. Let S2 be the set of
unit vectors in R3 and let S0 denote the set of symmetric, traceless 3× 3 matrices i.e.

S0 =
{
Q ∈M3×3; Qij = Qji; Qii = 0

}
(2.1)

where M3×3 is the set of 3 × 3 matrices. The corresponding matrix norm is defined
to be [16]

|Q|2 = QijQij i, j = 1 . . . 3 (2.2)

and we will use the Einstein summation convention throughout the paper.
We work with the Landau-de Gennes theory for nematic liquid crystals [8] whereby

a liquid crystal configuration is described by a macroscopic order parameter, known as
the Q-tensor order parameter. Mathematically, the Landau-de Gennes Q-tensor order
parameter is a symmetric, traceless 3 × 3 matrix belonging to the space S0 in (2.1).
A nematic configuration is said to be (i) isotropic (disordered with no orientational
ordering) when Q = 0, (ii) uniaxial when Q has two degenerate non-zero eigenvalues
and (iii) biaxial when Q has three distinct eigenvalues. The liquid crystal energy is
given by the Landau-de Gennes energy functional and the associated energy density
is a nonlinear function of Q and its spatial derivatives [8, 22]. We work with the
simplest form of the Landau-de Gennes energy functional that allows for a first-order
nematic-isotropic phase transition and spatial inhomogeneities as shown below [16, 22]
-

ILG [Q] =

∫
B(0,R0)

L

2
|∇Q|2 + fB (Q) dV. (2.3)

Here, L > 0 is a small material-dependent elastic constant, |∇Q|2 = Qij,kQij,k ( note

that Qij,k =
∂Qij

∂xk
) with i, j, k = 1 . . . 3 is an elastic energy density and fB : S0 → R is

the bulk energy density that dictates the preferred phase of the nematic configuration
- isotropic/uniaxial/biaxial. For our purposes, we take fB to be a quartic polynomial
in the Q-tensor invariants as shown below -

fB(Q) =
α(T − T ∗)

2
trQ2 − b2

3
trQ3 +

c2

4

(
trQ2

)2
(2.4)

where trQ3 = QijQjpQpi with i, j, p = 1 . . . 3, α, b2, c2 > 0 are material-dependent
constants, T is the absolute temperature and T ∗ is a characteristic temperature below
which the isotropic phase Q = 0 loses its stability. We work in the low temperature
regime with T << T ∗ and hence, we can re-write (2.4) as

fB(Q) = −a
2

2
trQ2 − b2

3
trQ3 +

c2

4

(
trQ2

)2
(2.5)

where a2 > 0 is a temperature-dependent parameter and we will subsequently inves-
tigate the a2 →∞ limit, known as the low temperature limit. One can readily verify
that fB is bounded from below and attains its minimum on the set of Q-tensors given
by [15, 18]

Qmin =

{
Q ∈ S0; Q = s+

(
n⊗ n− I

3

)
, n ∈ S2

}
(2.6)
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where I is the 3× 3 identity matrix and

s+ =
b2 +

√
b4 + 24a2c2

4c2
. (2.7)

We are interested in characterizing global minimizers of the Landau-de Gennes
energy functional in (2.3), on spherical droplets with homeotropic or radial anchoring
conditions [18]. The global Landau-de Gennes minimizers correspond to physically
observable liquid crystal configurations and hence, are of both mathematical and
practical importance. We take our admissible Q-tensors to belong to the space

A =
{
Q ∈W 1,2 (B(0, R0);S0) ; Q = Qb on ∂B(0, R0)

}
(2.8)

where W 1,2 (B(0, R0);S0) is the Soboblev space of square-integrable Q-tensors with
square-integrable first derivatives [6], with norm

||Q||W 1,2 =

(∫
B(0,R0)

|Q|2 + |∇Q|2 dV

)1/2

.

The Dirichlet boundary condition Qb is given by

Qb(x) = s+

(
x⊗ x

|x|2
− I

3

)
∈ Qmin (2.9)

where x ∈ R3 is the position vector and x
|x| is the unit-vector in the radial direction.

The existence of a global minimizer of ILG in the admissible spaceA is immediate from
the direct method in the calculus of variations [6]; the details are omitted for brevity.
It follows from standard arguments in elliptic regularity that all global minimizers are
smooth and real analytic solutions of the Euler-Lagrange equations associated with
ILG on B(0, R0),

L∆Qij = −a2Qij − b2
(

QipQpj −
1

3
QpqQpqδij

)
+ c2

(
trQ2

)
Qij i, j, p, q = 1 . . . 3,

(2.10)

where b2

3 QpqQpqδij is a Lagrange multiplier accounting for the tracelessness constraint
[16].

Our goal is to prove that in the low temperature limit, global Landau-de Gennes
minimizers in the admissible space A cannot be purely uniaxial :

Definition 2.1. Let Ω be a measurable subset of R3. We say that a tensor-valued
map Q : Ω→ S0 is purely uniaxial if Q(x) can be written as

Q(x) = s(x)

(
n(x)⊗ n(x)− I

3

)
, (2.11)

for some s(x) ∈ R and some unit-vector n(x) ∈ S2, for a.e. x ∈ Ω.
Theorem 2.2. Let B(0, R0) ⊂ R3 denote a spherical droplet of radius R0, cen-

tered at the origin. For each a2 > 0, let Qa denote a global minimizer of ILG (defined
in (2.3)) in the space A defined in (2.8). Then there exists a0 > 0 (which depends on
L, b, c and R0) such that for a2 > a2

0, the minimizer Qa is not purely uniaxial.
In order to prove the above result, we study the auxiliary problem of minimizing

the Landau-de Gennes energy functional in the restricted class Au ⊂ A of purely
uniaxial Q-tensors:

Au = {Q ∈ A : Q is purely uniaxial} . (2.12)
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Proposition 3.3 shows that the auxiliary problem is well posed. Moreover, proceeding
as in [16, Lemma 3], it can be seen that, after a suitable re-scaling in Q (note that
s+ → ∞ as a2 → ∞; see (3.7) in Proposition 3.4), any sequence of minimizers
{Qa}a>0 ∈ Au converges strongly in W 1,2(B(0, R0);S0), as a2 → ∞, to a limiting
harmonic map Q0. A limiting harmonic map, as defined in [16], is a uniaxial map of
the form

Q0 = s+

(
n0 ⊗ n0 − I

3

)
, (2.13)

where s+ is defined in (2.7) and n0 is a minimizer of the Dirichlet energy [24]

I[n] =

∫
B(0,R0)

|∇n|2 dV (2.14)

in the admissible space An =
{

n ∈W 1,2
(
B(0, R0);S2

)
; n = x

|x| on ∂B(0, R0)
}

; in

the case of a spherical droplet with homeotropic boundary conditions, n0 is unique
and n0 = x

|x| [13, 14]. Hence Q0 = Qb where Qb is the boundary condition defined

in (2.9).
This strong convergence result, in the limit a2 → ∞, shows that for a uniaxial

sequence of minimizers {Qa} ∈ Au, |Qa| → |Qb| =
√

2
3s+ uniformly away from the

singular set of the limiting harmonic map Q0 i.e. away from the origin (Proposition
3.4iv). Qa must necessarily have isotropic regions because of the topologically non-
trivial boundary condition Qb, and for a2 sufficiently large (i.e. if the temperature is
sufficiently low), these isotropic points are concentrated or localized near the origin
(Proposition 3.4v). However, for the purpose of proving that global minimizers of
the Landau-de Gennes energy are not uniaxial, it is not enough to know that Qa

converges to Q0 as a2 → ∞. It is also necessary to understand the nature of this
convergence. More precisely, it is necessary to blow-up at the point x = 0 and to
compute the optimal decay profile for |Qa| around the origin. Keeping this in mind,
we keep L, b2 and c2 fixed in (2.3) and (2.5) and introduce the following dimensionless
variables as in [18]:

ξb =

√
27c2L

tb4
, x̃ =

x

ξb
, Q̃(x̃) =

1

h+

√
27c4

2b4
Q(x), ĨLG =

1

h2
+

√
27c6t

4b4L3
ÎLG, (2.15)

where

t =
27a2c2

b4
> 0 (2.16)

is the reduced temperature [9] (so that the a2 → ∞ limit corresponds to the t → ∞
limit),

h+ =
3c2

b2
s+ =

3 +
√

9 + 8t

4
∼ t

2
as t→∞, (2.17)

and

ÎLG [Q] =

∫
B(0,R0)

