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THE SEMI-INFINITE q-BOSON SYSTEM

WITH BOUNDARY INTERACTION

J.F. VAN DIEJEN AND E. EMSIZ

Abstract. Upon introducing a one-parameter quadratic deformation of the
q-boson algebra and a diagonal perturbation at the end point, we arrive at
a semi-infinite q-boson system with a two-parameter boundary interaction.
The eigenfunctions are shown to be given by Macdonald’s hyperoctahedral
Hall-Littlewood functions of type BC. It follows that the n-particle spectrum
is bounded and absolutely continuous and that the corresponding scattering
matrix factorizes as a product of two-particle bulk and one-particle boundary
scattering matrices.

1. Introduction

The q-boson system [BIK] is a lattice discretization of the one-dimensional quan-
tum nonlinear Schrödinger equation [G2, G, KBI, Mt, S] built of particle creation
and annihilation operators representing the q-oscillator algebra [KS, Ch. 5]. Its
n-particle eigenfunctions are given by Hall-Littlewood functions [T, K, DE]. In
the present paper we study a system of q-bosons on the semi-infinite lattice with
boundary interactions, in the spirit of previous works concerned with the quantum
nonlinear Schrödinger equation on the half-line [G1, GLM, HL, CC, TW].

Specifically, by introducing at the end point creation and annihilation operators
representing a quadratic deformation of the q-oscillator algebra together with a
diagonal perturbation, we arrive at the hamiltonian of a q-boson system on the
semi-infinite integer lattice endowed with a two-parameter boundary interaction.
By means of an explicit formula for the action of the hamiltonian in the n-particle
subspace, it is deduced that the Bethe Ansatz eigenfunctions are given by Macdon-
ald’s three-parameter Hall-Littlewood functions with hyperoctahedral symmetry
associated with the BC-type root system [M, §10].

It follows that the q-boson system fits within a large class of discrete quan-
tum models with bounded absolutely continous spectrum for which the scattering
behaviour was determined in great detail by means of stationary phase techniques
[R, D3]. In particular, the n-particle scattering matrix is seen to factorize as a prod-
uct of explicitly computed two-particle bulk and one-particle boundary scattering
matrices.
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2. Semi-infinite q-boson system

Let

F :=
⊕

n∈N

F(Λn) (2.1)

denote the algebraic Fock space consisting of finite linear combinations of fn ∈
F(Λn), n ∈ N := {0, 1, 2, . . .}, where F(Λn) stands for the space of functions
f : Λn → C on the set of partitions of length at most n:

Λn := {λ = (λ1, . . . , λn) ∈ N
n | λ1 ≥ λ2 ≥ · · · ≥ λn}, (2.2)

with the additional convention that Λ0 := {0} and F(Λ0) := C. For l ∈ N, we
introduce the following actions on f ∈ F(Λn) ⊂ F :

(βlf)(λ) := f(β∗
l λ) (λ ∈ Λn−1)

if n > 0 and βlf := 0 if n = 0,

(β∗
l f)(λ) :=

{

[ml(λ)](1 − cδlq
m0(λ)−1)f(βlλ) if ml(λ) > 0

0 otherwise
(λ ∈ Λn+1),

(qNl+kf)(λ) := qml(λ)+kf(λ) (λ ∈ Λn),

with q, c ∈ R such that |q| 6= 0, 1 and k ∈ Z. Here

δl :=

{

1 for l = 0,

0 otherwise
, [m] :=

1− qm

1− q
=

{

0 for m = 0

1 + q + · · ·+ qm−1 for m > 0
,

and the multiplicity ml(λ) counts the number of parts λj , 1 ≤ j ≤ n of size
λj = l (so m0(λ), λ ∈ Λn is equal to n minus the number of nonzero parts), while
β∗
l λ ∈ Λn+1 and βlλ ∈ Λn−1 stand for the partitions obtained from λ ∈ Λn by

inserting/deleting a part of size l, respectively (where it is assumed in the latter
situation that ml(λ) > 0). It is clear from these definitions that βl, β

∗
l and qNl+k

map F(Λn) into F(Λn−1), F(Λn+1) and F(Λn), respectively (with the convention
that F(Λ−1) is the null space).

