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Abstract

We present and analyze an a posteriori error estimator based on mesh refinement for the
solution of the hypersingular boundary integral equation governing the Laplacian in three
dimensions. The discretization under consideration is a non-conforming domain decomposi-
tion method based on the Nitsche technique. Assuming a saturation property, we establish
quasi-reliability and efficiency of the error estimator in comparison with the error in a natural
(non-conforming) norm. Numerical experiments with uniform and adaptively refined meshes
confirm our theoretical results.

1 Introduction

In the last years we have started to design and analyze non-conforming Galerkin approximations
for solutions to hypersingular boundary integral equations in three dimensions. There are non-
conforming sub-domain based variants like the mortar method [15] and a Nitsche coupling [8].
Element-wise discontinuous approximations are considered in [22] (Crouzeix-Raviart elements)
and [20] (Nitsche-based discontinuous Galerkin method). Main advantage of these methods is
their flexibility in the construction of discrete spaces, e.g., on complicated surfaces or for ease of
adaptivity. In this paper we present and study an a posteriori error estimator for non-conforming
boundary elements, more precisely for the Nitsche domain decomposition method presented in
[8].
The so-called energy space for the variational setting of hypersingular integral equations is a
Sobolev space of order 1/2. Principal difficulty in the analysis of their non-conforming (discon-
tinuous in this case) discretization is that there is no well-defined trace operator in the energy
space. Such an operator is needed to deal with jump conditions in variational form. Therefore,
a priori analyses of these methods avoid the use of variational settings at the continuous level.
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Instead, a technique is used which gives rise to the second Strang lemma, i.e., discrete ellip-
ticity and continuity (for more regular functions) of the principal bilinear form. In the case of
element-wise discontinuous functions, main ingredients are scaling properties of fractional-order
Sobolev (semi-) norms as well as arguments from the equivalence of norms in finite-dimensional
spaces. Such arguments are not available when studying approximations which are discontinu-
ous across a sub-domain decomposition (since discrete spaces on individual sub-domains do not
have bounded dimension when meshes are refined). Therefore, the analysis of non-conforming
sub-domain based methods ignores scaling arguments (sub-domains are considered fixed) and
rather uses techniques from Sobolev spaces (of higher regularity than 1/2) and the inverse prop-
erty of discrete functions. By these arguments, (poly-) logarithmic perturbations appear in a
priori error estimates, cf. [15, 8].
A posteriori error analysis faces the same problems, and requires different approaches for element
and sub-domain-wise discontinuous approximations. In [19] we study an error estimator based
on mesh refinement for Crouzeix-Raviart boundary elements. The result is somewhat surprising
in the sense that adaptivity is advantageous (convergence is faster) only when solutions are more
singular than usual, i.e., when there are stronger than usual (edge) singularities. In this paper we
study a posteriori error estimation for the non-conforming boundary element method based on
Nitsche domain decomposition [8]. Contrary to adaptive Crouzeix-Raviart boundary elements,
here we observe improved convergence orders when using adaptivity for model problems with
standard edge singularities. Due to the difficulties previously discussed, efficiency can be proved
but reliability is slightly perturbed by an ε-reduced order of convergence (with any ε > 0) or
by a factor that blows up logarithmically when the mesh size goes to zero. As mentioned, such
perturbations appear also in a priori error estimates. Nevertheless, these effects are difficult to
observe in numerical experiments.
Let us mention some connections with a posteriori error estimates for conforming boundary el-
ements. Adaptive methods based on mesh refinement (halving mesh sizes) are also called h-h/2
methods. Their reliability usually depends on a saturation assumption, cf. [13, 10]. Therefore,
it is not surprising that we need this assumption here as well. Note, however, that averaging
techniques also suffer from such a restriction (reliability can be shown up to terms which are
considered to be of higher order), cf. [7] for the hypersingular operator for problems in two
dimensions. Very similar to h-h/2 methods are strategies based on space enrichments combined
with stable additive Schwarz decompositions, cf. [25, 21, 17, 11]. Here, too, a saturation as-
sumption is needed to prove reliability. The situation is different with residual based estimators
which do without such an assumption, cf., e.g., [5, 6]. However, it is an open problem how to
analyze residual based estimators for non-conforming boundary elements. Principal reason for
this is that it is not clear how to define a residual for the hypersingular integral equation when
discontinuous approximations are used since, in this case, the operator is not well defined.
The previously mentioned papers on adaptive conforming boundary elements all deal with sym-
metric positive definite operators. In this paper, with a domain decomposition setting, the
underlying bilinear form is not symmetric so that orthogonal projection arguments do not ap-
ply. Therefore, the saturation assumption also enters the efficiency estimate, though in a weaker
form than it influences reliability. This is known from finite element a posteriori error analysis
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of indefinite operators, cf. [1], and also from two-level boundary element estimators for acoustic
scattering (which lead to indefinite operators), cf. [23].
In this paper we use techniques from a priori error analysis of non-conforming boundary elements
[8], from a posteriori error analysis of conforming boundary elements [13], estimates for a Clement
type interpolation operator [4], and inverse properties of piecewise polynomials in fractional-
order Sobolev spaces [16]. The main result (Theorem 4.1) establishes efficiency and quasi-
reliability in a natural norm. This natural norm (denoted ‖ · ‖a or a-norm below) does not
decompose the appearing surface differential operator (curl) within its Sobolev space of order
−1/2 and, thus, avoids some complications. In a corollary (Corollary 4.6) we illustrate what
can be shown in a more standard (broken) Sobolev norm. Here, quasi-reliability is established
in a broken Sobolev norm of order 1/2 (this is the expected order for a hypersingular operator)
but efficiency is only obtained for the error measured in a norm of slightly higher order.
The remainder of the paper is organized as follows. In Section 2 we define some norms and
present the model problem. The non-conforming boundary element method with Nitsche cou-
pling is recalled in Section 3. In Section 4 we present the error estimator, the main result (The-
orem 4.1), several technical details (Subsection 4.1), a proof of Theorem 4.1 (Subsection 4.2),
the error estimate in standard broken norms (Corollary 4.6 in Subsection 4.3), and a standard
adaptive refinement algorithm (Subsection 4.4) to be used in our numerical experiments. These
experiments are presented in Section 5.