L

2
|∇Q|2 + fB (Q)− min

Q∈S0

fB (Q) dV (2.18)
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(it is clear that Q∗ ∈ A is a minimizer of ÎLG if and only if Q∗ is a minimizer of
ILG in (2.3) and, hence, it suffices to study minimizers of the modified functional
in (2.18)). The position vector x has been re-scaled in (2.15), so that the droplet
B(0, R0) is re-scaled to B(0, R̃t), with

R̃t =

√
b4t

27c2L
R0 →∞ as t→∞. (2.19)

The corresponding dimensionless Landau-de Gennes energy functional is given by

ĨLG[Q̃] =

∫
B(0,R̃t)

1

2
|∇Q̃|2 − tr Q̃2

2
−
√

6h+

t
tr Q̃3 +

h2
+

2t

(
tr Q̃2

)2

+ C(t) dV, (2.20)

where

C(t) = − 1

h2
+

√
27c6t

4b4L3
ξ3
b min
Q∈S0

fB (Q) = − 1

h2
+

√
27c6t

4b4L3
ξ3
bfB (Qb) =

1

2
+
h+

t
−
h2

+

2t

is the additive constant that ensures that

−1

2
trQ̃2 −

√
6h+

t
trQ̃3 +

h2
+

2t

(
trQ̃2

)2

+ C(t) ≥ 0 ∀Q̃ ∈ S0. (2.21)

From (2.9) and (2.17), after rescaling the limiting harmonic map becomes

Q̃0(x̃) =

√
3

2

(
x̃⊗ x̃

|x̃|2
− I

3

)
, x̃ ∈ B(0, R̃t), (2.22)

and, from (2.8), the admissible Q-tensors for the auxiliary problem (2.12) belong to
the space

AQ =

{
Q̃ ∈W 1,2

(
B(0, R̃t);S0

)
; Q̃ is uniaxial and Q̃ = Q̃b on ∂B(0, R̃t)

}
.

(2.23)

The associated Euler-Lagrange equations are [17, 16] (also see Proposition 3.4) -

∆Q̃ij = −Q̃ij −
3
√

6h+

t

(
Q̃ikQ̃kj −

δij
3

tr(Q̃2)

)
+

2h2
+

t
Q̃ijtr(Q̃

2), i, j = 1, 2, 3.

(2.24)
The following is our main result (this is an immediate consequence of Propositions

3.6 and 4.7).
Theorem 2.3. Let Q̃t denote, for every t > 0, a minimizer of ĨLG on AQ.

Then, for every sequence {tj}j∈N with tj → ∞ as j → ∞, there exists a sequence
{x̃∗j}j∈N ⊂ R3 and an orthogonal transformation T ∈ O(3) such that

(i) x̃∗j ∈ B(0, R̃tj ) for each j ∈ N and lim
j→∞

x̃∗j

R̃tj
= 0,

(ii) Q̃tj (x̃∗j ) = 0 for every j ∈ N, and

(iii) the sequence of maps {x̃ 7→ Q̃tj (x̃+ x̃∗j )}j∈N converges in Ckloc(R3;S0), for every
k ∈ N, to the map

HT (x̃) =

√
3

2
h(|x̃|)

(
Tx̃⊗Tx̃

|x̃|2
− 1

3
I

)
, x̃ ∈ R3, (2.25)
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where h : [0,∞) → R+ is the unique, monotonically increasing solution, with
r = |x̃|, of the boundary-value problem

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= h3 − h, h(0) = 0, lim

r→∞
h(r) = 1. (2.26)

Theorem 2.3 states that after a suitable choice of the origin x̃∗j for every j ∈ N,
every subsequence of the original sequence of minimizing Q-tensors has a subsequence
that converges, up to a fixed orthogonal transformation, to the radial-hedgehog solu-
tion

H(x̃) = h(|x̃|)
√

3

2

(
x̃⊗ x̃

|x̃|2
− 1

3
I

)
, x̃ ∈ R3 (2.27)

(see Proposition 3.7) of the tensor-valued Ginzburg-Landau equations

∆Q̃ = (|Q̃|2 − 1)Q̃, x̃ ∈ R3. (2.28)

Some questions however remain open. In particular, it would be interesting to
show that the orthogonal transformation T of Theorem 2.3 is simply the identity
matrix, which ought to be true by virtue of the imposed boundary condition Qb in
(2.9), especially in light of the strong convergence result in Proposition 3.4. Secondly,

it would be interesting to establish the stronger result that
Q̃t(x̃+x̃∗j )

ht(|x̃|) converges to√
3
2

(
x̃
|x̃| ⊗

x̃
|x̃| −

I
3

)
, where ht is the solution of an explicit boundary-value problem

as stated in Proposition 3.7 and h = limt→∞ ht (this would make that the statement
that, minimizers of ĨLG in the restricted class of uniaxial maps look ‘almost’ like
the radial-hedgehog solution, more rigorous). Finally, it remains open to determine
whether the radial symmetry result in Theorem 2.3 holds not only in the a2 → ∞
limit, but also for sufficiently large but finite a2.

3. Preliminaries. Lemma 3.1 (Uniaxiality). For every Q ∈ S0, the following
are equivalent
(i) Q has two equal eigenvalues
(ii) Q can be written in the form Q = s(n⊗n− 1

3I) for some s ∈ R and some n ∈ S2

(iii) (tr Q2)3 = 6(tr Q3)2.

Proof. If Q ∈ S0 has two equal eigenvalues, then there exists an orthonormal
frame e, f , n such that

Q = λ (e⊗ e + f ⊗ f)− 2λn⊗ n.

Since n ⊗ n + e ⊗ e + f ⊗ f = I, we may write Q in the simpler form Q =
−3λ

(
n⊗ n− 1

3I
)

where s = −3λ and n is the distinguished eigenvector with the
non-degenerate eigenvalue. Let us now show that (iii) implies (ii). Let Q ∈ S0 with
eigenvalues λ1, λ2, λ3. The fact that tr Q = 0 implies that

λ1λ2 + λ2λ3 + λ3λ1 =
(tr Q)2 − tr Q2

2
= −1

2
tr Q2

tr Q3 = λ3
1 + λ3

2 + λ3
3 =

6λ1λ2λ3 − (λ1 + λ2 + λ3)3

2
= 3 det Q.
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Thus, as in [1, Prop. 1], if (tr Q2)3 = 6(tr Q3)2, then det(λI −Q) can be factorized
as

λ3 + (λ1λ2 + λ2λ3 + λ3λ1)λ− λ1λ2λ3 =

(
λ+

√
tr Q2

6

)2(
λ− 2

√
tr Q2

6

)
,

completing the proof.
Note: If s in the above representation is such that s ≥ 0, it is clear that we can

also write

Q =

√
3

2
|Q|

(
n⊗ n− I

3

)
. (3.1)

Lemma 3.2 (Orientability). Let Ω ⊂ R3 be a bounded simply-connected domain

with continuous boundary. If Q ∈W 1,2 (Ω, S0) and |Q(x)| =
√

2
3s a.e. in Ω for some

fixed s 6= 0, then Q admits a representation of the form (2.11) for some unit-vector
field n ∈W 1,2(Ω,S2) if and only if

(tr Q(x)2)3 = 6(tr Q(x)3)2 for a.e. x ∈ Ω. (3.2)

Proof. By Lemma 3.1, property (3.2) holds if and only if for a.e. x ∈ Ω the tensor
Q(x) belongs to the manifold

Q := {Q ∈ S0 : Q = s

(
n⊗ n− I

3

)
for some n ∈ S2}. (3.3)

However, it is difficult to determine if for each x the unit vector n(x) can be chosen
in such a way that the resulting map n : Ω → S2 has the desired regularity (n ∈
W 1,2(Ω,S2)). The main difficulty is that the topology of Q is that of RP2, and in
fact it is possible to construct Q-tensors that cannot be oriented (for which it is not
possible to find n ∈W 1,2) if the domain Ω is not simply connected or if we only know
that Q ∈W 1,p(Ω, S0) for some p < 2 (see Ball & Zarnescu [1]). For the case at hand
of a simply-connected domain and a Q-tensor in W 1,2(Ω;S0), there exists a lifting
n ∈W 1,2(Ω;S0) as required (this is proved in [1, Th. 2]).

