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Abstract

Let X and G be compact Lie groups, F1 : X ! X the time-one map of a C1 measure-preserving


ow, � : X ! G a continuous function and � a �nite-dimensional irreducible unitary representation

of G. Then, we prove that the skew products

T� : X � G ! X � G; (x; g) 7!
(
F1(x); g �(x)

)
;

have purely absolutely continuous spectrum in the subspace associated to � if � � � has a Dini-

continuous Lie derivative along the 
ow and if a matrix multiplication operator related to the topo-

logical degree of � � � has nonzero determinant. This result provides a simple, but general, criterion

for the presence of an absolutely continuous component in the spectrum of skew products of compact

Lie groups. As an illustration, we consider the cases where F1 is an ergodic translation on Td and

X � G = T
d
� T

d 0 , X � G = T
d
� SU(2) and X � G = T

d
� U(2). Our proofs rely on recent results

on positive commutator methods for unitary operators.
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1 Introduction

In his seminal work [5], H. Anzai has shown that the skew products

Tm : T� T! T� T; (x; g) 7! (x + y ; g +mx); T ' R=Z; y 2 R nQ; m 2 Z n f0g;

have countable Lebesgue spectrum in the orthocomplement of functions depending only on the �rst

variable. Since then, various generalisations of this result have been obtained (see [7, 8, 11, 12, 13, 16,

17, 20, 21, 22, 23, 25, 26] and see also [2, 9, 19, 31] for related results). In particular, A. Iwanik, M.

Lema�nzyk and D. Rudolph have shown in [23] that the skew products

T� : T� T! T� T; (x; g) 7!
(
x + y ; g + �(x)

)
; y 2 R nQ;

have countable Lebesgue spectrum if the cocycle � : T ! T is an absolutely continuous function with

nonzero topological degree and with derivative of bounded variation. Also, A. Iwanik and K. Fr
`
aczek have

�Supported by the Chilean Fondecyt Grant 1130168, by the Iniciativa Cienti�ca Milenio ICM P07-027-F \Mathematical

Theory of Quantum and Classical Magnetic Systems" from the Chilean Ministry of Economy and by the ECOS/CONICYT

Grant C10E01.
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proved in [11, 12, 21] similar results for skew products of higher dimensional tori. Finally, K. Fr
`
aczek has

shown in [13] (see also [14]) that the skew products

T� : T� SU(2)! T� SU(2); (x; g) 7!
(
x + y ; g �(x)

)
; y 2 R nQ;

have countable Lebesgue spectrum in an appropriate subspace of the orthocomplement of functions

depending only on the �rst variable if the cocycle � : T! SU(2) is of class C2, has nonzero topological

degree and is cohomologous (in a suitable way) to a diagonal cocycle.

The purpose of this paper is to extend these types of spectral results to a general class of skew

products of compact Lie groups. Our set-up is the following. We consider skew products

T� : X � G ! X � G; (x; g) 7!
(
F1(x); g �(x)

)
;

where X and G are compact Lie groups, F1 : X ! X the time-one map of a C1 measure-preserving 
ow

and � : X ! G a continuous function. We �x � a �nite-dimensional irreducible unitary representation of

G and we write LY for the Lie derivative associated to the 
ow. Then, our main result reads as follows.

If the Lie derivative LY (� � �) exists and satis�es a Dini-type condition along the 
ow and if a matrix

multiplication operator related to the topological degree of � � � has nonzero determinant, then T� has

purely absolutely continuous spectrum in the subspace associated to � (see Theorem 3.5 and Remark

3.6 for a precise satement). This result provides a simple, but general, criterion for the presence of an

absolutely continuous component in the spectrum of skew products of compact Lie groups. Its proof

relies on recent results [10] on positive commutator methods for unitary operators. As an illustration, we

consider the cases where F1 is an ergodic translation on Td and X �G = Td �Td
0

, X �G = Td � SU(2)
and X �G = Td �U(2). In the cases X �G = Td � Td

0

and X �G = Td � SU(2), we obtain countable

Lebesgue spectrum under conditions similar to the ones to be found in the literature; see Theorems 4.2

and 4.5 and the discussions that follow. In the case X � G = Td � U(2), our result (countable Lebesgue
spectrum in an appropriate subspace) is new; see Theorem 4.9 and the discussion that follows.

Here is a brief description of the content of the paper. In Section 2, we recall the needed notations and

results on positive commutator methods for unitary operators. In Section 3, we construct an appropriate

conjugate operator (Lemma 3.2 and Formula (3.7)) and use it to prove our main theorem on the spectrum

of skew products (Theorem 3.5). We also give an interpretation of our result in terms of the topological

degree of ��� (Remark 3.6). Finally, we present in Sections 4.1, 4.2 and 4.3 the examples X�G = Td�Td
0

,

X � G = Td � SU(2) and X � G = Td � U(2).
To conclude, we mention two possible extensions of this paper worth studying : (i) We consider here

skew products where the dynamics on the base space is given by the time-one map of a 
ow. This guar-

antees the existence of a distinguished Lie derivative which is used for the de�nition of the conjugate

operator. It would be interesting to see if one can still construct a suitable conjugate operator even if the

dynamics on the base space is not given by the time-one map of a 
ow. (ii) It would be interesting to see

if the result of this paper could be extended to the case where X and G are noncompact Lie groups. In

such a case, the main di�culty would be to deal with the unavailability of Peter-Weyl theorem, which is

repeatedly used in this paper.

Acknowledgements. The author is grateful for the hospitality of Professors A. Katok and F. Rodriguez

Hertz at Penn State University in January 2013.

2 Commutator methods for unitary operators

We brie
y recall in this section some facts on commutator methods for unitary operators borrowed from

[10]. We refer the reader to [4, 27] for standard references in the case of self-adjoint operators.

Let H be a Hilbert space with scalar product h � ; � i antilinear in the �rst argument, denote by B(H)

the set of bounded linear operators on H, and write k � k both for the norm on H and the norm on B(H).
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Let A be a self-adjoint operator in H with domain D(A), and take S 2 B(H). For any k 2 N, we say

that S belongs to Ck(A), with notation S 2 Ck(A), if the map

R 3 t 7! e�itA S eitA 2 B(H) (2.1)

is strongly of class Ck . In the case k = 1, one has S 2 C1(A) if and only if the quadratic form

D(A) 3 ' 7!
〈
'; iSA'

〉
�
〈
A'; iS'

〉
2 C

is continuous for the topology induced by H on D(A). We denote by [iS; A] the bounded operator

associated with the continuous extension of this form, or equivalently the strong derivative of the function

(2.1) at t = 0.

