
ar
X

iv
:1

30
8.

22
37

v1
  [

m
at

h-
ph

] 
 9

 A
ug

 2
01

3

DIAGONALIZATION OF THE INFINITE q-BOSON SYSTEM

J.F. VAN DIEJEN AND E. EMSIZ

Abstract. We present a hierarchy of commuting operators in Fock space con-
taining the q-boson Hamiltonian on Z and show that the operators in question
are simultaneously diagonalized by Hall-Littlewood functions. As an applica-
tion, the n-particle scattering operator is computed.

1. Introduction

The q-boson model constitutes a one-dimensional exactly solvable particle system
in Fock space [BIK] based on the q-oscillator algebra [KS, Ch. 5]. In the case of
periodic boundary conditions (i.e. with particles hopping on the finite lattice Zm),
the integrability, the spectrum, and the eigenfunctions of the Hamiltonian were
analyzed by means of the algebraic Bethe Ansatz method [BIK]. Remarkably,
these eigenfunctions turn out to be Hall-Littlewood functions [T, K] (cf. also [J]
for an alternative construction of Hall-Littlewood functions in Fock space based
on deformed vertex operator algebras, with applications in the study of KP τ -
functions arising from generating functions of weighted plane partitions [FW]).
With the aid of explicit expressions for the commuting quantum integrals arising
from an infinite-dimensional solution of the Yang-Baxter equation, it was very
recently demonstrated [K] that the eigenvalue problem for the q-boson system on
Zm is in fact equivalent to that of an integrable discretization [D] of the celebrated
delta Bose gas on the circle [LL].

The present work addresses the spectral problem and the integrability of the
q-boson system on the infinite lattice Z. Specifically, we demonstrate that the
eigenfunctions of this infinite q-boson system are again given by Hall-Littlewood
functions and provide explicit formulas for a complete hierarchy of operators com-
muting with the Hamiltonian; these formulas are natural infinite-dimensional ana-
logues of the above-mentioned expressions in [K] for the finite q-boson system on
Zm. Finally, the n-particle scattering operator is computed as an application of
Ruijsenaars’ general scattering results in [R2].

2. The infinite q-boson system

Given n ≥ 0 integral, let F(Λn) be the space of complex functions f : Λn → C

on the fundamental domain

Λn := {(λ1, . . . , λn) ∈ Z
n | λ1 ≥ λ2 ≥ · · · ≥ λn} (2.1)

Date: March 2013.
Work was supported in part by the Fondo Nacional de Desarrollo Cient́ıfico y Tecnológico

(FONDECYT) Grants # 1130226 and # 11100315, and by the Anillo ACT56 ‘Reticulados
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2 J.F. VAN DIEJEN AND E. EMSIZ

of the integral lattice Zn modulo the action of the permutation group Sn, where
Λ0 := {0} and F(Λ0) := C by convention. We will refer to the infinite direct sum

F :=
⊕

n≥0

F(Λn) (2.2)

built of all finite linear combinations of (arbitrary) functions fn ∈ F(Λn), n =
0, 1, 2, . . . as the algebraic Fock space.

For λ ∈ Λn and l ∈ Z, let the multiplicity ml(λ) count the number of components
λj , 1 ≤ j ≤ n such that λj = l. We write β∗

l λ for the point of Λn+1 obtained from
λ by inserting an additional component with value l and—assuming ml(λ) > 0—we
write βlλ ∈ Λn−1 for the result of the inverse operation that deletes a component
with value l from λ. Upon defining the following actions on f ∈ F(Λn):

(βlf)(λ) :=

{

f(β∗
l λ) if n > 0 (λ ∈ Λn−1),

0 if n = 0

(β∗
l f)(λ) :=

{

[ml(λ)]f(βlλ) if ml(λ) > 0

0 otherwise
(λ ∈ Λn+1),

(Nlf)(λ) := qml(λ)f(λ) (λ ∈ Λn),

(2.3)

where 0 < q < 1 and

[m] :=
1− qm

1− q
= 1 + q + · · ·+ qm−1

for m = 0, 1, 2, . . ., it is readily verified that one ends up with a representation of
the q-boson field algebra on F :

[βl, βk] = [β∗
l , β

∗
k ] = [Nl, Nk] = [Nl, βk] = [Nl, β

∗
k] = [βl, β

∗
k ] = 0 (2.4a)

for l 6= k, and

Nlβ
∗
l = qβ∗

l Nl, βlNl = qNlβl, [βl, β
∗
l ] = Nl, βlβ

∗
l − qβ∗

l βl = 1. (2.4b)

