Commutator methods for the spectral analysis of uniquely
ergodic dynamical systems

R. Tiedra de Aldecoa*

Facultad de Matemdticas, Pontificia Universidad Catolica de Chile,
Av. Vicuria Mackenna 4860, Santiago, Chile

E-mail: rtiedra@mat.puc.cl

Abstract

We present a method, based on commutator methods, for the spectral analysis of uniquely ergodic dy-
namical systems. When applicable, it leads to the absolute continuity of the spectrum of the corresponding
unitary operators. As an illustration, we consider time changes of horocycle flows, skew products over trans-
lations and Furstenberg transformations. For time changes of horocycle flows, we obtain absolute continuity
under assumptions weaker than the ones to be found in the literature, and for skew products over translations
and Furstenberg transformations, we obtain countable Lebesgue spectrum under assumptions not previously
covered in the literature.
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1 Introduction

Commutator methods in the sense of E. Mourre [45] and their various extensions (see for instance [4, 9, 15, 24,
37, 47, 50]) are a very efficient tool for the spectral analysis of self-adjoint operators. They have been fruitfully
applied to numerous models in mathematical physics and pure mathematics. Even so, it is only recently that an
analogue of the theory has been developed for unitary operators (see [5] for the first article on the topic, and [17]
for an optimal formulation of the theory). Accordingly, the absence of general works on commutator methods
for the spectral analysis of unitary operators from ergodic theory is not a surprise. Our purpose here is to start
filling this gap by presenting an abstract class of uniquely ergodic dynamical systems to which commutator
methods apply. The class in question is simple enough to be described in terms of commutators and general
enough to contain interesting examples of uniquely ergodic dynamical systems. We hope that the examples
treated in this paper, together with the simplicity of our approach, will motivate other works on commutator
methods for the spectral analysis of (uniquely ergodic) dynamical systems.

The content of the paper is the following. In Section 2, we recall the needed definitions and results on
commutator methods, both for self-adjoint and unitary operators. Then, we exhibit a general class of unitary
operators which are shown to have purely absolutely continuous spectrum thanks to commutator methods.
Also, we explain why typical examples of such unitary operators are Koopman operators induced by uniquely
ergodic transformations. After that, we dedicate the rest of the paper to applications of the theory of Section
2. We consider time changes of horocycle flows in Section 3, skew products over translations in Section 4 and
Furstenberg transformations in Section 5.
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Quantum and Classical Magnetic Systems” from the Chilean Ministry of Economy.



In Theorem 3.7 of Section 3, we show that time changes of horocycle flows on compact surfaces of constant
negative curvature have purely absolutely continuous spectrum in the orthocomplement of the constant func-
tions. Our result holds for time changes of class C?3, which is the weakest regularity assumption under which
this absolute continuity has been established (see the discussion after Theorem 3.7 for a comparison with recent
results of G. Forni and C. Ulcigrai [18] and of the author [51]). In Theorem 4.4 of Section 4, we prove that skew
products over translations on compact metric abelian Banach Lie groups have countable Lebesgue spectrum in
the orthocomplement of functions depending only on the first variable. Our result holds for cocycle functions
being differentiable along the flow generated by the translations and with corresponding derivative satisfying
a Dini-type condition (see Assumption 4.1 for details). In the case of skew products on tori, this complements
previous results of A. Iwanik, M. Lemarizyk and D. Rudolph [33, 35] in one dimension and a previous result
of A. Iwanik [34] in higher dimensions (see Corollary 4.5 and the discuss on that follows). Finally, in Theorem
5.3 of Section 5, we show that Furstenberg transformations have countable Lebesgue spectrum in the orthocom-
plement of functions depending only on the first variable for perturbations with partial derivatives satisfying a
Dini-type condition. This complements Corollary 3 of [35], where the same result is shown for perturbations
with partial derivatives being of bounded variation.

2 Commutator methods for uniquely ergodic dynamical systems

We present in this section a method, based on commutator methods, for the spectral analysis of uniquely ergodic
dynamical systems. We start by recalling some facts on commutator methods borrowed from [4], [17] and [50]
(see also the original paper [45] of E. Mourre).

Let H be a Hilbert space with scalar product (-, -) linear in the second argument, denote by %8(H) the set
of bounded linear operators on H, and write || - || for the norm on A and the norm on %(H). Let also A be a
self-adjoint operator in A with domain D(A), and take S € B(H). For any k € N, we say that S belongs to
C*(A), with notation S € C*(A), if the map

R >t e 4 Sl ¢ B(H) 2.1)
is strongly of class C*. In the case k = 1, one has S € C*(A) if and only if the quadratic form
D(A) 3 ¢ — (¢,iSAp) — (Ap,iSp) € C

is continuous for the topology induced by H on D(A). We denote by [S, A] the bounded operator associated
with the continuous extension of this form, or equivalently the strong derivative of the function (2.1) at ¢t = 0.

A condition slightly stronger than the inclusion S € C*(A) is provided by the following definition: S
belongs to C**0(A), with notation S € C1*0(A),if S € C*(A) and

1dt —itA itA
/O?He (4, 5] €4 —[A, 8] < co.

If we regard C'*(A), C10(A) and C?(A) as subspaces of %(H ), then we have the inclusions
C%*(A) c CMY(A) c CH(A) C B(H).

Now, if H is a self-adjoint operator in H with domain D(H) and spectrum o (H ), we say that H is of class
Ck(A)if (H — 2z)~! € C*(A) for some z € C\ o(H). So, H is of class C*(A) if and only if the quadratic
form

D(A) 3 ¢ (¢, (H = 2)" Ap) = (Ap,(H - 2)"'p) € C

extends continuously to a bounded form defined by the operator [(H — z)~1, A] € %(H). In such a case, the
set D(H) N D(A) is a core for H and the quadratic form

D(H)ND(A) 2 ¢+ (Hp,Ap) — (Ap, Hp) € C



is continuous in the topology of D(H) [4, Thm. 6.2.10(b)]. This form then extends uniquely to a continuous
quadratic form on D(H) which can be identified with a continuous operator [H, A] from D(H) to the adjoint
space D(H)*. In addition, the following relation holds in ZA(H):

[(H—2)"Al=—(H-2""'HAH-2"" (2.2)

Let £ () denote the spectral measure of the self-adjoint operator H, and assume that H is of class C'!(A).
Then, for each bounded Borel set J C R the operator E (J)[iH, A]EH () is bounded and self-adjoint. If there
exist a number a > 0 and a compact operator K € Z(#H) such that

ERT(N[iH, AIEH (J) > «EH(J) + K, (2.3)

then one says that H satisfies a Mourre estimate on J and that A is a conjugate operator for H on J. Also, one
says that I satisfies a strict Mourre estimate on .J if (2.3) holds with K = 0. The main consequence of a strict
Mourre estimate is to imply a limiting absorption principle for H on J if H is also of class C'*9(A). This in
turns implies that A has no singular spectrum in J. If H only satisfies a Mourre estimate on .J, then the same
holds up to the possible presence of a finite number of eigenvalues in .J, each one of finite multiplicity. We recall
here a version of these results (see [4, Sec. 7.1.2] and [50, Thm. 0.1] for more details):

Theorem 2.1. Let H and A be self-ajoint operators in a Hilbert space H, with H of class C*T°(A). Suppose
there exist a bounded Borel set J C R, a number a > 0 and a compact operator K € 98(H) such that

EH(N[iH, AIE"(J) > aE" (J) + K. (2.4)

Then, H has at most finitely many eigenvalues in J, each one of finite multiplicity, and H has no singularly
continuous spectrum in J. Furthermore, if (2.4) holds with K = 0, then H has no singular spectrum in J.

