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Abstract. This paper is devoted to the study of thermodynamic formal-

ism for suspension flows over countable Markov shifts with roof functions not

necessarily bounded away from zero. This models, for example, billiards with
cusps. We establish conditions to ensure the existence of equilibrium measures

for regular potentials. We define the notions of recurrence and transience of

a potential in this setting. We define the so called renewal flow, which is a
symbolic model for flows in the boundary of hyperbolicity. We study the cor-

responding thermodynamic formalism establishing conditions for the existence
of equilibrium measures and phase transitions. Finally, applications are given

to suspension flows defined over interval maps having parabolic fixed points.

1. Introduction

In this paper we study suspension flows, that is a discrete dynamical system on
the ‘base’ along with a ‘roof’ function which determines the time the flow takes to
return to this base. In particular we consider suspension flows over Markov shifts.
The ergodic theory of suspension flows with a Markov structure has been studied
extensively in the context of Axiom A flows [Bo, BR, Ra], geodesic flows on surfaces
of negative curvature [Mo, Ar, Se] (both finite Markov shift cases), and billiard flows
[BS1, BS2, BChS1]. The main novelty here, aside from the facts that we develop a
more general theory of thermodynamic formalism than in the works above and that
we study countable Markov shifts, is that we do not assume that the roof function is
uniformly bounded away from zero, which leads to significant technical difficulties.
We call such a system a parabolic suspension flow : where the roof function tends to
zero we see a cusp. For example, such a system was considered in the billiard case
in [BM], where the interest was in statistical properties of the physical measure.

Thermodynamic formalism for suspension flows over countable Markov shifts began
with the work of Savchenko [Sav]. He gave a definition of topological entropy in
the case that the roof function depends only on the first coordinate, but it is
not necessarily bounded away from zero. Barreira and Iommi [BI1] proposed a
definition of topological pressure when the roof function is bounded away from
zero and established the Variational Principle in this case. Recently, Kempton [Ke]
and independently Jaerisch, Kesseböhmer and Lamei [JKL] gave a definition of
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pressure in the case that the roof function is not necessarily bounded away from
zero. As opposed to the work in [BI1, Sav] this definition is not given implicitly.
The regularity of the pressure function for this type of flow (with roof function
bounded away from zero) was studied by Iommi and Jordan [IJ]. Conditions in
order for the pressure to be real analytic or to exhibit phase transitions were found.

To develop the theory in the parabolic case, we consider conditions which guarantee
that measures which maximise ‘free enegy’, equilibrium measures, exist (Theorem
3.3). There are several difficulties when considering this problem. To start with,
the phase space is not compact, therefore the classical functional analytic approach
can not be used directly. Moreover, there is no bijection between the set of invariant
measures for the flow and the corresponding one for the base map. This prevents
us from reducing the study of the thermodynamic formalism for the flow to that
of the shift (this was the strategy used by Bowen and Ruelle [BR] in the compact
setting). We also extend to this continuous time setting the definitions of recurrence
and transience of a potential introduced in the discrete time by Sarig [Sa1]. We
prove that despite the difference in the setting, our definitions imply the same
ergodic properties obtained in the shift case.

In order to give a relatively straightforward family of examples exhibiting the dif-
ferent types of behaviour in the presence of a cusp, we define and study in some
detail the so called renewal flow. This is a suspension flow with base map the re-
newal shift (see Section 6 for a precise definition). It provides a symbolic model for
suspension flows defined over the Manneville Pomeau [MP] map having a cusp. We
study the corresponding thermodynamic formalism establishing conditions for the
existence of equilibrium measures and phase transitions. As pointed out by Cher-
nov and Markarian [ChM2, p.728], the ergodic theory and the statistical properties
dispersing billiards with cusps seems to be similar to that of expanding interval
maps with parabolic fixed points. The renewal flow seems to be a good testing
ground for these ideas.

Returning to the broad motivations for our work, the suspension flows here pro-
vide models for various non-uniformly hyperbolic flows where the thermodynamic
formalism is not well developed. These are systems which behave like Axiom A
systems in most of the phase space, but not in all of it. It is possible for these
systems to exhibit pathological behaviour in small parts of the domain. Interest
in these systems is partially due to the novel dynamical features they exhibit (see
for example the statistical laws and rates of decay of correlation that can occur
in [FMT, MT, M1, BM, M2]). Also, these systems have great importance in the
program aimed at obtaining a global description of the space of dynamical systems
(see [BDV]). While these systems still preserve some of the good properties of
Axiom A (uniformly hyperbolic) systems, this is not enough to retain their regu-
lar dynamical properties. Suspension flows over countable Markov shifts serve as
symbolic models for some of these flows. For example, Bufetov and Gurevich [BG]
and Hamenstädt [Ha] have coded Teichmüller flows in this way and have used this
symbolic representation to prove the uniqueness of the measure of maximal entropy.
Another classical example of a flow that is modeled by this type of suspension flows
is the geodesic flow over the modular surface (see [Ar]). Recent results by Sarig
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[Sa5] suggest that this should also be the case for a wide range of non-uniformly
hyperbolic flows.

Finally we describe the layout of this paper. In Section 2 we give the necessary
definitions and results from the setting of countable Markov shifts; we also introduce
suspension flows over countable shifts and the notion of topological entropy for
these flows. Section 3 begins with the definition of pressure for these flows, which
has been introduced in [Sav, BI1, Ke, JKL]. We then state and prove our first
result, Theorem 3.3 which characterises the potentials for which there exists an
equilibrium measure. Section 4 looks at inducing to a full shift and how the pressure
for the induced potential can be related to the pressure for the original potential. In
Section 5 we define the notions of recurrence and transience for suspension flows and
relate these notions to the thermodynamics formalism for the shift map, proving
a Ruelle-Perron-Frobenius-type theorem, Theorem 5.1. The specific case of the
renewal shift is studied in Section 6 and in particular we look at the existence
of equilibrium measures (including the existence of measures of maximal entropy)
and phase transitions for the pressure function. Finally in Section 7 we apply
our results to the setting where the base map f is the non-uniformly expanding
Manneville-Pomeau map and the roof function is log |f ′|.

2. Preliminaries

In this section we collect all the definitions and results for countable Markov shifts
and for suspension flows over countable Markov shifts that will be used in the latter
sections. We will also take the opportunity to fix some notation:

Notation: Given sequences (An)n, (Bn)n ⊂ [−∞,∞], we write An � Bn if there
exists a constant C > 0 such that 1

C ≤
An
Bn
≤ C for all n ∈ N. We will use the

same notation if the ‘sequences’ are simply constants, which will be the case when
we are determining if a quantity is finite or not.

2.1. Recurrence, Transience and Thermodynamic formalism for count-
able Markov shifts. Here we recall some results, mostly due to Sarig, that will
be of use in the following sections. We note that Mauldin and Urbański also de-
veloped a theory in this context [MU1, MU2, MU3]. However, the combinatorial
restrictions they impose in the shifts are too strong for what we will require here.

Let B be a transition matrix defined on the alphabet of natural numbers. That is,
the entries of the matrix B = B(i, j)N0×N0 are zeros and ones (with no row and no
column made entirely of zeros). The countable Markov shift (Σ, σ) is the set

Σ := {(xn)n∈N0 : B(xn, xn+1) = 1 for every n ∈ N0} ,

together with the shift map σ : Σ→ Σ defined by σ(x0, x1, . . . ) = (x1, x2, . . . ). We
will always assume that this system is topologically mixing, i.e., for each pair x, y ∈
N0, there exists N ∈ N such that for every n > N there is a word (i0, . . . , in−1) ∈ Nn0
such that i0 = x, in−1 = y and B(ik, ik+1) = 1 for all 0 ≤ k ≤ n− 2.
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Let Ci0···in−1 denote the n-cylinder consisting of all sequences (x0, x1, . . .) where
xk = ik for 0 ≤ k ≤ n− 1. The n-th variation of φ : Σ→ R is defined by

Vn(φ) := sup{|φ(x)− φ(y)| : x, y ∈ Σ, xi = yi, 0 ≤ i ≤ n− 1}.
We say that φ is of summable variations if

∑∞
n=1 Vn(φ) < ∞. We say that it is

locally Hölder (with parameter θ) if there exists θ ∈ (0, 1) such that for all n ≥ 1
we have Vn(φ) ≤ O(θn). The first return time map to Ci is defined by

ri(x) := 1Ci(x) inf{n ≥ 1 : σnx ∈ Ci}, (1)

where 1Ci is the indicator function of the cylinder Ci. Let

Xi
n := {x ∈ Σ : ri(x) = n}.

When it is clear what i is, we will often drop the superscript. Given φ a potential
of summable variations and a 1-cylinder Ci, we define the partition functions

Zn(φ,Ci) :=
∑
σnx=x

exp

(
n−1∑
k=0

φ(σkx)

)
1Ci(x),

and

Z∗n(φ,Ci) :=
∑
σnx=x

exp

(
n−1∑
k=0

φ(σkx)

)
1Xin

(x).

The Gurevich Pressure of φ was introduced by Sarig in [Sa1], generalising previous
results by Gurevich [Gu1, Gu2]. It is defined by

P (φ) = lim
n→∞

1
n

logZ(φ,Ci0).

If the system is topologically mixing then its value does not depend on the cylin-
der Ci0 considered. The Gurevich pressure is convex and if K := {K ⊂ Σ :
K compact and σ-invariant,K 6= ∅} then

P (φ) = sup{P (φ|K) : K ∈ K}, (2)

where P (φ|K) is the topological pressure of φ restricted to the compact set K (for
definition and properties see [Wa, Chapter 9]). Moreover, this notion of pressure
satisfies the Variational Principle (see [Sa1]):

Theorem 2.1. Let (Σ, σ) be a countable Markov shift and φ : Σ→ R be a function
of summable variations, then

Pσ(φ) = sup
{
h(ν) +

∫
φdν : ν ∈Mσ and −

∫
φdν <∞

}
,

where Mσ denotes the set of σ-invariant probability measures and h(ν) denotes the
entropy of the measure ν (for a precise definition see [Wa, Chapter 4]).