2 Preliminaries and model problem

First, we recall the definition of some fractional-order Sobolev norms, see, e.g., [24]. For a
Lipschitz domain Ω ⊂ Rn and 0 < s < 1 we define

‖u‖2Hs(Ω) := ‖u‖2L2(Ω) + |u|2Hs(Ω)

where

|u|Hs(Ω) :=
(∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|2s+n
dx dy

)1/2

is a semi-norm in Hs(Ω). For 0 < s < 1, the space H̃s(Ω) is defined as the completion of C∞0 (Ω)
under the norm

‖u‖H̃s(Ω) :=
(
|u|2Hs(Ω) +

∫
Ω

u(x)2

(dist(x, ∂Ω))2s
dx
)1/2

.

When s ∈ (0, 1/2), ‖ · ‖H̃s(Ω) and ‖ · ‖Hs(Ω) are equivalent norms whereas for s ∈ (1/2, 1) there

holds H̃s(Ω) = Hs
0(Ω), the latter space consisting of Hs(Ω)-function with vanishing trace on the

boundary of Ω. For s > 0 the spaces H−s(Ω) and H̃−s(Ω) are the dual spaces (with L2(Ω) as
pivot space) of H̃s(Ω) and Hs(Ω), respectively.
Throughout the paper, the notation 〈 ·, · 〉Γ denotes the duality pairing extending the L2(Γ)-inner
product. Also, a . b means that a ≤ cb with a generic constant c > 0 that is independent of
involved parameters like h. Similarly, the notation a & b and a ' b is used.
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Now let Γ be a plane open surface with polygonal boundary ∂Γ. We will identify sub-domains
of Γ with polygonal subsets of R2. Our model problem is as follows. For a given function
f ∈ L2(Γ) find u ∈ H̃1/2(Γ) such that

Wu := − 1

4π

∂

∂n

∫
Γ
u(y)

∂

∂ny

1

| · −y|
dSy = f on Γ. (1)

Here, W is the hypersingular integral operator of the Laplacian in three space dimensions and n
is the exterior normal unit vector on Γ in a certain direction. Equation (1) represents a Neumann
problem for the Laplacian in R3 \ Γ̄.
A weak form of (1) is: Find u ∈ H̃1/2(Γ) such that

〈Wu, v 〉Γ = 〈 f, v 〉Γ ∀v ∈ H̃1/2(Γ). (2)

This is a coercive problem since W : H̃1/2(Γ)→ H−1/2(Γ) is continuous and coercive, cf. [9].
A conforming boundary element method (BEM) for the approximate solution of (2) is

ũh ∈ H̃h : 〈Wũh, v 〉Γ = 〈 f, v 〉Γ ∀v ∈ H̃h (3)

with H̃h ⊂ H̃1/2(Γ) being a piecewise polynomial subspace. This conformity condition requires
that approximating functions be continuous with zero trace on ∂Γ.
In the following we consider the non-conforming domain decomposition method from [8] and
analyze an a posteriori error estimation.