Similar notations and results exist in the case of a unitary operator U € C!(A) with spectral measure
EY(-) and spectrum o(U) C S* = {z € C | |z| = 1}. Namely, one says that U satisfies a Mourre estimate on
a Borel set © C S! if there exists a number a > 0 and a compact operator K € %(H) such that

EY(©)U*[A,UJEY(©) > aEY(0) + K. (2.5)

Also, one says that U satisfies a strict Mourre estimate on © if (2.5) holds with K = 0. Furthermore, one has
the following result on the spectral nature of U (see [17, Thm. 2.7 & Rem. 2.8] for a more general version of
this result):

Theorem 2.2. Let U and A be respectively a unitary and a self-ajoint operator in a Hilbert space H, with
U € C'O(A). Suppose there exist an open set © C S, a number a > 0 and a compact operator K € %(H)
such that

EY(©)U*[A,UIEY(0©) > aEY(0) + K. (2.6)

Then, U has at most finitely many eigenvalues in ©, each one of finite multiplicity, and U has no singularly
continuous spectrum in ©. Furthermore, if (2.6) holds with K = 0, then U has no singular spectrum in ©.

Remark 2.3. If U = e *# for some bounded self-adjoint operator H € C**0(A), then one can use indiffer-
ently the self-adjoint or the unitary formulation of commutator methods. Indeed, in such a case one has for each
@ € H that

1 t
(U* eitA Ue—itA _1)S0 — eiH [e’itA7 e—iH} e—’itA 0= Z/ ds eisH/ du eiuA[iH7 A] ei(t—u)A e—isH )
0 0

which implies that

H U* eitA U efitA -1
t

1
—i / ds e [iH, Al eHH < sup ||e™A[iH, A’ —[iH, A]||.
0

w€[0,t]



So, one infers that U € C*(A) with U*[A, U] = fol ds e*H[iH, Ale~*H \which in turns implies the inclusion
U € CYO(A). Moreover, one has for any Borel set J C R the equality

ER(J)=EY(©) with ©:={ceS'|XxeJ}.
Therefore, one obtains the following equivalences of Mourre estimates:
ER())[iH, A|JEH(J) > aE¥(J) 4+ K with J C R a bounded Borel set

1
«— EY(0)U*[A,UJEY(©) > aEY(0) +/ ds e Ke ™7 with© .= {7 e St | X e J}.
0

Now, suppose for a moment that there exists a self-adjoint operator A with domain D(A) such that U €
C'(A) and [A,U] = U. Then, one has U € C*(A) for each k € N and U*[A,U] = 1. In particular, U €
C1*9(A) and U satisfies a strict Mourre estimate on all of S!. Thus, Theorem 2.2 applies and one deduces
that U has purely absolutely continuous spectrum. In fact, one can check that the conditions U € C'(A) and
[A,U] = U imply thate™"*4 U "4 = e~" U foreach t € R. So, the operator U is unitarily equivalent to e~ U
for each t € R, and thus has purely Lebesgue spectrum covering the whole circle S*. No need of commutator
methods whatsoever.

But, now assume that the situation is more general in the sense that we are only able to find a self-adjoint
operator A such that U € C'(A) and [A,U] = UF + GU for some self-adjoint operators F, G € %(H). In
this case, no simple trick permits to obtain Lebesgue spectrum (since it would be obviously wrong). Moreover,
we only get the relation

U*[A,U =F+U*GU
which do not lead to any explicit Mourre estimate, unless we impose some positivity condition on the operator
F + U*GU. Fortunately, in certain situations, it is sufficient to modify appropriately the operator A in order

to get the desired positivity. Let us explain how to proceed. Since U € C1(A), we know from standard results
(see [4, Prop. 5.1.5-5.1.6]) that U* € C*(A) and U*D(A) = D(A) for each k € Z. Therefore, the operator

% ZZ;& Uk [A7 Uk] is bounded for each n € N*, and the operator

n—1

Anp ZU FAUF o = = ZU [A,U*]p+ Ap, ¢ € D(A,) =D(A),
k 0

is self-adjoint. Furthermore, a simple calculation shows that U € C1(A4,,) with

nl n—1 n—1
k k * k k *
U*[A,, U] = ZU ZU FU +U< S U GU)U F,+U*G,U,
kO k=0
2.7)

which in turns implies that U € C*+0(A,,) if the operators F}, and G,, satisfy
1 dt A A ! dt it A it A
/ " | e Fy e —F, || < oo and / " | e G et —Gy| < oo (2.8)
0 0

Now, even if F'+ U*GU is not a strictly positive operator, the averaged operator F;,, + U* G,, U may converge
in norm as n — oo to a strictly positive operator. In such a case, the r.h.s. of (2.7) would be strictly positive
for n big enough. Accordingly, one would obtain a strict Mourre estimate on all of S!, and thus conclude by
Theorem 2.2 that U has purely absolutely continuous spectrum if F,, and G, satisfy (2.8) (if the operator A,, is
bounded, one can skip the verification of (2.8) thanks to a theorem of C. R. Putnam, see [48, Thm. 2.3.2]).

The convergence in norm of the averaged operator F}, + U* G,, U is similar to the uniform convergence of
Birkhoff sums for uniquely ergodic transformations (it is also similar to the norm convergence of Birkhoff sums
for uniquely ergodic automorphisms of C*-algebras, as defined in [1, Sec. 1]). Therefore, it is quite natural
to particularise the previous construction to the case where F' and G are multiplication operators and U is a
unitary operator generated by a uniquely ergodic transformation. So, let 7' : X — X be a uniquely ergodic



homeomorphism on a compact metric space X with normalised Haar measure y, and let Ur be the unitary
Koopman operator in H := L2(X, i) given by

Ur-H—-H, p—poT.

Furthermore, assume that there exists a self-adjoint operator A such that Ur € C*(A) and [A,Ur| = Urf +
gUr for some functions f,g € C(X;R) (here we identify the functions f and g with the corresponding
multiplication operators). Then, (2.7) reduces to

1 n—1 1 n—1
(Ur) [An Uzl = 2> foT™" + (Ur)" (n > g0 T’“) Ur = fo+ (Ur)'gnUr. (29
k=0 k=0

Since 7' is uniquely ergodic, the Birkhoff sums f,, and g,, converge uniformly to | « du f and /  du g, respec-
tively. So, if | du (f +g) > 0, then the r.h.s. of (2.9) is strictly positive for n big enough. Accordingly, one
obtains a strict Mourre estimate on all of S!, and one concludes by Theorem 2.2 that Uz has purely absolutely
continuous spectrum if f,, and g, satisfy

Pdt o ia itA Pdt o ia itA
?He " fae "—fn||<oo and 7”6 " gne "—gn||<oo.
0 0
Obviously, this last construction can be adapted to various other situations as when one allows a compact

perturbation, or when the r.h.s. of the identity [A, Ur| = Ur f + ¢ Ur involves another combination of operators,
or when one has a continuous flow of homeomorphisms {7} };cr generating a strongly continuous group of
unitary operators {U; }+cr. In the latter case, it might be more convenient to replace the discrete averages

_ ) . L
A, =1 ZZ:& (Ur)~*A(Ur)¥ by the continuous averages Ay, := 1 [, dt U_4 AUy and to study the generator
H of the group {U;}+er (instead of the group itself) using the usual self-adjoint formulation of commutators
methods.