The quantity h(ν) +
∫
φdν is sometimes called the free energy w.r.t. φ, see [K]. A

measure ν ∈Mσ attaining the supremum of the free energies, that is

Pσ(φ) = h(ν) +
∫
φdν, (3)

is called an equilibrium measure for φ. Buzzi and Sarig [BS] proved that a potential
of summable variations has at most one equilibrium measure.
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Under certain combinatorial assumptions on the shift (for example if (Σ, σ) is a
full-shift) the equilibrium measure also satisfies the Gibbs property. We define this
property here for general measures (i.e., not necessarily equilibrium measures).

Definition 2.1. We say that µ is a Gibbs measure for φ if there exist K,P ∈ R
such that for every n ≥ 1, given an n-cylinder Ci0···in−1 ,

1
K
≤
µ(Ci0···in−1)
eSnφ(x)−nP ≤ K

for any x ∈ Ci0···in−1 .

Note that we will usually have P = Pσ(φ), for example in the full shift example
mentioned above.

Potentials can be classified according to their recurrence properties as follows (see
[Sa1, Sa2]); note that by topological mixing and summable variations, these defini-
tions are independent of the choice of cylinder Ci.

Definition 2.2. Let φ be a potential of summable variations with finite Gurevich
pressure Pσ(φ) = log λ. We say that φ is

• recurrent if ∑
n≥1

λ−nZn(φ,Ci) =∞,

and transient otherwise. Moreover, we say that φ is
– positive recurrent if it is recurrent and∑

n≥1

nλ−nZ∗n(φ,Ci) <∞;

– null recurrent if it is recurrent and∑
n≥1

nλ−nZ∗n(φ,Ci) =∞.

Consider the Ruelle operator defined formally in some space of functions by:

Lφg(x) :=
∑
σy=x

exp(φ(y))g(y).

Sarig [Sa2] generalises the Ruelle Perron Frobenius Theorem to countable Markov
shifts.

Theorem 2.2 (RPF Theorem). Let (Σ, σ) be a countable Markov shift and φ a
potential of summable variations of finite Gurevich pressure log λ. If φ is

1. positive recurrent then there exists a conservative conformal measure m and
a continuous function h such that L∗φm = λm, Lφh = λh and

∫
hdm <∞;

2. null recurrent then there exists a conservative conformal measure m and a
continuous function h such that L∗φm = λm, Lφh = λh and

∫
hdm =∞;

3. transient then there is no conservative conformal measure.
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In the recurrent case, we call the measure ν = hdm the Ruelle-Perron-Frobenius
(RPF) measure of φ. In the case where φ is positive recurrent, the total measure
of the space is finite, and we rescale to make ν a probability measure. This is an
equilibrium measure for φ provided −

∫
φdν <∞.

The following result was established in [Sa2, Theorem 2] and provides a version of
the Variational Principle for infinite invariant measures.

Theorem 2.3. Let (Σ, σ) be a countable Markov shift and φ : Σ→ R be a recurrent
potential of summable variations and of finite Gurevich pressure.

1. For every conservative ergodic invariant measure ν which is finite on cylin-
ders, if

∫
(Pσ(φ)− φ)dν <∞ then h(ν) ≤

∫
(Pσ(φ)− φ)dν.

2. Let h and m be the density and the conformal measure provided by the Ruelle
Peron Frobenius Theorem and ν = hm. If

∫
(Pσ(φ)−φ)dν <∞ then h(ν) =∫

(Pσ(φ)− φ)dν.

2.2. Suspension semi-flows. Let (Σ, σ) be a countable Markov shift and τ : Σ→
R+ be a positive continuous function such that for every x ∈ Σ we have

∞∑
i=0

τ(σix) =∞. (4)

Consider the space

Y = {(x, t) ∈ Σ× R : 0 ≤ t ≤ τ(x)}/ ∼
where (x, τ(x)) ∼ (σ(x), 0) for each x ∈ Σ.

The suspension semi-flow over σ with roof function τ is the semi-flow Φ = (ϕt)t≥0

on Y defined by

ϕt(x, s) = (x, s+ t) whenever s+ t ∈ [0, τ(x)].

In particular,
ϕτ(x)(x, 0) = (σ(x), 0).

In the case of two-sided Markov shifts we can define a suspension flow (ϕt)t∈R in a
similar manner.

Remark 2.1. Note that the condition assumed in equation (4) implies that the
flow is well defined for every positive time t > 0. It is possible to drop this as-
sumption and to consider flows for which some orbits hit the singularity in finite
time. In that case, dissipative measures should also be considered (see Section 2.3
for more details). The assumption given in (4) can also be understood in the con-
text of billiards. Indeed, the trajectory of a particle in a billiard table is defined
for every t ∈ R unless the particle hits a corner or the sequence of collision times
(tn)n has an accumulation point in R. The issue of accumulation points for the
collision times has been studied in certain detail and corresponds exactly to the case
of
∑
n≥0 τ(σnx) <∞. Suppose that the collision times have an accumulation point

and that the particle converges to a corner, then it must be a cusp [ChM1, Section
2.4]. Moreover, it must be a cusp with one side of negative curvature and other of
positive curvature. To our knowledge, there are no fully developed examples with
this phenomenon. On the other hand, if the particle accumulates in a regular point
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of the boundary then it can not lie in a flat or dispersing component. Moreover, it
was shown by Halpern [Hal], that such type of collision is impossible on any wall
that is focusing with a bounded third derivative and nowhere vanishing curvature.

2.3. Invariant measures. In this section we discuss the relation between invariant
measures for the flow and invariant measures for the base map.

Definition 2.3. A probability measure µ on Y is Φ-invariant if µ(ϕ−1
t A) = µ(A)

for every t ≥ 0 and every measurable set A ⊂ Y . Denote by MΦ the space of
Φ-invariant probability measures on Y

The space MΦ is closely related to the space Mσ of σ-invariant probability mea-
sures on Σ. Let us consider the space of σ-invariant measures for which τ is inte-
grable,

Mσ(τ) :=
{
µ ∈Mσ :

∫
τdµ <∞

}
. (5)

Let m denote one dimensional Lebesgue measure. As the flow direction is one-
dimensional and m is the unique measure which is invariant under all translations,
it follows that a Φ-invariant probability measure will be of the form Cµ × m for
µ ∈ Mσ(τ) and some C > 0. Indeed, it follows directly from classical results by
Ambrose and Kakutani [AK] that

(µ×m)|Y
(µ×m)(Y )

∈MΦ.

This suggests that the study of the map R : Mσ →MΦ, defined by

R(µ) =
(µ×m)|Y

(µ×m)(Y )
(6)

should allow for the translation of problems from the flow onto the shift map. This
is indeed the case:

1. When (Σ, σ) is a sub-shift of finite type defined over a finite alphabet, a
compact case, the map R is a bijection.

2. If (Σ, σ) is a countable Markov shift and τ : Σ → R is not bounded above
then it is possible for there to be a measure ν ∈ Mσ \ Mσ(τ), i.e., such
that

∫
τdν =∞. In this situation the measure ν ×m is an infinite invariant

measure for Φ. Hence, the map R(·) is not well defined. Nevertheless, it
follows directly from the results by Ambrose and Kakutani [AK] that if τ
is uniformly bounded away from zero then the map R : Mσ(τ) → MΦ is
bijective.

3. If (Σ, σ) is a countable Markov shift and τ : Σ → R is not bounded away
from zero then it is possible (see Section 6.3) that for an infinite (sigma-
finite) σ-invariant measure ν we have

∫
τdν <∞. In this case the measure

(ν×m)|Y /(ν×m)(Y ) ∈MΦ. In such a situation, the map R is not surjective.

The situation in the first two cases is somehow simpler since every measure inMΦ

can be written as ν ×m, where ν ∈ Mσ. Therefore, the ergodic properties of the
flow can be reduced to the ergodic properties of the base. If the roof function is
not bounded away from zero this is no longer the case. However:
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Remark 2.2. The time assumption given by equation (4) implies by a result of
Hopf (see [Aa, Proposition 1.1.6] and [H]) that every sigma-finite measure ν ∈Mσ

defined on the base such that
∫
τdν <∞ is conservative.

Given a continuous function g : Y → R we define the function ∆g : Σ→ R by

∆g(x) =
∫ τ(x)

0

g(x, t) dt.

The function ∆g is also continuous, moreover if µ ∈ MΦ is the normalisation of
ν ×m (note ν can be an infinite measure, as long as the

∫
τdν <∞) then∫

Y

g dR(ν) =

∫
Σ

∆g dν∫
Σ
τ dν

. (7)

Remark 2.3 (Extension of potentials defined on the base). Let φ : Σ → R be
a locally Hölder potential. It is shown in [BRW] that there exists a continuous
function g : Y → R such that ∆g = φ.

2.4. Abramov’s formula. The entropy of a flow with respect to an invariant
measure, denoted hΦ(µ), can be defined as the entropy of the corresponding time
one map. The following classical result obtained by Abramov [Ab] relates the
entropy of a measure for the flow with the entropy of a measure for the base map.

Proposition 2.1 (Abramov). Let µ ∈MΦ be such that µ = (ν×m)|Y /(ν×m)(Y ),
where ν ∈Mσ then

hΦ(µ) =
hσ(ν)∫
τdν

. (8)

The result of Abramov holds for any suspension flow with positive (not necessarily
bounded away from zero) roof function and for any invariant (not necessarily er-
godic) finite measure for the flow µ that can be written as µ = ν×m, where ν is an
invariant probability measure for the base with

∫
τdν < ∞. This settles the case

when the roof function is bounded away from zero, since every invariant measure
for the flow is of that form. When the roof function is not bounded away from zero
there are invariant measures for the flow µ that are not of that form. But instead,
µ = ν ×m, where ν is an infinite invariant measure for the shift. Savchenko [Sav,
Theorem 1] proved that if µ is ergodic then Abramov’s formula still holds. Let EΦ
be the set of ergodic Φ-invariant measures.