Proposition 3.3. For every a2 > 0, the infimum of the Landau-de Gennes
energy ILG in (2.3) on the restricted class Au in (2.12) is attained. Moreover, the
minimizers of ILG on Au are smooth and real analytic on B(0, R0), and solve the
same system (2.10) of Euler-Lagrange equations as do the minimizers of ILG on the
unrestricted class A.

Proof. For consistency with the rest of the paper, we use the dimensionless vari-
ables introduced in (2.15) and consider the equivalent problem of minimizing the
functional ĨLG defined in (2.20) on the admissible class AQ of (2.23), with t > 0
fixed. In what follows, we drop the tilde on the dimensionless variables for brevity,
and all subsequent results in the proof of this Proposition are to be understood in
terms of the dimensionless variables. In what follows, we prove the existence of mini-
mizers in the restricted class AQ and show that they solve the corresponding system
of Euler-Lagrange equations in (2.24).

Fix t > 0 and let {Qk}k∈N be a minimizing sequence for ĨLG in AQ. Since
the boundary condition is fixed, {Qk} is bounded in W 1,2(B(0, Rt);S0), hence there
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exists a subsequence (not relabelled) converging weakly in W 1,2(B(0, Rt);S0) to some
Qt ∈ W 1,2(B(0, Rt);S0). By the trace theorem, Qt = Qb on ∂B(0, Rt). Since
W 1,2 ↪→ L4 and the bulk energy density (2.21) is a quartic polynomial in Q, it follows
that ĨLG[Qt] ≤ infAQ

ĨLG. We only need to show that Qt ∈ AQ. This can be seen
by extracting a subsequence of {Qk}k∈N converging a.e. in B(0, Rt) to Qt, recalling
that Q is uniaxial if and only if (tr Q2)3 = 6(tr Q3)2 (Lemma 3.1) and noting that
this constraint is preserved under weak convergence.

If Q is a minimizer of ĨLG on AQ, then∫
B(0,Rt)

∇Q · ∇H−

(
Q +

3
√

6h+

t
Q2 −

2h2
+

t
(tr Q2)Q

)
·H dV = 0 (3.4)

for every H ∈ C∞c (B(0, Rt);S0) satisfying

6
(
(tr Q2)2Q− 6(tr Q3)Q2

)
·H = 0 (3.5)

(condition coming from the uniaxiality constraint (tr Q2)3 = 6(tr Q3)2). However,
one can immediately check that if Q = s(n⊗ n− I

3 ), then (tr Q2)2Q− 6(tr Q3)Q2 =
− 8

27s
5I. Since tr H = 0 for all H ∈ C∞c (B(0, Rt);S0), we find that (3.5) is satisfied

for every H ∈ C∞c (B(0, Rt);S0).
Given H ∈ C∞c (B(0, Rt),M

3×3) satisfying H = HT , it is clear that H̄ = H− trH
3 I

belongs to C∞c (B(0, Rt), S0) and hence we can apply (3.4) to H̄. We have Q · I = 0
and ∇Q · I = 0; therefore∫

B(0,Rt)

∇Q · ∇H−

(
Q +

3
√

6h+

t

(
Q2 − tr Q2

3
I

)
−

2h2
+

t
(tr Q2)Q

)
·H dV

=

∫
B(0,Rt)

∇Q · ∇H̄−

(
Q +

3
√

6h+

t
Q2 −

2h2
+

t
(tr Q2)Q

)
· H̄ dV = 0 (3.6)

for all symmetric H ∈ C∞c (B(0, Rt),M
3×3). If H is not symmetric, we can apply the

previous argument to H̃ = H+HT

2 and since Q·H̃ = Q·H and Q2 ·H̃ = Q2 ·H, we con-
clude that (3.6) is valid for all tensor-valued test functions H ∈ C∞c (B(0, Rt),M

3×3).
Therefore, Q satisfies the weak form of the Euler-Lagrange equations (2.24). Propo-
sition 3.3 now follows from standard elliptic regularity theory.

Proposition 3.4. For each a2 > 0, let Qa ∈ W 1,2(B(0, R0);S0) be a mini-
mizer of the Landau-de Gennes energy ILG in the space Au (the existence of which
is guaranteed by Proposition 3.3). Define

Q̄a
ij(x) =

1

h+

√
27c4

2b4
Qa
ij(x), x ∈ B(0, R0). (3.7)

Then

(i) Q̄a =
√

3
2 |Q̄

a|(n⊗ n− 1
3I) for some n ∈W 1,2(B(0, R0);S2).

(ii) |Q̄a(x)| ≤ 1 for all x ∈ B(0, R0).

(iii) Q̄a converges to Q̄0(x) =
√

3
2

(
x⊗x
|x|2 −

I
3

)
strongly in W 1,2(B(0, R0);S0) as

a2 →∞.
(iv) For any compact K ⊂ B(0, R0) such that K does not contain any singularities

of Q̄0 i.e. does not contain the origin, we have

lim
a2→∞

|Q̄a(x)| = 1 ∀x ∈ K, (3.8)
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the limit being uniform on K.
(v) For every a2 > 0, there exists x∗a ∈ B(0, R0) such that Q̄a(x∗a) = 0, with |x∗a| → 0

as a2 →∞.
Proof. The proof of [15, Lemma 2] shows that if Qa is a Landau-de Gennes mini-

mizer in Au then s in the representation Qa = s(n⊗n− I
3 ) must necessarily be non-

negative. As mentioned in the note after Lemma 3.1, this implies that s =
√

3
2 |Q

a|,

i.e., that Qa =
√

3
2 |Q̄

a|(n ⊗ n − 1
3I) for some n : B(0, R0) → S2. This is enough to

prove the remaining parts of the Proposition. The fact that n ∈ W 1,2(B(0, R0);S2)
can be deduced from (iv) and Lemma 3.2.

Proof of (ii): From (2.10) and (3.7) and recalling Proposition 3.3, we have that

L̄∆Q̄a
ij = − t

2
Q̄a
ij −

√
27

2
h+

(
Q̄a
ikQ̄

a
kj −

δij
3

tr(Q̄a)2

)
+ h2

+Q̄a
ijtr(Q̄

a)2, i, j = 1, 2, 3,

(3.9)

with L̄ = 27c2L
2b4 and t = 27a2c2

b4 . We substitute the representation formula in (i) into
the above to obtain

L̄∆Q̄a
ij =

t

2
(|Q̄a|2 − 1)Q̄a

ij +
3h+

2
(|Q̄a|2 − |Q̄a|)Q̄a

ij . (3.10)

The proof of (ii) follows from multiplying both sides of the above by Q̄a
ij and applying

a standard maximum principle argument for |Q̄a|2; the details are omitted for brevity.
Proof of (iii): We follow the proof of [16, Lemma 3], noting first that the Landau-

de Gennes energy functional corresponding to the re-scaled variables Q̄ is given by

272c6

4h2
+b

8
ÎLG[Q̄] =

∫
B(0,R0)

L̄

2
|∇Q̄|2 +

t

8

[(
1− |Q̄|2

)2
+ f̄(t, Q̄)

]
dV, (3.11)

where L̄ and t are as defined above,

f̄(t, Q̄) =
(

1 + 3|Q̄|4 − 4
√

6 tr Q̄3
) h+

t
(3.12)

and (1 − |Q̄|2)2 + f̄(t, Q̄) ≥ 0 for all Q ∈ S0 (see definition of ÎLG in (2.18)). Since
h+

t ∼
1√
2t

as t→∞, then

|f̄(t, Q̄)| ≤ (1 + |Q̄|)4 γ1√
t

(3.13)

for some constant γ1 (independent of a, b, c, L, and t) in the limit t→∞.
Our aim is to show that for every sequence {ak}k∈N with ak → ∞ and every

sequence {Qak}k∈N satisfying ÎLG[Q̄ak ] ≤ ÎLG

[
Q̄0
]

for all k ∈ N, there exists a
subsequence converging weakly to Q̄0. Then we prove that the convergence is, in
fact, strong in W 1,2(B(0, R0);S0).