3 Time changes of horocycle flows

Let 3 be a compact Riemann surface of genus > 2 and let M := T'Y. be the unit tangent bundle of . The
compact 3-manifold M carries a probability measure i (induced by a canonical volume form €2) which is
preserved by two distinguished one-parameter groups of diffeomorphisms: the horocycle flow {F} ;}+cr and
the geodesic flow {Fb ¢ }icr. Both flows correspond to right translations on M when M is identified with a
homogeneous space I' \ PSL(2; R), for some cocompact lattice " in PSL(2; R) (see [7, Sec. I1.3 & Sec. IV.1]).
We write U; (t) (j = 1,2, t € R) for the operators given by

Uj(t)p :=po Fji, @ C(M).

One can check that the families {U,(t)}.cr define strongly continuous unitary groups in the Hilbert space
H = L%(M, pq), and that U;(t) C°°(M) C C>(M) for each t € R. It follows from Nelson’s theorem [3,
Prop. 5.3] that the generator of the group {U; (t) }+cr

Hjp=s-limyoit " (U;(t) — 1)p, ¢ € D(H;) = {(p €M | lim [t [ (U;(1) - )¢ < oo} ,
is essentially self-adjoint on C'°° (M), and one has
Hjp:=—iLx;p, @ecC®(M),

with X; the divergence-free vector field associated to { F; ; }scr and £ the corresponding Lie derivative.

It is a classical result that the horocycle flow {F} ;}icr is uniquely ergodic [23] and mixing of all orders
[43], and that U; () has countable Lebesgue spectrum for each ¢ # 0 (see [38, Prop. 2.2] and [46]). Moreover,
the groups {Us (t) }1er and {Us(t) }+er satisfy the commutation relation

Us(s)Ur(t)Ua(—s) = Ui (e’t), s,tE€R, 3.1



(here we consider the negative horocycle flow {1 + };er = {F} ; }+er, but everything we say can be adapted to
the positive horocycle flow by inverting a sign, see [7, Rem. IV.1.2]). By applying the strong derivative ¢d/d¢
att = 01in (3.1), one gets that Us(s) H Uz (—s)¢ = e® Hyp for each o € C*°(M). Since C*°(M) is a core for
H1, one infers that H; is Hz-homogeneous in the sense of [8]; namely,

Us(s)H Ux(—s) =e®* Hy on D(Hy). (3.2)
It follows that H; is of class C*°(Hz) with
[iHy,Hy| = Hy. (3.3)

Now, consider a C'! vector field with the same orientation and proportional to X7, that is, a vector field f X
with f € C! (M : (0, oo)) The vector field fX; has the same integral curves as X7, but with reparametrised
time coordinate. Indeed, it is known (see [32, Sec. 1]) that the formula

/h(p,t) dS
t= —, teR, pe M,
0 f(Fl,S(p))

defines for each p € M a strictly increasing function R 5 ¢ — h(p,t) € R satisfying h(p,0) = 0 and
lim; 400 h(p,t) = Loo. Furthermore, the implicit function theorem implies that the map ¢t — h(p,t) is
C! with %h(p, t) = f(Fin(pt)(p)). Therefore, the function R > ¢ ﬁ17t(p) € M given by ﬁl,t(p) =
Fi h(p,t) (p) satisfies the initial value problem

d ~
&Fl(l%t):(fxl)ﬁl(p’t)v Fl(pvo):p7

meaning that {}?M}teR is the flow of fX; (note that ﬁlyt(p) is of class C'! in the p-variable and of class C? in
the ¢-variable as predicted by the general theory [2, Sec. 2.1]). Since the divergence divg,¢(fX1) of fX; with
respect to the volume form / f is zero, the operators

ffl(t)so = @Oﬁl,tv v € C(M),

define a strongly continuous unitary group {ﬁl (t)}+er in the Hilbert space H =12 (M, uq/ f). The generator
H := —i % x, of {U;(t) }ser is essentially self-adjoint on C1 (M) C H due to Nelson’s theorem.

__In the following lemma, we introduce two auxiliary operators which will be useful for the spectral analysis
of H.

Lemma 3.1. Let f € C*(M;(0,00)), then

(a) the operator B
U H—H, ¢~ [,

is unitary, with adjoint % * H—H given by U *yp = f~1/24,

(b) the symmetric operator
Hp:= f'2H: "¢, e CH (M),

is essentially self-adjoint in H, and the closure of H (which we denote by the same symbol) is unitarily
equivalent to H,

(c) foreach z € C\ R, the operator Hy + zf~1 is invertible with bounded inverse, and satisfies

(H+2)"" = Y2 (Hy 4270 Y2 (3.4)



Proof. Point (a) follows from a direct calculation taking into account the boundedness of f from below and
from above. For (b), observe that

Ho =[PP Yo = % HU ¢
for each ¢ € Z*CY(M). So, H is essentially self-adjoint on % *C1(M) = C*(M), and the closure of H

is unitarily equivalent to H. To prove (c), take z = A +ip € C\ R, ¢ € D(Hy + zf™') = D(H;) and
{®n} € C°°(M) such that lim,, || — @n|lp(a,) = 0. Then, it follows from (b) that

(8 25l = tim 520+ 20 20 2 inf, 5200

and thus H; + zf ! is invertible with bounded inverse (see [3, Lemma 3.1]). Now, to show (3.4), take @) =
(H + z)¢ with ¢ € C(M), observe that

(H+2)" = (2 (Hy +2f71) 7 720 =0, (3.5)
and then use the density of (H + 2)C!(M) in H to extend the identity (3.5) to all of H. O

2
)

The operators H and fz are unitarily equivalent due to Lemma 3.1(b). Therefore, one can either work
with H in H or with H in H to determine the spectral properties associated with the time change fX;. For
convenience, we present our results for the operator H. We start by proving some regularity properties of f and

H with respect to H,. The function
1 1
g:=5- §$X2(ln(f)>

pops up naturally: ?
Lemma 3.2. Let f € C*(M;(0,00)), « € Rand z € C\ R. Then,

(a) the multiplication operator f satisfies f* € C*(Ha) with [if®, Ho| = —a f*ZLx, (In(f)),

(b) (H +z)"" € CY(Ha) with [i(H + 2)7 Hy] = —(H +2)"*(Hg + gH)(H + 2)~*.,
Proof. (a) The chain rule for Lie derivatives and the strict positivity of f imply that

Lx,(f*) = a7 Zx, (f) = a f*Lx, (In(f)).
Thus, one has for each ¢ € C>°(M)
(p.if*Hap) — (Hagp,if%) = (p, [if*, Ha]p) = (o, —a f*Lx, (In(f)) ).