A condition slightly stronger than the inclusion S 2 C1(A) is provided by the following de�nition :

S belongs to C1+0(A), with notation S 2 C1+0(A), if S 2 C1(A) and if [A; S] satis�es the Dini-type

condition ∫ 1

0

dt

t

∥∥ e�itA[A; S] eitA�[A; S]∥∥ <1:

As banachisable topological vector spaces, the sets C2(A), C1+0(A), C1(A) and C0(A) � B(H) satisfy

the continuous inclusions [4, Sec. 5.2.4]

C2(A) � C1+0(A) � C1(A) � C0(A) � B(H):

Now, let U 2 C1(A) be a unitary operator with (complex) spectral measure EU( � ) and spectrum

�(U) � S1 := fz 2 C j jz j = 1g. If there exist a Borel set � � S1, a number a > 0 and a compact

operator K 2 B(H) such that

EU(�)U�[A;U]EU(�) � aEU(�) +K; (2.2)

then one says that U satis�es a Mourre estimate on � and that A is a conjugate operator for U on �. Also,

one says that U satis�es a strict Mourre estimate on � if (2.2) holds with K = 0. The main consequence

of a strict Mourre estimate is to imply a limiting absorption principle for (the Cayley transform of) U on

� if U is also of class C1+0(A). This in turns implies that U has no singular spectrum in �. If U only

satis�es a Mourre estimate on �, then the same holds up to the possible presence of a �nite number

of eigenvalues in �, each one of �nite multiplicity. We recall here a version of these results (see [10,

Thm. 2.7 & Rem. 2.8] for more details):

Theorem 2.1 (Mourre estimate for unitary operators). Let U and A be respectively a unitary and a

self-ajoint operator in a Hilbert space H, with U 2 C1+0(A). Suppose there exist an open set � � S1, a
number a > 0 and a compact operator K 2 B(H) such that

EU(�)U�[A;U]EU(�) � aEU(�) +K: (2.3)

Then, U has at most �nitely many eigenvalues in �, each one of �nite multiplicity, and U has no singular

continuous spectrum in �. Furthermore, if (2.3) holds with K = 0, then U has no singular spectrum in

�.

3 Spectrum of skew products of compact Lie groups

Let X be a compact Lie group with normalised Haar measure �X and neutral element eX , and let fFtgt2R
be a C1 measure-preserving 
ow on (X;�X). Then, the family of operators fVtgt2R given by

Vt ' := ' � Ft ; ' 2 L2(X;�X);
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de�nes a strongly continuous one-parameter unitary group satisfying Vt C
1(X) � C1(X) for each t 2 R

[1, Prop. 2.6.14]. It follows from Nelson's theorem [3, Prop. 5.3] that the generator H of the group

fVtgt2R

H' := s- limt!0 i t
�1(Vt � 1)'; ' 2 D(H) :=

{
' 2 L2(X;�X) j lim

t!0
jtj�1

∥∥(Vt � 1)'
∥∥ <1

}
;

is essentially self-adjoint on C1(X), and one has

H' := �iLY '; ' 2 C1(X);

with Y the divergence-free vector �eld associated to fFtgt2R and LY the corresponding Lie derivative.

Let G be a second compact Lie group with normalised Haar measure �G and neutral element eG .

Then, each � 2 C(X;G) induces a cocycle X � Z 3 (x; n) 7! �(n)(x) 2 G over the di�eomorphism F1
given by

�(n)(x) :=


�(x)(� � F1)(x) � � � (� � Fn�1)(x) if n � 1

eG if n = 0{
(� � Fn)(x)(� � Fn+1)(x) � � � (� � F�1)(x)

}�1
if n � �1:

We thus call cocycle any function belonging to C(X;G). Two cocycles �; � 2 C(X;G) are C0-cohomologous

if there exists a function � 2 C(X;G), called transfer function, such that

�(x) = �(x)�1 �(x)�
(
F1(x)

)
; x 2 X:

In such a case, the map X � G 3 (x; g) 7!
(
x; �(x)g

)
establishes a C0-conjugation of T� and T�. The

skew product T� associated to �,

T� : (X � G;�X 
 �G)! (X � G;�X 
 �G); (x; g) 7!
(
F1(x); g �(x)

)
;

is an automorphism of the measure space (X � G;�X 
 �G) which satis�es

T n� (x; g) =
(
Fn(x); g �

(n)(x)
)
; x 2 X; g 2 G; n 2 Z: (3.1)

Since T� is invertible, the corresponding Koopman operator

U� :=  � T�;  2 H := L2(X � G;�X 
 �G);

is a unitary operator in H.

Let Ĝ be the set of all (equivalence classes of) �nite-dimensional irreducible unitary representations

(IUR) of G. Then, each representation � 2 Ĝ is a C1 group homomorphism from G to the unitary

group U(d�) of degree d� := dim(�) <1, and the Peter-Weyl theorem implies that the set of all matrix

elements f�jkg
d�
j;k=1 of all representations � 2 Ĝ form an orthogonal basis of L2(G;�G). Accordingly, one

has the orthogonal decomposition

H =
⊕
�2Ĝ

d�⊕
j=1

H
(�)
j with H

(�)
j :=

{
d�∑
k=1

'k 
 �jk j 'k 2 L2(X;�X); k = 1; : : : ; d�

}
; (3.2)

and one has a natural isomorphism

H
(�)
j '

d�⊕
k=1

L2(X;�X); (3.3)

due to the orthogonality of the matrix elements f�jkg
d�
j;k=1.
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A direct calculation shows that the operator U� is reduced by the decomposition (3.2) and that the

restriction U�;j := U�jH(�)
j

is given by

U�;j

d�∑
k=1

'k 
 �jk =

d�∑
k;`=1

(V1'k)(�`k � �)
 �j` ; 'k 2 L2(X;�X):

This, together with (3.1), implies that

(U�;j)
n

d�∑
k=1

'k 
 �jk =

d�∑
k;`=1

(Vn'k)
(
�`k � �

(n)
)

 �j`; n 2 Z; 'k 2 L2(X;�X):

Assumption 3.1 (Cocycle). For each k; ` 2 f1; : : : ; d�g, the function �k` � � 2 C(X;C) has a Lie

derivative LY (�k` � �) which satis�es the following Dini-type condition along the 
ow fFtgt2R :∫ 1

0

dt

t

∥∥LY (�k` � �) � Ft �LY (�k` � �)
∥∥
L1(X)

<1:

Assumption 3.1 implies that �iLY (� ��) � (�
� ��) is a continuous hermitian matrix-valued function.