From (3.11) and the fact that Q0 ∈ Au, we obtain∫
B(0,R0)

L̄

2
|∇Q̄ak |2 +

tk
8

[(
1− |Q̄ak |2

)2
+ f̄(tk, Q̄

ak)
]
dV ≤ L̄

2
‖∇Q̄0‖2L2(B(0,R0)

(3.14)
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(recall that the bulk energy density fB attains its minimum in Qmin and that Q0(x) ∈
Qmin for every x ∈ B(0, R0)). The right-hand side is bounded independently of
t, hence {∇Q̄ak}k∈N is bounded in L2. Moreover, Q̄ak = Q̄b on ∂B(0, R0) for
every k ∈ N; using Poincaré’s inequality it follows that {Q̄ak}k∈N is bounded in
W 1,2(B(0, R0);S0). By the Banach-Alaoglu Theorem, we may extract a subsequence
(not relabelled) converging weakly to a map Q∞ ∈W 1,2(B(0, R0);S0).

As in Proposition 3.3, we can verify that the limit map Q∞ is uniaxial by taking
a subsequence converging pointwise a.e. and by using the characterization of uniaxial
maps in Lemma 3.1. By virtue of (3.14), (3.13), and part (ii),∫

B(0,R0)

(1− |Q∞|2)2 dV ≤ lim
t→∞

(
4L̄

t
‖∇Q̄0‖2L2 +

4π

3
R3

0 ·
24γ1√
t

)
= 0, (3.15)

so Q∞ is of the form Q∞ =
√

3
2

(
n⊗ n− I

3

)
for some n ∈ W 1,2(B(0, R0); S2) (see

Lemma 3.2). From (3.14) and the lower semicontinuity of the Dirichlet energy, we
obtain

3

∫
B(0,R0)

|∇n|2 dV =

∫
B(0,R0)

|∇Q∞|2 dV

≤
∫
B(0,R0)

|∇Q̄0|2 dV = 3

∫
B(0,R0)

∣∣∣∣∇( x

|x|

)∣∣∣∣2 dV. (3.16)

By the definition of a limiting harmonic map (see (2.14)), we conclude that n(x) = x
|x| ,

that Q∞ = Q̄0, and that the inequality above is in fact an equality. The fact that the
convergence is strong follows from the convergence of the L2-norm of the gradient.
Since the limit is the same for every subsequence {Q̄ak}k∈N, we conclude that the
entire sequence {Q̄a}a>0 converges strongly in W 1,2 to Q̄0 as a2 →∞.

Proof of (iv): This is a consequence of the pointwise uniform convergence

lim
a2→∞

[(
1− |Q̄a|

)2
+ f̄(t, Q̄a)

]
= 0

everywhere away from the singular set of Q̄0 i.e. away from the origin (recall from
(3.12) the definition of f̄). This uniform convergence result holds in the interior and
up to the boundary. The proof can be found in [16, Prop. 4 and 6].

Proof of (v): This follows from (iv). We have a topologically non-trivial boundary

condition Q̄b = 1
h+

√
27c4

2b4 Qb in (2.9) and hence every interior extension of x
|x| must

have interior discontinuities. The extension n in (i) has interior discontinuities and
at every such point of discontinuity x∗a, Q̄a(x∗a) = 0 (see [18] for further discussion on
these lines; Q̄a is analytic at x∗a whereas n is not and n can lose regularity only when
the number of distinct eigenvalues of Q̄a changes. Since Qa ∈ Au, the number of
distinct eigenvalues of Q̄a can change only when Q̄a relaxes into the isotropic phase
i.e. Q̄a(x∗a) = 0.) From (iv), as a2 → ∞, all isotropic points are concentrated near
the singular set of Q̄0 and the singular set of Q̄0 merely consists of the origin. Hence,
x∗a → 0 as a2 →∞.

Proposition 3.5. [[16]; Lemma 2] For each t > 0, let Q̃t denote a global
minimizer of ĨLG in (2.20), in the admissible space AQ defined in (2.23). Define

e
(
Q̃,∇Q̃

)
=

1

2
|∇Q̃|2 − tr Q̃2

2
−
√

6h+

t
tr Q̃3 +

h2
+

2t

(
tr Q̃2

)2

+ C(t),
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with C(t) defined as in (2.20). Then

1

r

∫
B(x,r)

e
(
Q̃t,∇Q̃t

)
dV ≤ 1

R

∫
B(x,R)

e
(
Q̃t,∇Q̃t

)
dV (3.17)

for all x ∈ B(0, R̃t) and r ≤ R such that B(x, R) ⊂ B(0, R̃t).
Proof: The proof can be found in [16, Lemma 2]. An analogous boundary mono-

tonicity formula can be found in [16, Lemma 9]. �
Proposition 3.6. For each t > 0, let Q̃t ∈W 1,2(B(0, R̃t);S0) be a minimizer of

the dimensionless Landau-de Gennes energy ĨLG defined in (2.20) on the admissible
class AQ of (2.23). Then, for every sequence {tj}j∈N with tj →∞ as j →∞, there
exists a sequence {x̃∗j}j∈N ⊂ R3 such that

(i) x̃∗j ∈ B(0, R̃tj ) for each j ∈ N and lim
j→∞

x̃∗j

R̃tj
= 0,

(ii) Q̃tj (x̃∗j ) = 0 for every j ∈ N,

(iii) s(x) in the representation (2.11) for Q̃tj is nonnegative for a.e. x ∈ B(0, R̃tj ),

(iv) the sequence of maps {x̃ 7→ Q̃tj (x̃ + x̃∗j )}j∈N has a subsequence that converges,

in Ckloc(R3;S0) for every k ∈ N, to a uniaxial solution Q̃∞ ∈ C∞(R3;S0) of the

Ginzburg-Landau equations (2.28) satisfying Q̃∞(0) = 0 and

1

R

∫
B(0,R)

1

2
|∇Q̃∞|2 +

(1− |Q̃∞|2)2

4
dV ≤ 12π (3.18)

for all R > 0.

Proof. Define x̃∗t =
x∗a
ξb

, with x∗a as in Proposition 3.4v and ξb as in (2.15). Note
first that

ĨLG[Q̃] =

∫
B(0,R̃t)

1

2
|∇Q̃|2 +

1

4

[
(1− |Q̃|2)2 + f̄(t, Q̃)

]
dV,

with f̄(t, Q̃) given by (3.12). Since Q̃t is uniaxial and |Q̃t| ≤ 1 (by Proposition 3.4ii),
we have

t

h+
f(t, Q̃t) = (1− |Q̃t|)

[
(1− |Q̃t|3) + |Q̃t|(1− |Q̃t|2) + |Q̃t|2(1− |Q̃t|)

]
≥ 0 (3.19)

(it is easy to check that
√

6 tr Q3 = |Q|3 for uniaxial tensors). Let R̃∗t = R̃t − |x̃∗t |.
Combining (3.19) with Proposition 3.5 and with the fact that ĨLG[Q̃t] ≤ ĨLG[Q̃0] =
12πR (which comes from the energy minimality of Q̃t on AQ, the fact that Q̃0 ∈ AQ

and that fB attains its minimum in Qmin), we obtain

1

R

∫
B(x̃∗t ,R)

1

2
|∇Q̃t|2 +

(1− |Q̃t|2)2

4
dV ≤ 1

R̃∗t

∫
B(x̃∗t ,R̃

∗
t )

1

2
|∇Q̃t|2 +

(1− |Q̃t|2)2

4
dV

≤ 1

R̃∗t

∫
B(0,R̃t)

1

2
|∇Q̃t|2 +

(1− |Q̃t|2)2

4
dV ≤ 12π

R̃t

R̃∗t
(3.20)

for every t > 0 and every R < R̃∗t . From this energy bound, it is easy to obtain the
existence of a diagonal sequence (for the ‘shifted’ maps x̃ 7→ Q̃t(x̃ + x̃∗t )) converging
weakly in W 1,2

loc ∩ L4
loc(R3;S0) to a limit map Q̃∞ belonging to this functional space
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and satisfying (3.18) (note that limt→∞
R̃t

R̃∗t
= 1 by Proposition 3.4v). From (3.6)

and (2.17), one can check that Q̃∞ solves the weak form of the Ginzburg-Landau
equations (2.28) in R3. The fact that Q̃∞ is smooth and a classical solution of (2.28),
and that the diagonal sequence converges not only weakly in W 1,2 to Q̃∞ but also
in Ckloc(R3;S0) for all k ∈ N, follows by elliptic regularity theory. The proof of (iii)

can be found in [15, Lemma 2]. Finally, Q̃∞(0) = 0 since the map x̃ 7→ Q̃t(x̃ + x̃∗t )
satisfies Q̃t(x̃∗t ) = 0 for every t > 0.