Since f*Zx,(In(f)) € L°(M), it follows by the density of C°°(M) in D(H;) that f* € C*(Hs) with

[ifa, Hg] = —Oéfafxz ( hl(f))
(b) Lett € R and ¢ € H. Then, one infers from Equations (3.2) and (3.4) that

e—itHg(H + Z)—l oitHz o= o—itHz f—1/2 oitHz (et Hy + ze itHe p=1gitH: )71 o—itHz f—1/2 oitH> 0.
So, one gets from point (a), Equation (3.4) and Lemma 3.1(b) that

d . ,
a efltHz (H + 2)71 e’LtHQ SO

= [if Y2, Ho| (Hy + zf_l)_lf_l/Zap + Y (H + ,zf—l)‘1 [if 72, Hy
— [V YT (H 2 [if T ) (Hy ) T
= %.Z)Q(ln(f))(H +2)7 o+ %(H +2) ' Lx, (In(f))e
— (H+2)""{H+2%x,(In(f)) }H +2) "¢
(H+z2)"HZx,(In(f))(H+2) "o+ %(H +2) " Zx, (In(f))H(H + 2) "o
—(H+2)'H(H +2)"
= —(H+2)""(Hg+gH)(H +2)""¢,

t=0

DN | =



which implies the claim. O

In [51] we used the operator H> as a conjugate operator for H (in fact for H?). This led us to impose, as A.
G. Kushnirenko in [40, Thm. 2], the strict positivity of the function g in order to get at some point a strict Mourre
estimate. Here, we will show that this can be avoided if one uses a conjugate operator taking into account the
unique ergodicity of the horocycle flow {F ;}+cr., as presented in Section 2. We start with the definition of the

new conjugate operator. We use for L > 0 the notations gy, and gz, for the following averages of g along the
time-changed flow {1 ¢ }ier:

1 L . 1 L t ~
g1, = —/ dt (go Fi,—) and gL, = —/ dt/ ds (g o Fi,—s).
L 0 L 0 0

Lemma 3.3 (Conjugate operator). Let f € C*(M;(0,00)) and L > 0.
(a) Foreach o € C(M), one has the equality

1 L ) )
Z / dt eltH H2 efth = —1 (XX + %diVQ X)Soﬂ
0

with X := Xo + 2gp f X1 and divag X = 291, %x, (f) + 2(g — g1.) the divergence of X relative to the
volume form ().

(b) If f € C3 (M; (0, oo)) then the operator
1 L ) )
App = Z/o dt ™ Hye " e CY(M),

is essentially self-adjoint in H (and its closure is denoted by the same symbol).

Proof. (a) We start by collecting some information on the function gz,. For each s € R, we have

. . . * 55 ey TT - o TT ~
estge st:ezs% H%ge isU HU :%*estge lSH%:gOFl,—g,w

1 L t . X 1 L t ~
—/ dt/ ds e ge—isH — —/ dt/ ds(go Fi,—s) = g1
L Jy 0 L Jy 0

1 F o d /T ~
= — dt — du(go Fi
=0 LA dr T—t (g b )

Thus,

and

od1 Bt - -
ngl(gL)ZEZ/O dt/0 ds (goFL,SoFLT)

=9—4L.
7=0
(3.6)
This implies that Hgr ¢ € H for each ¢ € C1 (M) since
Hgre=grHe+ [H.grle = grHy —iZsx, (gr)e = gHe —i(g — gr) ¢- (3.7

Now, take ¢ € C*(M) and ¢ € D(H), and set Hy(7) := (i)' (e'™H2 —1) for each 7 € R. Then, one
has the equalities

<¢, (i /OL dt e [y (1) e "H —H2(7)> <p>
<(H — i), % /OL dt /Ot ds % eH(H 4 4) " Hy(1)(H — i) te H(H — i)¢>

<(H — i), % /OL dt /01t ds e*H(H + i)' [iH, Ho(7)| (H — i)' e7"H (H — i)gp>

- <(H — i), —% /OL dt /025 ds e (H —i)(H + i)' [i(H — i), Ho(1)] e " (H — i)<p>.



But, we know from Lemma 3.2(b) that s-lim,~ o [i(H — i)~*, Ho(7)| = —(H — i)"*(Hg + gH)(H — i)~
and we know from (3.7) that Hgy, o € H. So, one obtains that

<1p, / dt e Hye it H2¢>

< i), — / dt/ ds " (H +i)""(Hg+ gH)(H —i)~* _“H(H—i)<p>
= ((H
= (¥

J(H+1i) " (Hgr +grH)(H — i)~ (H — i) p)
(H9L+9LH) >

which implies the equality
1 L . _
Z/ dt e Hye™™ o = Hyp + (Hgr + gL H) ¢
0
due to the density of D(H) in H. Now, the equations div(X;) = dive(X2) = 0 and (3.6) imply that

diva X = divg X5 + diVQ(QéEle) = Qﬁgxl (f) + QfD?X] (EL/) = Zﬁfxl (f) + 2(9 - gL).

So, one infers that

1 [E , — —
Z/ dt e Hye "M o = (—i%x, + 291 H + [H,g1])¢
0

= (—iLx, + 200 fYPH Y2 —if. 2%, (91)) ¢
= —i(Lx, + 2901 Lx, + 90 Lx, () + [ZLx, (g1)) ¢
= —i(Lx + 3 diva X) g,

which proves the claim.

bIf feC? (M ; (0, oo)), then X is a C? vector field on the compact manifold M , and thus X admits a
complete flow {F; };cg with F;(p) of class C? in the p-variable [2, Sec. 2.1]. For each t € R, let detq(F}) €
C1(M;R) be the unique function satisfying F;*Q = detq (F})Q [2, Def. 2.5.18]. Since Fy is the identity map,
we have detq(Fp) = 1 and thus detq(F;) > 0 for all ¢ € R by continuity of F;(p) in the ¢-variable (see [2,
Prop. 2.5.19 & 2.5.20(ii)]). In particular, one can define for each ¢ € R the operator

U(t) g := {detq(F,)} 2 0o Fy, e C(M).

Some routine computations using [2, Prop. 2.5.20] show that {U(¢) }+cr defines a strongly continuous unitary
group in H satisfying U (t)C* (M) C C*(M) for each t € R. Thus, it follows from Nelson’s theorem that the
generator D of the group {U (t) };cr is essentially self-adjoint on C''(M). Furthermore, standard computations
(see [2, Sec. 5.4]) show that

Dy = —i(,,?X + % divg X)<p

for each ¢ € C'(M). This, together with point (a), shows that the operators D and Ay, coincide on C'*(M),
and thus that Ay, is essentially self-adjoint on C1(M). O

Remark 3.4. We believe it might be possible to prove the essential self-adjointness of the operator Ay, for time
changes of class C?, instead of time changes of class C* as presented in Lemma 3.3. Doing so, one would
extend all the results of this section to time changes of class C?, since Lemma 3.3 is the only instance where a
regularity assumption stronger than C? is needed.