3 Boundary element method with non-conforming domain de-
composition

In this section we recall the discrete domain decomposition setting from [8] for a non-conforming
solution of our model problem (1).
Let T be a decomposition of Γ into non-overlapping polygonal sub-domains (sub-surfaces)
Γ1, . . . ,ΓK . The (relatively closed) interface between two neighboring sub-domains Γi, Γj with
i 6= j is denoted by γij . We assume that γij is an entire edge of Γi or Γj (other situations like
an interface reducing to a single point or subsets of edges are not allowed). The skeleton of T is

γ := ∪{γij ; Γ̄i ∩ Γ̄j 6= ∅; 1 ≤ i < j ≤ K}

and excludes the boundary ∂Γ by definition. An extension of the method to a variant including
∂Γ is straightforward and not considered, neither here nor in [8]. The interfaces γij are numerated
so that

γ = γ1 ∪ . . . ∪ γL.

Throughout we use the notation vi for the restriction of a function v to the sub-domain Γi. Also,
the jump on γ of the function v is denoted by

[v] : γ → R; [v]|γij := vj |γij − vi|γij (γij ∈ {γ1, . . . , γL}).
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Corresponding to the decomposition T there are product Sobolev spaces

Hs(T ) := Hs(Γ1)× · · · ×Hs(ΓK) (s ∈ [0, 1])

with usual product norm

‖ · ‖2Hs(T ) := | · |2Hs(T ) + ‖ · ‖2L2(Γ), | · |2Hs(T ) :=
K∑
i=1

| · |2Hs(Γi)
.

To define the discrete method we need some discrete spaces. On each sub-domain Γi we consider
quasi-uniform meshes Ti,hi consisting of shape regular elements (parallelograms or triangles) and
with mesh size hi (a precise definition is given below). We then define discrete spaces related to
the decompositions Ti,hi by

Xi,hi := {v ∈ C0(Γi) : v|T ∈ P1(T ) ∀T ∈ Ti,hi , v|∂Γ∩∂Γi = 0}.

Here, P1(T ) denotes the space of linear respectively bilinear functions on T being a triangle
respectively a parallelogram. We need some mesh parameters:

hT := diam(T ) (T ∈ Ti,hi , i ∈ {1, . . . ,K}), hi := max{hT ; T ∈ Ti,hi}, i = 1, . . . ,K,

h := max{hi; i = 1, . . . ,K}, hmin := min{hi; i = 1, . . . ,K},
hT : hT |T := hT ∀T ∈ Ti,hi , i ∈ {1, . . . ,K}.

Throughout this paper we assume that h < 1. This is just to simplify the writing of some
logarithmic terms. By Th we denote the global mesh on Γ that is defined by the sub-meshes
previously defined on sub-domains. The corresponding discrete space of piecewise polynomials
on Γ is

Xh := X1,h1 × · · · ×XK,hK .

Note that the space Xh cannot be used directly to solve the discrete problem (3). Xh is not a
subspace of H̃1/2(Γ) since its elements are in general discontinuous across the sub-domain skele-
ton γ. The hypersingular operator W is not well defined for discontinuous functions. Therefore,
in order to utilize the non-conforming space Xh for the approximation of (1) we have to rewrite
its bilinear form. This amounts to applying an integration by parts formula. It involves surface
differential operators which we define next. In the case of our plane surface (identified with a
polygonal domain in R2) we simply need

curlΓϕ := (∂x2ϕ,−∂x1ϕ, 0), curl Γϕ := ∂x1ϕ
2 − ∂x2ϕ1

for sufficiently smooth functions ϕ and ϕ = (ϕ1, ϕ2, ϕ3) on Γ. For an extension to Lipschitz
surfaces see [3]. We also need the corresponding piecewise operators

curlT ϕ :=
K∑
i=1

(curlΓiϕi)
0, curl T ϕ :=

K∑
i=1

(curl Γiϕi)
0.
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Here, curlΓi and curl Γi are the restrictions to Γi of the corresponding operators on Γ, and (·)0

indicates extension by zero to Γ. Let V be the single layer potential operator

Vϕ(x) :=
1

4π

∫
Γ

ϕ

|x− y|
dSy, ϕ ∈ (H̃−1/2(Γ))3, x ∈ Γ.

