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THE SEMI-INFINITE ¢-BOSON SYSTEM
WITH BOUNDARY INTERACTION

J.F. VAN DIEJEN AND E. EMSIZ

ABSTRACT. Upon introducing a one-parameter quadratic deformation of the
g-boson algebra and a diagonal perturbation at the end point, we arrive at
a semi-infinite g-boson system with a two-parameter boundary interaction.
The eigenfunctions are shown to be given by Macdonald’s hyperoctahedral
Hall-Littlewood functions of type BC. It follows that the n-particle spectrum
is bounded and absolutely continuous and that the corresponding scattering
matrix factorizes as a product of two-particle bulk and one-particle boundary
scattering matrices.

1. INTRODUCTION

The g-boson system [BIK] is a lattice discretization of the one-dimensional quan-
tum nonlinear Schrodinger equation [G2], [Gl [S] built of particle creation
and annihilation operators representing the g-oscillator algebra [KS| Ch. 5]. Its
n-particle eigenfunctions are given by Hall-Littlewood functions [DE]. In
the present paper we study a system of g-bosons on the semi-infinite lattice with
boundary interactions, in the spirit of previous works concerned with the quantum
nonlinear Schrodinger equation on the half-line [G1l [CC ITW].

Specifically, by introducing at the end point creation and annihilation operators
representing a quadratic deformation of the g-oscillator algebra together with a
diagonal perturbation, we arrive at the hamiltonian of a g-boson system on the
semi-infinite integer lattice endowed with a two-parameter boundary interaction.
By means of an explicit formula for the action of the hamiltonian in the n-particle
subspace, it is deduced that the Bethe Ansatz eigenfunctions are given by Macdon-
ald’s three-parameter Hall-Littlewood functions with hyperoctahedral symmetry
associated with the BC-type root system [M]| §10].

It follows that the g-boson system fits within a large class of discrete quan-
tum models with bounded absolutely continous spectrum for which the scattering
behaviour was determined in great detail by means of stationary phase techniques
[RLD3]. In particular, the n-particle scattering matrix is seen to factorize as a prod-
uct of explicitly computed two-particle bulk and one-particle boundary scattering
matrices.
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2. SEMI-INFINITE ¢-BOSON SYSTEM

Let
F =P Fn) (2.1)

neN

denote the algebraic Fock space consisting of finite linear combinations of f,, €
F(Ap), n € N := {0,1,2,...}, where F(A,) stands for the space of functions
f A, — C on the set of partitions of length at most n:

An:{)\z()\l,,)\n)ENn|)\12)\22Z)\n}, (22)

with the additional convention that Ag := {0} and F(A¢) := C. For I € N, we
introduce the following actions on f € F(A,) C F:

(Buf)A) = F(BIA) (A€ An-1)
ifn>0and 5 f :=0if n =0,

. mi(N)](1 — e gmeM 1 ) if my(A) >0
(87 1)) = § N = RaEEDIEA) ) =20y,
0 otherwise
(@D = g (A € An),
with ¢, ¢ € R such that |q| # 0,1 and k € Z. Here
1 forl=0, 1—qg™ 0 form=20
5l = . ) [m] = = _ )
0 otherwise 1—g¢q 1+q+--+qgm ! form>0

and the multiplicity m;(\) counts the number of parts A;, 1 < j < n of size
Aj =1 (so mg(A), A € A, is equal to n minus the number of nonzero parts), while
BiA € Apg1 and BiA € A,—1 stand for the partitions obtained from A € A, by
inserting/deleting a part of size [, respectively (where it is assumed in the latter
situation that m;(\) > 0). It is clear from these definitions that 3, 8; and g™ **
map F(A,) into F(Ap—1), F(Ans1) and F(A,,), respectively (with the convention
that F(A_1) is the null space).

The operators in question represent a quadratic deformation of the g-boson field
algebra at the boundary site | = 0 parametrized by the constant c:

Big™t = ¢V By, Brg™Nt =N

ﬂlﬂ[* = [Nl + 1](1 - C5qu0)7 [ﬂlvﬁl*]q =1- Calquo (233)
and preserving the ultralocality:
(B1; Br] = 181", Br] = [Ni, Ni] = [Ni, Bk] = [N1, Bi) = [B1, B;] =0 (2.3b)

for | # k (where [A,B] := AB — BA, [A,B], := AB — ¢BA, and [N, +r] :=
(1—¢™*)/(1-q)).