We now prove regularity properties of H and H? with respect to Ay.

Lemma 3.5. Let f € C3(M;(0,00)), L > 0and z € C\ R. Then,



(a) (H+2)"t e CY(AL) with

[i(H+2)"" ALl = —(H +2)"" (Hgr + gL H)(H + 2)7",

(b) (H?+ 1)1 € C1(AL) with

[i(H>+1)"" AL = —(H*+1)""(H?gL + 2Hg H + g H*) (H* +1)7",

(c) the multiplication operator gr, satisfies gr, € C*(Ar) with [igL, AL} =—-Zx(g1),
(d) (H> +1)~! € C%(Ap).
Proof. (a) Let ¢ € C*(M). Then, Lemma 3.2(b) implies that

<9077’(H + Z)_IAL@> - <AL9072(H + Z)_1<p>
L
= _%/0 dt (e7"" o, (H +2) " (Hg+ gH)(H + z) "' e " o)

= (g (H+2)" {H (L [Fat etH ge=ith ) 1 (L [Fat etH ge=itH ) HL(H + 2)~1 e=itH ).
Since 7 foL dt e ge=ith = 1 foL dt (go ﬁl,ﬂ&) = gy, it follows that

(@, i(H+2)""App) — (Arp,i(H +2) "' o) = =(p,(H 4+ 2)""(Hgr + gL H) (H + 2) '),

and one concludes using the density of C'(M) in D(AL).
(b) Let ¢ € H. Then, it follows from point (a) that

%e—itHg (H2 n 1)—1 it Ha <p’

d . . . .
— & efltHQ (H 4 7;)71 eltH2 efltHQ (H o 7:)71 eZtHz © o
= —(H+i)""(Hgr +gcH)(H +4) "' (H —i) "¢ — (H+14) "' (H —i) " (Hgr + g H)(H — i) '¢

=—(H*+1)""(H?gy +2Hg H + g H?) (H? + 1) "¢,

t=0

which implies the claim.
(c) Let p € CY(M), then we know from Lemma 3.3 that

(p,igrAre) — (Arp,igre) = (@, [gr. Lx + 3 divg X @) = (o, —ZLx(91)¢) -

Since Lx (g1.) € L°°(M), it follows by the density of C1(M) in D(AL) that g;, € C1(AL) with [igr, AL] =
—Zx(91)-

(d) Direct computations using point (b) show that
[i(H? +1)7", AL
= —(H*+1)""{(H? + 1)gr + 2(H + i)g(H — i)
+2i(H +i)gr, — 2igr,(H — i) + gr.(H* + 1) }(H* + 1)
=—2Re{gr(H* + 1) +2i(H — ) ‘g (H*+ 1) + (H — i) g (H +4)""'}.
Morevover, we know from points (a)-(c) that the operators gr,, (H?+1)~!, (H +i)~! and (H —i)~! belong to

C'(AL). So, one infers from standard results on the space C* (AL ) (see [4, Prop. 5.1.5]) that [i(H?*+1)~*, AL |
also belongs to C(AyL). O
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In order to apply the theory of Section 2, one has to prove at some point a positive commutator estimate. If
the function f were the constant function f = 1, then one would have the equalities H = H;,

1 L . . 1 rE LH
Asz/ dteltHnge—“leﬂﬁ—/ dttH, = Hy + 2
and i
[iH?, AL = [z’Hf,Hg + 5 1] = 2[?

due to (3.3). Therefore, one would immediately obtain a strict Mourre estimate for H2 = H?. This suggests
to study the positivity of the commutator [ZH 2 A L] also in the case f # 1. A glimpse at Lemma 3.5(b) tells
us that [in, AL] is equal to the operator H%gy, + 2H gy H + gy, H?, which does not seem to exhibit any
explicit positivity. However, if the function g7, were positive, then all the operators g7, H? and H gy H would
be positive, and thus the sum H?g;, + 2H gr, H + g, H? would be more likely to be positive as a whole. In fact,
this is exactly what happens and this was the whole point of choosing the conjugate operator A;, as we did.
Thanks to the unique ergodicity of the horocycle flow, one has g;, > 0if L > 0 is big enough and the operator
H? satisfies a strict Mourre estimate with respect to Ay :

Lemma 3.6 (Strict Mourre estimate for H?). Let f € C3(M;(0,00)) and take L > 0 big enough. Then,
gr > 0 and one has for each bounded Borel set J C (0, 00) that

ET(N[iH? AL E™ (J) > aBE™(J) with a:=2inf(J)- inf gz(p) > 0.
pe

Proof. (i) The horocycle flow {F} ; }1cr is uniquely ergodic with respect to the measure o [23]. Therefore, we

know from the theory of time changes on compact metric spaces [32, Prop. 3] that the flow {ﬁl’t}teR is also
uniquely ergodic with respect to the measure

A, — [ dpa
S T

It follows that (see [49, Prop. 1.3.4])

. , 11 [F ~ 1 1 _
Jim oo = i (557 [ @ (n) o) =5 =g [ a2 (mi9)
1 1
=4 dua L, (f
2 2fo1d/~LQ/M #o Zx ()
1 i
=t —— (1, Hof !
9 2fM f_ldMQ< of >
_1
2

uniformly on M. Thus, g;, > 0if L > 0 is big enough.
(i1)) We know from Equation (2.2) and Lemma 3.5(b) that

ET(N[iH?, AL E™ (J) = BT (J)(H?gr, + 2Hgr H + gL H*)E™ ().
But, point (i) implies that

EF(1)2Hg HE® (J) > aE"(J) with a=2inf(J)- inf g1(p) > 0.
p

Therefore, it is sufficient to show that EH (J) (HQQL + gLHQ)EH2 (J) >0.

11



So, for any ¢ > 0 let H2 := H?(e2H? + 1)71 and HF := H(eH 4 i)~'. Then, the inclusion 92/2 €
C(H) (which can be proved as in Lemma 3.5(c)) implies that

s-limesyo [HZ, 9)/°] = +s-limeso(eH £ 4) "' [iH, g;/*) (e H + )" = +i[g}/%, H].
Therefore, for each ¢ € H it follows that

<<P,EH2 J)(H29L+9LH2)EH2(J) )

_ hm< ( 29£/29}/2 1/2 1/2H2)EH (J)@

o h{‘%<gﬁ ([ 2.9 i/Z] 1/2+2g1/2H2 1/2+ i/Q[ 1/2 Hz])EHQ(J)(p>
€

> tim (o P ) (12,01l 01 o}, HE) B (1))

= lim (¢, EH2 D) (HE [H g9, + [HE 91" H 91

+ 1/2[ 1/2 H+]H +gl/2H+[ 1/27H_]) H? )(P>
= lim (o, B () (H [H.0;*] /" + [H 01/ *]0)*HT + [Hﬂgi“] (H: ;]
bl g )+ (o) 2 [0 B B )

£
— (o, BT () (H[H, g)/*]9)/* + [H, 9}/ * 9}/ * H + 2[H,g)/*]* + ¢}/* [g}/*, H| H
+ Hg,* g%, H]) E™" (])p)

= (p, BT (1)2[H, g;*]E™ (J) )
Z 07

which implies the claim. O

Using the previous results for H 2, one can finally determine the structure of the spectrum of H (and thus
that of H):

Theorem 3.7 (Spectral properties of H). Let f € C3 (M ; (0, oo)) Then, H has purely absolutely continuous
spectrum, except at 0, where it has a simple eigenvalue with eigenspace C- f =172, In particular, the self-adjoint
operator H associated to the vector field f X, has purely absolutely continuous spectrum, except at 0, where it
has a simple eigenvalue with eigenspace C - 1.

