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Abstract. We deal with the problem of the validity of Livšic’s theorem for cocycles
of diffeomorphisms over a hyperbolic dynamics, that satisfy the necessary periodic orbit
obstruction condition. We give a result in the positive direction for cocycles of germs of
analytic diffeomorphisms at the origin.

1 Introduction

Given a map (dynamical system) T : X → X over a compact metric space X and a
(topological) group G, we consider a continuous G-valued cocycle A : N×X → G, that is,
a continuous map taking values in G and satisfying the cocycle relation

A(n+m,x) = A(n, Tmx)A(m,x)

for every m,n in N and every x ∈ X. This cocycle is completely determined by the
continuous function A(·) := A(1, ·) : X → G, and the cocycle relation yields

A(n, x) = A(Tn−1x)A(Tn−2x) · · ·A(x)

for every n ≥ 1. A natural problem is to determine sufficient conditions in order to that
a given cocycle is conjugated to a cocycle taking values in a “small” subgroup of G. For
the case of the trivial subgroup {eG}, the existence of the desired conjugacy is equivalent
to the existence of a continuous function B : X → G such that

A(x) = B(Tx)B(x)−1 for all x ∈ X. (1)

Whenever this cohomological equation associated to the cocycle A has a solution B, we say
that A is a coboundary. The simplest obstruction for the existence of B is the P(eriodic)
O(orbit) O(bstruction): if p ∈ X and n ∈ N satisfy Tnp = p, then

A(n, p) =
n−1∏
i=0

A(T ix) =
n−1∏
i=0

B(T i+1x)B(T ix)−1 = B(Tnp)B(p)−1 = eG .

The Livšic problem consists in determining whether the POO(A) condition is not only
necessary but also sufficient for A being a coboundary. This terminology originates in the
seminal work of Livšic [4], who proved that this is the case whenever G is Abelian, A is
Hölder-continuous and T is a topologically transitive hyperbolic diffeomorphism. Since
then, many extensions of this classical result have been proposed. Perhaps the most rel-
evant is Kalinin’s recent version for G = GL(d,C). In this Note, we address the Livšic
problem for Hölder-continuous cocycles taking values in the group of germs of analytic dif-
feomorphisms. In the context of general diffeomorphisms, a positive answer to the Livšic
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problem is unclear, despite several results pointing in this direction whenever a certain
localization property is satisfied. (See, for example, [2].)

To state our result, we denote by Germd the group of germs of local bi-holomorphisms
of the complex space Cd fixing the origin. This may be identified to the group of holo-
morphic maps F (Z) = A1Z + A2Z

2 + . . . having positive convergence radious, with
A1 ∈ GL(d,C) (see §1.2 for the details).

Main Theorem. Let T : X → X be a topologically transitive homeomorphism of a
compact metric space X satisfying the closing property (see §1.1 for the details). Let
F : X → Germd be a Hölder-continuous function/cocycle (see §1.2 for a discussion on
continuity issues). If F satisfies the POO condition, then there exists a Hölder-continuous
function H : X → Germd such that for all x ∈ X,

F (x) = H(Tx) ◦H(x)−1. (2)

This theorem should be compared with [5], where the second-named author shows a
KAM-type result for Germd-valued cocycles over a minimal torus translation.

1.1 A remind on Livšic’s theorem for complex valued cocycles

Let X be a compact metric space with normalized diameter (i.e., diam(X) = 1). We say
that a function f : X → C is (C,α)−Hölder-continuous for C > 0 and α ∈ (0, 1] if for
every pair of points x, y in X,

|f(x)− f(y)| ≤ C distX(x, y)α. (3)

In the sequel, we will denote by [f ]α the smallest constant C for which f is (C,α)−Hölder-
continuous. The next two results are straightforward.