When interpreting the characteristic function |A) € F(A,,) supported on A € A,
as a state representing a configuration of n particles on N such that m;(\) particles
are siting on the site [ € N, it is clear that the operators 5; and 3} act as particle
annihilation and creation operators:

BN = {|51A> if my(\) > 0

. s BEIA) = [mu(N) + 1](1 = edig™N)[BrA),
0 otherwise
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while ¢™' counts the number of particles at the site [ (as a power of q):
¢"A) = g™V,

The dynamics of our g-boson system is governed by a hamiltonian built of left
and right hopping operators together with a diagonal boundary term:

H, = a[No] + Z(ﬁlﬂﬂ? + Bl B1)s (2.4)
leN

a € R. This hamiltonian constitutes a well-defined operator on F (2] as for any
f e F(A,) and A € A, the infinite sum (H,f)()\) contains only a finite number of
nonvanishing terms.

3. THE n-PARTICLE HAMILTONIAN AND ITS EIGENFUNCTIONS

By construction Hy (Z:4]) preserves the n-particle subspace F(Ay,). The following
proposition describes the action of the hamiltonian in this subspace explicitly.

Proposition 3.1 (n-Particle hamiltonian). For any f € F(A,) and A € A,,, one
has that

(Hy f)(A) = almo(N)]f(A) +
> A =ehg™V Ny, MIFA+e)+ Y [ma, VIF =€),

1<j<n 1<j<n
>\+€jEAn )\—Ej €Ay,
where e, ..., e, refer to the unit vectors comprising the standard basis of Z".

Proof. It is clear from the definitions that ([No]f)(A) = [mo(A)]f(A), and that for
any [ € N:

[ (NI = caig™ DN F (B BiA) i () > 0,

0 otherwise,

(Bra B )N = {
where 37 1A = A +e; with j = min{k | \r, =} (so [ = \;), and

[mua (N1 (B B A) i muga(A) >0,
0 otherwise,

(ﬂl*ﬂﬂlf)(/\) = {

where 8118/ A =X —e; with j = max{k | Ay =1+ 1} (sol=A; —1). O

The n-particle hamiltonian has Bethe Ansatz eigenfunctions given by the follow-
ing plane wave expansion

Pe(N) == Z Ce€, )etMeta), (3.1a)
oES,
ec{£1}"

with expansion coeflicients of the form

H 1 —ae%i + ce™ 2%

c§) = T (3.1b)
1<j<n
1 —ge "&=8k)\ /1 — ge—H(&i+Ek)
% H ( 1_q:71_(5j7§k) )( 1 —q:*i(ffrﬁk) )
1<j<k<n
Here (-, -) denotes the standard inner product on R™, €&, := (€1€s,, €280s, - - -, €n&o, ),

and the summation is meant over all permutations ¢ in the symmetric group S,
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and all sign configurations € = (ey,...,€,) € {1,—1}". Viewed as a function of the
spectral parameter £ = (£1,...,&,) in the fundamental alcove
A={(&, &, &) ER"[7>&>6E > > >0} (3.2)

the expression ¢¢(A), A € A,, amounts to Macdonald’s three-parameter Hall-Littlewood
polynomial with hyperoctahedral symmetry associated with the root system BC),
[N, §10).

Proposition 3.2 (Bethe Ansatz eigenfunctions). The n-particle Bethe Ansatz wave
function ¢¢, £ € A solves the eigenvalue equation

Hype = En(E)de,  En(€) = 2Zcos<§j>- (3.3)

Proof. Tt follows from Proposition 3] that the stated eigenvalue equation boils
down to the following identity

almo(N]ee(\) + D (1= edn g™ [ma, (VoA + ;)

1<j<n
)\Jre]‘ e,

+ Y oy (W]ge(A — e5) = 206 (X E:WSQ

1<j<n
)\76]‘ eA,

which is in turn equivalent to the Pieri formula for the hyperoctahedral Hall-
Littlewood function in Eq. (A3]) of Appendix [Al O

4. DIAGONALIZATION

From now on it will be assumed unless stated otherwise that 0 < |¢| < 1 and
that the boundary parameters a and ¢ are chosen such that the roots r1, ro of the
quadratic polynomial 72 — ar + ¢ belong to the interval (—1,1):

a=r11+ry and ¢ = rire with 71,72 € (—=1,1). (4.1)
Let L2(A, Ad€) be the Hilbert space of functions f : A — C characterized by
the inner product
. 1
g 1 &)d h A(€) = 4.2
-t = oy [, TS, whore €)= e (42

with C(€) given by Eq. (B.ID). It is well-known that for the parameter regime in
question Macdonald’s hyperoctahedral Hall-Littlewood functions form an orthogo-
nal basis of L?(A4, Ad¢) [M, §10]:

(6. 6(1)a = {g‘/ WoEA=n (4.30)
where
N = (6 Qmon) [[Ime]! (4.3b)
LeN
with (¢

Dm:=1—c)(1—cq) - (1— cqm 1) (and the convention that (c;q)o := 1)
1] -

and [m]! := (¢; ¢)m/(q; Q)T" = [m][m -[2][1]. By combining the orthogonality
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in Egs. ([@3a), (4.3D) with Proposition[32] the spectral decomposition of H, in the
n-particle Hilbert space ¢2(A,,, N=!) C F(A,) characterized by the inner product

(fgn =Y FNgIN (V) (4.4)

AEA,

becomes immediate.