Proposition 2.2 (Savchenko). Let Φ be a suspension semi-flow defined over a
countable Markov shift with positive roof function τ . Let µ ∈ EΦ be such that
µ = (ν ×m)|Y /(ν ×m)(Y ), where ν is a sigma-finite (infinite) invariant measure
for the shift with

∫
τ dν <∞. Then

hΦ(µ) =
hσ(ν)∫
τdν

. (9)

Corollary 2.1. Let µ ∈MΦ be such that µ = (ν ×m)|Y /(ν ×m)(Y ) for ν ∈Mσ.
Then hΦ(µ) =∞ if and only if hσ(ν) =∞.
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When the phase space is non-compact there are several different notions of topo-
logical entropy of a flow, we will consider the following,

Definition 2.4. The topological entropy of the suspension flow (Y,Φ) denoted by
h(Φ) is defined by

h(Φ) := sup {hΦ(µ) : µ ∈ EΦ} ,

where EΦ is the set of ergodic Φ-invariant measures.

A measure µ ∈ EΦ such that h(Φ) = hΦ(µ) is called a measure of maximal entropy.
Since the phase space is not compact, there exist suspension flows of finite entropy
with no measure of maximal entropy (see Example 6.2). Moreover, there are sus-
pension flows for which the measure of maximal entropy µ is of the form µ = ν×m,
where ν is an infinite invariant measure for the shift map (see Example 7.1). In
Corollary 3.1 we establish criteria to determine when suspension flows have (or do
not have) measures of maximal entropy.

2.5. Flows and semi-flows. Sinai remarked that it is possible to translate prob-
lems regarding thermodynamic formalism from flows to semi-flows. Indeed, de-
note by (Σ∗, σ) a two-sided countable Markov shift. Two continuous functions
φ, γ ∈ C(Σ∗) are said to be cohomologous if there exists a continuous function
ψ ∈ C(Σ∗) such that φ = γ + ψ ◦ σ − ψ. The pressure function is invariant un-
der cohomology and so are the thermodynamic properties, such as the existence of
equilibrium measures. The following result is due to Daon [Da, Theorem 7.1] and
generalises previous results by Sinai [PP, Proposition 1.2] and Coelho and Quas
[CQ],

Proposition 2.3. If φ ∈ C(Σ∗) has summable variation, then there exists γ ∈
C(Σ∗) of summable variation cohomologous to φ such that γ(x) = γ(y) whenever
xi = yi for all i ≥ 0 (that is, γ depends only on the future coordinates).

Daon also proves the more general statement that above result holds under the Wal-
ters regularity assumption (for precise definitions see [Da]). Proposition 2.3 implies
that thermodynamic formalism for suspension flows can be studied by considering
suspension semi-flows.

3. Existence of equilibrium measures

The definition of pressure for suspension flows over countable Markov shifts has
been given with different degrees of generality by Savchenko [Sav], Barreira and
Iommi [BI1], Kempton [Ke] and Jaerisch, Kesseböhmer and Lamei [JKL]. These
definitions can be summarised as follows

Theorem 3.1. Let (Σ, σ) a topologically mixing countable Markov shift and τ :
Σ→ R a positive function of summable variations satisfying (4). Let (Y,Φ) be the
suspension semi-flow over (Σ, σ) with roof function τ . Let g : Y → R be a function
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such that ∆g : Σ→ R is of summable variations. Then the following equalities hold

PΦ(g) := lim
t→∞

1
t

log

 ∑
φs(x,0)=(x,0),0<s≤t

exp
(∫ s

0

g(φk(x, 0))dk
)
1Ci0

(x)


= inf{t ∈ R : Pσ(∆g − tτ) ≤ 0} = sup{t ∈ R : Pσ(∆g − tτ) ≥ 0}
= sup{Pσ|K(φ) : K ∈ K},

where K is the set of all compact and Φ-invariant sets and PK is the classical
topological pressure of the potential φ restricted to the compact and σ-invariant set
K.

The Variational Principle has been proved in the context of suspension flows defined
over countable Markov shifts (analogous to Theorem 2.1) by different people with
different degrees of generality (see [BI1, JKL, Ke, Sav]). The version we will be
interested here is the following:

Theorem 3.2 (Variational Principle). Under the same assumptions of Theorem
3.1 we have

PΦ(g) = sup
{
hµ(Φ) +

∫
Y

gdµ : µ ∈ EΦ and −
∫
Y

g dµ <∞
}
,

where EΦ is the set of ergodic Φ-invariant measures.

Note that the set of measures considered in the Variational Principle is that of
ergodic flow-invariant measures and not the the set of flow-invariant probability
measures. If the roof function is bounded away from zero the Variational Principle
holds in complete generality [BI1]. However, at present time the available proofs
in the case that the roof function is not bounded away from zero [JKL, Ke] only
hold for ergodic measures. The reason for this being that Abramov formula only
holds for these measures (see Subsection 2.4). Also note that it follows from our
definitions that PΦ(0) = h(Φ).

Similarly to (3), we define:

Definition 3.1. A measure µ ∈ EΦ is called an equilibrium measure for g if

PΦ(g) = h(µ) +
∫
gdµ.

The next Theorem is our first main result. In this general context, with roof
function not necessarily bounded away from zero, we establish conditions to ensure
the existence of equilibrium measures.

Theorem 3.3. Let Φ be a finite entropy suspension semi-flow on Y defined over a
countable Markov shift (Σ, σ) and roof function τ of summable variations satisfying
(4). Let g : Y → R be a continuous function such that ∆g is of summable variations.
In the following cases there exists an equilibrium measure for g;

1. If Pσ(∆g−PΦ(g)τ) = 0 and ∆g−PΦ(g)τ is positive recurrent with equilibrium
measure νg satisfying

∫
τdνg <∞;
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2. If Pσ(∆g−PΦ(g)τ) = 0 and the potential ∆g−PΦ(g)τ is null recurrent with
infinite RPF measure νg and

∫
τdνg <∞.

In any other case the potential g does not have an equilibrium measure. Thus there
is no equilibrium measure for g when

1. Pσ(∆g − PΦ(g)τ) < 0;
2. Pσ(∆g − PΦ(g)τ) = 0 and the potential ∆g − PΦ(g)τ is positive recurrent

with equilibrium measure νg such that
∫
τdνg =∞;

3. Pσ(∆g − PΦ(g)τ) = 0 and the potential ∆g − PΦ(g)τ is null recurrent with
infinite RPF measure νg and

∫
τdνg =∞;

4. If ∆g − PΦ(g)τ is transient.

Simplifying to the case of the potential which is constant zero, and the correspond-
ing measures of maximal entropy, we have the following.

Corollary 3.1 (Measures of maximal entropy). Let Φ be a finite entropy suspension
semi-flow on Y defined over a countable Markov shift (Σ, σ) and roof function τ of
summable variations satisfying (4).

1. If Pσ(−h(Φ)τ) = 0 and −h(Φ)τ is positive recurrent with equilibrium mea-
sure ν satisfying

∫
τdν <∞ then there exists a measure of maximal entropy.

2. If Pσ(−h(Φ)τ) = 0 and the potential h(Φ)τ is null recurrent with infinite
RPF measure ν and

∫
τdν < ∞ then there exists a measure of maximal

entropy.

In any other case the flow does not have a measure of maximal entropy.

To prove Theorem 3.3, we require two lemmas.

Lemma 3.1. If Pσ(∆g − PΦ(g)τ) < 0 then there are no equilibrium measures for
g.

Proof. We will show that for any measure µ ∈MΦ we have hΦ(µ)+
∫
gdµ < PΦ(g).

Assume first that µ = ν ×m where ν ∈Mσ, i.e., ν is a probability measure. Since
Pσ(∆g − PΦ(g)τ) < 0, Theorem 3.3 implies

hσ(ν) +
∫

∆gdν − PΦ(g)
∫
τdν < 0,

thus

hσ(ν)∫
τdν

+
∫

∆gdν∫
τdν

= hΦ(µ) +
∫
gdµ < PΦ(g).

Therefore, no measure µ ∈ MΦ of the form µ = ν ×m, where ν ∈ Mσ, can be an
equilibrium measure for g.

Let us assume now that µ = ν ×m where ν is an infinite invariant measure such
that

∫
τdν <∞. Note that since the flow has finite entropy, h(µ) = h(ν×m) <∞,

so Abramov’s formula implies that h(ν) <∞. Assume by way of contradiction that
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the measure µ is an equilibrium measure for g. In particular, since h(µ) <∞, this
implies that

∫
gdµ <∞. Since τ ∈ L1(ν) we have ∆g ∈ L1(ν) and

PΦ(g) = hΦ(µ) +
∫
gdµ =

hσ(ν)∫
τdν

+
∫

∆gdν∫
τdν

.

This implies,

hσ(ν) +
∫

∆gdν − PΦ(g)
∫
τdν = 0. (10)

A direct application of [Sa2, Theorem 2] gives

hσ(ν) ≤
∫ (

Pσ(∆g − PΦ(g)τ)−∆g + PΦ(g)τ
)

dν

However, since by (10),

hσ(ν) = −
∫

(∆g + PΦ(g)τ) dν,

we obtain
Pσ(∆g − PΦ(g)τ) = 0.

This contradiction proves the statement. �

Lemma 3.2. If Pσ(∆g − PΦ(g)τ) = 0 and the potential ∆g − PΦ(g)τ is null-
recurrent with corresponding infinite measure ν satisfying τ ∈ L1(ν) then there
exists an equilibrium measure for g.

Proof. In the proof of Lemma 3.1 we showed that if ν is the infinite RPF measure
associated to ∆g − PΦ(g)τ satisfying τ ∈ L1(ν), and the flow is of finite entropy,
then ∆g ∈ L1(ν). It is a consequence of [Sa2, Theorem 2] that

hσ(ν) =
∫ (

Pσ(∆g − PΦ(g)τ)−∆g + PΦ(g)τ
)

dν.

Since P (∆g − PΦ(g)τ) = 0 we obtain

hσ(ν) = −
∫

∆gdν + PΦ(g)
∫
τdν.