Proof. We know from Lemmas 3.5(d) and 3.6 that (H? + 1)~ € C?(A) and that H? satisfies a strict Mourre
estimate on each bounded Borel subset of (0, cc). It follows by Theorem 2.1 that H? has purely absolutely
continuous spectrum, except at 0, where it may have an eigenvalue. Accordingly, the Hilbert space ‘H admits
the orthogonal decomposition

H = ker(H?) @ Hae(H?),

with H,.(H?) the subspace of absolute continuity of H2.

Now, the function A — A2 has the Luzin N property on R; namely, if J is a Borel subset of R with
Lebesgue measure zero, then J2 also has Lebesgue measure zero. It follows that H..(H?) C Ha.(H), with
Hac(H) the subspace of absolute continuity of H (see Proposition 29, Section 3.5.4 of [6]). Furthermore, we
have that

ker(H?) = ker(H) = % * ker(H) = C - f~1/?

due to the equality H = % *H% and the ergodicity of the flow {Fl,t}te]R~ We thus infer that

H = ker(H?) @ Hac(H?) C ker(H) © Hac(H).

12



So, one necessarily has H = ker(H) @ H..(H ), meaning that H has purely absolutely continuous spectrum,
except at 0, where it has a simple eigenvalue with eigenspace ker(H) = C - f~'/2. Since H = % *H% , this
implies that H has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue with
eigenspace C - 1. O

Theorem 3.7 establishes the absolute continuity of time changes of horocycle flows on compact surfaces
of constant negative curvature for time changes of class C. This improves Theorem 6 of [18], where G. Forni
and C. Ulcigrai show the same result for time changes in a Sobolev space of order > 11/2 (under the same
assumption, the authors of [18] also show that the maximal spectral type is equivalent to Lebesgue). This also
complements Theorem 4.2 of [S1], where the absolute continuity is shown for surfaces of finite volume and
time changes of class C under the additional condition of A. G. Kushnirenko.

We note that it would be interesting to see if the technics of this section could be adapted to the case of
horocycle flows on surfaces of finite volume or surfaces of non-constant negative curvature. In the first case,
one would have to deal with the fact that the horocycle flow is not uniquely ergodic (see [13, 14]), while in
the second case one would have to deal with the fact that the horocycle flow is uniquely ergodic, but with the
Margulis parametrisation and with respect to the Bowen-Margulis measure (see [12, 42]).

4 Skew products over translations

Let X be a compact metric abelian Banach Lie group with normalised Haar measure p (such a group is isomor-
phic to a subgroup of the torus T, see [31, Thm. 8.45]). Take {y; }+cr a C'' one-parameter subgroup of X and
let { F} }+er be the corresponding translation flow, i.e.,

Fi(z) =yiz, teR, zeX.

Assume that the translation F is ergodic (so that both flows {Fy}scz and {F}};cr are uniquely ergodic, see
[11, Thm. 4.1.1] and [39, Sec. 1.2.2]) and associate to { F} }+cr the operators

Vig:=ypolF;, teR, pel(X).

Due to the continuity of the map R 3 ¢ — y; € X and the smoothness of the group operation, the family
{Vi}+er extends to a strongly continuous unitary group in H := L2(X, i) satisfying V; C>°(X) C C°°(X) for
each ¢t € R. It follows from Nelson’s theorem [3, Prop. 5.3] that the generator of the group {V; }+cr

Hyp:=s-lim it (V; = 1)p, @€ D(H):= {(p € H | lim |71 (Vi = 1)ee| < OO} :
is essentially self-adjoint on C°*°(X), and one has
Hp:=—i%¢, ¢eC™®X),

with Y the CY divergence-free vector field associated to {F;}+er and %y the corresponding Lie derivative.

Furthermore, the operator V; has pure point spectrum o(V1) = {v(y1) | v € X }, with X the character group
of X (see [52, Thm. 3.5]). R

Now, let G be a compact metric abelian group with Haar measure v and character group G, and let ¢ :
X — G be a measurable function (a cocycle). Then, one can define the skew product 7 : X x G — X x G
given by T'(z, z) := (y1 2, ¢(x) z) and the corresponding unitary operator

Wepi=tpoT, oel*(XxG,uxv). 4.1
It is known [25, Sec. 3.1] that the operator W is reduced by the orthogonal decomposition

LZ(XxG,qu):@LX, Ly:={p®x|peH}
xe@
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and that the restriction W|z, is unitarily equivalent to the unitary operator

Ugp:=xod)Vip, ¢ecH.

Furthermore, the operator U,, satisfies the following purity law: the spectrum of U, has uniform multiplicity and
is either purely punctual, purely singularly continuous or purely Lebesgue (this follows from Helson’s analysis
[30]; see [27, Thm. 2], [26, Thm. 4] and [41, p. 8560]).

In the sequel, we treat the case where the cocycle ¢ satisfies the following assumption:

Assumption 4.1 (Cocycle). The map ¢ : X — G satisfies ¢ = £n, where
(i) £: X — G is a continuous group homomorphism,

(ii) n € C(X; Q) has a Lie derivative £y (x o n) which satisfies the following Dini-type condition along the
flow {Fy}ier

Lat Lt
/0 7 ny(xon) oL, —ﬁy(xon)HLoo(X) :/O - Hthy(xon)V,t _XY(XOH)HQ(H) < 0.

We start the analysis with a first lemma on the regularity of the operators U,,. We use the fact that the map
R3¢t (xo&)(y:) € S!is acharacter on R, and thus of class C*°. We also use the notations

.i”y(xon)

and A= —iéH
xXon

d 2
So:= (x| _ ., g=16l" -
and observe that &, € iR, that g : X — R satisfies the Dini-type condition along { F} }:cg, that A is self-adjoint
with D(A) D D(H) and that &, g and A depend on x (even if we do not specify it in the notation).
Lemma 4.2. Let ¢ satisfy Assumption 4.1. Then, U, € C*0(A) with [A,U, | = gU,.

Proof. Since A and V; commute, one has for each ¢ € C*°(X) that

(Ao, Uy o) = (0, Ux Ap) = (o, [A,x 0 9] Vi) = (9, €0 Ly (x 0 $) V1 p).
Furthermore, the homomorphism property of y and ¢ and the Leibniz rule for Lie derivatives imply that
A o
Zr(x06) = L (00O (xom + (0 Zr(xom = (6 + D) (o)

It follows that
(Ap,Uxp) — (0, Ux Ap) = (¢,9Ux ¢),
with g € L°(X). So, one has U, € C*(A) with [4,U,] = gU, due to the density of C°>°(X) in D(A).