Theorem 4.1 (Diagonalization). For 0 < |q| < 1 and values of the boundary
parameters a and ¢ in the orthogonality domain ([&Il), the g-boson Hamiltonian
H, 24) restricts to a bounded self-adjoint operator in (*(N,, N=1) with purely
absolutely continuous spectrum. More specifically, its spectral decomposition reads
explicitly

H,=F; ' oFEoF,, (4.5)
where Fy : (2(Ay, N71) — L2(A, AdE) denotes the unitary Fourier transform asso-
ciated with the hyperoctahedral Macdonald-Hall-Littlewood basis:

(Faf)(€) = (f.0e)n =D FNoe(MIN (V) (4.6a)

AEA,

(f € C2(Ay,, N71Y)) with the inversion formula given by

e [ FOea©E (o)
(2m)™ Ja

(f € L2(A,Adf)), and (Ef)(€) == E,(€)f(€) stands for the bounded real multi-
plication operator in L*(A, Ad€) associated with the n-particle eigenvalue E,(€)
3.

In the Fock space H := @D,,5¢ *(An, N71), built of all linear combinations
>0 Cnfn with ¢, € C and f,, € 2(Ay, N71) such that Y, < |en*(fas fa)n <
o0, the g-boson hamiltonian H, (24) constitutes an unbounded operator that is
essentially self-adjoint on the dense domain D := F N'H (because for z € C\ R the
range (H,—2)D is dense in H and lim,, o0 SUpge 4 [En (§)] = 00). The representation
of the deformed g¢-boson field algebra in Section 2] on the other hand gives rise to a
bounded representation on H:

(Fg ' HO) = (F.oN)a =

1+ ||
1—gq

1 1)
(5 1,5 o <

(@ F,dN fon < (F, Fons

preserving the x-structure:

Brfrgns1 = (. Bighn  and ("' f,9)n = (£, g)n-

Remark 4.2. Upon rescaling the lattice A,, (22 and performing an appropriate
continuum limit [D2] Sec. 5], Macdonald’s hyperoctahedral Hall-Littlewood func-
tions tend to the eigenfunctions of the quantum nonlinear Schrédinger equation on
the half-line with a boundary interaction [GIl [GLM| HLL [CC| [TW]. In particular,
it follows from [D2] Sec. 5.3] that for a = 0 (which corresponds to a reduction from
type BC to type C root systems) a renormalized version of the g-boson hamiltonian

Buf, Bifn—1 < (fs Fhns

(s Fhns
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H, ([Z4) then converges in the n-particle subspace in the strong resolvent sense to
a hamiltonian that can be written formally as:

Za 2—|—g Z z; —xk) +6(x; + k) + 9o Z 3(x;)

1<j<k<n 1<j<n

with g, go > 0 (where §(-) stands for the ‘delta potential’).

5. FACTORIZED SCATTERING

The similarity transformation
H:=N"Y2H,N/? (5.1)

turns the m-particle g-boson hamiltonian in Proposition Bl into a self-adjoint op-
erator in £2(A,,) diagonalized by the normalized wave function

1r12

V() == eF™|COITIN ) 2g¢(N)
=N (N2 Z sign(eo)S(ef, )1/ 2eilrtAeta), (5.2a)
660’{63517}"

with £ € A (B2), sign(eo) := €1+ - epsign(o), p:=(n—1,n—2,...,2,1,0), and
S@ =TI s&-es&+e) [ s(&) (5.2)

1<j<k<n 1<j<n
where
s(z) = 1-ge™™ with  s(z)Y/2 = 1-ge™™ (5.2¢)
"1 —gei® |1 — gei®| '
and
1— —ix —2ix 1— —iT —2ix
solx) = ae”’ + ce _ with So($)1/2 _ ae” " +ce (5.2d)

1 — qet® + Ce2zx |1 _ aeiz + Ce2ix| .