Lemma 1 If f vanishes at some point of X, then ‖f‖ := supx∈X |f(x)| ≤ [f ]α. �

Lemma 2 Let f, g : X → C be two α-Hölder-continuous functions. Then the functions
f + g and fg are α−Hölder-continuous, and

1. [f + g]α ≤ [f ]α + [g]α.

2. [fg]α ≤ [f ]α‖g‖+ [g]α‖f‖. �

Let T : X → X be a homeomorphism and let x, y be points of X. We say that the
orbit segments x, Tx, . . . , T kx and y, Ty, . . . , T ky are exponentially δ-close with exponent
λ > 0 if for every j = 0, . . . , k,

distX(T jx, T jy) ≤ δe−λmin{j,k−j}.

We say that T satisfies the closing property if there exist c, λ, δ0 > 0 such that for every
x ∈ X and k ∈ N so that distX(x, T kx) < δ0, there exists a point p ∈ X with T kp = p
so that letting δ := c distX(x, T kx), the orbit segments x, Tx, . . . , T kx and p, Tp, . . . , T kp
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are exponentially δ-close with exponent λ and there exists a point y ∈ X such that for
every j = 0, . . . , k,

distX(T jp, T jy) ≤ δe−λj and distX(T jy, T jx) ≤ δe−λ(n−j).

Important examples of maps satisfying the closing property are hyperbolic diffeomorphisms
of compact manifolds.

In this work, we will use two versions of the Livšic result. The first of these (c.f.,
Theorem 3) corresponds to the original Livšic theorem for complex valued cocycles. This
theorem will be used as the main ingredient for an iterative scheme. In this procedure,
we will require to have good estimates for the solutions of cohomological equations (see
Corollary 4). For this reason, in the following paragraph we review the proof of the Livšic
theorem and we record certain key estimates. The second version (extension) of the Livšic
result we will use (c.f., Theorem 5) corresponds to a recent and remarkable theorem
by B. Kalinin, who proves the Livšic theorem for matrix-valued cocycles (satisfying no
localization property).

Theorem 3 (Livšic, see [4]) Let T : X → X be a topologically transitive homeomor-
phism of a compact metric space X satisfying the closing property. Let ψ : X → C be an
α−Hölder-continuous function for which the POO holds, that is, for every point p ∈ X
and k ≥ 1 such that T kp = p, one has

∑k−1
j=0 ψ(T jp) = 0. Then there exists an α−Hölder-

continuous function φ : X → C that is a solution to the cohomological equation

φ ◦ T − φ = ψ.

Proof. Let x0 ∈ X be such that {Tnx0}n∈N = X. We define φ by letting φ(x0) := 0 and
φ(Tnx0) :=

∑n−1
j=0 ψ(T jx0). We next check that φ is α−Hölder-continuous on {Tnx0}n∈N.

Let n > m. There are two cases to consider:

• Assume that distX(Tmx0, T
nx0) < δ0. Then there exists a point p ∈ X satisfying

Tn−mp = p and such that for every j = 0, . . . , n−m,

distX(T j(Tmx0), T jp) ≤ c distX(Tnx0, T
mx0)e−λmin{j,n−m−j}.

This yields
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|φ(Tnx0)− φ(Tmx0)| =

∣∣∣∣∣∣
n−m−1∑
j=0

ψ(Tm+jx0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−m−1∑
j=0

(
ψ(Tm+jx0)− ψ(T jp)

)
+
n−m−1∑
j=0

ψ(T jp)

∣∣∣∣∣∣
≤

n−m−1∑
j=0

∣∣ψ(Tm+jx0)− ψ(T jp)
∣∣

≤
n−m−1∑
j=0

[ψ]α distX(Tm+jx0, T
jp)α

≤
n−m−1∑
j=0

cα[ψ]α distX(Tnx0, T
mx0)α e−λαmin{j,n−m−j}

≤ 2 cα[ψ]α
1− e−λα

distX(Tnx0, T
mx0)α.