In particular, the matrix multiplication operator M given by

M

d�∑
k=1

'k 
 �jk := �i

d�∑
k;`=1

ak
{
LY (� � �) � (�

� � �)
}
k`
'` 
 �jk ; ak 2 R; '` 2 L2(X;�X);

is bounded in H
(�)
j . We use the notation

Mk` := �iak
{
LY (� � �) � (�

� � �)
}
k`
; k; ` 2 f1; : : : ; d�g; (3.4)

for the matrix elements of M.

Lemma 3.2 (Conjugate operator for U�;j). Let � satisfy Assumption 3.1 and suppose that (ak�a`)(�`k �

�) � 0 for all k; ` 2 f1; : : : ; d�g. Then,

(a) The operator A given by

A

d�∑
k=1

'k 
 �jk :=

d�∑
k=1

akH'k 
 �jk ; ak 2 R; 'k 2 C
1(X);

is essentially self-adjoint in H
(�)
j , and its closure (which we denote by the same symbol) has domain

D(A) =

{
d�∑
k=1

'k 
 �jk j 'k 2 D(H); k = 1; : : : ; d�

}
:

Furthermore, one has

eitA
d�∑
k=1

'k 
 �jk =

d�∑
k=1

eitakH 'k 
 �jk ; t 2 R; 'k 2 L2(X;�X): (3.5)

(b) For all k; ` 2 f1; : : : ; d�g and all t 2 R, one has∥∥ e�itakHMk` e
ita`H �Mk`

∥∥
B(L2(X;�X))

=
∥∥ e�itakHMk` e

itakH �Mk`

∥∥
B(L2(X;�X))

:
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(c) U�;j 2 C
1+0(A) with [A;U�;j ] = MU�;j .

Remark 3.3. (i) The commutation assumption (ak � a`)(�`k � �) � 0 for all k; ` 2 f1; : : : ; d�g implies

that the matrix M(x) is hermitian for each x 2 X, and thus that the operator M is self-adjoint. This

assumption is satis�ed if all the ak 's are equal or if the matrix-valued function � � � is diagonal (which

occurs for instance when G is abelian). (ii) Instead of the diagonal operator A, one could use the more

general, non-diagonal, self-adjoint operator

A0
d�∑
k=1

'k 
 �jk :=

d�∑
k=1

ak`H'` 
 �jk ; 'k 2 C
1(X); ak` = a`k 2 C:

However, doing this, one ends up with the same commutation relation in Lemma 3.2(c) (the scalars ak
appearing in the matrix M are just replaced by the column sums

∑d�
`=1 ak`). So, there is no gain in using

the operator A0 instead of the simpler operator A. (iii) The commutation relation in Lemma 3.2(c) is a

matrix version of the commutation relation put into evidence in [30, Sec. 2].

Proof of Lemma 3.2. (a) The image of operator A under the isomorphism (3.3) is the operator
⊕d�

k=1 akH.

So, all the claims follow from standard results on direct sums of self-adjoint operators (see for instance

[28, p. 268]).

(b) One has∥∥ e�itakHMk` e
ita`H �Mk`

∥∥
B(L2(X;�X))

=
∥∥ e�itakHMk` e

itakH �Mk` +Mk`

(
1� eit(ak�a`)H

)∥∥
B(L2(X;�X))

:

Therefore, it is su�cient to show that Mk`

(
1� eit(ak�a`)H

)
= 0, which is equivalent to the condition〈

';Mk`

(
1� eit(ak�a`)H

)
'
〉
L2(X;�X)

= 0 for all ' 2 C1(X);

due to the density of C1(X) in L2(X;�X). So, take ' 2 C
1(X), set

Fk`(t) :=
〈
';Mk`

(
1� eit(ak�a`)H

)
'
〉
L2(X;�X)

;

and note that Mk` (ak � a`) = 0 due to the assumption (ak � a`)(�`k � �) � 0 for all k; ` 2 f1; : : : ; d�g.

Then, one has
d

dt
Fk`(t) := �i

〈
';Mk` (ak � a`) e

it(ak�a`)H H'
〉
L2(X;�X)

= 0:

It follows that Fk`(t) = Fk`(0) = 0 for all t 2 R, which proves the claim.

(c) Using �rst that LY and V1 commute and then that (ak�a`)(�`k ��) � 0 for all k; ` 2 f1; : : : ; d�g,

one gets for 'k 2 C
1(X) that

(
AU�;j � U�;jA

) d�∑
k=1

'k 
 �jk

= �i

d�∑
k;`=1

a`
(
LY (V1'k)

)
(�`k � �)
 �j` � i

d�∑
k;`=1

a` (V1'k)
(
LY (�`k � �)

)

 �j`

+ i

d�∑
k;`=1

ak
(
V1
(
LY 'k)

)
(�`k � �)
 �j`

= i

d�∑
k;`=1

(ak � a`)
(
V1
(
LY 'k)

)
(�`k � �)
 �j` � i

d�∑
k;`=1

a` (V1'k)
(
LY (�`k � �)

)

 �j`

= �i

d�∑
k;`=1

a` (V1'k)
(
LY (�`k � �)

)

 �j`:
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This, together with the fact that LY (�`k � �) 2 L1(X) for all k; ` 2 f1; : : : ; d�g and the density of the

vectors
∑d�

k=1 'k 
 �jk in H
(�)
j , implies that U�;j 2 C

1(A) with

[A;U�;j ]

d�∑
k=1

'k 
 �jk = �i

d�∑
k;`=1

a` (V1'k)
(
LY (�`k � �)

)

 �j`; 'k 2 L2(X;�X):

Then, one obtains

[A;U�;j ](U�;j)
�
d�∑
k=1

'k 
 �jk = �i

d�∑
k;`;m=1

am
{
V1
(
(V�1'k)(�`k � �

(�1))
)}(

LY (�m` � �)
)

 �jm

= �i

d�∑
k;`;m=1

am'k(�
� � �)`k

(
LY (� � �)

)
m`

 �jm

= M

d�∑
k=1

'k 
 �jk ;

which shows the equality [A;U�;j ] = MU�;j .