The following proposition has been proven in [9], [18] and [12]
Proposition 3.7 (Radial-hedgehog solution). For every t sufficiently large, there

exists a unique solution h : [0, Rt]→ R for the ordinary differential equation

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= h3 − h+

3h+

t

(
h3 − h2

)
(3.21)

subject to the boundary conditions

h(0) = 0, h(Rt) = 1 (3.22)

(recall the definition of h+ in (2.17) and Rt = R0

√
b4t

27c2L ; for t = ∞, the boundary-

value problem is to be understood as in (2.26)). The corresponding solution ht :
[0, Rt]→ R is analytic, monotonically increasing and satisfies

ht(0) = h
′

t(0) = 0; h
′′

t (0) > 0. (3.23)

Let h(r) = limt→∞ ht(r), then h(0) = h
′
(0) = 0, h

′′
(0) > 0, h

′
(r) > 0 for r > 0 and

we have the following explicit bounds

0 <
r2

r2 + 14
≤ h(r) ≤ r2

r2 + 3
< 1 for all r ∈ (0,∞). (3.24)

4. Symmetry of uniaxial Ginzburg-Landau minimizers. As explained in
the Introduction, this section is based on and follows the exposition in the recent
paper by Pisante [23] on the radial symmetry of critical points for the vector-valued
Ginzburg-Landau equations in RN , N ≥ 3. Our goal here is to adapt the division trick
of Mironescu [20] to the Landau-de Gennes framework for nematic liquid crystals.

As in the proof of Proposition 3.3, we drop the tilde on the dimensionless variables
in (2.15) and all subsequent results are to be understood in terms of the dimensionless
variables.

Proposition 4.1. Let Q : R3 → S0 be a classical and uniaxial solution of (2.28)
satisfying (3.18). Suppose that Q(0) = 0 and that

s(x) in the representation (2.11) is nonnegative. (4.1)

Define

Sij(x) =
Qij(x)

h(|x|)
, (4.2)

where h is the unique solution of the boundary-value problem (2.26). Then ∂S
∂|x| = 0

and |S(x)| = 1 for all x ∈ R3.



14 DUVAN HENAO AND APALA MAJUMDAR

The proof of Proposition 4.1 is postponed until page 18. The first step is to
compute the system of partial differential equations satisfied by S -

∆Sij + h2
(
1− |S|2

)
Sij = −2

h
′

h
Sij,k

xk
|x|
− 6Sij
|x|2

i, j = 1, 2, 3. (4.3)

Following the methods in [23], we proceed by multiplying both sides of (4.3) with
Sij,k

xk

|x|

Sij,k
xk
|x|

∆Sij =
1

|x|

(
∂Sij
∂|x|

)2

+
∂

∂xp

[
−1

2
|∇S|2 xp

|x|
+ Sij,k

xk
|x|

Sij,p

]
(4.4)

h2(|x|)(1− |S|2)SijSij,k
xk
|x|

=

[
(1− |S|2)2

4

[
2hh

′
+

2h2

r

]
− ∂

∂xp

(
xp
|x|

h2
(
1− |S|2

)2
4

)]
(4.5)

−2
h
′

h
Sij,k

xk
|x|

Sij,p
xp
|x|

= −2
h
′

h

(
∂S

∂|x|

)2

and (4.6)

−6
Sij
|x|2

Sij,p
xp
|x|

=
∂

∂xp

[
3xp
|x|3

(1− |S|2)

]
. (4.7)

Using (4.4) - (4.7), we obtain

∂Φp

∂xp
=

1

|x|

(
∂Sij
∂|x|

)2

+
(1− |S|2)2

4

[
2hh

′
+

2h2

r

]
+ 2

h
′

h

(
∂S

∂|x|

)2

(4.8)

with

Φp =
1

2
|∇S|2 xp

|x|
−Sij,kxk
|x|

Sij,p+
xp
|x|

h2
(
1− |S|2

)2
4

+
3xp(1− |S|2)

|x|3
p = 1 . . . 3. (4.9)

For the proof of Proposition 4.1, we need the following lemmas.
Lemma 4.2. Let Q : B(0, δ) ⊂ R3 → S0 be a traceless, symmetric, uniaxial

tensor-valued map defined in a neighbourhood B(0, δ) ⊂ R3 of x = 0. Suppose that
Q(0) = 0 and that Q is differentiable at x = 0. Suppose further that s(x) in the
representation (2.11) is nonnegative. Then ∇Q(0) 6= 0.

Proof. Suppose, for a contradiction, that ∇Q(0) e 6= 0 for some e ∈ S2. We have

lim
t→0+

|Q(te)|
t

=

∣∣∣∣ lim
t→0+

Q(te)

t

∣∣∣∣ = |∇Q(0) e|. (4.10)

In particular, Q(te) 6= 0 for all t in a neighbourhood of t = 0. Let n(te) denote any
of the two unit vectors in the representation (see the note after Lemma 3.1)

Q(te) =

√
3

2
|Q(te)|

(
n⊗ n− I

3

)
. (4.11)

Since Q(te) 6= 0 for all t close to t = 0 we can say that

lim
t→0+

√
3

2

(
n(te)⊗ n(te)− I

3

)
= lim
t→0+

Q(te)
t

|Q(te)|
t

=
∇Q(0) e

|∇Q(0) e|
. (4.12)
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By the same argument, also

lim
t→0+

√
3

2

(
n(−te)⊗ n(−te)− I

3

)
= lim
t→0+

Q(−te)
t

|Q(−te)|
t

= − ∇Q(0) e

|∇Q(0) e|
. (4.13)

We would then have that

lim
t→0+

det

(
n(−te)⊗ n(−te)− I

3

)
= − lim

t→0+
det

(
n(te)⊗ n(te)− I

3

)
, (4.14)

but the determinant of a tensor of the form n⊗ n− I
3 is always equal to 2/27. This

finishes the proof.
Lemma 4.3. Let Q ∈ C∞(R3;S0) be a uniaxial solution of (2.28) satisfying (4.1)

and Q(0) = 0. Define

Bijαβ =
Qij,αβ(0)

h′′(0)
i, j, α, β = 1 . . . 3. (4.15)

Then Bijαβ = Bjiαβ, Bijαβ = Bijβα, Bijαα = 0, and Biiαβ = 0 for all i, j, α, β =
1 . . . 3, and

Sij(x) = Bijαβ
xαxβ
|x|2

+ o(1) and
∂Sij
∂xγ

=
∂

∂xγ

[
Bijαβ

xαxβ
|x|2

]
+O(1) (4.16)

as x→ 0, where S is defined as in (4.2).
Proof. From equality of mixed partial derivatives, we have that Qij,αβ = Qij,βα.

The relations Bijαβ = Bjiαβ and Biiαβ = 0 follow by recalling that Q(0) ∈ S0.
Finally Bijαα = 0 since ∆Q = (|Q|2 − 1)Q and Q(0) = 0. The estimates in (4.16)

readily follow from Lemma 4.2, the fact that h(0) = h
′
(0) = 0 and by computing the

Taylor expansion of Q and h near the origin.
Lemma 4.4. The integral∫

|x|=1

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 − 3

|x|2

∣∣∣∣Bijαβxαxβ
|x|2

∣∣∣∣2 dA = 0 (4.17)

for any constant Bijαβ such that Bijαβ = Bjiαβ , Bijαβ = Bijβα and Bijαα =
Biiαβ = 0.

Proof: A direct computation shows that

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 =
2

|x|4
BijpqBijrsxqxs

(
δrp −

xrxp
|x|2

)
(4.18)

and

3

|x|2

∣∣∣∣Bijαβxαxβ
|x|2

∣∣∣∣2 =
3

|x|6
BijpqBijrsxpxqxrxs (4.19)

so that ∫
|x|=1

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 − 3

|x|2

∣∣∣∣Bijαβxαxβ
|x|2

∣∣∣∣2 dA =

= BijpqBijrs

[
2δrp

∫
|x|=1

xqxsdA− 5

∫
|x|=1

xpxqxrxsdA

]
(4.20)
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for i, j, p, q, r, s = 1, 2, 3.