• Assume that distX(Tnx0, T
mx0) ≥ δ0. Since x0 has dense orbit and X is compact,

there exists N ∈ N, depending only on X,T , and δ0, such that {x0, Tx0, . . . , T
Nx0}

is a δ0-dense set in X. For n−m ≤ N , one easily shows that

|φ(Tnx0)− φ(Tmx0)| ≤ N‖ψ‖.

For n −m > N , there exist r, s in {0, 1, . . . , N} such that distX(T sx0, T
nx0) ≤ δ0

and distX(T rx0, T
mx0) ≤ δ0. Using the preceding case, this yields

|φ(Tnx0)− φ(Tmx0)| ≤ |φ(Tnx0)− φ(T sx0)|+ |φ(Tmx0)− φ(T rx0)|+ |φ(T sx0)− φ(T rx0)|

≤ 4[ψ]αcα

1− e−λα
δα0 +N‖ψ‖

≤
(

4[ψ]αcα

1− e−λα
+
N‖ψ‖
δα0

)
distX(Tnx0, T

mx0)α. �

A careful reading of the proof above yields useful estimates enclosed in the next

Corollary 4 The solution φ to the cohomological equation is α-Hölder continuous, and
there exists K depending only on T,X, and α such that [φ]α ≤ K([ψ]α + ‖ψ‖). �

Theorem 5 (Kalinin, see [3]) Let T be a topologically transitive homeomorphism of a
compact metric space X satisfying the closing property. Let A : X → GL(d,C) be an
α-Hölder function for which the POO(A) condition holds. Then there exists an α-Hölder
function C : X → GL(d,C) such that for all x ∈ X,

A(x) = B(Tx)B(x)−1.
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1.2 The group Germd

For d ≥ 1, we introduce the following notation:

• j := (j1, . . . , jd) is a positive integer lattice point, with ji ≥ 0 for every 1 ≤ i ≤ d.

• |j| := j1 + · · ·+ jd.

• j � k if ji ≤ ki for every 1 ≤ i ≤ d.

• j ≺ k if j � k and ji∗ < ki∗ for some i∗.

• Z = (z1, z2, . . . , zd) is a point in Cd.

• Zj := zj11 z
j2
2 · · · z

jd
d .

Then we can define a formal power series on Cd as F (Z) := (F1(Z), F2(Z), . . . , Fd(Z)),
where each Fi(Z) has the form

Fi(Z) =
∑
j≥0

tijZ
j

for some coefficients tij ∈ C. This formal power series becomes an analytic map if there

exists R > 0 such that lim supj |tij|
1
|j| ≤ 1

R for every i. Indeed, in this case, each Fi is
a convergent series on D(0, R)d (that is, for Z = (z1, . . . , zd) such that |zs|<R holds for
every s).

Let H(d,R) be the set of continuous functions F : D(0, R)d → Cd that are convergent
power series in D(0, R)d and satisfy F ′(0) ∈ GL(d,C). We endow this complex vector
space with the inner product

〈F,G〉R :=
∑
i

(∫
∂D(0,R)d

FiGi dZ

)
.

The L2-norm of an element F ∈H(d,R) of the form Fi(Z) =
∑
|j|≥0 t

i
jZ

j is

‖F‖2,R := 〈F, F 〉1/2R =

∑
i

∑
|j|≥1

|tij|2R2|j|

1/2

.

We let H0(d,R) be the subset of H(d,R) formed by those F satisfying F (0) = 0, and we
let the set of local holomorphic diffeomorphisms of Cd be defined as

Gd :=
⋃
R>0

H0(d,R).

On this set, we introduce the following equivalence relation: We say that F,G in Gd are
equivalent if there exists a neighborhood of the origin on which F and G coincide. With
this identification, the set Gd becomes a group, that we call the group of germs of analytic
diffeomorphisms of Cd and we denote by Germd.
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Although we will not worry about providing a precise topology for Germd, we will
certainly need to consider maps from X to Germd that are “continuous” in some precise
sense. Since X is compact, any reasonable definition should lead to functions that factor
throughout an space H0(d,R) for some positive R. Accordingly, given C > 0, α ∈ (0, 1],
and R > 0, a map Ψ : X → H0(d,R) will be said to be (C,α,R)−Hölder-continuous if
Ψ(x) belongs to H0(d,R) for every x ∈ X, and for every pair of points x, y in X,

‖Ψ(x)−Ψ(y)‖2,R ≤ C distX(x, y)α.