To prove that U�;j 2 C
1+0(A), one has to check that∫ 1

0

dt

t

∥∥ e�itA[A;U�;j ] eitA�[A;U�;j ]∥∥B(H
(�)
j
)
<1:

But since [A;U�;j ] = MU�;j with U�;j 2 C
1(A), it is su�cient to show that∫ 1

0

dt

t

∥∥ e�itAM eitA�M
∥∥

B(H
(�)
j
)
<1:

Now, Formula (3.5) implies that

(
e�itAM eitA�M

) d�∑
k=1

'k 
 �jk =

d�∑
k;`=1

(
e�itakHMk` e

ita`H �Mk`

)
'` 
 �jk ; 'k 2 L2(X;�X):

It follows that∫ 1

0

dt

t

∥∥ e�itAM eitA�M
∥∥

B(H
(�)
j
)

�

d�∑
k;`=1

∫ 1

0

dt

t

∥∥ e�itakHMk` e
ita`H �Mk`

∥∥
B(L2(X;�X))

=

d�∑
k;`=1

∫ 1

0

dt

t

∥∥ e�itakHMk` e
itakH �Mk`

∥∥
B(L2(X;�X))

=

d�∑
k;`=1

∫ ak

0

ds

s

∥∥VsMk` V�s �Mk`

∥∥
B(L2(X;�X))

� Const:

d�∑
k;`=1

∫ ak

0

ds

s

∥∥{LY (� � �) � (�
� � �)

}
k`
� Fs �

{
LY (� � �) � (�

� � �)
}
k`

∥∥
L1(X)

<1;

due to point (b) and the Dini-type condition satis�ed by the functions LY (�k` � �).
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In the following theorem, we present a �rst set of conditions implying a strict Mourre estimate for

U�;j on all of S1 and thus the absolute continuity of the spectrum of U�;j . For each x 2 X, we write

�k
(
M(x)

)
, k 2 f1; : : : ; d�g, for the eigenvalues of the hermitian matrix M(x), and we use the notation

�� := inf
k2f1;:::;d�g; x2X

�k
(
M(x)

)
: (3.6)

Theorem 3.4 (First Mourre estimate for U�;j). Let � satisfy Assumption 3.1, suppose that (ak�a`)(�`k �

�) � 0 for all k; ` 2 f1; : : : ; d�g, and assume that �� > 0. Then, U�;j satis�es the strict Mourre estimate

(U�;j)
�[A;U�;j ] � ��;

and U�;j has purely absolutely continuous spectrum.

Proof. Since M is hermitian matrix-valued, there exists a function U : X ! U(d�) such that M = U�DU

with D diagonal :

D(x) :=

�1
(
M(x)

)
0

. . .

0 �d�
(
M(x)

)
 ; x 2 X:

Furthermore, one has the orthogonality relation
〈
�jm; �jk

〉
L2(G;�G)

= �mk(d�)
�1. Therefore, one obtains

for 'k 2 L2(X;�X) that〈
d�∑
m=1

'm 
 �jm;M

d�∑
k=1

'k 
 �jk

〉
H

(�)
j

=

d�∑
k;`=1

〈
'k ;Mk`'`

〉
L2(X;�X)

(d�)
�1

=

d�∑
m=1

〈(
d�∑
k=1

Umk 'k

)
; �m

(
M( �)

)( d�∑
`=1

Um`'`

)〉
L2(X;�X)

(d�)
�1

� ��

d�∑
m=1

〈(
d�∑
k=1

Umk 'k

)
;

(
d�∑
`=1

Um`'`

)〉
L2(X;�X)

(d�)
�1

= ��

〈
d�∑
m=1

'm 
 �jm;

d�∑
k=1

'k 
 �jk

〉
H

(�)
j

;

which is equivalent to the inequality M � ��. We thus infer from Lemma 3.2(c) that U�;j 2 C
1+0(A) with

(U�;j)
�[A;U�;j ] = (U�;j)

�MU�;j � ��:

It follows from Theorem 2.1 that U�;j has purely absolutely continuous spectrum.

Sometimes (as when F1 is uniquely ergodic), it is advantageous to replace the positivity condition

�� > 0 of Theorem 3.4 by an averaged positivity condition more likely to be satis�ed. For this, we have

to modify the conjugate operator A. Following the approach of [10, Sec. 4] and [30, Sec. 2], we use the

operator AN obtained by averaging the operator A along the 
ow generated by U�;j :

AN ' :=
1

N

N�1∑
n=0

(U�;j)
nA(U�;j)

�n'; N 2 N�1; ' 2 D(AN) := D(A); (3.7)

(the operator AN is self-adjoint on D(AN) = D(A) because (U�;j)
n 2 C1(A) for each n 2 Z, see [10,

Sec. 4]). In such a case, the averages

MN :=
1

N

N�1∑
n=0

(
� � �(n)

)
(M � Fn)

(
�� � �(n)

)
(3.8)
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of the operator M appear, and we thus use the notation

��;N := inf
k2f1;:::;d�g; x2X

�k
(
MN(x)

)
: (3.9)

Note that if the matrix-valued function � � � is diagonal, then
(
� � �(n)

)
, (M � Fn) and

(
�� � �(n)

)
are

also diagonal and MN reduces to the Birkho� sum

MN =
1

N

N�1∑
n=0

M � Fn:

Theorem 3.5 (Second Mourre estimate for U�;j). Let � satisfy Assumption 3.1, suppose that (ak �

a`)(�`k � �) � 0 for all k; ` 2 f1; : : : ; d�g, and assume that ��;N > 0 for some N 2 N�1. Then, U�;j
satis�es the strict Mourre estimate

(U�;j)
�[AN ; U�;j ] � ��;N ;

and U�;j has purely absolutely continuous spectrum.

Proof. We know from Lemma 3.2(c) that U�;j 2 C
1+0(A). So, it follows from the abstract result [10,

Lemma 4.1] that U�;j 2 C
1+0(AN) with [AN ; U�;j ] =

1
N

∑N�1
n=0 (U�;j)

n [A;U�;j ](U�;j)
�n. Using the equality

[A;U�;j ] = MU�;j , one thus obtains that

[AN ; U�;j ] =

(
1

N

N�1∑
n=0

(U�;j)
nM(U�;j)

�n

)
U�;j

with

(U�;j)
nM(U�;j)

�n
d�∑
k=1

'k 
 �jk = (U�;j)
n

d�∑
k;`;m=1

M`m('k � F�n)
(
�mk � �

(�n)
)

 �j`

=

d�∑
k;`;m;p=1

(M`m � Fn)
(
�mk � �

(�n) � Fn
)(
�p` � �

(n)
)
'k 
 �jp

=

d�∑
k;`;m;p=1

(M`m � Fn)
(
��mk � �

(n)
)(
�p` � �

(n)
)
'k 
 �jp

=

d�∑
k;p=1

{(
� � �(n)

)
(M � Fn)

(
�� � �(n)

)}
pk
'k 
 �jp

for 'k 2 L2(X;�X). Thus, U�;j 2 C
1+0(AN) with [AN ; U�;j ] = MN U�;j . Since MN(x) is a hermitian matrix

for each x 2 X, one can then conclude using the same argument as in the proof of Theorem 3.4.