The operators in question represent a quadratic deformation of the q-boson field
algebra at the boundary site l = 0 parametrized by the constant c:

βlq
Nl = qNl+1βl, β∗

l q
Nl = qNl−1β∗

l ,

βlβ
∗
l = [Nl + 1](1− cδlq

N0), [βl, β
∗
l ]q = 1− cδlq

2N0 (2.3a)

and preserving the ultralocality:

[βl, βk] = [β∗
l , β

∗
k] = [Nl, Nk] = [Nl, βk] = [Nl, β

∗
k] = [βl, β

∗
k ] = 0 (2.3b)

for l 6= k (where [A,B] := AB − BA, [A,B]q := AB − qBA, and [Nl + r] :=
(1− qNl+r)/(1− q)).

When interpreting the characteristic function |λ〉 ∈ F(Λn) supported on λ ∈ Λn

as a state representing a configuration of n particles on N such that ml(λ) particles
are siting on the site l ∈ N, it is clear that the operators βl and β∗

l act as particle
annihilation and creation operators:

βl|λ〉 =

{

|βlλ〉 if ml(λ) > 0

0 otherwise
, β∗

l |λ〉 = [ml(λ) + 1](1− cδlq
m0(λ))|β∗

l λ〉,
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while qNl counts the number of particles at the site l (as a power of q):

qNl |λ〉 = qml(λ)|λ〉.

The dynamics of our q-boson system is governed by a hamiltonian built of left
and right hopping operators together with a diagonal boundary term:

Hq = a[N0] +
∑

l∈N

(βl+1β
∗
l + β∗

l+1βl), (2.4)

a ∈ R. This hamiltonian constitutes a well-defined operator on F (2.1) as for any
f ∈ F(Λn) and λ ∈ Λn the infinite sum (Hqf)(λ) contains only a finite number of
nonvanishing terms.

3. The n-Particle hamiltonian and its eigenfunctions

By construction Hq (2.4) preserves the n-particle subspace F(Λn). The following
proposition describes the action of the hamiltonian in this subspace explicitly.

Proposition 3.1 (n-Particle hamiltonian). For any f ∈ F(Λn) and λ ∈ Λn, one
has that

(Hqf)(λ) = a[m0(λ)]f(λ) +
∑

1≤j≤n
λ+ej∈Λn

(1− cδλj
qm0(λ)−1)[mλj

(λ)]f(λ + ej) +
∑

1≤j≤n
λ−ej∈Λn

[mλj
(λ)]f(λ − ej),

where e1, . . . , en refer to the unit vectors comprising the standard basis of Zn.

Proof. It is clear from the definitions that ([N0]f)(λ) = [m0(λ)]f(λ), and that for
any l ∈ N:

(βl+1β
∗
l f)(λ) =

{

[ml(λ)](1 − cδlq
m0(λ)−1)f(β∗

l+1βlλ) if ml(λ) > 0,

0 otherwise,

where β∗
l+1βlλ = λ+ ej with j = min{k | λk = l} (so l = λj), and

(β∗
l+1βlf)(λ) =

{

[ml+1(λ)]f(βl+1β
∗
l λ) if ml+1(λ) > 0,

0 otherwise,

where βl+1β
∗
l λ = λ− ej with j = max{k | λk = l + 1} (so l = λj − 1). �

The n-particle hamiltonian has Bethe Ansatz eigenfunctions given by the follow-
ing plane wave expansion

φξ(λ) :=
∑

σ∈Sn

ǫ∈{±1}n

C(ǫξσ)e
i〈λ,ǫξσ〉, (3.1a)

with expansion coefficients of the form

C(ξ) :=
∏

1≤j≤n

1− ae−iξj + ce−2iξj

1− e−2iξj
(3.1b)

×
∏

1≤j<k≤n

(1− qe−i(ξj−ξk)

1− e−i(ξj−ξk)

)(1− qe−i(ξj+ξk)

1− e−i(ξj+ξk)

)

.

Here 〈·, ·〉 denotes the standard inner product onRn, ǫξσ := (ǫ1ξσ1
, ǫ2ξσ2

, . . . , ǫnξσn
),

and the summation is meant over all permutations σ in the symmetric group Sn
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and all sign configurations ǫ = (ǫ1, . . . , ǫn) ∈ {1,−1}n. Viewed as a function of the
spectral parameter ξ = (ξ1, . . . , ξn) in the fundamental alcove

A := {(ξ1, ξ2, . . . , ξn) ∈ R
n | π > ξ1 > ξ2 > · · · > ξn > 0}, (3.2)

the expression φξ(λ), λ ∈ Λn amounts to Macdonald’s three-parameter Hall-Littlewood
polynomial with hyperoctahedral symmetry associated with the root system BCn

[M, §10].