Then there holds

〈Wu, v 〉Γ = 〈 curlΓu, V curlΓv 〉Γ for u, v ∈ H̃1/2(Γ),

cf. [26]. For discontinuous functions there is a generalization of this formula which amounts
to integration by parts, see [14]. Based on this formula, a well-posed setting for discontinuous
functions can be given. It uses the bilinear form

a(u, v) := 〈V curlT u, curlT v 〉T + 〈Tu, [v] 〉γ − 〈 [u], T v 〉γ + ν〈 [u], [v] 〉γ (4)

defined on Xh ×Xh. Here, ν > 0 is a given parameter and T is defined by

Tu := t · V curlT u on γ

with t being a unit tangential vector on γ which is compatible with the orientation of the jumps,
cf. [8] for details. Then, the non-conforming boundary element scheme is: Find uh ∈ Xh such
that

a(uh, v) = 〈 f, v 〉Γ ∀v ∈ Xh. (5)

According to [8, Theorem 3.1] this scheme converges almost quasi-optimally: For ν sufficiently
large, and u ∈ Hr(Γ) (r ∈ (1, 2, 1)) being the solution of (1), there holds

K∑
j=1

|u− uh|2H1/2(Γj)
+ ν‖[uh]‖2L2(γ) . | log hmin|3h2(r−1/2)‖u‖2Hr(Γ). (6)

Remark 3.1. Let us emphasize the following properties related to the formulation (5). They
guarantee the uniqueness of the solution of the discrete method and are essential for our a
posteriori error analysis. See [8, Lemmas 4.3, 4.4] and [20, Propositions 4.5, 4.6] for details.

1. Consistency: Given f ∈ L2(Γ), the solution u of (1) solves (5).

2. Ellipticity of a(·, ·):

a(v, v) & ‖curlT v‖2H̃−1/2(Γ)
+ ν‖[v]‖2L2(γ) ∀v ∈ Xh +Hr(T ) (r > 1/2). (7)

3. The bilinear form defines a norm ‖v‖a :=
√
a(v, v) on Xh +Hr(T ) for r > 1/2.
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4 A posteriori error estimation

In this section we propose and analyze an h-h/2 a posteriori error estimator.
First let us formulate the saturation assumption to be used. For a given mesh Th with corre-
sponding space Xh, let Th/2 denote the uniformly refined mesh with discrete space Xh/2. The
corresponding discrete solutions of (5) are denoted by uh ∈ Xh and uh/2 ∈ Xh/2. Then the
saturation assumption is that there exists h0 > 0 and a constant 0 < csat < 1 such that

‖u− uh/2‖a ≤ csat‖u− uh‖a ∀h ≤ h0. (8)

We define the following estimator terms

Θ1 := ‖h1/2
T curlT (uh − uh/2)‖L2(Γ), Θ2 := ‖[uh − uh/2]‖L2(γ).

Our main result is the following theorem.

Theorem 4.1. Let u ∈ H̃1/2(Γ) be the solution of (1) and uh ∈ Xh be the solution of the
discrete problem (5). Assume that (8) holds. Then, for any ν > 0 and ε > 0 there holds

(1 + csat)
−1
(

Θ1 +
√
νΘ2

)
. ‖u− uh‖a ≤ C(1− csat)

−1h−εmin Θ1 (9)

with a constant C > 0 that depends on ν and ε but not on the mesh. In particular, choosing
ν ' ε−1 ' | log hmin|, one has quasi-reliability of the error estimator Θ1 in the form

‖u− uh‖a ≤ C(1− csat)
−1| log hmin|Θ1 (10)

with a constant C > 0 which is independent of the mesh.

Remark 4.2. Estimate (9) establishes reliability of Θ1 for ν > 0 up to a slight loss of order
of convergence, i.e. we only proved quasi-reliability. Selecting ε and ν depending on hmin, and
considering the dependence of the constant C in (9) on ε, this reveals a logarithmic perturbation
in hmin of the reliability bound (10). We do not know whether our bound is optimal, and it is
difficult to observe such perturbations in numerical experiments. On the other hand, logarithmic
perturbations appear naturally in error estimates of non-conforming boundary elements, see (6).

Remark 4.3. Obviously, the term Θ2 in the estimate (9) can be dropped, and can also be
added on the right-hand side. Therefore, both Θ1 and Θ1 +

√
νΘ2 are efficient and quasi-reliable

error estimators. In our numerical experiments, the adaptive algorithm is based on Θ1 and Θ2.