Here the brackets refer to the (ordinary) commutator product. By construction βl,
β∗
l and Nl map F(Λn) into F(Λn−1), F(Λn+1) and F(Λn), respectively (with the

convention that F(Λ−1) = {0}).
The Hamiltonian of the q-boson system

Hq =
∑

l∈Z

(al + a∗l ) (2.5a)

is built of hopping operators

al := β∗
l+1βl and a∗l := βl+1β

∗
l (2.5b)

for which the n-particle subspace F(Λn) is stable. These hopping operators repre-
sent the plactic subalgebra of the q-boson field algebra [K, Sec. 3.4]:

alak = akal (2.6a)

for |l − k| > 1 (nonlocal commutativity) and

al+1a
2
l + qa2l al+1 = (1 + q)alal+1al

a2l+1al + qala
2
l+1 = (1 + q)al+1ajal+1

(2.6b)

(quantum Knuth relations), with analogous relations (involving reversely ordered
products) for a∗l , l ∈ Z. The q-boson Hamiltonian Hq (2.5a), (2.5b) constitutes
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a well-defined operator on F as for any f ∈ F(Λn) and λ ∈ Λn the infinite sum
(Hqf)(λ) containes only a finite number of nonvanishing terms.

To facilitate the comparison with previous literature on the q-boson system [BIK,
T, K], let us denote the characteristic function in F(Λn) supported on λ ∈ Λn by
|λ〉. Then one has that

βl|λ〉 =

{

|βlλ〉 if ml(λ) > 0

0 otherwise
, β∗

l |λ〉 = [ml(λ) + 1]|β∗
l λ〉, Nl|λ〉 = qml(λ)|λ〉.

In the standard physical interpretation the state |λ〉 encodes a configuration of
n particles on Z—q-bosons—with ml(λ) particles occupying the site l ∈ Z. The
operators β∗

l and βl play the role of particle creation and annihilation operators
and Nl counts the number of particles at the site l (as a power of q). The hopping
operators al and a∗l move a particle from l to l + 1 and vice versa.

3. Integrability

To any partition η = (η1, . . . , ηp) with η1 ≥ η2 ≥ · · · ≥ ηp ≥ 1, we associate the
following hopping operators on F :

mη(a) :=
∑′

σ∈Sp

∑

l1<l2<···<lp

a
ησ1

l1
· · · a

ησp

lp
,

mη(a
∗) :=

∑′

σ∈Sp

∑

l1>l2>···>lp

(a∗l1)
ησ1 · · · (a∗lp)

ησp .
(3.1)

Here the (infinite) inner summations are over all strictly monotonous p-tuples
(l1, . . . , lp) of indices in Z; the primes attached to the (finite) outer summations in-
dicate that these are meant over the orbit of all distinct compositions (ησ1

, . . . , ησp
)

obtained by reordering the parts of η via permutations

σ =

(

1 2 · · · p
σ1 σ2 · · · σp

)

belonging to the symmetric group Sp. Notice that for given f ∈ F(Λn) and λ ∈ Λn,
the infinite sums (mη(a)f)(λ) and (mη(a

∗)f)(λ) contain only a finite number of
nonzero terms, so these operators are again well-defined on F . For r ∈ N we now
set

Hr :=
∑

|η|=r

mη(a)

[η]!
and H∗

r :=
∑

|η|=r

mη(a
∗)

[η]!
, (3.2)

where [η]! = [(η1, . . . , ηp)]! := [η1]! · · · [ηp]! and [m]! := [m][m − 1] · · · [1] for m =
0, 1, 2, . . . (with the convention that [0]! = 1), and |η| := η1+ · · ·+ηp (so the (finite)
summation in Eq. (3.2) is over all partitions of r). The q-boson Hamiltonian (2.5a),
(2.5b) becomes in terms of these operators:

Hq = H1 +H∗
1 . (3.3)

Our main result is the following explicit formula for the action of Hr and H∗
r in

the n-particle subspace F(Λn), which will be proven shortly in the next section.
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Theorem 3.1 (Explicit action of H
(∗)
r in F(Λn)). For any f ∈ F(Λn) and λ ∈ Λn,

one has that

(Hrf)(λ) =
∑

J⊂{1,2,...,n},|J|=r
λ−eJ∈Λn

Vλ,Jc f(λ− eJ),

(H∗
r f)(λ) =

∑

J⊂{1,2,...,n},|J|=r
λ+eJ∈Λn

Vλ,J f(λ+ eJ),
(3.4a)

where |J | denotes the cardinality of J ⊂ {1, . . . , n}, Jc := {1, . . . , n} \ J , eJ :=
∑

j∈J ej (with e1, . . . , en referring to the standard unit basis of Zn) and

Vλ,J :=
∏

1≤j<k≤n
j∈J,k∈Jc

λj=λk

1− qk−j+1

1− qk−j
. (3.4b)

In particular, for r > n the n-particle subspace F(Λn) belongs to the kernel of
the operators Hr and H∗

r .