To show that U, € C'*0(A), one has to check that fol db || e *AA, U, ] e —[A, U, ] HS@(H) < o0. But
since [A, U, ] = gU, with U,, € C'(A), one is reduced to showing that
1 —1
At _ita  ita 0 ds
/0 7“6 g gl gay <0 = ; 7HV9V Ill ey <
which is is readily verified due to the Dini-type condition satisfied by g. O
Since U, € C'(A), we know from Section 2 that the operator
1 n—1
=D U AUy = ZU [A, U)o+ Ap, neN, peD(A,):=D(A),
=0
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is self-adjoint. In the next lemma, we prove regularity properties of the operator U,, with respect to A,, and the
strict Mourre estimate for U, . The averages of the function g along the flow {Fy}/cz, i.e.,

n—1

1
gn::E;)goF—éa HEN*v

appear in a natural way.

Lemma 4.3 (Strict Mourre estimate for Uy ). Let ¢ satisfy Assumption 4.1 with x o £ # 1, and suppose F} is
ergodic. Then,

(a) one has Uy, € C1TO(A,,) with [A,,, U] = gn Uy,
(b) if nis big enough, one has g, > 0 and (U, )* [An, UX} > a with a := inf e x gn(x) > 0.

Proof. (a) We know from Lemma 4.2 that U,el 1+0 (A). So, it follows from the abstract result [17, Lemma 4.1]
that U,, € C'*19(A,,) with [A,,,U,] = E" J U [A, U, UL. Using the equality [A, U,] = gU,, one thus
obtains that

n—1
(A, U] ( ZU—" U") ( ZgOF_>UX:gnUX,

which concludes the proof of the claim.
(b) Due to the unique ergodicity of the discrete flow {Fy}¢cz, we know that lim,, o0 g, = [ vdug
uniformly on X . Using the fact that x o 7 = e*fx.n for some real function fx.m € D(H), we thus deduce that

. 5% o
lim g, =/ dpg = &> - fo/ dﬂw = |€0® + & (1, H fyn) = &0
X X

n—o0 XOT]

uniformly on X. But, since the character y o £ : X — S! is nontrivial, we know that &, # 0 due to the unique
ergodicity of the continuous flow {F} }.cg (see [11, Thm. 4.1.1°]). Therefore, g, > 0 if n > 0 is big enough,
and point (a) implies that

(Ux)* [An’ UX} = (Ux)"9n Uy 2 a,

with @ = inf,ex gn(z) > 0. O

Using what precedes, we can determine the spectral properties of the operators U, and W (see (4.1) for
the definition of W):

Theorem 4.4 (Spectral properties of U, and W). Let ¢ satisfy Assumption 4.1 with x 0§ # 1, and suppose that
Fy is ergodic. Then, the operator Uy, has purely Lebesgue spectrum. In particular, the restriction of W' to the
subspace ®x€5 voez1 Lx C L2(X x G, u X v) has countable Lebesgue spectrum.

Proof. We know from Lemma 4.3 that U,, € C'T%(A,,) and that U, satisfies a strict Mourre estimate on all
of S'. It follows by Theorem 2.2 that U, has a purely absolutely continuous spectrum, and thus has a purely
Lebesgue spectrum due to the purity law. The claim on W follows from what precedes if one takes into account
the separability of the Hilbert space L?(X x G, u x v). O

Theorem 4.4 provides a general criterion for the presence of countable Lebesgue spectrum for skew prod-
ucts over translations. In the particular case where X = T? ~ R%/Z% and G = T¢ ~ R? /Z% for some
d,d" > 1, the flow { F} }+cr is given (in additive notation) by

Fy(z) ==ty +z (mod Z%, tecR, zecT?,

for some y := (y1,%2,...,94) € R So, one has % = y - V, and F} is ergodic if and only if the numbers
Y1,Y2, - --,%Ya, 1 are rationally independent [11, Sec. 3.1]. Furthermore, each group homomorphism ¢ : T¢ —
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T is given by {(z) := Nz (mod 7% for some d’ x d matrix N with integer entries, and each character
Xm € T is given by xm(2) := €2™™= for some m € Z% . Therefore,

Xm o€ #1 = ¥mNT L] forsomex € T4 «—= N'm #0 e Z4,
and we obtain the following corollary of Theorem 4.4.

Corollary 4.5 (The case of tori). Lef y1,Yyo,---,Yd, 1 € R be rationally independent, let x,, € T be given by
Xm (2) := €272 for some m € Z¢ and let ¢ : T — T satisfy ¢ = & + 1, where

(i) £:T¢ — T is given by (x) := Nz (mod Zd,)for some d' x d matrix N with integer entries,

(ii) n € C(T4 'H‘d/) has a derivative y - V(m - 1) which satisfies the Dini-type condition
Lt
?Hy~V(m~77)oFtfy~V(m~17)||Loo(X)<oo. 4.2)
0

Assume also that N'm # 0. Then, the operator U, = e*™™ &NV, has purely Lebesgue spectrum. In

m

particular, the restriction of W to the subspace @, ;4 n,, £0 Ly, has countable Lebesgue spectrum.

In the case d = d’ = 1, Corollary 4.5 implies that the restriction of W to €B,,,cz: 0y Lx.. has countable
Lebesgue spectrum if ¢(x) = Nz + n(z), with N € Z \ {0} and with n € C'(T;T) such that »’ is Dini-
continuous. Since the properties of being Dini-continuous and being of bounded variation are are mutually
independent [29, Sec. 2], this complements Theorem 1 of [35], where A. Iwanik, M. Lemanzyk and D. Rudolph
show the same result under the condition that 7 is absolutely continuous with 7’ of bounded variation (see also
[33, Sec. 2] for another sufficient condition given in terms of the Fourier coefficients of ). Results prior to [35]
along this line can be found in the papers of A. G. Kushnirenko [40] and G. H. Choe [10].

In the case d,d’ > 1, Corollary 4.5 implies that the restriction of W to €D,z x7 0 L., has countable
Lebesgue spectrum if ¢(z) = Nz + n(z), with N a d’ x d matrix with integer entries and with € C(T%; T¢')
such that y - V(m - i) exists and satisfies the Dini-type condition (4.2). This complements Section 3 of [34],
where A. Iwanik shows the same result for functions n € C(T¢; ’H‘d/) with Fourier coefficients satisfying
some decay assumption (see also the works of B. Fayad [16] and K. Fraczek [19, 20] for related results on the
spectrum of skew products on tori).

We note that it would be interesting to see if the technics of this section could be adapted to the case of
cocycles taking values in non-abelian groups, such as the case of SU(2) considered in [21].