Remark 3.6 (Relation with the topological degree). The matrix-valued function MN , which came out

from a commutator calculation, is related to the notion of topological degree of the cocycle � in the

representation �. Indeed, the assumption (ak � a`)(�`k ��) � 0 for all k; ` 2 f1; : : : ; d�g implies that the

matrices � � �(n) and Da := diag(a1; : : : ; ad�) commute. Thus, one has the equalities

MN = Da
1

N

N�1∑
n=0

(
� � �(n)

)
LY (� � � � Fn)(�

� � � � Fn)
(
�� � �(n)

)
= Da

1

N

N�1∑
n=0

(� � �) � � � (� � � � Fn�1)LY (� � � � Fn)(�
� � � � Fn)(�

� � � � Fn�1) � � � (�
� � �)

= Da
1

N
LY

(
(� � �)(N)

)(
(� � �)(N)

)�
;

9



andMN is the product of Da
1
N
times the matrix-valued function LY

(
(���)(N)

)(
(���)(N)

)�
, which can be

associated to the winding number of the curve (� ��)(N) in the unitary group U(d�) � codomain(�) (the
Lie derivative LY replaces the complex derivative of the scalar case). It follows that the limit limN!1MN

(if it exists, in some topology to be speci�ed) can be interpreted as the matrix topological degree of � ��,

up to multiplication by the constant matrix Da.

This furnishes an alternative interpretation to the result of Theorem 3.5 : If N is large enough, then

MN is close to Da times the topological degree of � � �. So, the condition ��;N > 0 means that the

topological degree of � � � has nonzero determinant, and Theorem 3.5 tells us that in this case U� has

purely absolutely continuous spectrum in the subspace associated to �. This is nothing else but a local

version, in each representation �, of the result (already known in various cases, see [5, 12, 13, 15, 23, 31])

that the continuous component of spectrum of skew products is purely absolutely continuous if � is regular

enough and has nonzero topological degree. The main novelty here is that X and G are general compact

Lie groups.

We conclude the section by noting that in the particular case where fFtgt2R is a translation 
ow on

a torus X = Td ' Rd=Zd , d � 1, with F1 ergodic along one coordinate, the spectrum of U�;j is Lebesgue

if it is purely absolutely continuous. Indeed, assume that

Ft(x) := x + ty (mod Zd); t 2 R; x 2 Td ;

for some y := (y1; : : : ; yd) 2 Rd with yk0 2 R nQ for some k0 2 f1; : : : ; dg. Let Qk0 2 B
(
H

(�)
j

)
be the

unitary operator given by(
Qk0

d�∑
k=1

'k 
 �jk

)
(x; g) := e2�ixk0

d�∑
k=1

'k(x)�jk(g); 'k 2 L2(X;�X); (x; g) 2 X � G;

and let T0 : T! T be the ergodic translation given by T0(z) := z+yk0 . Finally, denote by � the spectral

measure of U�;j associated to a vector  2 H
(�)
j ; that is, the Borel measure on T de�ned by the equalities

(
F� 

)
(�m) =

∫
T

e2�imz d� (z) =
〈
(U�;j)

m ; 
〉
; m 2 Z;

with F the Fourier transform. Then, we have the identities

(U�;j)
mQk0 = e2�imyk0 Qk0(U�;j)

m

and∫
T

e2�imz d�Qk0
 (z) =

〈
(U�;j)

mQk0 ;Qk0 
〉
H

(�)
j

= e�2�imyk0
〈
(U�;j)

m ; 
〉
H

(�)
j

=

∫
T

e2�imz d(T �0 � )(z)

for all m 2 Z and  2 H
(�)
j . Thus, �Qk0

 = T �0 � , and one has the following result :

Lemma 3.7. Assume that X = Td , d � 1, and let fFtgt2R be given by

Ft(x) := x + ty (mod Zd); t 2 R; x 2 Td ;

for some y := (y1; : : : ; yd) 2 Rd with yk0 2 R nQ for some k0 2 f1; : : : ; dg. Then, the spectrum of U�;j
is Lebesgue if it is purely absolutely continuous.

Proof. The claim follows from the identity �Qk0
 = T �0 � and the ergodicity of T0 (see the proof of [23,

Lemma 3] or [13, Lemma 3.1] for details).
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4 Examples

4.1 The abelian case X = T
d and G = T

d 0

Suppose that X = Td and G = Td
0

for some d; d 0 � 1, set H := L2
(
Td�Td

0

; �Td 
�Td 0
)
, and let fFtgt2R

be the translation 
ow on Td given by

Ft(x) := x + ty (mod Zd); t 2 R; x 2 Td ;

for some y := (y1; y2; : : : ; yd) 2 Rd . Then, each element �q 2 T̂d
0

is a 1-dimensional IUR (character) of

Td
0

given by �q(z) := e2�iq�z for some q 2 Zd
0

. One has

H
(�q)
1 =

{
'
 �q j ' 2 L2

(
Td ; �Td

)}
;

the Lie derivative LY is given by LY = y � rx , and F1 is uniquely ergodic if and only if the numbers

y1; y2; : : : ; yd ; 1 are rationally independent.

Given q 2 Zd
0

, we choose the function � 2 C(Td ;Td
0

) as follows :

Assumption 4.1. The function � 2 C(Td ;Td
0

) satis�es � = � + �, where

(i) � : Td ! Td
0

is a Lie group homomorphism; that is, � is given by �(x) := Bx (mod Zd
0

) for some

d 0 � d matrix B with integer entries,

(ii) � 2 C(Td ;Td
0

) is such that LY (q � �) exists and satis�es the Dini-type condition∫ 1

0

dt

t

∥∥LY (q � �) � Ft �LY (q � �)
∥∥
L1(Td )

<1: (4.1)

Then, the function � satis�es Assumption 3.1, the skew product T� is given by

T�(x; g) =
(
x + y ; g + �(x)

)
; (x; g) 2 Td � Td

0

;

and the matrix-valued function M de�ned in (3.4) reduces to the scalar function

M = �ia1LY (�q � �) � (�q � �) = 2�a1
(
LY (q � �) + LY (q � �)

)
= 2�a1

(
y � (BTq) + LY (q � �)

)
:

Accordingly, the matrix-valued function MN de�ned in (3.8) reduces to the scalar function

MN =
1

N

N�1∑
n=0

M � Fn = 2�a1

(
y � (BTq) +

1

N

N�1∑
n=0

LY (q � �) � Fn

)
:

So, if BTq 6= 0 and if the numbers y1; y2; : : : ; yd ; 1 are rationally independent, one has y � (BTq) 6= 0.

Thus, one can set a1 :=
(
2�y � (BTq)

)�1
, so that MN takes the form

MN = 1 +
(
y � (BTq)

)�1( 1

N

N�1∑
n=0

LY (q � �) � Fn

)
: (4.2)

Collecting what precedes, one obtains the following result on the spectrum of the operators U�q ;1
and U� associated to the skew product T�.