In terms of the coefficients of the power series, this condition reads as follows:

Lemma 6 If Ψ: X → H0(d,R) is (C,α,R)−Hölder and writes as

Ψi(x)(Z) =
∑
|j|>0

tij(x)Zj,

then each coefficient tij : X → C is a
(

C
R|j|

, α
)

-Hölder-continuous function.

Proof. The Hölder condition for Ψ yields∑
i

∑
|j|≥1

|tij(x)− tij(y)|2R2|j|

1/2

≤ C distX(x, y)α,

which implies that

|tij(x)− tij(y)|2 ≤ C2

R2|j|distX(x, y)2α. �

In an opposite direction, given a list {tij : X → C, j � 0, 1 ≤ i ≤ d} of continuous
functions, we are interested in finding conditions ensuring that F := (F1, . . . , Fd), formally
defined by Fi(x)(Z) :=

∑
j t
i
j(x)Zj represents a convergent power series lying in H0(d,R)

for some R > 0.

Lemma 7 Assume that each function tij is a
(

C
R|j| , α

)
-Hölder-continuous function for

some positive constants C,R. Assume also that each tij vanishes at some point of X.
Then for all δ<1, the formal power series Fi is convergent on D(0, R)d, and x 7→ F (x)=

(F1(x), . . . , Fd(x)) is a
(
O
(

δ
1−δ

)1/2
, α

)
-Hölder continuous map from X to H0(d, δR).

Proof. Since each tij vanishes at some point of X, Lemma 1 gives ‖tij‖ ≤
C
R|j|

for every i, j.
This implies that each Fi is a convergent power series on D(0, R)d. Moreover, for all x, y
in X,
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‖F (x)− F (y)‖22,δR =
∑
i

∑
j

|tij(x)− tij(y)|2(δR)2|j|

≤
∑
i

∑
j

C2distX(x, y)2αδ2|j|

= d C2distX(x, y)2α
∞∑
s=1

∑
|j|=s

δ2s

= d C2distX(x, y)2α
∞∑
s=1

(s+ d− 1)!
s!(d− 1)!

δ2s

= d C2 O

(
δ

1− δ

)
distX(x, y)2α. �

The Faa di Bruno formula. We will need to consider compositions of power series
in several complex variables. The following is a simplified formulation of the multivariate
version by Constantine and Savits [1] of the well known Faa di Bruno formula:

Theorem 8 (see [1]) Let A(Z) =
∑
|j|≥1 ajZ

j and Bi(Z) =
∑
|j|≥1 b

i
jZ

j , 1 ≤ i ≤ d, be
formal power series in d variables. Then the power series

C(Z) = A (B1(Z), B2(Z), . . . , Bd(Z)) =
∑
|j|≥1

cjZ
j

has coefficients
cj∗ =

∑
|j|=1

ajb
j
j∗

+
∑

1<|j|, j≤j∗

ajP (j∗, j){B}, (4)

where P (j∗, j){B} is a polynomial in the variables {bi
j̃
}1≤i≤d
j̃<j∗

that is homogeneous of degree
|j| and has positive integer coefficients.

The Faa di Bruno formula is actually much more precise and requires harder notation.
For instance, in the case d = 1, one has

P (j∗, j){B} =
∑

r1+···+rj=j∗

Br1 · · ·Brj .

A generating function. Let us define J :D(0, 1)d → Cd by the convergent power series

Ji(Z) = zi −
∑
|j|>1

Zj.