5 Furstenberg transformations

For each integer n > 1, we denote by ., the normalised Haar measure on the torus T" ~ R"™/Z™ and we
set H,, := L2 (T", un) for the corresponding Hilbert space. Furstenberg transformations [22, Sec. 2.3] are the
invertible measure-preserving maps T} : T¢ — T? (d > 2) given by

Ta(z1,22,...,24q)

= (21 +y, 22 + boax + R (1), ..., g+ ba1z1 + -+ baa—1Za—1 + ha—1(z1, 22, ..., 2q-1)) (mod Z%),

wherey € R\ Q, bj € Z, by g1 # 0for ¢ € {2,...,d} and each h; : TV — R satisfies a uniform Lipschitz
condition in the variable x ;. The corresponding Koopman operator

Wd:’Hd%'Hd, g&H(pOTd, (5.1)

is reduced by the orthogonal decompositions

Ha=Hie @ (HnH) =M o, Mk, (5.2)
jef2,...,d} j€{2,...,d}, kez\{0}
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where the subspaces H; , C H; are defined by 1,1, := Span{n@xk |ne ’Hj,l) }, with x € T the character
given by i (z;) := e?™*%J (see [11, Sec. 13.3] for details). Furthermore, the restriction Wal3, . is unitarily
equivalent to the unitary operator given by

Ujpn =" W, _yn, ne M, (5.3)

with ¢j(l’1, o, ..., Jij,l) = bj,ll'l + -+ bj’jfl.’L‘jfl + hj,1($1, XTo,. .. ,$j71>.

The operators U, ;, = €*7%%5 W;_; are similar to the operators U, = (x o ¢)V; studied in Section 4.
So, we apply to them the same method. First, we define an operator (vector field) A which commutes with
W;_1 and has an appropriate commutator with e?7*%i and then we use as a congugate operator the average
L3 =0 Us AU of Aalong the flow {U?, },_, generated by Uj s

We start w1th the definition of the operator A and then we prove regularity properties of the operators U; j,
with respect to A. For this, we recall that the translation group {V; j_1 }+cr in H;_1 given by

(Vw;m) (x1,22,...,2j-1) := 77(;101,9627 .., Tj—1 — t (mod Z)), teR, ne C(']Tj_l),

has self-adjoint generator P;_; := —id;_1 which is essentially self-adjoint on C>°(T/~1!). Also, for j €
{2,...,d} and k € Z\ {0}, we use the notations

g = 1+ (bj,jfl)_lajflhjfl and A= (Qkaj’jfl)_lpjfl,

and observe that A is self-adjoint with D(A) = D(P;_1) and that g € L°°(T/~!) due to the uniform Lipschitz
condition satisfied by h;_; in the variable z;_;. We also note that g and A depend on j and k, even if we do
not specify it in the notation.

Lemma 5.1. Let j € {2,...,d} and k € Z \ {0}. Assume that hj_ is of class C" in the variable x;_, and
that 0;_1h;_1 satisfies the following Dini-type condition in the variable x;_ :

dt
/ 7||Vt7] 1(0j—1hj—1)V_t j—1 — (9j-1hj—1 H@ ) <00 (5.4)
0 i

Then, one has Uj , € CYTO(A) with [A, U ] = gUj .

Proof. Since A and W,_; commute and since h;_; satisfies a uniform Lipschitz condition in the variable x;_1,
one has for each n € C>°(T7~!) that

(A, Usn)y = (Ui An)y, = (0, [A, 7% W), = (n,9Usan),,

1

with g € L°°(T?~1). So, one has U; , € C'(A) with [A,U;x] = gU, due to the density of C*°(T/~!) in
D(A).

1 —i i
To show that U; , € C1*0(A), one has to check that [, 4t || e="*A[A, U; ] 4 —[A, U; 4] ||%(Hj71) < 0.
But since [4,U; ;] = gUj  with U; 1, € C*(A), one is reduced to showing that
[ e et gl < o
(2mkb; 5 1) ds
= / ~ IVei1(95 -1k ) Vosjr = (9-1h5-1) || o,y < 200
which is is readily verified due to the Dini-type condition satisfied by ;_1h;_1. O

Since Uj , € C'(A), we know from Section 2 that the operator

1
:EZU FAUS =~ ZUJkAUan+A77, neN* neD(A,):=DA),
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is self-adjoint. In the next lemma, we prove regularity properties of the operator Uj , with respect to A,, and the
strict Mourre estimate for Uj ;.. The averages of the function g along the flow {Tf_l} tez, i.e.,

n—1

1

n, ::EZQOTJ_}“ n € N*,
£=0

appear in a natural way.

Lemma 5.2 (Strict Mourre estimate for U; 1,). Let j € {2,...,d} and k € Z\ {0}. Assume that h;_ is of class
C' in the variable xj—1 and that 0;_1h;_1 satisfies the Dini-type condition (5.4). Then,

(a) one has U, € C1TO(A,) with [A,,Uj k] = gnUj i,
(b) if nis big enough, one has g, > 0 and (U, 1,)*[An, Uj 1] > a with a := inf cpa—1 g, (z) > 0.

Proof. (a) We know from Lemma 5.1 that U;; € C1+°(A). So, it follows from the abstract result [17,
Lemma4.1]that U, € C'T0(A,) with [4,,,U; ;] = 2 S Ujf,f [A,U; 1] Uﬁk. Using the equality [A, U; ;] =
9Uj k., one thus obtains that '

n—1 n—1
1 _ 1 _
[Ana Uj,k} = (n Z U,]ng]{k) Uj,k = (n Z go Tjﬂ) Uj,k = Gn Uj,k7
£=0 £=0

which concludes the proof of the claim.
(b) It is known from [22, Thm. 2.1] that the transformation 7};_; is uniquely ergodic. So, one has that

lim g, = / dpj1g=14i(bj ;1) (1, Pjahja),, =1
Ti—1 ’

P00 1
uniformly on T7~!, Therefore, g,, > 0 if n is big enough, and point (a) implies that

(Uik)*[An, Uj k] = (Ujk) " gn Uj ke 2 a,
with a = inf, cpa—1 gn(z) > 0. O

Using what precedes, we can determine the spectral properties of the operator W (see (5.1) for the defini-
tion of Wy):

Theorem 5.3 (Spectral properties of Wy). For each j € {2,...,d}, assume that h;_; is of class C" in the
variable x;_1 and that O;_1h;_; satisfies the Dini-type condition (5.4). Then, Wy has countable Lebesgue
spectrum in the orthocomplement of H1.

Proof. Letj € {2,...,d} and k € Z \ {0}. Then, we know from Lemma 5.2 that U; , € C'T°(A,,) and that
U; . satisfies a strict Mourre estimate on all of S!. It follows by Theorem 2.2 that U; j, has a purely absolutely
continuous spectrum in H;_1, and thus that W has purely purely absolutely continuous spectrum in the or-
thocomplement of /4 due to the orthogonal decomposition (5.2). Since W; has pure point spectrum and 77 is
ergodic, it follows from the standard purity law (see [25, Thm. 8]) that W, has countable Lebesgue spectrum in
the orthocomplement of 7 . O

Theorem 5.3 complements Corollary 3 of [35], where A. Iwanik, M. Lemarizyk and D. Rudolph show that
W has countable Lebesgue spectrum in the orthocomplement of 7; under the assumption (independent from
the Dini-type condition (5.4)) that 9;_1h;j_, is of bounded variation in the variable x;_;.

As a final comment, we note that it would be interesting to see if the technics of this section could be
adapted to variants of Furstenberg transformations (such as the ones studied in [28], [36] or [44]).
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