That is

PΦ(g) =
hσ(ν)∫
τdν

+
∫

∆gdν∫
τdν

.

Therefore, for µ = ν ×m ∈MΦ,

PΦ(g) = hΦ(µ) +
∫
gdµ,

so µ is an equilibrium measure for g, as required. �

Proof of Theorem 3.3. Case 1 of the theorem follows from [BI1, Theorem 4]. Case
2 of the theorem follows by Lemma 3.2.

To complete the proof, we will show that cases 1 and 2 are the only cases in which
there is an equilibrium measure for g. Suppose that g has a finite equilibrium
measure µ. Then µ is of the form ν ×m where ν is a σ-invariant measure, which
can be either finite or infinite and

∫
τdν <∞. If ν is finite then it is an equilibrium

measure for ∆g − PΦ(g)τ and P (∆g − PΦ(g)τ) = 0. Thus ∆g − PΦ(g)τ is either
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recurrent or positive recurrent and so we are in case 1 or 2. If ν is infinite then it
satisfies the Variational Principle for invariant measures (see Theorem 2.3) and is a
fixed point for L∗∆g−PΦ(g)τ and thus ∆g−PΦ(g)τ is null recurrent, as in case 2. �

Remark 3.1. Let µ be an equilibrium measure for the potential g which can be
written as µ = ν ×m, where ν is the equilibrium measure for ∆g − PΦ(g)τ . Tech-
niques developed by Melbourne and Török [MT] to obtain statistical limit theorems
can be applied in this setting. Indeed, let ψ : Y → R be a zero mean potential, that
is
∫
ψ dµ = 0. Assume that τ ∈ La(ν) and that ψ ∈ Lb(µ) with(

1− 1
a

)(
1− 1

b

)
≥ 1

2
.

If ∆ψ and τ satisfy the Central Limit Theorem then ψ satisfies the Central limit
Theorem.

4. Inducing schemes

The combinatorial structure of a countable Markov shift has several important
consequences in the properties of its corresponding thermodynamic formalism. For
example, if (Σ, σ) is a full-shift then locally Hölder potentials φ of finite entropy
have corresponding Gibbs measures and the pressure function t 7→ P (tφ) (when
finite) is real analytic (see [Sa3]). Moreover, if Σ does not satisfy a certain combi-
natorial assumption (the so called BIP property, see [Sa4] for a precise definition)
then locally Hölder potentials do not have corresponding Gibbs measures [Sa4, The-
orem 1]. The inducing procedure in the context of topologically mixing countable
Markov shifts consists of associating to any system (Σ, σ) a full-shift on a countable
alphabet. The idea being to solve problems in this new (better behaved) system
and then to translate them back into the original system. While this theory is well
developed in the context of maps, in our context has not been thoroughly stud-
ied. It was used in [IJ, Section 6.2] to establish the existence of phase transitions
for arbitrary topologically mixing shifts and potentials satisfying certain growth
conditions.

Let (Σ, σ) be a topologically mixing countable Markov shift. Fix a symbol in the
alphabet, say a ∈ N. The induced system over the cylinder Ca, denoted by (Σ, σ),
is the full-shift defined on the alphabet

{Cai1...im : ij 6= a and Cai1...ima 6= ∅} .

As defined in Section 2.1 the first return time map to the cylinder Ca is

ra(x) := 1Ca(x) inf {n ≥ 1 : σn(x) ∈ Ca} .

For every potential φ : Σ→ R we define the induced potential by

φ :=

ra(x)−1∑
k=0

φ ◦ σk
 .

Note that if φ has summable variations then it is also the case for φ. In the same
way, if φ is locally Hölder then so is φ. Sarig [Sa3, Lemma 2] showed that for
topologically mixing systems the pressure P (φ) does not depend on the symbol we
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induce on. One reason to induce is that if inf{τ(x) : x ∈ Ca} > 0 then the induced
roof function τ will be bounded away from 0.

There is a relation between invariant measures for the induced system µ and mea-
sures on the original system. Indeed, an invariant probability measure µ on the
induced systems such that

∫
radµ < ∞ can be projected onto an invariant proba-

bility measure µ on the original system in the following way

µ(A) =
1∫
ra dµ

∞∑
n=1

n−1∑
k=0

µ(σ−k(A) ∩Xa
n), (11)

where the sets Xn were defined in Section 2.1. We say that µ is the lift of µ and
that µ is the projection of µ. Also note that the integral of a potential with respect
to a measure and the integral of the induced potential with respect to the lifted
measure are related by the Kac formula:

Remark 4.1 (Kac’s formula). Let ν ∈ Mσ be ergodic and satisfy that ν(Ca) > 0.
Denote by ν ∈ Mσ its lift to the induced system. Let φ : Σ → R be a potential of
summable variations and let φ be the corresponding induced potential. If

∫
radν <

∞ then ∫
φdν =

∫
φdν∫
rdν

.

On the other hand note that if ν ∈ Mσ with
∫
τdν < ∞ but

∫
radν = ∞ then the

projection of ν is an infinite σ-invariant measure but µ = ν × m will be a finite
Φ-invariant measure. For a potential g : Y → R we will have that∫

gdµ =
∫

∆gdν∫
τdν

.

Note that inducing corresponds to choosing a different base map to suspend the flow
over. The first important remark is that the pressure for the flow can be computed
using the induced system. This fact was implicit in [IJ, Lemma 6.1]. However as
well as this if inf{τ(x) : x ∈ Ca} > 0 then the existence of equilibrium measures
can be determined by the induced system.

Lemma 4.1. Let (Y,Φ) be a suspension semi-flow defined over a topologically mix-
ing countable Markov shift (Σ, σ) with roof function τ of summable variations. Let
g : Y → R be such that ∆g is of summable variations. Then

PΦ(g) = inf
{
s ∈ R : Pσ(∆g − sτ) ≤ 0

}
.

Moreover if inf{τ(x) : x ∈ Ca} > 0 then g has an equilibrium measure if and only
if Pσ(∆g − PΦ(g)τ) = 0 and ∆g − PΦ(g)τ has an equilibrium measure with respect
to which τ is integrable.

Proof. By the definition of PΦ(g) it suffices to show that

sup{s ∈ R : Pσ(∆g − sτ) > 0} = sup{s ∈ R : Pσ(∆g − sτ) > 0}.

To start let t ∈ R satisfy that Pσ(∆g − tτ) > 0 and note that there must exist a
compactly supported σ-ergodic probability measure µ such that

hσ(µ) +
∫

∆gdµ− t
∫
τdµ > 0.
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By considering the projection of µ and applying the Variational Principle we can
deduce that Pσ(∆g − tτ) > 0.

On the other hand if we fix t ∈ R such that Pσ(∆g − tτ) > 0 then we can find a
compactly supported ergodic measure, µ such that h(µ)+

∫
∆gdµ−t

∫
τdµ > 0 and

induce to observe that Pσ(∆g − tτ) > 0. The first part of the result now follows.

To prove the second part suppose that Pσ(∆g −PΦ(g)τ) = 0 and ∆g −PΦ(g)τ has
an ergodic equilibrium measure µ such that

∫
τdµ < ∞. Thus µ can be pushed

down to a (possibly infinite) σ-invariant measure µ where
∫
τdν <∞ and

0 = h(µ) +
∫

(∆g − PΦ(g)τ)dµ

which means

PΦ(g) =
h(µ)∫
τdµ

+
∫

∆gdµ∫
τdµ

.

Therefore, µ×m is a finite equilibrium measure for g.

On the other hand if g has an equilibrium measure, then by Theorem 3.3 and
Theorem 2.2 it has an equilibrium measure of the form ν ×m where ν must be a
RPF measure for ∆g−PΦ(g)τ (NB: it can be infinite). Thus we can induce to yield
ν which will be an equilibrium measure for ∆g − PΦ(g)τ . �

Remark 4.2. In the proof of the second part of the lemma, the assumption
∫
τdµ <

∞ follows immediately in some cases. For example, if PΦ(g) 6= 0 and ∆g and τ

are not asymptotically comparable (i.e., to rule out |
∫

∆gdµ| and |
∫
τdµ| being

simultaneously infinite, but |
∫

∆g − PΦ(g)τdµ| < ∞), then the fact that µ is an
equilibrium measure for ∆g−PΦ(g)τ implies that |

∫
∆g−PΦ(g)τdµ| <∞ and thus∫

τdµ <∞.

We let
s∞ := inf{s : P (−sτ) <∞}.

This number plays an important role in the thermodynamic formalism of the asso-
ciated suspension flow.

Remark 4.3. We collect some basic facts about s∞ and s 7→ PΣ(−sτ).

1. The constant s∞ =∞ if and only if h(Φ) =∞.
2. Since τ ≥ 0, this is also true for the induced version. Hence s 7→ Pσ(−sτ) is

a non-increasing function. In particular, since Pσ(0) = ∞, this means that
s∞ ≥ 0.

The inducing procedure and these remarks will be used in the study of the renewal
flow (see Section 6).

5. Recurrence and transience for suspension flows

This section is devoted to extend the notions of recurrence and transience to po-
tentials defined over suspension flows. This notions were given in the context of
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countable Markov shifts by Sarig in [Sa1] and allow for the classification of a po-
tential according to its recurrence properties. These definitions have also been
extended beyond the realm of Markov systems in [IT].

We begin by defining the relevant partition function.

Definition 5.1. Let g : Y → R be a potential such that ∆g : Σ→ R is of summable
variations and PΦ(g) <∞. Given Ci0 ∈ Σ, let

Zn(g, Ci0) :=
∑

x∈Ci0 , φs(x,0)=(x,0), for n−1<s≤n

e
R s
0 g(φt(0,x)) dt.

We say that g is recurrent if
∞∑
n=1

Zn(g − PΦ(g), Ci0) =∞.

Otherwise, g is transient.

The following result establishes the relationship between recurrence and transience
with equilibrium measures.

Theorem 5.1. Let g : Y → R be a potential such that ∆g : Σ→ R is of summable
variations and PΦ(g) <∞ and suppose τ satisfies (4).