4.1 Technical results

In this subsection we collect technical results needed for the proof of Theorem 4.1. The main
ingredients are the Galerkin projector defined by the boundary element scheme and a Clement-
type interpolation operator.
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First let us formally define the Galerkin projector Gh. By consistency (cf. Remark 3.1) the
discrete solution uh ∈ Xh of (5) can be written like uh = Ghu with

Gh : Hs(T )→ Xh : a(Ghv, w) = a(v, w) ∀w ∈ Xh. (11)

We start by proving an error estimate for the Galerkin approximation in the a-norm. This
amounts to an error estimate like (6) for the non-conforming method (5) in a different norm.
The proof of this bound is essentially an intermediate result from [8].

Proposition 4.4. Let s ∈ (1/2, 1] and ψ ∈ Hs(T ). Then, for ν > 0 there holds

‖ψ −Ghψ‖a ≤ D(s, ν, hmin) inf
v∈Xh

‖ψ − v‖Hs(T ) (12)

with

D(s, ν, hmin) ≤ C
(
ν−1/2(s− 1/2)−3/2 + h

−(s−1/2)
min (s− 1/2)−1 + ν1/2(s− 1/2)−1/2

)
and a positive constant C which is independent of s, ν and the mesh.

Proof. By the triangle inequality we find for any v ∈ Xh that

‖ψ −Ghψ‖a ≤ ‖ψ − v‖a + ‖v −Ghψ‖a. (13)

Discrete ellipticity (7) of a(·, ·) yields

‖v −Ghψ‖a ' sup
w∈Xh\{0}

a(v −Ghψ,w)

‖curlT w‖H̃−1/2(Γ) +
√
ν‖[w]‖L2(γ)

. (14)

According to [8, (4.18)] we can estimate

a(v −Ghψ,w)

‖curlT w‖H̃−1/2(Γ) +
√
ν‖[w]‖L2(γ)

.
(

(s− 1/2)−1 + ν−1/2(s− 1/2)−3/2

+ h
−(s−1/2)
min (s− 1/2)−1 + ν1/2(s− 1/2)−1/2

)
‖ψ − v‖Hs(T ) (15)

for any ν > 0 and s ∈ (1/2, 1]. Actually, [8] asks for ν & 1 but the estimate above holds for any
ν > 0. Now, by [8, (4.15), Lemma 4.1(ii)],

‖curlT (ψ − v)‖2
H̃−1/2(Γ)

. (s− 1/2)−2|ψ − v|2Hs(T )

and
‖[ψ − v]‖2L2(γ) . (s− 1/2)−1‖ψ − v‖2Hs(T ).

Therefore,

‖ψ − v‖2a = ‖curlT (ψ − v)‖2
H̃−1/2(Γ)

+ ν‖[ψ − v]‖2L2(γ)

.
(

(s− 1/2)−2 + ν(s− 1/2)−1
)
‖ψ − v‖2Hs(T ) (16)

for any ν > 0 and s ∈ (1/2, 1]. Combination of (13)–(16) proves the assertion.
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Next we introduce an interpolation operator I needed for the proof of Theorem 4.1. We follow
the presentation of Carstensen and Bartels [4] to define operators Ii on Γi (i = 1, . . . ,K). Then
I will be simply a composition of the operators Ii.
Let us denote by Ni the set of nodes of the triangulation Ti,hi , and let Ki be the subset of nodes
which are not on the boundary ∂Γ. In the case that Γi does not touch ∂Γ, Ki = Ni. For each
node z ∈ Ni let ϕz be the nodal basis function associated with this node, i.e., ϕz is continuous,
piecewise linear, ϕz(x) = 0 if x ∈ Ni \ {z} and ϕz(z) = 1. The support of ϕz is denoted by ωz.
The functions ϕz can be modified in a straightforward way to a set of functions ψz of the same
cardinality which represents a partition of unity. In fact, in the case that Γi does not touch ∂Γ
no changes are necessary. Otherwise some functions associated with nodes close to the boundary
must be changed, cf. [4] for details.
Then the operators Ii, I are defined by

Ii :

{
L1(Γi) → Xi,hi

v 7→
∑

z∈Ki vzϕz
with vz :=

∫
ωz
vψz dS∫

ωz
ϕz dS

,

I : L1(Γ)→ Xh, I|L1(Γi) := Ii (i = 1, . . . ,K). (17)

Lemma 4.5. Let H1
0 (T ) be the space of functions from H1(T ) with vanishing trace on ∂Γ. For

any δ ∈ (0, 1/2) there holds

‖v − Iv‖Hs(T ) . ‖h1−s
T curlT v‖L2(Γ) ∀v ∈ H1

0 (T )

uniformly for all s ∈ (δ, 1/2 + δ).