Proposition 3.2 (Bethe Ansatz eigenfunctions). The n-particle Bethe Ansatz wave
function φξ, ξ ∈ A solves the eigenvalue equation

Hqφξ = En(ξ)φξ , En(ξ) := 2

n
∑

j=1

cos(ξj). (3.3)

Proof. It follows from Proposition 3.1 that the stated eigenvalue equation boils
down to the following identity

a[m0(λ)]φξ(λ) +
∑

1≤j≤n
λ+ej∈Λn

(1− cδλj
qm0(λ)−1)[mλj

(λ)]φξ(λ+ ej)

+
∑

1≤j≤n
λ−ej∈Λn

[mλj
(λ)]φξ(λ− ej) = 2φξ(λ)

n
∑

j=1

cos(ξj),

which is in turn equivalent to the Pieri formula for the hyperoctahedral Hall-
Littlewood function in Eq. (A.3) of Appendix A. �

4. Diagonalization

From now on it will be assumed unless stated otherwise that 0 < |q| < 1 and
that the boundary parameters a and c are chosen such that the roots r1, r2 of the
quadratic polynomial r2 − ar + c belong to the interval (−1, 1):

a = r1 + r2 and c = r1r2 with r1, r2 ∈ (−1, 1). (4.1)

Let L2(A,∆dξ) be the Hilbert space of functions f̂ : A → C characterized by
the inner product

〈f̂ , ĝ〉∆ =
1

(2π)n

∫

A

f̂(ξ)ĝ(ξ)∆(ξ)dξ, where ∆(ξ) :=
1

|C(ξ)|2
(4.2)

with C(ξ) given by Eq. (3.1b). It is well-known that for the parameter regime in
question Macdonald’s hyperoctahedral Hall-Littlewood functions form an orthogo-
nal basis of L2(A,∆dξ) [M, §10]:

〈φ(λ), φ(µ)〉∆ =

{

N (λ) if λ = µ,

0 otherwise,
(4.3a)

where

N (λ) := (c; q)m0(λ)

∏

ℓ∈N

[mℓ(λ)]! (4.3b)

with (c; q)m := (1− c)(1− cq) · · · (1− cqm−1) (and the convention that (c; q)0 := 1)
and [m]! := (q; q)m/(q; q)m1 = [m][m− 1] · · · [2][1]. By combining the orthogonality
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in Eqs. (4.3a), (4.3b) with Proposition 3.2, the spectral decomposition of Hq in the
n-particle Hilbert space ℓ2(Λn,N−1) ⊂ F(Λn) characterized by the inner product

〈f, g〉n :=
∑

λ∈Λn

f(λ)g(λ)N−1(λ) (4.4)

becomes immediate.

Theorem 4.1 (Diagonalization). For 0 < |q| < 1 and values of the boundary
parameters a and c in the orthogonality domain (4.1), the q-boson Hamiltonian
Hq (2.4) restricts to a bounded self-adjoint operator in ℓ2(Λn,N−1) with purely
absolutely continuous spectrum. More specifically, its spectral decomposition reads
explicitly

Hq = Fq

−1 ◦ Ê ◦ Fq, (4.5)

where Fq : ℓ2(Λn,N−1) → L2(A,∆dξ) denotes the unitary Fourier transform asso-
ciated with the hyperoctahedral Macdonald-Hall-Littlewood basis:

(Fqf)(ξ) := 〈f, φξ〉n =
∑

λ∈Λn

f(λ)φξ(λ)N
−1(λ) (4.6a)

(f ∈ ℓ2(Λn,N−1)) with the inversion formula given by

(Fq

−1f̂)(λ) = 〈f̂ , φ(λ)〉∆ =
1

(2π)n

∫

A

f̂(ξ)φξ(λ)∆(ξ)dξ (4.6b)

(f̂ ∈ L2(A,∆dξ)), and (Êf̂)(ξ) := En(ξ)f̂(ξ) stands for the bounded real multi-
plication operator in L2(A,∆dξ) associated with the n-particle eigenvalue En(ξ)
(3.3).

In the Fock space H :=
⊕

n≥0 ℓ
2(Λn,N−1), built of all linear combinations

∑

n≥0 cnfn with cn ∈ C and fn ∈ ℓ2(Λn,N−1) such that
∑

n≥0 |cn|
2〈fn, fn〉n <

∞, the q-boson hamiltonian Hq (2.4) constitutes an unbounded operator that is
essentially self-adjoint on the dense domain D := F ∩H (because for z ∈ C \R the
range (Hq−z)D is dense inH and limn→∞ supξ∈A |En(ξ)| = ∞). The representation
of the deformed q-boson field algebra in Section 2 on the other hand gives rise to a
bounded representation on H:

〈βlf, βlf〉n−1 ≤
1 + |c|δl
1− q

〈f, f〉n,

〈β∗
l f, β

∗
l f〉n+1 ≤

1 + |c|δl
1− q

〈f, f〉n,

〈qNlf, qNlf〉n ≤ 〈f, f〉n,

preserving the ∗-structure:

〈β∗
l f, g〉n+1 = 〈f, βlg〉n and 〈qNlf, g〉n = 〈f, qNlg〉n.