In [DE, App. C] the discrete difference operators Hr on the RHS of Eqs. (3.4a),
(3.4b) were obtained (up to a trivial similarity transformation and replacing q
by q2) as n algebraically independent commuting central elements arising from
a difference-reflection representation of the affine Hecke algebra associated with
GL(n;C). Since Hn acts on f ∈ F(Λn) simply as an overall translationonal sym-
metry: (Hnf)(λ) = f(λ− (e1 + · · ·+ en)), it is immediate from the above formulas
that the discrete difference operators in F(Λn) corresponding to H∗

r can be written
in turn as Hn−rH

−1
n (with the convention that H0 := 1). The upshot is that all

Hr and H∗
r (3.2) commute as operators on F , which proves the integrability of the

infinite q-boson system.

Corollary 3.2 (Integrability). All operators Hr and H∗
r in Eq. (3.2) mutually

commute on F :

[Hr, Hr′ ] = 0, [H∗
r , H

∗
r′ ] = 0, [Hr, H

∗
r′ ] = 0 (∀r, r′ ∈ N), (3.5)

and they restrict to n algebraically independent operators on the invariant n-particle
subspace F(Λn).

A quasi-periodic counterpart of the formula in Theorem 3.1 for the finite q-
boson system on Zm can be found in Ref. [K] (see Prp. 3.11 and Prp. 6.1). For
Dirichlet type boundary conditions corresponding to the case of a vanishing quasi-
periodicity parameter, one arrives—in the limit when the lattice size parameter
m tends to infinity—at an analogue of the commutativity in Corollary 3.2 for the
q-boson system on the (semi-)infinite lattice N as a consequence of [K, Cor. 3.3]
(cf. also [D, Thm. 5.3]). In principle, the commutativity in Corollary 3.2 for the
q-boson system on Z could also be recovered along these lines upon centering the fi-
nite lattice around the origin before performing the infinite size limit. Alternatively,
the commutativity in question can also be viewed as a degeneration of the commu-
tativity of the discrete Macdonald-Ruijsenaars operators [R1], [M1, Sec. VI.6] via
a limit transition (that takes Macdonald symmetric functions to Hall-Littlewood
symmetric functions).
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It is straightforward from Theorem 3.1 and Eq. (3.3) that the action of the
q-boson Hamiltonian Hq (2.5a), (2.5b) in the n-particle subspace F(Λn) is given by

(Hqf)(λ) =
∑

1≤j≤n, ǫ=±1
λ+ǫej∈Λn

[mλj
(λ)]f(λ+ ǫej) (3.6)

(f ∈ F(Λn), λ ∈ Λn).

4. Proof of the main Theorem 3.1

We will determine the action of H∗
r on f ∈ Fn by direct computation in three

steps; the calculation ofHrf is completely analogous so its details will be suppressed
(but cf. Remark 6.3 below for an alternative shortcut yielding the action ofHr from
that of H∗

r via adjointness).

4.1. In the first step Vλ,J (3.4b) (with λ, λ + eJ ∈ Λn) is rewritten in q-binomial
form by means of well-known product formulas for the Poincaré polynomial of the
symmetric group:

Sn(q) :=
∑

σ∈Sn

qℓ(σ) =
∏

1≤j<k≤n

1− q1+k−j

1− qk−j
=

∏

1≤j≤n

1− qj

1− q
= [n]! (4.1a)

(where ℓ(σ) denotes the length of σ). Since the stabilizer subgroup Sn,λ := {σ ∈
Sn | σλ = λ} is isomorphic to the direct product

∏

l∈Z
Sml(λ), the corresponding

Poincaré polynomial factorizes in turn as

Sn,λ(q) =
∑

σ∈Sn

σλ=λ

qℓ(σ) =
∏

1≤j<k≤n
λj=λk

1− q1+k−j

1− qk−j
=

∏

l∈Z

[ml(λ)]! (4.1b)

and similarly Sn,λ ∩ Sn,λ+eJ
∼=

∏

l∈Z
(Sml,J (λ) × Sml,Jc (λ)) so

(Sn,λ ∩ Sn,λ+eJ )(q) = (4.1c)

∏

j,k∈J
j<k, λj=λk

1− q1+k−j

1− qk−j

∏

j,k∈Jc

j<k, λj=λk

1− q1+k−j

1− qk−j
=

∏

l∈Z

[ml,J(λ)]![ml,Jc (λ)]!,

where ml,J(λ) denotes the number of components λj , j ∈ J such that λj = l (i.e.
ml,J(λ) +ml,Jc(λ) = ml(λ)). Division of Eqs (4.1b) and (4.1c) now reveals that

Vλ,J = Vλ,JVλ,Jc =
Sn,λ(q)

(Sn,λ ∩ Sn,λ+eJ )(q)
=

∏

l∈Z

[

ml(λ)

ml,J(λ)

]

(4.2)

where
[

m
k

]

:= [m]!
[k]![m−k]! for m ≥ k ≥ 0. (Notice in this connection that here Vλ,Jc =

1, because the product in question is empty as consequence of the assumption that
λ+ eJ belongs to Λn.)