(a) The definition of recurrence is independent of the cylinder Ci0 .
(b) PΦ(g) = limn→∞

1
n logZn(g, Ci0).

(c) The potential g is recurrent if and only if ∆g−τPΦ(g) is recurrent and P (∆g−
PΦ(g)τ) = 0.

(d) If g is recurrent then there exists a conservative measure νg which can be ob-
tained as µ×m where µ is the RPF measure for ∆g − τPΦ(g).

Remark 5.1. The condition Pσ(∆g−PΦ(g)τ) = 0 in (c) is crucial. In Example 6.2
below we construct a case where ∆g−τPΦ(g) is recurrent, but Pσ(∆g−PΦ(g)τ) < 0
and thus g is transient.

Proof. The proof of (a) follows from the proof of (c). The proof of (b) follows from
[JKL].

For part (c), we will shortly prove the following:

Claim 1.
∞∑
n=1

Zn(g − PΦ(g), Ci0) =
∞∑
n=1

Zn(∆g − τPΦ(g), Ci0).

This can be added to the following claim, which follows immediately from the
definition of pressure being the radius of convergence of the power series defined by
partition functions.

Claim 2. Pσ(∆g − PΦ(g)τ) < 0 implies that
∑∞
n=1 Zn(∆g − τPΦ(g), Ci0) <∞.
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Together the claims show that g is recurrent implies that ∆g − τPΦ(g) is recurrent
and P (∆g − PΦ(g)τ) = 0. Moreover, Claim 1 alone shows that if ∆g − τPΦ(g) is
recurrent and P (∆g − PΦ(g)τ) = 0 then g is recurrent. So (c) holds,

Proof of Claim 1. First for x ∈ Ci0 such that φs(x, 0) = (x, 0) where n−1 < s ≤ n,
set kx,n to be the number of times that (x, 0) has returned to the base at time s,
i.e., let k ∈ N such that τk(x) = s. Then

Zn(g − PΦ(g), Ci0) =
∑

x∈Ci0 , φs(x,0)=(x,0), for n−1<s≤n

e
R s
0 (g−PΦ(g))(φt(0,x))dt

=
∑

x∈Ci0 , φs(x,0)=(x,0), for n−1<s≤n

e
Pkx,n−1
i=0

R τi+1(x)
τi(x)

s(g−PΦ(g))(φt(0,x))dt

=
∑

x∈Ci0 , φs(x,0)=(x,0), for n−1<s≤n

e

“Pkx,n−1
i=0 ∆g(σi(x))

”
−sPΦ(g)

.

Since

Zn(∆g − τPΦ(g), Ci0) =
∑

{x∈Ci0 :σnx=x}

e(
Pn−1
i=0 ∆g(σi(x)))−nPΦ(g),

each term e

“Pkx,n−1
i=0 ∆g(σi(x))

”
−sPΦ(g) in the sum for Zn(g−PΦ(g), Ci0) is counted as

part of the sum for Zkx,n(∆g−τPΦ(g), Ci0). Thus the sum
∑∞
n=1 Zn(g−PΦ(g), Ci0)

is simply a reordering of the series of positive terms
∑∞
n=1 Zn(∆g−τPΦ(g), Ci0). �

For (d), the existence of the measure described follows from (c) plus the RPF
Theorem (see Theorem 2.2) applied to ∆g − τPΦ(g). Conservativity follows from
the fact that since the RPF measure is conservative then so is µ×m. �

In order to give a criterion for the existence of equilibrium measures for the flow,
we consider the following,

Definition 5.2. Let g : Y → R be a potential such that ∆g : Σ→ R is of summable
variations and PΦ(g) <∞. Let

Pn := {x ∈ Ci0 : ∃s ∈ (n−1, n] s.t. φs(x, 0) = (x, 0), but φt(x, 0) /∈ Ci0∀t ∈ (0, s)}.
For x ∈ Pn, let sx > 0 be minimal such that φsx(x, 0) = (x, 0). Now let

Z∗n,τ (g, Ci0) :=
∑
x∈Pn

e
R sx
0 g(φt(x))dt.

Remark 5.2. For each x ∈ Pn there exists nx ∈ N such that sx = τnx(x), so for a
potential g̃ such that ∆g̃ : Σ → R is of summable variations, P (∆g̃) < ∞ and ∆g̃

is locally Hölder we have ∫ sx

0

g̃(φt)dt = Snx∆g̃ = ∆g̃(x).

Let Yx be the (nx−1)-cylinder Y around x w.r.t. the dynamics σ, so σnx(Y ) = Ci0 .
This set is a 1-cylinder for the induced map σ. We will use the fact below that if µ̂
is a Gibbs measure for ∆g̃ then µ(Y ) � e∆g̃(x). Note that this term is a summand
in the sum for Z∗n,τ .
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Definition 5.3. Let g : Y → R be a potential such that ∆g : Σ→ R is of summable
variations and PΦ(g) <∞. Suppose that g is recurrent. If∑

n

nZ∗n,τ (g)e−nPΦ(g) <∞

we say that g is positive recurrent. If∑
n

nZ∗n,τ (g)e−nPΦ(g) =∞

we say that g is null recurrent.

Note that definition above is independent of the cylinder Ci0 .

Theorem 5.2. Let g : Y → R be a positive recurrent potential, and suppose τ
satisfies (4). Then there exists an equilibrium measure νg.

Proof. Define ∆g − τPΦ(g) to be the induced version of ∆g − τPΦ(g) on Ci0 . Also
define τ to be the induced roof function. Since g is recurrent and, by Theorem 5.1,
Pσ(∆g − τPΦ(g)) = 0, the proof of [Sa3, Lemma 3] implies that there is an equi-
librium measure µ for ∆g − τPΦ(g), which projects to the flow if

∫
τ dµ < ∞

(see Remark 4.1). Since by the same result (see also [Sa4]), µ is a Gibbs mea-
sure, as in Remark 5.2 the value of

∫
τ dµ can be bounded by a constant times∑

n nZ
∗
n,τ (g)e−nPΦ(g). Since g is positive recurrent, these values are bounded and

the result is proved. �

Remark 5.3. In the spirit of [IT], we now characterise recurrence in a way which
extends beyond semi-flows over shifts. Let g : Y → R be a potential such that
∆g : Σ→ R is of summable variations and PΦ(g) <∞. Sumarising, we say that g
is

1. Positive recurrent if it has an equilibrium measure
2. Null-recurrent if Pσ(∆g−PΦ(g)τ) = 0, the potential ∆g−PΦ(g)τ is recurrent

with corresponding measure ν and
∫
τ dν =∞.

3. Transient in any other case.

In particular, our definitions extend the corresponding ones given by Sarig [Sa1] for
countable Markov shifts.

6. The renewal flow

In this section we define and study a class of suspension flows of particular interest,
since they serve as symbolic models for a class of flows belonging to the boundary
of hyperbolic flows. Namely, suspension flows defined over the Manneville-Pomeau
maps. We study the corresponding thermodynamic formalism establishing condi-
tions for the existence of equilibrium measures and phase transitions.
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6.1. The renewal shift and the renewal flow. For the alphabet N0, consider
the transition matrix A = (aij)i,j∈N0 with a0,0 = a0,n = an,n−1 = 1 for each n ≥ 1
and with all other entries equal to zero. The renewal shift is the Markov shift
(ΣR, σ) defined by the transition matrix A, that is, the shift map σ on the space

ΣR =
{

(xi)i≥0 : xi ∈ N0 and axixi+1 = 1 for each i ≥ 0
}
.

Remark 6.1. Let (Σ2, σ) be the full-shift on the alphabet {0, 1}. There exists a
topological conjugacy between the renewal shift (ΣR, σ) and (Σ2 \

⋃∞
i=0 σ

−i(0), σ),
where 0 = (000 · · · ). Indeed, denote by (0 · · · 01)n the cylinder C0···01 with n zeros,
and consider the alphabet {(0 · · · 01)n : n ≥ 1} ∪ {C0}. The possible transitions on
this alphabet are

(0 · · · 01)n → (0 · · · 01)n−1, C0 → C0, and C0 → (0 · · · 01)n for n ≥ 1.

Note that this is simply a recoding of (Σ2 \
⋃∞
i=0 σ

−i(0), σ).

Let R be the class of functions φ : ΣR → R such that:

1. the function φ has summable variation and is bounded from above;
2. the function φ has finite Gurevich pressure;
3. the induced function φ is locally Hölder continuous.

We observe that R includes the class of Hölder continuous functions. Nevertheless,
there are non-Hölder continuous functions that belong to R.

Thermodynamic formalism is well understood in this setting for potentials of sum-
mable variations. Indeed, Sarig [Sa3] proved the following (the version of this result
for every q ∈ R, and not just for positive values, appears in [BI2, Proposition 3]).

Proposition 6.1. Let (ΣR, σ) be the renewal shift. For each bounded φ ∈ R there
exist q+

c ∈ (0,+∞] and q−c ∈ [−∞, 0) such that:

1. q 7→ Pσ(qφ) is strictly convex and real analytic in (q−c , q
+
c ).

2. Pσ(qφ) = mq for q < q−c , and PG(qφ) = Mq for q > q+
c . Here m :=

inf
{∫

ΣR
φdµ : µ ∈MR

}
and M := sup

{∫
ΣR

φdµ : µ ∈MR

}
.

3. At q−c and q+
c the function q 7→ Pσ(qφ) is continuous but not analytic.

4. For each q ∈ (q−c , q
+
c ) there is a unique equilibrium measure µq for qφ.

5. For each q 6∈ [q−c , q
+
c ] there is no equilibrium measure for qφ.

6. The critical values q+
c and q−c are never simultaneously finite.

If q ∈ (q−c , q
+
c ) the potential qφ is positive recurrent and for q < q−c or q > q+

c the
potential qφ is transient. At the critical values the potential can have any recurrence
mode: qcφ can be positive recurrent, null-recurrent or transient (see [Sa3, Example
2]).