Theorem 4.2. Let � satisfy Assumption 4.1, suppose that BTq 6= 0, and assume that y1; y2; : : : ; yd ; 1 are

rationally independent. Then, U�q ;1 has purely Lebesgue spectrum. In particular, if � satis�es Assumption

4.1 for each q 2 Zd
0

, then the restriction of U� to the subspace
⊕

q2Zd 0; BTq 6=0H
(�q)
1 � H has countable

Lebesgue spectrum.
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Proof. We know that � satis�es Assumption 3.1, and it is obvious that (a1�a1)(�q��) � 0. Furthermore,

due to the unique ergodicity of F1, we infer from (4.2) that

lim
N!1

MN = 1 +
(
y � (BTq)

)�1
lim
N!1

(
1

N

N�1∑
n=0

LY (q � �) � Fn

)

= 1 +
(
y � (BTq)

)�1 ∫
Td

d�Td LY (q � �)

= 1

uniformly on Td . Therefore,

��;N = inf
x2Td

�1
(
MN(x)

)
= inf

x2Td
MN(x) > 0

if N is large enough. So, it follows from Theorem 3.5 and Lemma 3.7 that U�q ;1 has purely Lebesgue

spectrum. The claim on U� follows from what precedes if one takes into account the separability of the

Hilbert space H � L2
(
Td � Td

0

; �Td 
 �Td 0
)
.

Theorem 4.2 is consistent with Corollary 4.5 of [30], where the same spectral result is obtained using

a less general framework. We refer to the discussion after [30, Cor. 4.5] for a comparison with prior results

on the spectral analysis of skew products of tori.

4.2 The case X = T
d and G = SU(2)

Suppose that X = Td for some d � 1, let G = SU(2), set H := L2
(
Td�SU(2); �Td 
�SU(2)

)
, let fFtgt2R

be the translation 
ow on Td given by

Ft(x) := x + ty (mod Zd); t 2 R; x 2 Td ;

for some y := (y1; y2; : : : ; yd) 2 Rd , and let � : Td ! SU(2) be a Lie group homomorphism. Then, one

has LY = y � rx , the function � satis�es Assumption 3.1, and the skew product T� is given by

T�(x; g) =
(
x + y ; g �(x)

)
; (x; g) 2 Td � SU(2): (4.3)

Since Td is abelian, the range of � is contained in a maximal torus of SU(2). But, all of these are mutually

conjugate to the subgroup
{(

z 0
0 z

)}
z2S1

(see [6, Thm. IV.1.6 & Prop. IV.3.1]). So, we can suppose without

loss of generality that

�(x) = h

(
e2�i(b�x) 0

0 e�2�i(b�x)

)
h�; x 2 Td ; (4.4)

for some vector b 2 Zd and some element h 2 SU(2), and thus that(
� � �

)
(x) = �(h)�

(
e2�i(b�x) 0

0 e�2�i(b�x)

)(
�(h)

)�
(4.5)

for each �, �nite-dimensional IUR of SU(2).

The set \SU(2) of all (equivalence classes of) �nite-dimensional IUR's of SU(2) can be described as

follows (see [29, Chap. II]). For each n 2 N, let Vn be the (n+1)-dimensional vector space of homogeneous

polinomials of degree n in the variables z1; z2 2 C. Endow Vn with the basis

pk(z1; z2) := zk1 z
n�k
2 ; k 2 f0; : : : ; ng;

and the scalar product h � ; � iVn : Vn � Vn ! C de�ned by〈
n∑
k=0

�k z
k
1 z

n�k
2 ;

n∑
`=0

�` z
`
1z
n�`
2

〉
Vn

:=

n∑
k=0

k!(n � k)!�k�k ; �k ; �` 2 C:
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Then, the function �(n) : SU(2)! U(Vn) ' U(n + 1) given by

(
�(n)(g)p

)
(z1; z2) := p

(
g11z1 + g21z2; g12z1 + g22z2

)
; g =

(
g11 g12
g21 g22

)
2 SU(2); p 2 Vn;

de�nes a (n + 1)-dimensional IUR of SU(2) on Vn, and each �nite-dimensional IUR of SU(2) is unitarily
equivalent to an element of the family f�(n)gn2N [29, Prop. II.1.1 & Thm. II.4.1]. A calculation using the

binomial theorem shows that the matrix elements �
(n)
jk of �(n) with respect to the basis fpkg

n
k=0 satisfy

�
(n)
jk (g) :=

〈
pj ; �

(n)(g)pk
〉
Vn
= j !(n � j)!

k∑
`=0

(
k

`

)(
n � k

j � `

)
g`11g

j�`
12 g

k�`
21 gn+`�k�j22 ; j; k 2 f0; : : : ; ng;

with
(
�
�

)
the binomial coe�cients. In the particular case of diagonal elements g =

(
g11 0
0 g11

)
2 SU(2), we

thus get that

�
(n)
jk

(
g11 0

0 g11

)
= j !(n � j)!g2j�n11 �jk ; �jk :=

{
1 if j = k

0 if j 6= k:
(4.6)

Therefore, by replacing �(n)( � ) by the unitarily equivalent representation
(
�(n)(h)

)�
�(n)( �)�(n)(h), we

infer from (4.5) that (
�
(n)
jk � �

)
(x) = j !(n � j)! e2�i(2j�n)(b�x) �jk :

Then, putting this expression in the formula (3.4) for the matrix-valued function M, one obtains that

M = �i

a0 0
. . .

0 an

(LY (�
(n) � �)

)
�
(
(�(n))� � �

)

= �i

a0 0
. . .

0 an

(�(n) � �) � d

dt

(
�(n) � �

)
(ty)

∣∣∣
t=0

�
(
(�(n))� � �

)

= 2�(y � b)

a0 0!(n � 0)!(2 � 0� n) 0
. . .

0 an n! (n � n)!(2 � n � n)

 : (4.7)

In the case y � b 6= 0, we can set aj := (2j � n)
(
2�(y � b) j !(n � j)!

)�1
, and thus obtain that

Mjk = (2j � n)2 �jk ;

which (in view of Equation (3.6)) implies that

�� = inf
k2f0;:::;ng

(2k � n)2 =

{
0 if n 2 2N

1 if n 2 2N+ 1:

Collecting what precedes, one ends up with the following result on the spectrum of the operators

U�(n);j and U� associated to the skew product T�.