Proof. By [4, Theorem 2.1] there holds for any sub-domain Γi whose boundary has an inter-
section with ∂Γ of non-zero relative measure (so that Xi,hi includes a homogeneous essential
boundary condition)

‖h−1
T (v − Iv)‖L2(Γi) . |v|H1(Γi), |v − Iv|H1(Γi) . |v|H1(Γi) ∀v ∈ H1

D(Γi) (18)

with H1
D(Γi) being the space of H1(Γi)-functions with vanishing trace on ∂Γi∩∂Γ. Inspection of

the proof of [4, Theorem 2.1] reveals that the homogeneous boundary condition on a part of the
boundary is not necessary, i.e., estimates (18) hold also on sub-domains Γi with ∂Γi∩∂Γ = ∅. In
that case, H1

D(Γi) = H1(Γi). Since the meshes on Γi are quasi-uniform, (18) can be equivalently
written as

‖v − Iv‖L2(Γi) . ‖hT curlΓiv‖L2(Γi), ‖curlΓi(v − Iv)‖L2(Γi) . ‖curlΓiv‖L2(Γi) ∀v ∈ H1
D(Γi).

Interpolation then proves that

‖v − Iv‖Hs(Γi) . ‖h
1−s
T curlΓiv‖L2(Γi) ∀v ∈ H1

D(Γi)

for a fixed s ∈ (0, 1). Bounding s away from 0 and 1, interpolation with the K-method gives
estimates which are uniformly equivalent to the corresponding ones with Sobolev-Slobodeckij
norm, cf. [2], [16, Corollary 1], so that summation proves the assertion.
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4.2 Proof of Theorem 4.1

First let us note that, by the saturation assumption (8) and the triangle inequality, one imme-
diately has the two-sided estimate

(1 + csat)
−1‖uh − uh/2‖a ≤ ‖u− uh‖a ≤ (1− csat)

−1‖uh/2 − uh‖a. (19)

This is usually the first step in the analysis of two-level a posteriori error estimators. Note that
in the case of indefinite bilinear forms the saturation parameter csat enters also the lower bound,
though only its boundedness is needed, cf. [1].
The lower bound in Theorem 4.1 then follows from (19) by the discrete ellipticity (7) of a(·, ·),
a norm estimate from domain decomposition and an inverse estimate [16, Lemma 4],

(1 + csat)
2‖u− uh‖2a ≥ ‖uh − uh/2‖2a ' ‖curlT (uh − uh/2)‖2

H̃−1/2(Γ)
+ ν‖[uh − uh/2]‖2L2(γ)

&
K∑
i=1

‖curlΓi(uh − uh/2)‖2
H−1/2(Γi)

+ ν‖[uh − uh/2]‖2L2(γ).

&
K∑
i=1

‖h1/2
T curlΓi(uh − uh/2)‖2L2(Γi)

+ ν‖[uh − uh/2]‖2L2(γ).

= ‖h1/2
T curlT (uh − uh/2)‖2L2(Γ) + ν‖[uh − uh/2]‖2L2(γ).

Next we prove the upper bound in Theorem 4.1. For any s ∈ (1/2, 1] let Gh : Hs(T ) → Xh

denote the Galerkin projection from (11). Note that Xh ⊂ Xh/2 implies Ghuh/2 = uh, hence

uh − uh/2 = (1−Gh)(uh − uh/2).

Using (19) we have that

‖u− uh‖a ≤ (1− csat)
−1‖uh − uh/2‖a = (1− csat)

−1‖(1−Gh)(uh − uh/2)‖a. (20)

By Proposition 4.4 with v = I(uh − uh/2) (recall the definition of I from (17)) and making use
of Lemma 4.5 we obtain with s = 1/2 + ε (for ε ∈ (0, 1/4])

‖(1−Gh)(uh − uh/2)‖2a . D(s, ν, hmin)2‖uh − uh/2 − I(uh − uh/2)‖2Hs(T )

. D(s, ν, hmin)2‖h1−s
T curlT (uh − uh/2)‖2L2(Γ)

. D(1/2 + ε, ν, hmin)2h−2ε
min‖h

1/2
T curlT (uh − uh/2)‖2L2(Γ).