Using spherical coordinate representation, we can check that∫
|x|=1

xqxsdA =
4π

3
δqs (4.21)

and ∫
|x|=1

xpxqxrxsdA =
4π

15
[δpqδrs + δprδqs + δpsδqr] . (4.22)

Substituting (4.21) and (4.22) into (4.20), we obtain∫
|x|=1

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 − 3

|x|2

∣∣∣∣Bijαβxαxβ
|x|2

∣∣∣∣2 dA =

=
4π

3
[2BijrsBijrs −BijppBijss −BijqrBijrq −BijsrBijrs] (4.23)

and the right-hand side vanishes since Bijss = 0 and Bijsr = Bijrs. The integral
equality (4.17) now follows. �

Lemma 4.5. Let Q ∈ C∞(R3;S0) be a uniaxial solution of (2.28) satisfying (4.1)
and Q(0) = 0. Then ∫

|x|=δ
Φp

xp
|x|
dA→ 12π as δ → 0 (4.24)

where Φp is defined in (4.9) and dA is the surface area element on ∂B(0, δ).

Proof: By the definition of Φp in (4.9), we have∫
|x|=δ

Φp
xp
|x|
dA (4.25)

=

∫
|x|=δ

1

2
|∇S|2 −

(
∂S

∂|x|

)2

+
h2(1− |S|2)2

4
+

3
(
1− |S|2

)
|x|2

dA.

By Lemma 4.3, we have that(
∂S

∂|x|

)2

= o(|x|−2) and 1− |S|2 =
|x|4 − |Bijαβxαxβ |2

|x|4
+ o(1). (4.26)

Substituting (4.26) into (4.25), we get

∫
|x|=δ

Φp
xp
|x|
dA =

∫
|x|=δ

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 + 3

(
|x|4 − |Bijαβxαxβ |2

|x|6

)
+ o(|x|−2) dA

= 12π + o(1) +

∫
|x|=δ

1

2

∣∣∣∣∇(Bijαβxαxβ
|x|2

)∣∣∣∣2 − 3

|x|2

∣∣∣∣Bijαβxαxβ
|x|2

∣∣∣∣2 dA.

(4.27)

The conclusion of Lemma 4.5 then follows by Lemma 4.4. �
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Proposition 4.6. Let Q ∈ C2(R3;S0) be a uniaxial solution of (2.28) satisfying
(3.18), (4.1) and Q(0) = 0. Then

lim
R→∞

1

R

∫
B(0,R)

1

2
|∇S|2 +

(
1− |S|2

)2
4

dV ≤ 12π

lim
R→∞

1

R

∫
B(0,R)

|1− |S|2|
|x|2

dV = 0, (4.28)

where S is defined as in (4.2).
Proof: As in [16, Lemma 2], it is possible to prove that if ∆Q = (|Q|2 − 1)Q,

then

1

R

∫
B(0,R)

e(Q,∇Q) dV − 1

r

∫
B(0,r)

e(Q,∇Q) dV ≥
∫ R

r

1

2t2

∫
B(0,t)

(1− |Q|2)2 dV dt

(4.29)

≥ 1

2

(
1

r
− 1

R

)∫
B(0,r)

(1− |Q|2)2 dV,

with e(Q,∇Q) = 1
2 |∇Q|2 + (1−|Q|2)2

4 , for all r and R such that r < R. In particular,
1
R

∫
B(0,R)

e(Q,∇Q) dV is monotone and bounded. Hence, as in [19, Lemma 4.1], if

we set r = R/2, the left-hand side of (4.29) tends to zero as R → ∞ (by virtue of
(3.18)). Therefore,

lim
R→∞

1

R

∫
B(0,R)

(1− |Q|2)2 dV = 0. (4.30)

Note that ∣∣1− |S|2∣∣2 ≤ 2

(∣∣∣∣1− 1

h2

∣∣∣∣2 +

∣∣1− |Q|2∣∣2
h4

)
. (4.31)

By (4.16), it is clear that |S| is bounded as x→ 0. For |x|2 ≥ 1, we recall the bounds
in (3.24) to find∣∣∣∣1− 1

h2

∣∣∣∣2 ≤ δ1
|x|4

and

∣∣1− |Q|2∣∣2
h4

≤ δ2
∣∣1− |Q|2∣∣2 for |x|2 ≥ 1, (4.32)

for some constants δ1, δ2 > 0. Combining the inequalities (4.31) and (4.32), we obtain

lim
R→∞

1

R

∫
B(0,R)

∣∣1− |S|2∣∣2 dV ≤ 2δ2 lim
R→∞

1

R

∫
B(0,R)

(
1− |Q|2

)2
dV = 0. (4.33)

Next, we turn to the elastic term, |∇S|2. For x close to the origin, we have that
|∇S| = O(|x|−1), by virtue of (4.16). Hence∫

B(0,r0)

1

2
|∇S|2 dV ≤ δ4r3

0 (4.34)

for all r0 small and some δ4 > 0. On B(0, R)\B(0, r0), an explicit computation shows
that

|∇S|2 =
|∇Q|2

h2
+ |Q|2

(
h
′

h2

)2

− 2QijQij,k
xk
|x|

h
′

h3
i, j, k = 1 . . . 3. (4.35)
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For |x| ≥ r0, we recall from [18] that∣∣∣h′(|x|)∣∣∣ ≤ δ5
|x|3

and
|∇Q|2

h2
= |∇Q|2(1 +

δ6
|x|2

) (4.36)

for some constants δ5 and δ6 > 0. Combining (4.33) - (4.36), we deduce the following
chain of inequalities

lim
R→∞

1

R

∫
B(0,R)

1

2
|∇S|2 +

∣∣1− |S|2∣∣2
4

dV = lim
R→∞

1

R

∫
B(0,R)

1

2
|∇S|2 dV

≤ lim
R→∞

1

R

∫
B(0,R)

1

2
|∇Q|2 dV ≤ 12π,

(4.37)

where the last inequality follows from (3.18).

Finally, we turn to the integral limR→∞
1
R

∫
B(0,R)

|1−|S|2|
|x|2 dV . Recall that |S| is

bounded close to the origin, see (4.16), hence a direct computation shows that∫
B(0,1)

|1− |S|2|
|x|2

dV ≤ δ8 (4.38)

for some constant δ8 > 0. On the region B(0, R) \B(0, 1), we use Young’s inequality
to deduce

|1− |S|2|
|x|2

≤ 1

2

[(
1− |S|2

)2
4

+
4

|x|4

]
. (4.39)

Combining (4.38)–(4.39) and recalling (4.33), we obtain

lim
R→∞

1

R

∫
B(0,R)

|1− |S|2|
|x|2

dV (4.40)

≤ lim
R→∞

[
δ8
R

+
1

2R

∫
B(0,R)\B(0,1)

(
1− |S|2

)2
4

dV +
1

2R

∫
B(0,R)\B(0,1)

4

|x|4
dV

]
= 0

as required. The proof of Proposition 4.6 is now complete. �
Proof of Proposition 4.1: We integrate both sides of (4.8) over the ball B(0, r) ⊂

R3, integrate again from r = 0 to r = R, divide by R, use Lemma 4.5 and take the
limit R→∞ to obtain

12π + lim
R→∞

1

R

∫ R

0

∫
B(0,r)

1

|x|

(
∂S

∂|x|

)2

+

(
1− |S|2

)2
4

[
2h
′
h+

2h2

|x|

]
+

2h
′

h

(
∂S

∂|x|

)2

dV dr =

= lim
R→∞

1

R

∫
B(0,R)

1

2
|∇S|2 −

(
∂S

∂|x|

)2

+
h2
(
1− |S|2

)2
4

+
3
(
1− |S|2

)
|x|2

dV. (4.41)

From (4.28), we have that

lim
R→∞

1

R

∫
B(0,R)

3
(
1− |S|2

)
|x|2

dV = 0
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and

lim
R→∞

1

R

∫
B(0,R)

1

2
|∇S|2 −

(
∂S

∂|x|

)2

+
h2
(
1− |S|2

)2
4

≤ 12π.

since h2(|x|) ≤ 1 on R3. We deduce that

lim
R→∞

1

R

∫ R

0

∫
B(0,r)

1

|x|

(
∂S

∂|x|

)2

+

(
1− |S|2

)2
4

[
2h
′
h+

2h2

|x|

]
+

2h
′

h

(
∂S

∂|x|

)2

dV dr = 0.