Definition 6.1. Let τ : ΣR → R be a positive potential with τ ∈ R and satisfying
(4). The suspension semi-flow ΦR = ϕt(x, s) defined in the canonical way over the
(non-compact) space

YR = {(x, t) ∈ ΣR × R : 0 ≤ t ≤ τ(x)}.
is called a renewal semi-flow.
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If limx→0 τ(x) = 0 then we can think of this flow as one having a cusp at (0, 0).
This, of course, has several dynamical consequences. For instance,

Example 6.1 (An infinite entropy renewal flow). Here we present an example of
a semi-flow where the presence of a cusp causes the flow to have infinite topological
entropy. Clearly for this to be interesting, the base dynamics should have finite
entropy: we consider the renewal shift, which has topological entropy log 2.

Consider the renewal semi-flow with roof function τ , to be defined later. By Propo-
sitions 2.1 and 2.2,

h(Φ) = sup
ν∈Eσ

{
hσ(ν)∫
τ dν

}
.

Consider the induced system (Σ, σ, τ) given by the first return map to C0. As usual,
for each n ∈ N, denote the domain with first return time n by Xn. Then by the
Abramov formula and by approximating measures by compactly supported ones,

h(Φ) = sup
ν∈Eσ(τ)

{
hσ(ν)∫
τ dν

}
= sup
ν∈Eσ

{
hσ(ν)∫
τ dν

}
.

(We don’t actually use the second equality here.) If ν is a Markov measure (see
[Wa, p.22] for the definition) for (Σ, σ), then

hσ(ν)∫
τ dν

= −
∑
n ν(Xn) log ν(Xn)∑

n ν(Xn)sn
,

where sn = τ |Xn .

Setting

τ(x) =

{
log log(1 + e)) if x ∈ C0

log log(1 + e+ n)− log log(1 + e+ n− 1) if x ∈ Cn,

we obtain sn = log log(e+ n). So in this case,

hσ(ν)∫
τ dν

= −
∑
n ν(Xn) log ν(Xn)∑

n ν(Xn) log log(e+ n)
.

So for example, for N ∈ N, the measure νN giving mass 1/N to Xn if 1 ≤ n ≤ N
and zero mass otherwise has

hσ(νN )∫
τ dνN

=
N logN∑N

n=1 log log(e+ n)
≥ logN

log log(e+N)
→∞ as N →∞.

Thus h(Φ) =∞. This argument implies that we have some freedom to alter τ , but
so long as it is chosen so that logN/sN → ∞ as N → ∞, the entropy of the flow
will still be infinite.

6.2. Equilibrium measures for the renewal flow. In the next proposition we
characterise bounded potentials having equilibrium measures.

Proposition 6.2. Let ΦR be a renewal semi-flow of finite entropy and g : YR → R
a bounded potential such that ∆g : ΣR → R is locally Hölder. There exists an
equilibrium measure for g if and only if the potential ∆g−PΦ(g)τ is recurrent, and
the RPF measure νg has

∫
τ dνg <∞. Here µ = νg ×m.



PARABOLIC SUSPENSION FLOWS 21

Proof. First we will show that the equation in the variable q ∈ R given by

Pσ(∆g − q(g)τ) = 0,

always has a root. Indeed, since the potential g is bounded there exist constants
K1,K2 ∈ R such that K2τ ≤ ∆g ≤ K1τ. Therefore,

Pσ((K2 − q)τ) ≤ Pσ(∆g − qτ) ≤ Pσ((K1 − q)τ).

It is a direct consequence of Proposition 6.1 and of the fact that h(Φ) < ∞ that
Pσ(−h(Φ)τ) = 0. Therefore there exist q1, q2 ∈ R such that

0 ≤ Pσ((K2 − q1)τ) ≤ Pσ(∆g − qτ) <∞,
and

Pσ(∆g − q2τ) ≤ Pσ((K1 − q2)τ) ≤ 0.
Since the pressure is a continuous function of the variable q we obtain the desired
result.

By virtue of Theorem 3.3, if the potential ∆g − PΦ(g)τ is transient then there are
no equilibrium measures for g.

If ∆g−PΦ(g)τ is positive recurrent then there exist a measure νg ∈ ΣR which is an
equilibrium measure for ∆g−PΦ(g)τ . Since the roof function τ ∈ R, it is bounded,
so τ ∈ L1(νg), therefore there exists an equilibrium measure for g.

The remaining case is that when the potential ∆g−PΦ(g)τ is null recurrent. Denote
by νg the corresponding infinite RPF measure. Theorem 3.3 together with the fact
that τ ∈ L1(νg) yield the desired result. �

Remark 6.2. If the renewal flow ΦR has infinite entropy, as in Example 6.1, then
it is a direct consequence of the Variational Principle that bounded potentials on YR
do not have equilibrium measures.

Remark 6.3. In the proof of Proposition 6.2 we obtained that if ∆g − PΦ(g)τ is
positive recurrent and νg is the corresponding measure then τ ∈ L1(νg). Therefore,
in the positive recurrent case that assumption is not needed.

Remark 6.4. Let ΦR be a renewal flow of finite entropy and g : YR → R a bounded
potential such that ∆g : ΣR → R is locally Hölder . Recall that regular potentials of
finite pressure defined on the full-shift on a countable alphabet are positive recurrent
(see [Sa4, Corollary 2]). By Kac’s formula obtained in [Sa3, Lemma 3] we have
that if Pσ(∆g − PΦ(g)τ) = 0 then ∆g − PΦ(g)τ is recurrent. Denote by νg the
corresponding equilibrium measure. So as above, to find an equilibrium measure for
g, it suffices to check that for the RPF measure νg, we have τ ∈ L1(νg).

6.3. Measures of maximal entropy: Hofbauer type roof functions. In this
subsection we look at when suspension flows over the renewal shift have measures
of maximal entropy. We will assume that

lim
n→∞

sup
x∈Cn

{τ(x)} = 0.

By lemma 4.1 it follows that there exists a measure of maximal entropy if and
only if the roof function τ satisfies that Pσ(−h(Φ)τ) = 0 and −h(Φ)τ has an
equilibrium measure. This means that in particular if Pσ(−s∞τ) > 0 then there
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exists a measure of maximal entropy however if Pσ(−s∞τ) < 0 there exists no
measure of maximal entropy.

We can also say that if Pσ(−s∞τ) > 0 then −h(Φ)τ will be positive recurrent
and will have an equilibrium measure if and only if

∫
r0dµ < ∞ where µ is the

equilibrium measure for −h(Φ)τ . Otherwise −h(Φ)τ will be null-recurrent. Specific
cases of this where −h(Φ)τ) is null-recurrent are given in Lemma 7.1.

In the case where Pσ(−s∞τ) = 0 and thus h(Φ) = s∞ then it is possible that
the Gibbs measure µ for −s∞τ will satisfy that

∫
τdµ = ∞. In this case −h(Φ)τ

is null recurrent and there is no measure of maximal entropy for Φ. Finally if
Pσ(−s∞τ) < 0 and thus h(Φ) = s∞ then P (−s∞τ) = 0 and −s∞τ is transient.
We can adapt the techniques used by Hofbauer in [Ho] to produce examples where
there is no measure of maximal entropy and −h(Φ)τ is either transient or null-
recurrent (In this setting if −h(Φ)τ is positive recurrent then there must be a
measure of maximal entropy for Φ.)

Example 6.2. We fix k > 0 such that
∑∞
n=0

1
(n+k)(log(n+k))2 < 1 and for n ≥ 0

let an = 1
(n+k)(log(n+k))2 . and consider the locally constant potential τ : ΣR → R

defined on each cylinder Cn with n ≥ 1 by τ |Cn = − log
(

an
an−1

)
and with τ |C0 =

− log a0. This gives that the induced roof function τ will also be locally constant
with τ |Cn = − log an for n ≥ 0. Thus

Pσ(−tτ) = log

( ∞∑
n=0

(
1

(n+ k)(log(n+ k))2

)t)
when this is finite and otherwise Pσ(−tτ) = ∞. So we have that s∞ = 1 and
Pσ(−τ) < 0. Thus h(Φ) = 1 and there is no measure of maximal entropy for Φ
and −τ is transient. This example also relates to the construction of infinite iterate
function systems with no measure of maximal dimension considered by Mauldin and
Urbański in [MU1].

Now consider the case when a0 = 1 −
∑∞
n=1 an. Define τ as above and note that

we now have that P (−τ) = 0. We have that

−
∞∑
n=0

an log an =∞

and so the Gibbs measure µ for τ satisfies
∫
τdµ =∞ and we are in the case when

there is no measure of maximal entropy for Φ and −τ is null-recurrent.

6.4. Phase transitions for the renewal flow. Bowen and Ruelle [BR] showed
that the pressure function, t 7→ PΦ(tg), for suspension flows defined over (finite
state) sub-shifts of finite type with Hölder roof function is real analytic when con-
sidering potentials g such that ∆g is Hölder. In particular, the pressure is real
analytic for Axiom A flows. Note that since the pressure is convex it is differen-
tiable in every point of the domain, except for at most a countable set. We say
that the pressure exhibits a phase transition at the point t0 ∈ R if the function
PΦ(tg) is not real analytic at t = t0. In [IJ] the regularity of the pressure was
studied and conditions in order for the pressure to be real analytic or to exhibit
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phase transitions were found in the context of BIP shifts in the base (see [IJ] for
precise definitions, but roughly speaking these are shifts that combinatorially are
close to the full-shift). In the discrete time setting, the renewal shift is fairly well
understood (see Proposition 6.1 and [Sa3]). The pressure exhibits at most one
phase transition after which the pressure takes the form P (tψ) = At. Phase tran-
sitions of these type are called phase transition of zero entropy, since the line At
passes through zero. Recently, in the context of maps phase transitions of positive
entropy have been constructed (in this cases the pressure function takes the form
P (tψ) = At+B, with B 6= 0). Indeed, examples have been obtained in [DGR, IT]
and most notably in [BT], where B = htop(T ).