Since DJ(0) = idCd , there exists an analytic map G defined in a neighborhood of the
origin in Cd such that G(0) = 0 and

J ◦G(Z) = Z for every Z in that neighborhood . (5)
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In terms of power series, one can write

Gi(Z) = zi +
∑
|j|>1

gijZ
j,

where the coefficients verify |gij| < K |j|−1 for some K > 0 and every |j| � 1. Moreover,
these coefficients satisfy a fundamental recurrence relation. Indeed, using J ◦ G(Z) = Z
and the Faa di Bruno formula (4), one obtains

0 = gij∗ −
∑

1<|j|, j≤j∗

P (j∗, j){G}. (6)

Recall that P (j∗, j){G} depends only on the values of gs
j̃

for j̃ ≺ j∗ and every s. Hence,

one can recursively compute gij∗ in terms of the previously defined gs
j̃
.

For any S > 0, we consider JS : D(0, S−1)d → Cd defined by JS(Z) := 1
SJ(SZ). When

solving the equation JS ◦GS(Z) = Z, one gets a map GS = (GS,1, . . . , GS,d), where each
GS,i(Z) has the form GS,i(Z) = zi +

∑
|j|>1 g

i
S,jZ

j for certain coefficients giS,j satisfying

giS,j∗ =
∑

1<|j|, j≤j∗

S|j|−1P (j∗, j){GS}. (7)

Lemma 9 Each coefficient giS,j is a positive real number. Moreover, there exists a constant
R = R(S) > 0 such that giS,j ≤ R|j|−1 for every j. �

1.3 Proof of the Main Theorem

A first reduction. Let F (x)(Z) = A1(x)Z+
(∑

|j|>1 a
i
j(x)Zj

)
1≤i≤d

be the power series

expansion of the cocycle viewed as a (C,α,R)−Hölder-continuous function Ψ : X →
H0(d,R). The map x 7→ A1(x) ∈ GL(d,C) is an α-Hölder-continuous function. Since
POO(F ) holds, we must have

n−1∏
j=0

A1(T jp) =
∂

∂Z
F (Tn−1p) ◦ · · · ◦ F (p)

∣∣∣∣
Z=0

= idCd

for every p ∈ X and n ∈ N such that Tnp = p. In other words, the GL(d,C)-valued
cocycle A1 satisfies the POO. By Kalinin’s version of the Livšic theorem, there exists an
α-Hölder-continuous function H1 : X → GL(d,C) such that A1(x) = H1(Tx)H1(x)−1 for
all x ∈ X. Consequently, the Germd-valued cocycle H1(x)(Z) := H1(x)Z conjugates F
to a cocycle of the form

(x, Z) 7−→

Tx,Z +

∑
|j|>1

aij(x)Zj


1≤i≤d

 .

Thus, we can assume that A1(x) = idCd for all x ∈ X.
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An iterative procedure. We look for a map H : X → Germd solving the cohomological
equation (2), having the form H(x)(Z) = Z +

(∑
|j|>1 h

i
j(x)Zj

)
1≤i≤d

. Notice that this

equation may be written as F (x)◦H(x) = H(Tx). Applying the Faa di Bruno formula (4)
to the left-side expression, one concludes that each coefficient hij can be defined recursively
as the solution of a cohomological equation for a C-valued data:

(ecij∗) hij∗(Tx)− hij∗(x) =
∑

1<|j|, j≤j∗
aij(x)P (j∗, j){H}(x).

A necessary condition for the existence of the coefficient hij∗ is that the POO condition
holds for the function

Rij∗ :=
∑

1<|j|, j≤j∗

aijP (j∗, j){H}. (8)

Lemma 10 Each Rij∗, with i, |j∗| � 1, is a well-defined α-Hölder-continuous function for
which the POO condition holds. As a consequence, given any x0 ∈ X, the equation (ecij∗)
has an α-Hölder-continuous solution hij∗ vanishing at x0.