(4.42)
We note that every term in the above integrand is non-negative (recall that h is
monotonically increasing, Proposition 3.7). Define the function

A(R) =

∫
B(0,R)

1

|x|

(
∂S

∂|x|

)2

+

(
1− |S|2

)2
4

[
2h
′
h+

2h2

|x|

]
+

2h
′

h

(
∂S

∂|x|

)2

dV

and we note that A(R) is an increasing function of R. From (4.42), we deduce that

1

2
A

(
R

2

)
≤ lim
R→∞

1

R

∫ R

R/2

A(s)ds = 0

and hence,∫
B(0,R)

1

|x|

(
∂S

∂|x|

)2

+

(
1− |S|2

)2
4

[
2h
′
h+

2h2

|x|

]
+

2h
′

h

(
∂S

∂|x|

)2

dV = 0

for every R > 0. The conclusion of Proposition 4.1 now follows. �
Proposition 4.7. Let Q ∈ C2(R3;S0) be a uniaxial solution of (2.28) satisfying

(3.18), (4.1) and Q(0) = 0. Let h denote the unique solution for the boundary-value
problem (2.26). Then there exists an orthogonal matrix T ∈ O(3) such that

Q(x) =

√
3

2
h(|x|)

(
Tx⊗Tx

|x|2
− I

3

)
, x ∈ R3. (4.43)

Proof: From Proposition 4.1, we have that

Qij(x) = h(|x|)Mij

(
x

|x|

)
(4.44)

where Mij =
√

3
2

(
m⊗m− I

3

)
for some m ∈ W 1,2(S2;S2) (from the uniaxial char-

acter of Q and Lemma 3.2). Note that

|M(x)|2 = 1 for all x ∈ R3. (4.45)

Substituting (4.44) into (4.3) yields ∆S = −6S/r2, with S(x) = M(x
r ) and

r = |x|. We write this equation in its weak form (using that ∇S and S
r2 are in

L1(B(0, 1)) and that ∂S
∂r = 0) to obtain∫

B(0,1)

∇S · ∇φ dV = 6

∫
B(0,1)

S · φ
r2

dV ∀φ ∈W 1,2(B(0, 1);R3×3). (4.46)
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Extend m : S2 → S2 to a map m ∈ W 1,2(B(0, 1); S2) by m(x) = m(x
r ). Testing

against φ = ϕ⊗m with ϕ ∈ (L∞ ∩W 1,2)(B(0, 1),R3), and using that m ⊥ ∂m
∂xk

for
∀k, ∫

B(0,1)

(
∇ϕ · ∇m + (ϕ ·m)|∇m|2

)
dV = 4

∫
B(0,1)

ϕ ·m
r2

dV (4.47)

for all ϕ ∈ (L∞∩W 1,2)(B(0, 1);R3). Specializing further to test functions of the form
ϕ = ηm, η ∈ C∞(B(0, 1)) and noting that 2(∇m)Tm = ∇(|m|2) = 0, we obtain∫

B(0,1)

2η|∇m|2 dV = 4

∫
B(0,1)

η

r2
dV ∀ η ∈ C∞(B(0, 1)), (4.48)

which, in turn, implies that |∇m|2 ≡ 2r−2. Substituting the above into (4.47), we
have∫

B(0,1)

∇ϕ · ∇m dV = 2

∫
B(0,1)

ϕ ·m
r2

dV ∀ϕ ∈ (L∞ ∩W 1,2)(B(0, 1);R3), (4.49)

or, equivalently,∫
S2
∇0ϕ · ∇0m dS = 2

∫
S2
ϕ ·m dS ∀ϕ ∈W 1,2(S2,R3), (4.50)

where ∇0 denotes the tangential gradient. This is the weak form of ∆0m = −2m,
with ∆0 being the Laplace-Beltrami operator. It follows that the components of m
are spherical harmonics of degree one, i.e., they are restrictions to the unit sphere of
entire affine functions in R3 (see, e.g., [3, Sect. V.8,Sect. VII.5]). Hence, m(x) = T x

|x|
for some constant T ∈ M3×3. Since m takes values on S2 ⊂ R3, it follows that
T ∈ O(3), thus completing the proof. �

5. Instability of the radial-hedgehog solution. For a fixed t > 0, let Qt ∈
W 1,2
loc

(
R3, S0

)
be an entire solution of the Euler-Lagrange equations :

∆Qij = −Qij−
3
√

6h+

t

(
QikQkj −QpqQpq

δij
3

)
+

2h2
+

t
QijQpqQpq i, j, k, p, q = 1, 2, 3.

(5.1)
We say that

Definition 5.1. Qt is stable if the following inequality holds for any bounded
open set Ω ⊂ R3 and for any P ∈ C∞0 (Ω, S0),∫

Ω

|∇P|2−|P|2− 6
√

6h+

t
Qt
ijPjpPpi+

h2
+

2t

(
8
(
Qt ·P

)2
+ 4|Qt|2|P|2

)
dV ≥ 0. (5.2)

Equivalently,
Definition 5.2. Qt is unstable if there exists a bounded open set Ω ⊂ R3 and

P ∈ C∞0 (Ω, S0) for which∫
Ω

|∇P|2−|P|2− 6
√

6h+

t
Qt
ijPjpPpi+

h2
+

2t

(
8
(
Qt ·P

)2
+ 4|Qt|2|P|2

)
dV < 0. (5.3)
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The integral inequality in (5.2) follows from computing the second variation of
the Landau-de Gennes energy functional, as in [23]. We sketch the details of the
computation below. Consider an arbitrary P ∈ C∞0 (Ω, S0) and define perturbations

Qε
ij = Qt

ij + εPij i, j = 1, 2, 3

for 0 < ε << 1. One can verify by a direct computation that

|∇Qε|2 = |∇Qt|2 + 2εQt
ij,kPij,k + ε2|∇P|2

|Qε|2 =
∣∣Qt
∣∣2 + 2εQt

ijPij + ε2|P|2 (5.4)

where Qt
ij,k =

∂Qt
ij

∂xk
etc. and i, j, k = 1, 2, 3. Similarly,

Qε
ijQ

ε
jpQ

ε
pi = Qt

ijQ
t
jpQ

t
pi + 3εQt

ijQ
t
jpPpi + 3ε2Qt

ijPjpPpi + ε3PijPjpPpi (5.5)(
Qε
ijQ

ε
ij

)2
= |Qt|4 + 4ε|Qt|2

(
Qt ·P

)
+ 2ε2

(
|Qt|2|P|2 + 2

(
Qt ·P

)2)
+ 4ε3|P|2

(
Qt ·P

)
+ ε4|P|4. (5.6)

The integral inequality in (5.2) now follows from the positivity of the second variation
of the Landau-de Gennes energy:

d2ILG [Qε]

dε2
|ε=0 =

∫
Ω

|∇P|2−|P|2−6
√

6h+

t
Qt
ijPjpPpi+

h2
+

2t

(
8
(
Qt ·P

)2
+ 4|Qt|2|P|2

)
dV.

(5.7)

For each t > 0, let Rt = R0b
2
√
t√

27c2L
as before (where R0 is independent of t)

and let B(0, Rt) ⊂ R3 denote the ball of radius Rt centered at the origin. We define
Ht : B(0, Rt)→ S0 to be

Ht(x) =

√
3

2
ht(r)

(
x⊗ x

|x|2
− I

3

)
(5.8)

where r = |x| and ht : [0, Rt] → R is a solution of the following boundary-value
problem:

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= h3 − h+

3h+

t

(
h3 − h2

)
(5.9)

and

h(0) = 0, h(Rt) = 1. (5.10)

We recall that the boundary-value problem (5.9)-(5.10) has a solution for all
t > 0. There exists a t0 > 0 such that for all t > t0, the solution, ht, satisfies the
global bounds 0 ≤ ht(r) ≤ 1 for r ∈ [0, Rt]. Further, for t > t0, ht is unique and
monotonically increasing for r > 0 [12, 18].

Theorem 5.3. The tensor-field, Ht : B(0, Rt) → S0, as defined in (5.8), is a
classical solution of the system of the Euler-Lagrange equations in (5.1). There exists
a t∗ > 0 such that for t > t∗, Ht is an unstable equilibrium of the Landau-de Gennes
energy in the sense of Definition 5.2 and (5.3).

Proof: One can immediately check from the definition of Ht in (5.8) and the
definition of ht in (5.9) - (5.10) that Ht is a solution of the system of partial differential



22 DUVAN HENAO AND APALA MAJUMDAR

equations in (5.1). The instability of the radial-hedgehog solution in the t→∞ limit
has been proven in [9] and similar results have been proven for finite but large values
of t in [18]. We reproduce the main details here for completeness.