For the renewal flow the situation is richer than in the renewal shift setting [Sa3] .
In particular, the pressure function can exhibit two phase transitions (see Example
6.4) as opposed to the discrete time case, where at most there exists one phase
transition. Moreover it can exhibit phase transitions of zero and positive entropy
depending on the value of s∞ (see Subsection 4 for a precise definition). Indeed,
the case in which s∞ = 0 can be thought of as zero entropy phase transitions and
s∞ > 0 correspond to positive entropy phase transitions (see Example 6.4 for a
positive entropy phase transition). In this subsection we establish conditions in
order for the pressure function t 7→ PΦ(tg) to be real analytic or to exhibit phase
transitions.

We fix a positive function τ ∈ −R as our roof function and let g : YR → R be a
function such that ∆g ∈ ±R. In addition we will assume that there exists α ∈ R
such that

lim
n→∞

sup
x∈Cn

{
∆g(x)
τ(x)

}
= lim
n→∞

inf
x∈Cn

{
∆g(x)
τ(x)

}
= α. (12)

Recall that we proved in Lemma 4.1 that we can calculate the pressure of g using
the induced map. We have that

PΦ(g) = inf{s : Pσ(∆g − sτ) ≤ 0}.

Remark 6.5. Recall that s∞ = inf{s : P (−sτ) < ∞}. Under condition (12),
and assuming h(Φ) < ∞, there must exist a sequence of measures (νn)n such that∫
τ dνn →∞. This follows from the Variational Principle and the two observations

that h(σ) = ∞; and for each s > s∞ ≥ 0 there exists C > 0 such that hσ(ν) −
s
∫
τ dν < C for any σ-invariant measure ν.

Lemma 6.1. For t ∈ R we have that

inf{s : Pσ(t∆g − sτ) <∞} = s∞ + tα.

Proof. For t = 0 the result is obvious so we will assume throughout the proof
that t 6= 0. If we let s < s∞ + tα then since, as in Remark 6.5, there exists
a sequence of σ-invariant probabily measures νn such that limn→∞

∫
τdνn = ∞

and thus limn→∞

R
∆gdνnR
τdνn

= α it follows that Pσ(−sτ + t∆g) = ∞. Hence inf{s :

Pσ(t∆g − sτ) <∞} ≥ s∞ + tα.
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Let ε > 0 and let ν be a σ-invariant probability measure where
∫
τdν < ∞ and∣∣∣ R ∆gdνR

τdν
− α

∣∣∣ < ε
2 . We then have that

hσ(ν)− (s∞ + tα+ |tε|)
∫
τdν + t

∫
∆gdν ≤ hσ(ν)−

(
s∞ +

|tε|
2

)∫
τdν

≤ Pσ(−(s∞ + |tε|/2)τ) <∞.

If on the other hand ∣∣∣∣∫ ∆gdν∫
τdν

− α
∣∣∣∣ > ε

2

then by (12) there exists a uniform constant C such that
∫
τdν < C and so again

h(ν)− (s∞+ tα+ |tε|)
∫
τdν + t

∫
∆gdν is uniformly bounded. Therefore the proof

now easily follows by the Variational Principle. �

The lemma immediately implies that PΦ(tg) ≥ s∞ + tα. We now let

I = {t : Pσ(−(s∞ + tα)τ + t∆g) ≤ 0}

and note that by the convexity of pressure this is either the empty set or an interval.

Proposition 6.3. The regularity of the pressure function is given by

1. For t ∈ I we have that PΦ(tg) = s∞ + tα. Moreover if t ∈ int(I) then either
g is cohomologous to the constant function α or tg is transient.

2. For t ∈ R\I the function t → PΦ(tg) varies analytically and tg is positive
recurrent.

Proof. We prove the two items in separate ways.

1. Fix t ∈ I. Then Lemma 6.1 implies that if s < s∞+tα then Pσ(−sτ+t∆g) =
∞. Since t ∈ I, Pσ(−(s∞+ tα)τ + t∆g) ≤ 0, so by Lemma 4.1 we have that
PΦ(tg) = s∞ + tα. Furthermore since τ and ∆g are locally Hölder the
function t → Pσ(−s∞τ + t(ατ + ∆g)) is analytic and convex for t ∈ int(I)
(see [Sa4]). Thus either Pσ(−(s∞+ tα)τ + t∆g) < 0 for all t ∈ intI in which
case tg is transient, or Pσ(−(s∞ + tα)τ + t∆g) = 0 for all t ∈ I.

To complete the proof of 1, suppose that int(I) 6= ∅ and P (−(s∞+tα)τ+
t∆g) = 0 for all t ∈ I. Since Pσ(−s∞τ+t(ατ+∆g)) = 0 for all t ∈ int(I) the
associated Gibbs state µt has

∫
∆g − ατdµt = 0. Thus µt is an equilibrium

measure for −(s∞ + tα)τ + t∆g for all t ∈ int(I). By [MU3, Theorem 2.2.7]
this implies that ∆g − ατ is cohomologous to a constant which must be
0. Thus for all Φ-invariant probability measures

∫
gdµ = α and thus g is

cohomologous to the constant function α.
2. For this part we can follow the method from Proposition 6 in [BI1]. Note

that the function s → Pσ(−sτ + t∆g) is real analytic and decreasing for
s > s∞ + tα. So if J ⊆ R is an open interval for which J ∩ I = ∅ then for
t ∈ J we can define PΦ(tg) implicitly by

Pσ(−PΦ(tg)τ + t∆g) = 0.
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If we let νt denote the equilibrium measure for −PΦ(tg)τ+t∆g then it follows
that

∂

∂s
Pσ(−sτ − t∆g)

∣∣
s=PΦ(tg) = −

∫
τdµt < 0.

Thus we can apply the implicit function theorem to show that t → PΦ(tg)
is analytic on J . Hence ν = µt ×m will be the equilibrium measure for tg
and so tg is positive recurrent.

�

Thus we have phase transitions if and only if I 6= R and I 6= ∅.

Example 6.3. First of all we give an example of a potential g where t → PΦ(tg)
is analytic for the whole of R. We define

τ(x) = log(n+ 2)− log(n+ 1) if x ∈ Cn
and g to satisfy

∆g(x) = − log log log(n+ 2) + log log log(n+ 1) if x ∈ Cn.

This gives that
τ(x) = log(n+ 1) if x ∈ Cn

and
∆g(x) = − log log log(n+ 1) if x ∈ Cn.

Using the notation above this means that s∞ = 1 and α = 0. For any t ∈ R we
have that

Pσ(−s∞τ + t∆g) = log

( ∞∑
n=1

(log log(n+ 2))−t

n+ 2

)
=∞.

Thus we have that I = ∅ and by Proposition 6.3 the function t→ PΦ(tg) is analytic.

Example 6.4. We now give an example with two phase transitions. We choose
K > 2 to satisfy

∑∞
n=0((n+K)(log(n+K))2)−1 < 1

9 . We set

τ(x) =

 log 2 if x ∈ C0

log(K)− log 2 if x ∈ C1

log(K + n− 1)− log(K + n− 2) if x ∈ Cn for n ≥ 2

and g to satisfy that

∆g(x) =

 log(4/3) if x ∈ C1

− log log(K)− log(4/3) if x ∈ C1

− log log(K + n− 1) + log log(K + n− 2) if x ∈ Cn for n ≥ 2

This gives that

exp(−τ(x) + t∆g(x)) =
1
2

(
4
3

)t
if x ∈ C0

and for n ≥ 2

exp(−τ(x) + t∆g) =
1

log(K + n− 2)
(log(K + n− 2))−t if x ∈ Cn.
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As in the previous example we have that s∞ = 1 and α = 0. For t ∈ R we have
that

Pσ(−s∞τ + t∆g) = log

(
1
2

(
4
3

)t
+
∞∑
n=2

1
K + n− 1

(log(K + n− 1))−t
)
.

Now for t ≤ 1 this is divergent and for t > 1 this is convergent. If we take t = 2
then

Pσ(−s∞τ + 2∆g) = log

(
8
9

+
∞∑
n=0

((n+K)(log(n+K))2)−1

)
< 0,

and so t = inf{t : Pσ(−τ(x) + t∆g) ≤ 0} ∈ (1, 2). Furthermore for t = 3, we have
that 1

2

(
4
3

)t
> 1 and so Pσ(−s∞τ + 3∆g) > 0. Thus t = sup{t : Pσ(−τ(x) + t∆g) ≤

0} ∈ (2, 3). Therefore I = [t, t] and for t ∈ I we will have that PΦ(tg) = s∞ = 1.
There will be phase transitions at t and t and outside of I the function t→ PΦ(tg)
will vary analytically and be strictly greater than s∞.

6.5. Improving (or not) recurrence properties. In this sub-section, we dis-
cuss the idea that by suspending a system with a roof function not bounded away
from zero, we can speed up the return times improving the mixing properties and
therefore obtaining better thermodynamics. The example we consider is the re-
newal flow. We show that no general statement can be made. In order to be more
precise, let ΦR be a renewal flow with roof function τ not bounded away from zero
and let g : Y → R be a potential. We say that the recurrence properties of the
potential ∆g : Σ → R improve if ∆g is transient and g is recurrent or if ∆g is
null-recurrent and g is positive recurrent.

Example 6.5. Let τ ∈ R be a roof function such that

Pσ(−tτ) =

{
positive t < 1;
0 t ≥ 1.

By virtue of Proposition 6.1 we have that for t < 1 the potential −tτ is positive
recurrent and for t > 1 the potential −tτ is transient. Moreover, for t = 1 the
potential can be positive recurrent, null-recurrent or transient (see Section 6.3 and
[Sa3, Example 2]).

Consider the suspension flow ΦR with roof function τ . The constant potential,
g = C, defined over YR is positive recurrent. Indeed note that the corresponding
potential ∆g = Cτ is such that

PΦ(tg) = inf{q ∈ R : Pσ(tCτ − qτ) ≤ 0}.
Since PΦ(tCτ − qτ) = Pσ((tC − q)τ) we obtain that

Pσ(tg) = tC + 1.