4.2. It is clear by induction on m ≥ 1 that for any f ∈ Fn and λ ∈ Λn:

((a∗l )
mf)(λ) =

{

[m]!
[

ml(λ)
m

]

f(aml λ) if m ≤ ml(λ),

0 if m > ml(λ),
(4.3)

where in the former case aml λ = λ+ ed + ed+1 + · · ·+ ed+m−1—with d = d(λ, l) :=
min{j | λj = l}—belongs to Λn (because of the condition that m ≤ ml(λ)). By
iterating the formula in Eq. (4.3) it readily follows that—for l1 > l2 > · · · > lp and
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a composition (m1,m2, . . . ,mp) obtained by reordering the parts of the partition
η = (η1, η2, . . . , ηp) (with ηp ≥ 1)—the action of the corresponding monomial in
mη(a

∗) (3.1) is given by

((a∗l1)
m1 · · · (a∗lp)

mpf)(λ) = [η]!

[

ml1(λ)

m1

]

· · ·

[

mlp(λ)

mp

]

f(a
mp

lp
· · ·am1

l1
λ)

= [η]!
∏

l∈Z

[

ml(λ)

ml,J(λ)

]

f(λ+ eJ) (4.4)

provided mk ≤ mlk(λ) for k = 1, . . . , p, and equal to zero otherwise. Here

J = {dk, dk + 1, . . . , dk +mk − 1 | k = 1, . . . , p} (4.5)

with dk := d(λ, lk) = min{j | λj = lk}. The condition that mk ≤ mlk(λ) for
k = 1, . . . , p guarantees that J is a subset of {1, . . . , n} of cardinality |J | = m1 +
· · ·+mp = |η| and that λ+ eJ = a

mp

lp
· · · am1

l1
λ ∈ Λn.

4.3. From Steps 4.1 and 4.2 one learns that for r ≤ n the action (H∗
r f)(λ) is

built of a sum of terms of the form Vλ,Jf(λ + eJ) (cf. Eqs. (4.2) and (4.4)), with
J ⊂ {1, . . . , n} satisfying that |J | = r and λ + eJ ∈ Λn. For r > n on the other
hand (H∗

r f)(λ) vanishes (since then for all monomial terms m1 + · · ·+mp = |η| =
r > n ≥ ml1(λ) + · · ·+mlp(λ)).

To complete the proof of the explicit formula for H∗
r f in Theorem 3.1, it only

remains to infer that in the former situation all terms on the RHS actually do occur
and with multiplicity 1. Indeed, this is clear from the observation that given λ ∈ Λn

and J ⊂ {1, . . . , n} such that λ+ eJ ∈ Λn, the corresponding l1 > l2 > · · · > lp and
m1,m2, . . . ,mp for which

([m1]! · · · [mp]!)
−1((a∗l1)

m1 · · · (a∗lp)
mpf)(λ) = Vλ,Jf(λ+ eJ)

are uniquely retrieved by ordering the elements of the set {λj | j ∈ J} = {l1, . . . , lp}
and picking mk = mlk,J(λ), k = 1, . . . , p.

5. Diagonalization

For λ ∈ Λn and a spectral parameter ξ = (ξ1, ξ2, . . . , ξn) taken from the open
fundamental alcove

A := {ξ ∈ R
n | π > ξ1 > ξ2 > · · · > ξn > −π}, (5.1)

let us define the n-variable Hall-Littlewood function as [M1, Ch. III]

φξ(λ) :=
∑

σ∈Sn

C(ξσ)e
iλ·ξσ , (5.2a)

with ξσ := (ξσ1
, ξσ2

, . . . , ξσn
) and

C(ξ) :=
∏

1≤j<k≤n

1− qei(ξk−ξj)

1− ei(ξk−ξj)
. (5.2b)

It is immediate from the explicit action in Theorem 3.1 and the Pieri formulas for
the Hall-Littlewood functions [M1, Sec. III.3] that the action of the commuting
operators Hr and H∗

r (3.2) in the n-particle subspace F(Λn) is diagonal on φξ

(5.2a), (5.2b).