Remark 4.2. Upon rescaling the lattice Λn (2.2) and performing an appropriate
continuum limit [D2, Sec. 5], Macdonald’s hyperoctahedral Hall-Littlewood func-
tions tend to the eigenfunctions of the quantum nonlinear Schrödinger equation on
the half-line with a boundary interaction [G1, GLM, HL, CC, TW]. In particular,
it follows from [D2, Sec. 5.3] that for a = 0 (which corresponds to a reduction from
type BC to type C root systems) a renormalized version of the q-boson hamiltonian
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Hq (2.4) then converges in the n-particle subspace in the strong resolvent sense to
a hamiltonian that can be written formally as:

−
n
∑

j=1

∂2

∂x2
j

+ g
∑

1≤j<k≤n

(

δ(xj − xk) + δ(xj + xk)
)

+ g0
∑

1≤j≤n

δ(xj)

with g, g0 > 0 (where δ(·) stands for the ‘delta potential’).

5. Factorized scattering

The similarity transformation

H := N−1/2 Hq N
1/2 (5.1)

turns the n-particle q-boson hamiltonian in Proposition 3.1 into a self-adjoint op-
erator in ℓ2(Λn) diagonalized by the normalized wave function

Ψξ(λ) := e
πi
2
n2

|C(ξ)|−1N (λ)−1/2φξ(λ)

= N (λ)−1/2
∑

σ∈Sn

ǫ∈{±1}n

sign(ǫσ)Ŝ(ǫξσ)
1/2ei〈ρ+λ,ǫξσ〉, (5.2a)

with ξ ∈ A (3.2), sign(ǫσ) := ǫ1 · · · ǫnsign(σ), ρ := (n− 1, n− 2, . . . , 2, 1, 0), and

Ŝ(ξ) :=
∏

1≤j<k≤n

s(ξj − ξk)s(ξj + ξk)
∏

1≤j≤n

s0(ξj), (5.2b)

where

s(x) :=
1− qe−ix

1− qeix
with s(x)1/2 =

1− qe−ix

|1− qeix|
(5.2c)

and

s0(x) :=
1− ae−ix + ce−2ix

1− aeix + ce2ix
with s0(x)

1/2 =
1− ae−ix + ce−2ix

|1− aeix + ce2ix|
. (5.2d)

Specifically, one has that H = F
−1 ◦ Ê ◦ F where F : ℓ2(Λn) → L2(A, dξ) denotes

the unitary Fourier transformation determined by the kernel Ψξ(λ) (and Ê is now
interpreted as a bounded multiplication operator in L2(A, dξ)). For q, a, c → 0
the n-particle q-boson hamiltonian H (5.1) simplifies to a hamiltonian modeling
impenetrable bosons on N:

(H0f)(λ) =
∑

1≤j≤n
λ+ej∈Λn

f(λ+ ej) +
∑

1≤j≤n
λ−ej∈Λn

f(λ− ej)

(f ∈ ℓ2(Λn)), which is diagonalized by the conventional Fourier transform F0 :

ℓ2(Λn) → L2(A, dξ) obtained from F by setting Ŝ(ξ) ≡ 1, N (λ) ≡ 1.
As a very special case of the results in [D3, Sec. 4], it now follows that the wave-

and scattering operators comparing the q-boson dynamics

(eitHf)(λ) =
1

(2π)n

∫

A

eitEn(ξ)f̂(ξ)Ψξ(λ)dξ f̂ = F f (5.3)

with the corresponding impenetrable boson dynamics generated byH0 are governed
by a unitary S-matrix Ŝ : L2(A, dξ) → L2(A, dξ) of the form

(Ŝf̂)(ξ) := Ŝ(ǫξξσξ
)f̂(ξ) (f̂ ∈ C0(Ar). (5.4)
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Here C0(Ar) denotes the dense subspace of L2(A, dξ) consisting of smooth test
functions with compact support in the open dense subset Ar ⊂ A for which the
components of ∇En(ξ) = (−2 sin(ξ1), . . . ,−2 sin(ξn)) do not vanish and are all
distinct in absolute value, and the sign-configuration ǫξ and the permutation σξ are
such that the components of ∇En(ǫξξσξ