The above, of course, could have been obtained from the Variational Principle for the
flow. In both cases below we are able to make our conclusion using Proposition 6.2.

1. Let us consider first the case in which the potential −τ is transient. In this
case the potential t∆g − PΦ(g)τ = −τ is transient, therefore the potential
tg is transient for every t ∈ R. However, if t < 1/C the potential t∆g is
positive recurrent while tg is transient.
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2. Assume that −τ is null-recurrent with infinite measure ν such that
∫
τdν <

∞ (see Lemma 7.1 for an example of this). If t > 1/C then the potential
t∆g is transient and tg is positive recurrent.

The simple example above shows that the recurrence properties and the thermody-
namic formalism can either improve or get worse by suspending with a roof function
not bounded away from zero.

7. Suspension flows over Manneville-Pomeau maps

7.1. Manneville-Pomeau flows. In this section we study suspension flows over
a simple non-uniformly hyperbolic interval map, namely the Manneville-Pomeau
map [MP]. We give the form studied in [LSV]. For α > 0 the map is defined by

f(x) =

{
x(1 + 2αxα) if x ∈ [0, 1/2),
2x− 1 if x ∈ [1/2, 1).

The pressure function of the potential− log |f ′| satisfies the following (see [Lo, Sa3]),

Pf (−t log |f ′|) =

{
strictly convex and real analytic if t < 1,
0 if t ≥ 1.

It is well known (see [Lo, Sa3]) that if α ∈ (0, 1) then there exists an absolutely
continuous invariant measure. This measure together with the Dirac delta at zero
are the equilibrium measures for − log |f ′|. If α > 1 then there is no absolutely
continuous invariant measure and the only equilibrium measure for − log |f ′| is
the Dirac delta at zero. However, there exists an infinite f -invariant measure ν
absolutely continuous with respect to Lebesgue. This measure is such that (see [N,
p.849]) ∫

log |f ′| dν <∞. (13)

If we remove the parabolic fixed point at zero and its preimages, then the (non-
compact) dynamical system that is left can be coded by the renewal shift (see [Sa3]).
More precisely, if we denote by Ω = [0, 1] \ ∪∞n=0f

−n(0), then the map f restricted
to Ω can be coded by the renewal shift.

We define the Manneville-Pomeau flow, that we denote by Φmp, as the suspension
semi-flow with base f(x) and roof-function log |f ′|. We denote by Y its phase space.
This flow has a singularity at (0, 0) and there exits an atomic invariant measure
supported on it. If we remove the point (0, 0) and all its pre-images, then the non-
compact semi-flow that is left can be coded as a renewal flow with roof function the
symbolic representation of log |f ′|. We denote this renewal flow by ΦR. The set of
invariant measure for the Manneville-Pomeau flow is in one to one correspondence
with the set of invariant measures for the renewal flow, denoted byMΦR , together
with the atomic measure supported at (0, 0).

Remark 7.1. Melbourne [M2] studied the decay of correlations for this class of
semi-flows with respect to the measure of maximal entropy for the flow. The decay
rates are related to that of the f -invariant absolutely continuous measure. This
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is also closely related to the study of the thermodynamics of Rovella flows, see
[PT]. Moreover, Holland, Nicol and Török have studied Extreme Value Theory for
Manneville-Pomeau flows in [HNT].

Let g : Y → R be a bounded potential and consider the map ∆g : [0, 1]→ R defined
by

∆g(x) =
∫ log |f ′(x)|

0

g(t, x)dt.

Denote by ∆r
g the symbolic representation of ∆g(x) in the renewal shift. We will

develop a thermodynamic formalism for the following class of potentials:

MP :=
{
g : Y → R : g is bounded and ∆r

g(x) ∈ R
}
.

We define the pressure of a potential g ∈MP by

PΦmp(g) := sup
{
h(µ) +

∫
gdµ : µ ∈ Emp

}
,

where Emp denotes the set of ergodic Φmp-invariant probability measures. We stress
that Emp is in one to one correspondence with the set EΦR ∪ δ(0,0).

Lemma 7.1. Every Manneville-Pomeau flow has entropy equal to one and there
exists a unique measure of maximal entropy.

Proof. Recall that h(Φmp) = inf{s ∈ R : P (−s log |f ′|) ≤ 0}. Since

Pf (− log |f ′|) = 0,

and for every t < 0 we have that Pf (−t log |f ′|) > 0 the entropy of the flow is equal
to 1. The potential − log |f ′| is recurrent and because of the property stated in
equation (13) the flow has a measure of maximal entropy. It is unique since regular
potentials over countable Markov shifts do have at most one equilibrium measure
[BS] and the atomic measure supported at (0, 0) has zero entropy. �

Note that if α ≥ 1 then this measure of maximal entropy will be finite for the flow
but will project to an infinite invariant measure for the Manneville-Pomeau map.

In our next result we discuss the existence and uniqueness of equilibrium measures
for potentials in MP. Denote by logr |f ′| the symbolic representation of log |f ′| in
the renewal shift. First note that it follows from Proposition 6.2 that the equation
P (∆r

g − s logr |f ′|) = 0, always has a root, that we denote by P rΦmp(g).

Proposition 7.1. Let g ∈MP.

1. If ∆r
g−P rΦmp(g) logr |f ′| is positive recurrent then there exists an equilibrium

measure for g. Moreover,
(a) If P rΦmp(g) 6=

∫
gδ(0,0) then the equilibrium measure for g is unique.

(b) If P rΦmp(g) =
∫
gδ(0,0) then there exist two equilibrium measures for g.

2. If ∆r
g − P rΦmp(g) logr |f ′| is null recurrent with infinite measure ν and we

have that logr |f ′| ∈ L1(µ) then there exists an equilibrium measure for g.
Moreover,
(a) If P rΦmp(g) 6=

∫
gδ(0,0) then the equilibrium measure for g is unique.
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(b) If P rΦmp(g) =
∫
gδ(0,0) then there exist two equilibrium measures for g.

3. Assume that ∆r
g − P rΦmp(g) logr |f ′| is null recurrent with infinite measure ν

and logr |f ′| /∈ L1(µ). If P rΦmp(g) >
∫
gδ(0,0) then there is no equilibrium

measure for g. On the other hand, if P rΦmp(g) <
∫
gδ(0,0) then δ(0,0) is the

unique equilibrium measure for g.
4. Assume that ∆r

g − P rΦmp(g) logr |f ′| is transient. If P rΦmp(g) >
∫
gδ(0,0) then

there is no equilibrium measure for g. On the other hand, if P rΦmp(g) <∫
gδ(0,0) then δ(0,0) is the unique equilibrium measure for g.

Proof. The proof follows directly from Proposition 6.2 and the observation that

PΦmp(g) = max
{
P rΦmp(g),

∫
gδ(0,0)

}
.

�

Remark 7.2. It is possible to use Proposition 6.3 to obtain potentials where the
pressure function for the Manneville-Pomeau flow has phase transitions. If we
consider the induced potential τ we have that s∞ = α

α+1 . We now take a negative
function g where ∆g satisfies that

lim
n→∞

supx∈Cn{∆g(x)}
infx∈Cn{τ(x)}

= 0

and

lim
n→∞

infx∈Cn{−∆g(x)}
log log n

=∞.

This means that for all t > 0 we have Pσ(−s∞τ + t∆g) < ∞ and there will exist
t∗ ∈ R such that Pσ(−s∞τ + t∆g) = 0 and for all t ≥ t∗, Pσ(−s∞τ + t∆g) < 0.
Thus t→ PΦ(tg) will have a (positive entropy) phase transition at t∗.

7.2. On the boundary of hyperbolicity. The class of suspension semi-flows
studied in the previous section belong to the boundary of hyperbolic systems. In-
deed, consider a family of height functions τl : [0, 1] → R of positive, bounded
away from zero Hölder functions such that the family τl converges uniformly to
τ(x) = log |f ′(x)| as l converges to zero.

The suspension semi-flows Φl defined over

Yl = {(x, t) ∈ [0, 1]× R : 0 ≤ t ≤ τl(x)} , (14)

in the canonical way. These flows are hyperbolic (see [BR]). The pressure function

t→ P (tg)

is real analytic for any potential g such that the symbolic representation of ∆g

belongs to R. Moreover, there exists a unique equilibrium measure for g.

The Manneville-Pomeau semi-flow Φmp is obtained from Φl when l tends to zero.
In dynamical terms, we have a Hopf bifurcation at the Manneville Pomeau flow.
That is, a periodic orbit is collapsed into a singularity. The results in Subsection 7.1
show that the thermodynamic formalism is completely different at the bifurcation
that at the hyperbolic component.
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Facultad de Matemáticas, Pontificia Universidad Católica de Chile (PUC), Avenida

Vicuña Mackenna 4860, Santiago, Chile

E-mail address: giommi@mat.puc.cl

URL: http://www.mat.puc.cl/~giommi/

The School of Mathematics, The University of Bristol, University Walk, Clifton, Bris-
tol, BS8 1TW, UK

E-mail address: Thomas.Jordan@bristol.ac.uk

URL: http://www.maths.bris.ac.uk/~matmj

Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16
9SS, Scotland

E-mail address: mjt20@st-andrews.ac.uk

URL: http://www.mcs.st-and.ac.uk/~miket/


	1. Introduction
	2. Preliminaries
	2.1. Recurrence, Transience and Thermodynamic formalism for countable Markov shifts.
	2.2. Suspension semi-flows
	2.3. Invariant measures
	2.4. Abramov's formula
	2.5. Flows and semi-flows

	3. Existence of equilibrium measures
	4. Inducing schemes
	5. Recurrence and transience for suspension flows
	6. The renewal flow
	6.1. The renewal shift and the renewal flow
	6.2. Equilibrium measures for the renewal flow
	6.3. Measures of maximal entropy: Hofbauer type roof functions
	6.4. Phase transitions for the renewal flow
	6.5. Improving (or not) recurrence properties

	7. Suspension flows over Manneville-Pomeau maps
	7.1.  Manneville-Pomeau flows
	7.2. On the boundary of hyperbolicity

	References