Proof. Suppose that the conclusion of the lemma holds for every j such that |j| < k, and
let us consider the case where j = k. Using the explicit formula (8), Lemma 2 shows that
the function Rij∗ is α-Hölder-continuous. Consider the continuous Germd-valued function

H<k : x 7→ Z +

∑
|j|<k

hij(x)Zj


1≤i≤d

.

An easy computation shows that F̃ (x) := H<k(Tx) ◦ F (x) ◦H<k(x)−1 has the form

F̃ (x)(Z) = Z +

∑
|j|=k

Rij(x)Zj +
∑
|j|>k

ãij(x)Zj


1≤i≤d

for some Hölder-continuous functions ãij : X → C. Moreover, for any x ∈ X and m ∈ N,
one has

F̃ (Tm−1x) ◦ · · · ◦ F̃ (x)(Z) = Z +

∑
|j|=k

(
m−1∑
v=0

Rij(T
vx)

)
Zj +O(|Z|k+1)


1≤i≤d

.

Since F̃ is conjugated to F , the POO(F̃ ) condition holds. By the previous equality, this
implies that for all p ∈ X and n ∈ N such that Tnp = p, one has

∑n−1
v=0 R

i
j(T

vx) = 0.
Therefore, the POO(Rij) condition holds, and we can apply the Livsic’s theorem to es-
tablish that there exists an α-Hölder-continuous solution to (ecij∗). Finally, by adding a
constant if necessary, we may assume that this solution vanishes at x0. �

To prove that the (up to now) formal map H is a genuine local diffeomorphism (that
is, each formal power series Z 7→ zi +

∑
|j|>1 h

i
j(x)Zj is convergent in a certain (uniform)
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neighborhood of the origin), we will need to estimate the growth of the α-Hölder constant
of the coefficients hij. Indeed, if we show that this growth is at most exponential, then
Lemma 7 will apply, thus concluding the proof of the Main Theorem. To get the desired
control, we will use the majorant series method introduced by Siegel in his treatement [6]
of the linearization theorem for holomorphic germs with Diophantine rotation number (see
also [7] for the higher-dimensional case).

Lemma 11 There exists S > 0 such that

[hij]α ≤ giS,j

for every j, i, where hiS,j is defined as in (7). Consequently, ‖hij‖ grows at most exponen-
tially.

Proof. Since F takes values on some H0(d,R) and is a α-Hölder function, there exists
κ > 0 such that

‖aij‖ ≤ κ|j| and [aij]α ≤ κ|j|.

Assume that [hij]α ≤ giS,j for every j � j∗. Since hij vanishes at x0 (except for |j| = 1, for
which hij ≡ 1), we also have ‖hij‖ ≤ giS,j for every j � j∗. Moreover, since P (j∗, j){H} is
an homogeneous polynomial in {hs

j̃
}1≤s≤d
j̃<j∗

with positive coefficients,

‖P (j∗, j){H}‖ ≤ P (j∗, j){‖H‖} ≤ P (j∗, j){GS}.

Except for |j| = 1 (for which hij ≡ 1), every hij vanishes at x0. Therefore, by Lemma 2,

[P (j∗, j){H}]α ≤ 2|j|−1P (j∗, j){GS}.

The fundamental estimate of Corollary 4 then yields

[hij∗ ]α ≤ K

∑
j≤j∗

aijP (j∗, j){H}


α

+

∥∥∥∥∥∥
∑
j≤j∗

aijP (j∗, j){H}

∥∥∥∥∥∥


≤ K

∑
j≤j∗

‖aij‖[P (j∗, j){H}]α +
∑
j≤j∗

[aij]α‖P (j∗, j){H}‖+
∑
j≤j∗

‖aij‖‖P (j∗, j){H}‖


≤

∑
j≤j∗

K
(

(2κ)|j| + 2κ|j|
)
P (j∗, j){GS}

< giS,j∗ ,

where the last inequality holds by taking S � 2Kκ. �
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