Combining this estimate with (20) (and writing ε instead of 2ε) proves the upper bound in
Theorem 4.1, with constant C > 0 depending on ν and ε. Now choosing ε = | log hmin|−1,
ν ' ε−1 and recalling that

D(1/2 + ε, ν, hmin) . ν−1/2ε−3/2 + h−εminε
−1 + ν1/2ε−1/2,

cf. Proposition 4.4, this gives the specified reliability.
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4.3 Error estimation in a standard norm

Theorem 4.1 states efficiency and quasi-reliability of the error estimator in the a-norm. This
norm is the natural one stemming from the non-conforming (discrete) variational formulation.
In this section we briefly indicate what can be proved when replacing the a-norm with a standard
broken Sobolev norm defined by

‖v‖2Hs
ν(T ) :=

K∑
i=1

|v|2Hs(Γi)
+ ν‖[v]‖2L2(γ).

This norm is well defined for functions v ∈ Hr(T ) when r ≥ s and r > 1/2. In particular, when
s = 1/2, it is well defined for elements of Xh and the solution u of (1).

Corollary 4.6. Let u ∈ H̃1/2(Γ) be the solution of (1) and uh ∈ Xh be the solution of the
discrete problem (5), and assume that (8) holds.
For any ε > 0 (sufficiently small) and any ν > 0 there holds efficiency in the sense that

(1 + csat)
−1
(

Θ1 +
√
νΘ2

)
. ε−1|u− uh|H1/2+ε(T ) +

√
ν‖[u− uh]‖L2(γ) ≤ ε−1‖u− uh‖H1/2+ε

ν (T )
.

Furthermore, we have the reliability bound

‖u− uh‖H1/2
ν (T )

≤ C(1− csat)
−1h−εmin Θ1

for any ν > 0 and ε > 0 with a constant C > 0 that depends on ν and ε but not on the mesh.
Choosing ν ' ε−1 ' | log hmin|, one has quasi-reliability of the error estimator Θ1 in the form

‖u− uh‖H1/2
ν (T )

≤ C(1− csat)
−1| log hmin|Θ1

with a constant C > 0 which is independent of the mesh.

Proof. To show the efficiency bound one uses the continuity of curlΓi and a quotient space
argument [18]:

‖curlT (u− uh)‖2
H̃−1/2(Γ)

. ε−2
K∑
i=1

‖curlΓi(u− uh)‖2
H−1/2+ε(Γi)

. ε−2
K∑
i=1

|u− uh|2H1/2+ε(Γi)

for any ε > 0, cf. [8, (4.15)] for details. Then, efficiency of the estimator Θ1 +
√
νΘ2 with respect

to the a-norm by Theorem 4.1 and the identity

a(u− uh, u− uh) = ‖curlT (u− uh)‖2
H̃−1/2(Γ)

+ ν‖[u− uh]‖2L2(γ)

prove the efficiency estimate of the corollary.
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Now we prove quasi-reliability. By the H̃−1/2(Γ)-ellipticity of V and a standard norm estimate
we have that

〈V curlT v, curlT v 〉T & ‖curlT v‖2H̃−1/2(Γ)
&

K∑
i=1

‖curlΓiv‖2H−1/2(Γi)

for any v with v|Γi ∈ Hr(Γi) for r > 1/2. By [8, Lemma 4.1],

‖curlΓiv‖H−1/2(Γi)
& |v|H1/2(Γi)

for any v ∈ H1/2(Γi). Combination of both estimates proves that

a(v, v) &
K∑
i=1

|v|2
H1/2(Γi)

+ ν‖[v]‖2L2(γ) = ‖v‖2
H

1/2
ν (T )

for any v with v|Γi ∈ Hr(Γi) and r > 1/2. The quasi-reliability of Θ1 with respect to the a-norm
by Theorem 4.1 proves the quasi-reliability of this estimator with respect to the ‖ · ‖

H
1/2
ν (T )

-

norm.

4.4 Adaptive refinement strategy

Based on the a posteriori error estimate (9), we define local error indicators

θ2
T := ‖h1/2

T curlT (uh − uh/2)‖2L2(T ) + ν‖[uh − uh/2]‖2L2(γ∩∂T ) (21)

for all elements T ∈ Ti,hi (i = 1, . . . ,K) and use a standard adaptive refinement algorithm as
follows.
Algorithm. Let T (0)

h be an initial mesh and set j = 0. For a given tolerance tol > 0 and a
refinement parameter δ ∈ (0, 1] perform the following steps.

1. Refine T (j)
h uniformly to obtain T (j)

h/2.

2. Compute uh and uh/2.

3. Compute the local indicators θT for all elements T .

4. Compute the error estimator

Θ2 =

K∑
i=1

∑
T∈Ti,hi

θ2
T . (22)

5. Stop if Θ ≤ tol, otherwise continue.

6. Determine a minimal set R of elements T with largest indicators such that∑
T∈R

θ2
T ≥ δ2Θ2.