Specifically, one has that H = F~! o E o F where F : (2(A,,) — L2(A, d¢) denotes
the unitary Fourier transformation determined by the kernel ¥¢()\) (and E is now
interpreted as a bounded multiplication operator in L?(4,d¢)). For q,a,c — 0
the n-particle g-boson hamiltonian H (G.I) simplifies to a hamiltonian modeling
impenetrable bosons on N:

(HoYN) = D fO+e)+ Y. fh—e)

1<j<n 1<j<n
AejeNy, A—e; €A,
(f € £2(A,,)), which is diagonalized by the conventional Fourier transform Fp :
(2(A,,) — L2(A, d€) obtained from F by setting S(€) =1, N(A) = 1
As a very special case of the results in [D3] Sec. 4], it now follows that the wave-
and scattering operators comparing the g-boson dynamics

€N = oz [ CEOFOVNE - 63

with the corresponding impenetrable boson dynamics generated by Hy are governed
by a unitary S-matrix S : L?(A,d¢) — L?(A,d€) of the form

(SHIE) = S(ecko) f(€)  (f € Co(Ar). (5-4)
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Here Cp(A,) denotes the dense subspace of L?(A,d¢) consisting of smooth test
functions with compact support in the open dense subset A, C A for which the
components of VE,(§) = (—2sin(&),...,—2sin(¢,)) do not vanish and are all
distinct in absolute value, and the sign-configuration e, and the permutation o¢ are
such that the components of VE, (e:{s, ) are all positive and ordered from large to
small. Specifically, by comparing the large-time asymptotics of oscillatory integrals
of the form in Eq. (53) for the dynamics generated by H and Hy one concludes
that [D3, Thm. 4.2 and Cor. 4.3]:

Theorem 5.1 (Wave and scattering operators). The operator limits

OF =5 — tiirinoo e/t g=itHo (5.5a)

converge in the strong (?(A,,)-norm topology and the corresponding wave operators
QF are given by unitary operators in (2(A,,) of the form
OF = F 108726 Fy. (5.5b)

Hence, the scattering operator comparing the dynamics of H and Hy is given by the
unitary operator

S = (Qj)ilﬂ; = Foil OSOFO. (55C)

APPENDIX A. PIERI FORMULA FOR MACDONALD’S HYPEROCTAHEDRAL
HALL-LITTLEWOOD FUNCTION

Let 2 := (z1,...,7,) = (e%1,...,e%") and 7 := (11,...,7n), where 7; = rg"~J
(j=1,...,n) withr = § +/(5)? — c (cf. Eq. (&I)). Upon setting
T
Py(z) = W¢£(A) (A € An), (A.1)

where N(0) is given by Eq. ([£3H) with A\ = 0, the hyperoctahedral Hall-Littlewood
function is renormalized to have unital principal specialization values: Py(7) = 1
(VA € A,) ML §10]. With this normalization, the following Pieri formula holds:

n

P)\(x)Z(xj tal - ) = (A.2)

=1
Z VE(A) (Pae, (2) = Pa(x)) + Z Vi (A) (Pa—e, (z) — Pr(2)) ,
AreEn, AR,

where

Vi) =7t (M) H (1 — q1+k—j) (1 + c(S)\quqLankfj)’

J J 1+ C(S)\j q2(n*j) ik<n 1-— qk—j 1+ C(S)\jq2"_k_j
Ae=A;
_ 1—g'ti=k
vo=n 1 (=)
1<k<j
Xe=Xj

The formula in question is readily obtained through degeneration from an anal-

ogous Pieri formula for a BC,-type Macdonald function that arises as a special

case of the Pieri formulas in [DI} Sec. 6.1]. Specifically, by substituting ty = ¢'/2,
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t3 = —q'/? (which amounts to a reduction from the Macdonald-Koornwinder func-
tion to the BC),-type Macdonald function) in the Pieri formula of [DI, Egs. (6.4),
(6.5)] with coefficients taken from [DI Eqgs. (6.12), (6.13)], the relation in Eq.
(A2) is retrieved for ¢ — 0 (which corresponds to a transition from Macdonald
type functions to Hall-Littlewood type functions). Notice in this connection that
the parameters ¢, a, ¢ (and r) of the present paper are related to the parameters ¢,
to, t1 of Ref. [DI] via ¢ =t, a =to + t1, ¢ = tot1 (and r = to).
Since

Vi) =757 (1 = e, g™V V], V() = mlma, ()],

and

n

Smrn = 3wl Y 7 e, ()] = rlme(A,
R, SR,

the Pieri formula (A.2) can be condensed into the more compact form

(@)D (wj +a7 ) =afmoN]+ D 7lma, (VP (2) (A.3)
j=1 1<j<n
)\78‘]'6[\77,
+ > T = edn, g™V ) [ma, (V)] P, (@),
1<j<n
Ate; €Ay,
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