INFINITE q-BOSON SYSTEM 7

Corollary 5.1 (Diagonalization). For any spectral value ξ in the fundamental al-
cove A (5.1), the n-variable Hall-Littlewood function φξ (5.2a), (5.2b) constitutes a
joint eigenfunction for the commuting operators Hr and H∗

r (3.2) in F(Λn):

Hrφξ = er(e
−iξ)φξ and H∗

rφξ = er(e
iξ)φξ (r = 1, . . . , n), (5.3a)

with er(e
−iξ) := er(e

−iξ1 , . . . , e−iξn) and er(e
iξ) := er(e

iξ1 , . . . , eiξn), where er
refers to the rth elementary symmetric function

er(x1, . . . , xn) :=
∑

1≤j1<j2<···<jr≤n

xj1xj2 · · ·xjr . (5.3b)

Proof. By Theorem 3.1, the eigenvalue equations in Eqs. (5.3a), (5.3b) become
explicitly:

er(e
−iξ)φξ(λ) =

∑

J⊂{1,2,...,n},|J|=r
λ−eJ∈Λn

Vλ,Jcφξ(λ− eJ ),

er(e
iξ)φξ(λ) =

∑

J⊂{1,2,...,n},|J|=r
λ+eJ∈Λn

Vλ,Jφξ(λ+ eJ),

respectively. Both formulas boil down to well-known Pieri identities for the Hall-
Littlewood functions [M1, Sec. III.3]. In the form stated above the second identity
can e.g. be directly retrieved from [DE, Eq. (C.11)] and the first identity follows for
r < n from the second upon dividing by en(e

iξ) and replacing r by n− r, whereas
for r = n both identities are equivalent and reduce to the elementary translational
quasi-periodicity φξ(λ + e1 + · · · + en) = eiξ1+···+iξnφξ(λ) (which is manifest from
Eq. (5.2a)). �

It follows in particular that the Hall-Littlewood function φξ (5.2a), (5.2b) is
an eigenfunction of the q-boson Hamiltonian Hq (2.5a), (2.5b) in the n-particle
subspace F(Λn):

Hqφξ = ε(ξ)φξ with ε(ξ) := 2

n
∑

j=1

cos(ξj) (5.4)

(cf Eq. (3.3)).

6. Spectral analysis

To address the completeness of the above eigenfunctions for the infinite q-boson
system, we pass from our algebraic Fock space F (2.2) to a full-fledged Fock space

H :=
⊕

n≥0

ℓ2(Λn, δn), (6.1)

which is built of all linear combinations
∑

n≥0 cnfn—with cn ∈ C and fn ∈

ℓ2(Λn, δn)—such that
∑

n≥0 |cn|
2〈fn, fn〉n < ∞. Here the n-particle Hilbert space

ℓ2(Λn, δn) = H∩F(Λn) consists of the functions f ∈ F(Λn) such that 〈f, f〉n < ∞,
where

〈f, g〉n :=
∑

λ∈Λn

f(λ)g(λ)δn(λ) (f, g ∈ ℓ2(Λn, δn)) (6.2a)

with
δn(λ) := 1/Sn,λ(q) = 1/

∏

l∈Z

[ml(λ)]! (6.2b)
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(cf Eq. (4.1b)).
The representation of the q-boson algebra in Eq. (2.3) readily extends from the

dense domain

D := H ∩ F (6.3)

consisting of the finite linear combinations
∑

n≥0 cnfn—with cn ∈ C and fn ∈

ℓ2(Λn, δn)—to a bounded representation on the Fock space H (6.1). Indeed, it is
immediate from the definitions that for any f ∈ ℓ2(Λn, δn):

〈βlf, βlf〉n−1 ≤ (1− q)−1〈f, f〉n,

〈β∗
l f, β

∗
l f〉n+1 ≤ (1− q)−1〈f, f〉n, (6.4)

〈Nlf,Nlf〉n ≤ 〈f, f〉n

(where one exploits that δn+1,β∗

l
λ(q) = δn,λ(q)/[ml(λ) + 1] for all λ ∈ Λn and that

[m] ≤ 1/(1 − q) for all m = 0, 1, 2, . . .). The representation at issue moreover
preserves the ∗-structure:

〈β∗
l f, g〉n+1 = 〈f, βlg〉n and 〈Nlf, g〉n = 〈f,Nlg〉n (6.5)

(for all f ∈ ℓ2(Λn, δn) with g ∈ ℓ2(Λn+1, δn+1) and g ∈ ℓ2(Λn, δn), respectively).
The completeness of the eigenfunctions in Corollary 5.1 is now obvious from

the well-known fact that the Hall-Littlewood functions φξ(λ), λ ∈ Λn form an
orthogonal basis for the Hilbert space L2(A,∆dξ) with inner product