) are all positive and ordered from large to
small. Specifically, by comparing the large-time asymptotics of oscillatory integrals
of the form in Eq. (5.3) for the dynamics generated by H and H0 one concludes
that [D3, Thm. 4.2 and Cor. 4.3]:

Theorem 5.1 (Wave and scattering operators). The operator limits

Ω± := s− lim
t→±∞

eitHe−itH0 (5.5a)

converge in the strong ℓ2(Λn)-norm topology and the corresponding wave operators
Ω±

r are given by unitary operators in ℓ2(Λn) of the form

Ω±
r = F

−1 ◦ Ŝ∓1/2 ◦ F0. (5.5b)

Hence, the scattering operator comparing the dynamics of H and H0 is given by the
unitary operator

S := (Ω+
r )

−1Ω−
r = F0

−1 ◦ Ŝ ◦ F0. (5.5c)

Appendix A. Pieri formula for Macdonald’s hyperoctahedral

Hall-Littlewood function

Let x := (x1, . . . , xn) = (eiξ1 , . . . , eiξn) and τ := (τ1, . . . , τn), where τj = rqn−j

(j = 1, . . . , n) with r = a
2 +

√

(a2 )
2 − c (cf. Eq. (4.1)). Upon setting

Pλ(x) :=
τλ1

1 · · · τλn
n

N (0)
φξ(λ) (λ ∈ Λn), (A.1)

where N (0) is given by Eq. (4.3b) with λ = 0, the hyperoctahedral Hall-Littlewood
function is renormalized to have unital principal specialization values: Pλ(τ) = 1
(∀λ ∈ Λn) [M, §10]. With this normalization, the following Pieri formula holds:

Pλ(x)

n
∑

j=1

(xj + x−1
j − τj − τ−1

j ) = (A.2)

∑

1≤j≤n
λ+ej∈Λn

V +
j (λ)

(

Pλ+ej (x) − Pλ(x)
)

+
∑

1≤j≤n
λ−ej∈Λn

V −
j (λ)

(

Pλ−ej (x) − Pλ(x)
)

,

where

V +
j (λ) = τ−1

j

(1− c2δλj
q2(n−j)

1 + cδλj
q2(n−j)

)

∏

j<k≤n
λk=λj

(1− q1+k−j

1− qk−j

)(1 + cδλj
q1+2n−k−j

1 + cδλj
q2n−k−j

)

,

V −
j (λ) = τj

∏

1≤k<j
λk=λj

(1− q1+j−k

1− qj−k

)

.

The formula in question is readily obtained through degeneration from an anal-
ogous Pieri formula for a BCn-type Macdonald function that arises as a special
case of the Pieri formulas in [D1, Sec. 6.1]. Specifically, by substituting t2 = q1/2,
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t3 = −q1/2 (which amounts to a reduction from the Macdonald-Koornwinder func-
tion to the BCn-type Macdonald function) in the Pieri formula of [D1, Eqs. (6.4),
(6.5)] with coefficients taken from [D1, Eqs. (6.12), (6.13)], the relation in Eq.
(A.2) is retrieved for q → 0 (which corresponds to a transition from Macdonald
type functions to Hall-Littlewood type functions). Notice in this connection that
the parameters q, a, c (and r) of the present paper are related to the parameters t,
t0, t1 of Ref. [D1] via q = t, a = t0 + t1, c = t0t1 (and r = t0).

Since

V +
j (λ) = τ−1

j (1 − cδλj
qm0(λ)−1)[mλj

(λ)], V −
j (λ) = τj [mλj

(λ)],

and
n
∑

j=1

(τj + τ−1
j )−

∑

1≤j≤n
λ−ej∈Λn

τj [mλj
(λ)] −

∑

1≤j≤n
λ+ej∈Λn

τ−1
j [mλj

(λ)] = r[m0(λ)],

the Pieri formula (A.2) can be condensed into the more compact form

Pλ(x)

n
∑

j=1

(xj + x−1
j ) = a[m0(λ)] +

∑

1≤j≤n
λ−ej∈Λn

τj [mλj
(λ)]Pλ−ej (x) (A.3)

+
∑

1≤j≤n
λ+ej∈Λn

τ−1
j (1 − cδλj

qm0(λ)−1)[mλj
(λ)]Pλ+ej (x).
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