Lemma 4.3. Let � satisfy (4.4) with y � b 6= 0, and take n 2 2N + 1 and j 2 f0; : : : ; ng. Then,

U�(n);j has purely absolutely continuous spectrum. In particular, the restriction of U� to the subspace⊕
n22N+1

⊕n
j=0H

(�(n))
j � H has purely absolutely continuous spectrum.

Proof. We know that � satis�es Assumption 3.1, that (ak � a`)
(
�
(n)
`k � �

)
� 0 for all k; ` 2 f0; : : : ; ng,

and that �� = 1. So, the claim is a direct consequence of Theorem 3.4.
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As in Section 4.1, we can treat more general cocycles � (namely, perturbations of group homo-

morphisms) if F1 is uniquely ergodic. So, from now on, we assume that y1; y2; : : : ; yd ; 1 are rationally

independent (so that F1 is uniquely ergodic) and we suppose that � : Td ! SU(2) is a perturbation of �

in the sense that

�(x) := h

(
e2�i(b�x+�(x)) 0

0 e�2�i(b�x+�(x))

)
h�; x 2 Td ; (4.8)

with b 2 Zd n f0g and with � 2 C(Td ;R) satisfying the following :

Assumption 4.4. � 2 C(Td ;R) is such that LY � exists and satis�es the Dini-type condition∫ 1

0

dt

t

∥∥LY � � Ft �LY �
∥∥
L1(Td )

<1:

So, we have

(
�(n) � �

)
(x) = �(n)(h)�(n)

(
e2�i(b�x+�(x)) 0

0 e�2�i(b�x+�(x))

)(
�(n)(h)

)�
;

and, replacing �(n)( � ) by the unitarily equivalent representation
(
�(n)(h)

)�
�(n)( � )�(n)(h), we infer from

(4.6) that (
�
(n)
jk � �

)
(x) = j !(n � j)! e2�i(2j�n)(b�x+�(x)) �jk :

Therefore, a calculation similar to that of (4.7) gives

Mjk = 2�aj
(
(y � b) + LY �

)
j! (n � j)!(2j � n)�jk :

But now we know that y � b 6= 0, since y1; y2; : : : ; yd ; 1 are rationally independent. So, we can set

aj := (2j � n)
(
2�(y � b) j!(n � j)!

)�1
, and thus obtain that

Mjk =
(
1 + (y � b)�1LY �

)
(2j � n)2�jk :

Accordingly, the matrix-valued function MN given in (3.8) reduces to

MN =
1

N

N�1∑
m=0

M � Fm =

(
1 + (y � b)�1

1

N

N�1∑
m=0

LY � � Fm

)(2 � 0� n)2 0
. . .

0 (2 � n � n)2

 : (4.9)

The following theorem on the spectrum of the operators U�(n);j and U� associated to the skew product

T� complements Lemma 4.3.

Theorem 4.5. Let � satisfy (4.8) with b 2 Zd n f0g and Assumption 4.4. Suppose that y1; y2; : : : ; yd ; 1

are rationally independent, and take n 2 2N + 1 and j 2 f0; : : : ; ng. Then, U�(n);j has purely Lebesgue

spectrum. In particular, the restriction of U� to the subspace
⊕

n22N+1

⊕n
j=0H

(�(n))
j � H has countable

Lebesgue spectrum.

Proof. We know that � satis�es Assumption 3.1 and that (ak �a`)
(
�
(n)
`k ��

)
� 0 for all k; ` 2 f0; : : : ; ng.
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Furthermore, due to the unique ergodicity of F1, we deduce from (4.9) that

lim
N!1

MN =

(
1 + (y � b)�1 lim

N!1

1

N

N�1∑
m=0

LY � � Fm

)(2 � 0� n)2 0
. . .

0 (2 � n � n)2



=

(
1 + (y � b)�1

∫
Td

d�Td LY �

)(2 � 0� n)2 0
. . .

0 (2 � n � n)2



=

(2 � 0� n)2 0
. . .

0 (2 � n � n)2


uniformly on Td . Therefore, since n 2 2N+ 1, one has that

lim
N!1

��;N = inf
k2f0;:::;ng; x2Td

�k

(
lim
N!1

MN(x)

)
= inf

k2f0;:::;ng
�k

(2 � 0� n)2 0
. . .

0 (2 � n � n)2

 = 1;

and thus ��;N > 0 if N is large enough. So, it follows from Theorem 3.5 and Lemma 3.7 that U�(n);j has

purely Lebesgue spectrum. The claim on U� follows from what precedes if one takes into account the

separability of the Hilbert space H � L2
(
Td � SU(2); �Td 
 �SU(2)

)
.

Theorem 4.5 should be compared with prior results for skew products on Td � SU(2) obtained by K.

Fr
`
aczek (but see also [18, 24]). When F1 is an ergodic translation on Td (d = 1; 2), K. Fr

`
aczek exhibits

in [13, Thm. 6.1 & Thm. 8.2] conditions on the cocycle � guaranteeing that the restriction of U� to the

subspace
⊕

n22N+1

⊕n
j=0H

(�(n))
j has countable Lebesgue spectrum. In dimension d = 1, these conditions

are veri�ed if � 2 C2
(
T; SU(2)

)
, if � has nonzero topological degree, and if � is cohomologous to a

diagonal cocyle with a transfer function � : T! SU(2) of bounded variation and with �0��1 2 L2
(
T; su(2)

)
(see [13, Cor. 6.5]). This is similar (but not completely equivalent) to the conditions satis�ed by � when

d = 1 in Theorem 4.5 (in Theorem 4.5, � has Dini-continuous derivative along the 
ow fFtgt2R, it has

topological degree b 6= 0, and it is cohomologous to a diagonal cocyle with a constant transfer function).

K. Fr
`
aczek also shows various properties of the topological degree of cocycles � 2 C2

(
T; SU(2)

)
such

as the fact that it takes values in Z or the fact that it is invariant under the relation of measurable

cohomology (see [14, Thm. 2.7 & Thm. 2.10]).