〈f̂ , ĝ〉∆ =
1

(2π)n

∫

A

f̂(ξ)ĝ(ξ)∆(ξ)dξ, where ∆(ξ) :=
1

|C(ξ)|2
(6.6)

with C(ξ) taken from Eq. (5.2b). More specifically, for any λ, µ ∈ Λn one has that
[M2, §10]

〈φ(λ), φ(µ)〉∆ =

{

1/δn(λ) if λ = µ,

0 otherwise.
(6.7)

The corresponding Fourier transform Fq : ℓ2(Λn, δn) → L2(A,∆dξ) defined by

(Fqf)(ξ) := 〈f, φξ〉n =
∑

λ∈Λn

f(λ)φξ(λ)δn(λ) (6.8a)

(f ∈ ℓ2(Λn, δn)) thus determines a Hilbert space isomorphism with the inversion
formula given by

(Fq

−1f̂)(λ) = 〈f̂ , φ(λ)〉∆ =
1

(2π)n

∫

A

f̂(ξ)φξ(λ)∆(ξ)dξ (6.8b)

(f̂ ∈ L2(A,∆dξ)).
By Corollary 5.1, this means that in the n-particle subspace ℓ2(Λn, δn) the higher

commuting q-boson Hamiltonians

Hq,r := Hr +H∗
r , r = 1, . . . , n, (6.9)

are unitarily equivalent to bounded self-adjoint multiplication operators Ê1, . . . , Ên

on L2(A,∆dξ) of the form

(Êrf̂)(ξ) := εr(ξ)f̂(ξ) (6.10a)

with

εr(ξ) := 2
∑

1≤j1<j2<···<jr≤n

cos(ξj1 + ξj2 + · · ·+ ξjr ), (6.10b)
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viz.

Hq,r = Fq

−1 ◦ Êr ◦ Fq, r = 1, . . . , n, (6.11)

on ℓ2(Λn, δn).

Theorem 6.1 (Spectral decomposition in ℓ2(Λn, δn)). The higher q-boson Hamilto-
nians Hq,1, . . . ,Hq,n (6.9) consitute n independent commuting bounded self-adjoint
operators on ℓ2(Λn, δn) with purely absolutely continuous spectrum. The spectral
decomposition of these Hamiltonians in the n-particle subspace ℓ2(Λn, δn) is given
explicitly by Eq. (6.11).

As a consequence, the infinite q-boson hierarchy

Hq,r = Hr +H∗
r , r ∈ N (6.12)

consists in turn of (commuting) symmetric operators in Fock space on the dense
domain D (6.3). The operators in question turn out to be essentially self-adjoint
and unbounded in H (6.1), because for z ∈ C \ R the range (Hq,r − z)D is dense
in H (as (Hq,r − z) maps ℓ2(Λn, δn) onto itself) and limn→∞ supξ∈A |εr(ξ)| = ∞,
respectively. This permits to adapt the integrability result in Corollary 3.2 to the
present setting as follows.

Theorem 6.2 (Integrability). The higher Hamiltonians Hq,r (6.12) of the infinite
q-boson hierarchy on D (6.3) extend uniquely to independent unbounded self-adjoint
operators in the Fock space H (6.1) with commuting resolvents (Hq,r − z)−1 (with
z ∈ C \ R and r ∈ N).

Remark 6.3. It is a priori clear already from the definition of Hr and H∗
r (3.2)

in terms of hopping operators—without need to resort to the explicit formula in
Theorem 3.1—that for given λ ∈ Λn and any f ∈ F(Λn) the values of (Hrf)(λ) and
(H∗

r f)(λ) involve only evaluations of f at a finite number of points in Λn. Hence,
for f in the subspace C0(Λn) ⊂ F(Λn)∩ ℓ2(Λn, δn) of functions with finite support
in Λn the infinite sums comprising Hrf and H∗

r f contain only a finite number of
nonvanishing monomial terms. The symmetry

〈Hrf, g〉n = 〈f,H∗
r g〉n (∀f, g ∈ C0(Λn)) (6.13)

then follows from the first relation in Eq. (6.5) (without invoking the spectral
decomposition in Eq. (6.11)). One can thus determine the action of Hr on C0(Λn)
from the action of H∗

r (and vice versa) by computing the adjoint with respect to
the inner product 〈·, ·〉n:

〈Hrf, g〉n = 〈f,H∗
r g〉n =

∑

λ∈Λn

δn(λ)f(λ)(H∗
r g)(λ)

=
∑

λ∈Λn

δn(λ)f(λ)
∑

J⊂{1,...,n},|J|=r
λ+eJ∈Λn

Vλ,Jg(λ+ eJ)

=
∑

λ∈Λn

δn(λ)g(λ)
∑

J⊂{1,...,n},|J|=r
λ−eJ∈Λn

Vλ,Jcf(λ− eJ),

where it was used in the last step that δn(λ− eJ )Vλ−eJ ,J = δn(λ)Vλ,Jc (for λ ∈ Λn

such that λ− eJ ∈ Λn). Since the actions of Hr and H∗
r on F(Λn) are determined

completely by their restrictions to the subspace C0(Λn) (by the opening statement
of this remark), the above computation shows that both formulas in Theorem 3.1
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follow from each other (so it indeed suffices in the proof of Theorem 3.1 to verify
only one of these two cases directly).