12



7. Construct a new mesh T j+1
h by refining the elements of the set R and by introducing

further edges subject to a minimum angle condition such that meshes on sub-domains are
conforming.

8. Update j := j + 1 and go to 1.

5 Numerical experiments

In this section we report on some numerical experiments to study efficiency and reliability of
the a posteriori error estimator Θ defined by (22), (21) and to check the performance of the
corresponding adaptive refinement strategy. To be precise, for ease of programming, the jump
terms on edges of the interface between sub-domains are taking into account twice.
We consider the model problem (1) with f = 1 on Γ = (−1/2, 1/2)2 and use triangular meshes
Th. Since the exact solution u of (1) is unknown, the error in standard broken Sobolev norm

‖u− uh‖2
H

1/2
ν (T )

= |u− uh|2H1/2(T )
+ ν‖[uh]‖2L2(γ)

cannot be computed directly, except for ‖[uh]‖L2(γ) which is straightforward to implement. As
in previous papers on non-conforming approximations of hypersingular operators, see [8, 20], we
take

(“total error”)2 :=
∣∣‖u‖2ex − 〈 f, uh 〉Γ

∣∣+ ν‖[uh]‖2L2(γ) (23)

as a computable and reasonable measure for an upper bound of ‖u− uh‖H1/2
ν (T )

. Here, ‖u‖ex is

an extrapolated value of ‖u‖H̃1/2(Γ), cf. [12].
Throughout we consider the decomposition of Γ into four sub-domains and initial mesh as
shown in Figure 1. Figure 2 shows the “total error” (23) and “total estim” := Θ for uniform and
adaptive refinements (δ = 0.5, ν = 100). The curves N−1/4 and N−1/2 with N = dimXh are
also given. They correspond to h1/2 and h, respectively, for uniform meshes. As can be seen,
the error and estimator curves are parallel to h1/2 for uniform meshes. This is the expected
convergence order, cf. [27]. In the adaptive case both curves appear to approach N−1/2 for
higher dimension, as expected. In Figures 3 and 4 the individual terms

error1 :=
∣∣ ‖u‖2ex − 〈 f, uh 〉Γ∣∣1/2, error2 :=

√
ν‖[uh]‖L2(γ),

estim1 := Θ1 = ‖h1/2
T curlT (uh − uh/2)‖L2(Γ), estim2 := Θ2 =

√
ν‖[uh − uh/2]‖L2(γ)

are shown, for uniform and adaptively refined meshes, respectively. Except for “error1”/“estim1”
in the adaptive case, the corresponding error and estimator curves are parallel, thus confirming
reliability and efficiency. Our interpretation of the exception (where “error1” has slightly faster
convergence than “estim1”) is that the error calculation via (23) has a pre-asymptotic behavior
which does not show the correct slope of the error in energy norm. This has been observed
already in [8]. Indeed, the estimator curves show the correct behavior in all our experiments.
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In Fig. 5 two samples from the sequence of adaptively refined meshes are plotted. In our case,
Γ is an open surface where the solution has strong singularities along the edges. The error
indicators detect these singularities and the adaptive algorithm refines accordingly.
To see the influence of ν, Figure 6 shows the errors of uniform and adaptive refinements for ν =
10. Again, the uniform version converges like h1/2 ' N−1/4 and adaptivity yields convergence of
the order N−1/2. Though, in this case of smaller ν, the discrepancy between error and estimator
is larger, see Figures 7 and 8 where the individual terms error1, error2, Θ1 and Θ2 are shown.
Again, we attribute this to the limitation of the error “calculation” via (23).
To resume, the estimator shows the expected behavior for uniform as well as for adaptively
refined meshes, for larger and smaller ν. Also, meshes are adaptively refined in the expected way
to resolver the edge singularities of the exact solution. Here, discontinuities of the approximation
at interfaces do not have a negative influence. Indeed, mesh refinement seems not to take into
account interfaces, as it should be.

Figure 1: Domain decomposition T of Γ and initial mesh.
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Figure 2: Total error and estimator for uniform and adaptive refinements (ν = 100).
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Figure 3: Individual errors and estimators for uniform refinement (ν = 100).
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Figure 4: Individual errors and estimators for adaptive refinement (ν = 100).

j = 7 j = 13

Figure 5: Adaptively refined meshes (steps 7 and 13) with parameters ν = 100, δ = 0.5.
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Figure 6: Total error and estimator for uniform and adaptive refinements (ν = 10).
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Figure 7: Individual errors and estimators for uniform refinement (ν = 10).
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Figure 8: Individual errors and estimators for adaptive refinement (ν = 10).
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