4.3 The case X = T
d and G = U(2)

Suppose that X = Td for some d � 1, let G = U(2), set H := L2
(
Td � U(2); �Td 
 �U(2)

)
, let fFtgt2R

be the translation 
ow on Td given by

Ft(x) := x + ty (mod Zd); t 2 R; x 2 Td ;

for some y := (y1; y2; : : : ; yd) 2 Rd , take � : Td ! U(2) a Lie group homomorphism, and let

T�(x; g) =
(
x + y ; g �(x)

)
; (x; g) 2 Td � U(2):

Since Td is abelian, the range of � is contained in a maximal torus of U(2) of the form
{
h
(
z1 0
0 z2

)
h�
}
z1;z22S1

for some h 2 U(2) (see [6, Thm. IV.1.6 & Prop. IV.3.1]). So, we can suppose without loss of generality

that

�(x) = h

(
e2�i(b1�x) 0

0 e2�i(b2�x)

)
h�; x 2 Td ; (4.10)
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for some vectors b1; b2 2 Zd , and thus that(
� � �

)
(x) = �(h)�

(
e2�i(b1�x) 0

0 e2�i(b2�x)

)(
�(h)

)�
(4.11)

for each �, �nite-dimensional IUR of U(2).
Now, the fact that the map S1 � SU(2) 3 (z; g) 7! zg 2 U(2) is an epimorphism with kernel

f(1; eSU(2)); (�1;�eSU(2))g implies that the set Û(2) of all equivalence classes of �nite-dimensional IUR's

of U(2) coincides (up to unitary equivalence) with the set of tensors products f�2m�n 
 �
(n)gm2Z;n2N,

with �(n) as in Section 4.2 and �2m�n : S1 ! U(1) � S1 given by �2m�n(z) := z2m�n (see [6, Sec. II.5]).

Therefore, if one uses (4.6), (4.11) and the factorisation(
e2�i(b1�x) 0

0 e2�i(b2�x)

)
= e�i(b+�x)

(
e�i(b��x) 0

0 e��i(b��x)

)
; b� := b1 � b2;

and if one replaces
(
�2m�n 
 �

(n)
)
( �) by the unitarily equivalent representation((

�2m�n 
 �
(n)
)
(h)
)�(
�2m�n 
 �

(n)
)
( �)
(
�2m�n 
 �

(n)
)
(h);

one obtains that((
�2m�n 
 �

(n)
)
jk
� �
)
(x) = j !(n � j)! e�i((2m�n)(b+�x)+(2j�n)(b��x)) �jk ; j; k 2 f0; : : : ; ng:

Then, putting this expression in the formula (3.4) for the matrix-valued function M, one obtains that

Mjk = �aj j !(n � j)!
(
(2m � n)(b+ � y) + (2j � n)(b� � y)

)
�jk :

Setting aj :=
(
(2m � n)(b+ � y) + (2j � n)(b� � y)

)(
� j !(n � j)!

)�1
, one thus obtains that

Mjk =
(
(2m � n)(b+ � y) + (2j � n)(b� � y)

)2
�jk :

As a consequence, we obtain the following result on the spectrum of the operators U�2m�n
�(n);j and U�
associated to the skew product T�.

Lemma 4.6. Let � satisfy (4.10), set

R :=

{
(m; n) 2 Z� N j inf

k2f0;:::;ng

(
(2m � n)(b+ � y) + (2k � n)(b� � y)

)2
> 0

}
; (4.12)

and take (m; n) 2 R and j 2 f0; : : : ; ng. Then, U�2m�n
�(n);j has purely absolutely continuous spectrum. In

particular, the restriction of U� to the subspace
⊕

(m;n)2R

⊕n
j=0H

(�2m�n
�(n))
j � H has purely absolutely

continuous spectrum.

Proof. We know that � satis�es Assumption 3.1, that (ak � a`)
(
�
(n)
`k � �

)
� 0 for all k; ` 2 f0; : : : ; ng,

and that

�� = inf
k2f0;:::;ng

(
(2m � n)(b+ � y) + (2k � n)(b� � y)

)2
> 0:

So, the claim is a direct consequence of Theorem 3.4.

Remark 4.7. Some particular cases of Lemma 4.6 are worth mentioning. First, if b1 = b2, then �� =

4(2m�n)2(b1 �y)
2. Thus, U�2m�n
�(n);j has purely absolutely continuous spectrum if 2m 6= n and b1 �y 6= 0.

Second, if b1 = �b2, then

�� = inf
k2f0;:::;ng

4(2k � n)2(b1 � y)
2 =

{
0 if n 2 2N

4(b1 � y)
2 if n 2 2N+ 1:
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Thus, U�2m�n
�(n);j has purely absolutely continuous spectrum if n 2 2N+1 and b1 � y 6= 0 (we recover the

result of Lemma 4.3, since � takes values in SU(2)). Finally, if b1 = 0 (or if b2 = 0; this is similar), then

�� = inf
k2f0;:::;ng

4(m � k)2(b2 � y)
2 =

{
0 if m 2 f0; : : : ; ng

4(b2 � y)
2 if m 2 Z n f0; : : : ; ng:

Thus, U�2m�n
�(n);j has purely absolutely continuous spectrum if m 2 Z n f0; : : : ; ng and b2 � y 6= 0.

As in the previous sections, we can treat more general cocycles � if F1 is uniquely ergodic. So, from

now on we assume that y1; y2; : : : ; yd ; 1 are rationally independent and we suppose that � : Td ! U(2) is
a perturbation of � in the sense that

�(x) = h

(
e2�i(b1�x+�1(x)) 0

0 e2�i(b2�x+�2(x))

)
h�; x 2 Td ; (4.13)

with �1; �2 2 C(Td ;R) satisfying the following :

Assumption 4.8. For k = 1; 2, the function �k 2 C(Td ;R) is such that LY �k exists and satis�es the

Dini-type condition ∫ 1

0

dt

t

∥∥LY �k � Ft �LY �k
∥∥
L1(Td )

<1:

If we proceed as before, we obtain that(
(�2m�n 
 �

(n))jk � �
)
(x) = j !(n � j)! e�if(2m�n)(b+�x+�+(x))+(2j�n)(b��x+��(x))g �jk ; �� := �1 � �2:

Then, calculations similar to those of the previous section lead to the following result on the spectrum of

the operators U�2m�n
�(n);j and U� associated to the skew product T� (review (4.12) for the de�nition of

R).

Theorem 4.9. Let � satisfy (4.13) and Assumption 4.8, suppose that y1; y2; : : : ; yd ; 1 are rationally

independent, and take (m; n) 2 R and j 2 f0; : : : ; ng. Then, U�2m�n
�(n);j has purely Lebesgue spectrum. In

particular, the restriction of U� to the subspace
⊕

(m;n)2R

⊕n
j=0H

(�2m�n
�(n))
j � H has countable Lebesgue

spectrum.

As far as we know, the result of Theorem 4.9 is new. Besides, it would be possible to build on and apply

the method of Section 3 to cocycles � : X ! G taking values in other (higher dimensional) Lie groups

than SU(2) or U(2). However, doing this leads one to consider more and more involved (combinations of

tensor products of) families of IUR's in order to prove spectral results similar to Theorems 4.5 and 4.9.

Thus, we curbed our enthusiasm, hoping that the transition from G = SU(2) in Section 4.2 to G = U(2)
in this section already illustrates the type of procedure one has to follow.
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