To demonstrate instability, it suffices to show that the second variation of the
Landau-de Gennes energy is negative for a perturbation P localized in a ball of radius
σ, independent of the reduced temperature t such that σ < Rt.

Consider the radial-hedgehog solution H(x) =
√

3
2h∞(r)

(
x⊗x
|x|2 −

1
3I
)

where h∞

is the unique, monotonically increasing solution of the boundary-value problem [18]:

d2h

dr2
+

2

r

dh

dr
− 6h

r2
= h3 − h (5.11)

with h∞(0) = 0 and h∞(r) → 1 as r → ∞. From [18] and [9], it is known that
r2

r2+14 ≤ h∞(r) ≤ r2

r2+3 . One can readily verify that

Ht → H in C2
loc

(
R3, S0

)
as t→∞. In what follows, we demonstrate instability of the radial-hedgehog solution
H in the sense of Definition 5.2 and use the uniform convergence, Ht → H as t→∞,
to deduce that Ht is unstable for t > t∗, where t∗ > 0 is sufficiently large and suitably
defined.

We consider perturbations of the form

Qε
ij = Hij + εPij 0 < ε << 1; i, j = 1, 2, 3 (5.12)

where

Pij(x) = p(r)

(
zizj −

1

3
δij

)
, (5.13)

z = (0, 0, 1) is the unit-vector in the z-direction, p(r) ∈ C∞0 (B(0, σ),R) ≥ 0 and
p(r) = 0 otherwise. We work with a spherical coordinate system (r, θ, φ) centered at
the origin. The second variation of the Landau-de Gennes energy, for this choice of
the perturbation, is bounded from above by (see (5.2))

d2ĨLG[Qε]

dε2
|ε=0 ≤ 8π

∫ σ

0

r2

3

(
dp

dr

)2

− r2p2(r)

3
+

7

15
r2p2(r)

(
r2

r2 + 3

)2

dr. (5.14)

We compute the integral above with

p(r) =
1

(r2 + 12)2

(
1− r

σ

)
and σ = 50 to find

d2ĨLG[Qε]

dε2
|ε=0 = −4× 10−6 < 0. (5.15)

From the continuous dependence of Ht on the reduced temperature t and the uniform

convergence
h2
+

2t →
1
4 as t → ∞, we deduce that there exists a t∗ > 0 such that for

t > t∗,

d2ĨLG[Qε
t]

dε2
|ε=0 <

1

2

d2ĨLG[Qε]

dε2
|ε=0 < 0 t > t∗ (5.16)
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where

Qε
t(x) = Ht(x) + εP(x),

P has been defined in (5.13) with p(r) = 1
(r2+12)2

(
1− r

σ

)
and σ = 50. We conclude

that Ht is unstable in the sense of Definition 5.2 and (5.3) for t > t∗ as claimed in
Theorem 5.3. �

Proof of Theorem 1: We prove Theorem 1 by contradiction. Let
{
tk
}

be a
sequence such that tk →∞ as k →∞ and let {Qtk} be a corresponding sequence of
global Landau-de Gennes minimizers in the admissible space Ã where

Ã =
{

Q ∈W 1,2
(
B(0, R̃tk);S0

)
: Q = Q̃b on ∂B(0, R̃tk)

}
where R̃tk has been defined in (2.19) and Qb has been defined in (2.9).

Suppose, for a contradiction, that Qtk is purely uniaxial for every k ∈ N, so that
each Qtk is also a minimizer of ĨLG in the restricted space AQ of purely uniaxial Q-
tensors. The sequence {Qtk} satisfies the hypotheses of Theorem 2.3. Then (passing
to a subsequence if necessary), there exists a sequence {x̃∗k} such that x̃∗k ∈ B(0, R̃tk),

Qtk (x̃∗k) = 0 for every k ∈ N,
x̃∗k
R̃tk

→ 0 as k →∞ and for tk sufficiently large,

Qtk(x) = H(Tx) + Atk(x) x ∈ R3 (5.17)

where T is an orthogonal transformation, H is the radial-hedgehog solution and

‖Atk‖L∞(B(0,σ)) → 0

uniformly as k → ∞, for every fixed σ > 0. We now compute the second vari-
ation of the Landau-de Gennes energy functional for purely uniaxial global mini-
mizers Qtk in the limit k → ∞, using the perturbation P defined in (5.13) with
p(r) = 1

(r2+12)2

(
1− r

σ

)
and σ = 50. Let Qε

k(x) = Qtk(x + x̃∗k) + εP(Tx) as before;

then

d2ĨLG[Qε
k]

dε2
|ε=0 (5.18)

=

∫
B(0,σ)

|∇P (Tx) |2 − |P (Tx) |2 − 6
√

6h+

t
Pij (Tx) Pjp (Tx) Qtk

pi(x + x̃∗k) dV+

+

∫
B(0,σ)

h2
+

2t

(
8
(
Qtk(x + x̃∗k) ·P (Tx)

)2
+ 4|Qtk(x + x̃∗k)|2|P (Tx) |2

)
dV.

Using (5.17) and working in the limit k →∞, we obtain the following inequalities:

Pij (Tx) Pjp (Tx) Qtk
pi(x + x̃∗k) ≤ Pij (Tx) Pjp (Tx) Hpi (Tx) + γ0‖Atk‖L∞(B(0,σ))(

Qtk(x + x̃∗k) ·P (Tx)
)2 ≤ (H (Tx) ·P (Tx))

2
+ γ1‖Atk‖L∞(B(0,σ))

|Qtk(x + x̃∗k)|2|P (Tx) |2 ≤ |H (Tx) |2|P (Tx) |2 + γ2‖Atk‖L∞(B(0,σ)) (5.19)

where γ0, γ1 and γ2 are positive constants independent of tk as k →∞. In (5.19), we
use the fact that P is supported on B(0, σ) and that both |P| and |H| can be bounded
independently of tk as k →∞. Substituting the above into (5.18) and recalling (5.15)
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(which continues to hold after pre-composing with the orthogonal transformation T
and using a change of variable X = Tx), we have

d2ĨLG[Qε
k]

dε2
|ε=0 ≤

∫
B(0,σ)

|∇P|2−|P|2+
1

4

(
8 (H ·P)

2
+ 4|H|2|P|2

)
dV+γ3‖Atk‖L∞ < 0

(5.20)
for k sufficiently large and γ3 > 0 independent of tk, since σ is independent of t and
‖Atk‖L∞ → 0 uniformly as k → ∞. It follows that Qtk is unstable in the sense of
Definition 5.2 for tk sufficiently large and hence, cannot be a global Landau-de Gennes
minimizer. Theorem 1 now follows. �

6. Conclusions. In this paper, we adapt the recent radial symmetry results
for the vector-valued Ginzburg-Landau equations in RN for N ≥ 3 [19, 23] to the
Landau-de Gennes framework for nematic liquid crystals. We use the division trick
in [20] and Ginzburg-Landau methods to establish the universal character of uniaxial
equilibria on spherical droplets with homeotropic boundary conditions, in a certain
distinguished limit. We show that for all sufficiently low temperatures, globally sta-
ble uniaxial equilibria (if they exist) can be approximated arbitrarily closely by the
well-studied radial-hedgehog solution [9, 18, 25]. We then use the instability of the
radial-hedgehog solution with respect to biaxial perturbations, in the low temperature
limit, to demonstrate the non-existence of purely uniaxial global Landau-de Gennes
minimizers for this model problem. The equivariant radial-hedgehog solution is anal-
ogous to the equivariant degree +1-vortex in superconductivity theory. Our work
elucidates the Ginzburg-Landau type features of the Landau-de Gennes theory and
the identification of these analogies is the first step in the development of new math-
ematical tools specific to Landau-de Gennes theory, including a rigorous description
of the competing biaxial equilibria. A uniaxial Q-tensor has three degrees of freedom
whereas a fully biaxial tensor has five degrees of freedom in a three-dimensional set-
ting. Ginzburg-Landau techniques and methods from the theory of harmonic maps
are useful for describing the far-field behaviour of global Landau-de Gennes minimiz-
ers (away from defects) in the biaxial case, in certain asymptotic limits (see [16] for
related work). However, it is not clear if Ginzburg-Landau methods can give any
information about biaxial defects in R3 and it is a major mathematical challenge to
understand how these extra biaxial degrees of freedom manifest themselves in physical
phenomena.
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