7. n-Particle scattering

For q → 0, the Hall-Littlewood functions (5.2a) , (5.2b) reduce to Schur functions
[M1, Ch. I]; the q-boson system degenerates in this limit to a system of impene-
trable bosons known as the Phase Model [BIK, T, K]. We end up by computing
the scattering operator that compares the large-time asymptotics of the n-particle
dynamics of the q-boson system with that of the phase model.

It is manifest from the explicit product formula for the orthogonality measure
∆(ξ) (6.6) that the restrictions of the Hamiltonians Hq,1, . . . ,Hq,n (6.9) to the n-
particle subspace ℓ2(Λn, δn) fit within a much larger class of discrete integrable
lattice systems on the discrete cone Λn (2.1) for which the scattering behavior was
analyzed in great detail by Ruijsenaars [R2]. Upon identifying how Ruijsenaars’
general results specialize to the case of the infinite q-boson model, the desired
scattering operator follows immediately. To this end it is convenient to pass to
uniform Lebesgue measures by incorporating orthogonality densities into the wave
functions via the following gauge transformation:

Ψξ(λ) := in(n−1)/2∆(ξ)1/2δn(λ)
1/2φξ(λ)

= δn(λ)
1/2

∑

σ∈Sn

sign(σ)Ŝσ(ξ)
1/2ei(ρ+λ)·ξσ (7.1a)

(ξ ∈ A (5.1)), where ρ := 1
2 (n− 1, n− 3, n− 5, . . . , 3− n, 1− n) and

Ŝσ(ξ) :=
∏

1≤j<k≤n

σ−1

j
<σ−1

k

s(ξk − ξj)
∏

1≤j<k≤n

σ−1

j
>σ−1

k

s(ξk − ξj), (7.1b)

with σ−1
j := (σ−1)j for j = 1, . . . , n and

s(x)1/2 :=
1− qeix

|1− qeix|
, so s(x) =

1− qeix

1− qe−ix
. (7.1c)

The wave functions in question diagonalize the commuting self-adjoint difference
operators

H̃q,r := δ1/2n Hq,rδ
−1/2
n , r = 1, . . . , n, (7.2)

in ℓ2(Λn), viz.

H̃q,r = F̃q

−1
◦ Êr ◦ F̃q, r = 1, . . . , n (7.3)

(cf. Eq. (6.11)), where F̃q : ℓ2(Λn) → L2(A, dξ) denotes the Hilbert space isomor-
phism defined by

(F̃qf)(ξ) :=
∑

λ∈Λn

f(λ)Ψξ(λ) (f ∈ ℓ2(Λn)) (7.4a)

with

(F̃q

−1
f̂)(λ) =

1

(2π)n

∫

A

f̂(ξ)Ψξ(λ)dξ (f̂ ∈ L2(A, dξ)) (7.4b)
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(cf. Eqs. (6.8a), (6.8b)). The action of H̃q,r (7.2) on f ∈ ℓ2(Λn) reads explicitly

(H̃q,rf)(λ) =
∑

J⊂{1,...,n},|J|=r
λ+eJ∈Λn

V
1/2
J,λ V

1/2
Jc,λ+eJ

f(λ+ eJ) +

∑

J⊂{1,...,n},|J|=r
λ−eJ∈Λn

V
1/2
Jc,λV

1/2
J,λ−eJ

f(λ− eJ).
(7.5)

For 1 ≤ r ≤ n, let Ar be an open dense domain in A (5.1) on which the
gradient vector ∇εr is regular with respect to the permutation-action of Sn on its
components:

Ar := {ξ ∈ A | ∂jεr 6= ∂kεr, ∀1 ≤ j < k ≤ n} (7.6)

(with εr taken from Eq. (6.10b)). For any ξ ∈ Ar, there exists then a unique
permutation σξ ∈ Sn reordering the components of ∇εr(ξ) in strictly decreasing
order, i.e. σξ(∇εr(ξ)) ∈ Rn

> := {x ∈ Rn | x1 > x2 > · · · > xn}. Clearly the
assignment ξ → σξ is constant on the connected components of Ar by the continuity

of ∇εr(ξ). Let Ŝr now denote the following unitary operator on L2(A, dξ)—the
scattering matrix—defined via its restriction to the dense subspace of smooth test
functions with compact support inside Ar:

(Ŝr f̂)(ξ) = Ŝσξ
(ξ)f̂(ξ) (f̂ ∈ C∞

0 (Ar)). (7.7)

The following scattering theorem—providing explicit wave- and scattering operators
that compare the large-time asymptotics of the dynamics

(eitH̃q,rf)(λ) =
1

(2π)n

∫

A

eitεr(ξ)f̂(ξ)Ψξ(λ)dξ (f̂ = F̃qf) (7.8)

of the higher q-boson Hamiltonian H̃q,r (7.2) with that of the corresponding q → 0

limiting Hamiltonian H̃0,r:

(H̃0,rf)(λ) =
∑

J⊂{1,...,n},|J|=r
λ+eJ∈Λn

f(λ+ eJ) +
∑

J⊂{1,...,n},|J|=r
λ−eJ∈Λn

f(λ− eJ) (7.9)

(f ∈ ℓ2(Λn)) for the phase model of impenetrable bosons—is a very special case of
[R2, Thm. 3.3].

Theorem 7.1 (Wave and scattering operators). The operator limits

Ω±
r := s− lim

t→±∞
eitH̃q,re−itH̃0,r (7.10a)

converge in the strong ℓ2(Λn)-norm topology and the corresponding wave operators
Ω±

r are given by unitary operators in ℓ2(Λn) of the form

Ω±
r = F̃q

−1
◦ Ŝ∓1/2

r ◦ F̃0. (7.10b)

Consequently, the scattering operator comparing the dynamics of H̃q,r and H̃0,r is
given by the unitary operator

Sr := (Ω+
r )

−1Ω−
r = F̃0

−1
◦ Ŝr ◦ F̃0 (7.10c)

(r = 1, . . . , n).
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It is instructive to outline briefly how Ruijsenaars’ proof in [R2] simplifies in our

particular situation. For this purpose, we associate to any f̂ ∈ C∞
0 (Ar) a (q = 0)

boson wave packet f (0)(t) and q-boson wave packets f±(t) in ℓ2(Λn) of the form

f (0)(t) := F̃0

−1
(e−itÊr f̂),

f±(t) := F̃q

−1
(e−itÊr Ŝ±1/2

r f̂).
(7.11)

Theorem 7.1 is now immediate from the following proposition.

Proposition 7.2 (Asymptotic equivalence). For all K > 0 one has that

||f±(t)− f (0)(t)|| = O(|t|−K) as t → ±∞ (7.12)

(where ‖ · ‖ refers to the ℓ2-norm in ℓ2(Λn)).

To infer the above proposition, one may assume without loss of generality that

the compact support of smooth test function f̂ is contained inside a connected com-
ponent of Ar. We then write σ̂ ∈ Sn for the unique (ξ-independent) permutation
ordering the elements of ∇εr(ξ) in strictly decreasing order for all ξ in the support

of f̂ . Let Vclass ⊂ Rn be an open bounded neighborhood of the compact range of

classical wave-packet velocities Ran(∇εr) := {∇εr(ξ) | ξ ∈ Supp(f̂)} staying away
from the boundary of the chamber σ̂−1(Rn

>). The classical wave packet, finitely
supported on the following t-dependent region of Λn:

Λclas
n (t) :=

{

{ρ+ λ ∈ tσ̂(Vclas)} for t > 0,

{ρ+ λ ∈ tσ0σ̂(Vclas)} for t < 0,
(7.13)

is defined as

f clas
λ (t) :=











sign(σ̂)
(2π)n

∫

A ei(ρ+λ)·ξ−itεr(ξ)f̂(ξ)dξ for λ ∈ Λclas
n (t) and t > 0,

sign(σ̂)
(−2π)n

∫

A ei(ρ+λ)·ξσ0
−itεr(ξ)f̂(ξ)dξ for λ ∈ Λclas

n (t) and t < 0,

0 otherwise.

(7.14)

Here σ0 refers to the order reversing permutation for which σj = n + 1 − j, j =
1, . . . , n

With the aid of the following stationary phase estimate from [RS, p. 38-39]: for
any K > 0 there exists a constant CK > 0 such that

∣

∣

∣

∫

A

eix·ξ−itεr(ξ)f̂(ξ) dξ
∣

∣

∣
≤

CK

(1 + |x|+ |t|)K
(7.15)

for all x ∈ R
n and t ∈ R such that x 6∈ tVclas, it is now not difficult to deduce that

||f (0)(t)− f clas(t)|| = O(|t|−K) as t → ±∞,

||f±(t)− f clas(t)|| = O(|t|−K) as t → ±∞,
(7.16)

whence the asymptotic equivalence in Proposition 7.2 follows.
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