MULTIFRACTAL ANALYSIS FOR QUOTIENTS OF BIRKHOFF
SUMS FOR COUNTABLE MARKOV MAPS

GODOFREDO IOMMI AND THOMAS JORDAN

ABSTRACT. This paper is devoted to study multifractal analysis of quotients of
Birkhoff averages for countable Markov maps. We prove a variational principle
for the Hausdorff dimension of the level sets. Under certain assumptions we
are able to show that the spectrum varies analytically in parts of its domain.
We apply our results to show that the Birkhoff spectrum for the Manneville-
Pomeau map can be discontinuous, showing the remarkable differences with
the uniformly hyperbolic setting. We also obtain results describing the Birkhoff
spectrum of suspension flows. Examples involving continued fractions are also
given.

1. INTRODUCTION

Multifractal analysis is a branch of the dimension theory of dynamical systems.
It typically involves decomposing the phase space into level sets where some local
quantity takes a fixed value, say a. The standard problems are to find the Hausdorff
dimension of these sets and to determine how the dimension varies with the param-
eter a. In hyperbolic dynamical systems there are several local quantities which
can be studied in such a way. These quantities are dynamically defined, examples
are local dimensions of Gibbs measures, Birkhoff averages of continuous functions
and local entropies of Gibbs measures. In this setting we normally find two types
of results, on the one hand variational principles are obtained to determine the
dimension of the level sets and on the other thermodynamic formalism is used to
prove that the spectra varies in an analytic way. See [Ba] for an overview of some
of these results.

In this note we consider the multifractal analysis for quotients of Birkhoff aver-
ages for a countable branch Markov map. In the case of expanding finite branch
Markov maps on the interval the multifractal analysis for Birkhoff averages or quo-
tients of Birkhoff averages of continuous functions is well understood, for example
see [BS1, FLW, O, FLP, C]. In particular, if the Markov map is expanding, C1T¢
and the continuous functions are Holder the multifractal spectra vary analytically
[BS1]. However, it turns out that substantial differences can occur in the case where
there are countably many branches and Birkhoff averages are studied, note that the
space is no longer compact. In this setting, phase transitions may occur, for ex-
ample see the work in [FJLR, IJ, KMS]. Nevertheless, the dimension of sets in the
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multifractal decomposition can still generally be found by a conditional variational
principle. Our aim is to extend these results to fairly general quotients of Birkhoff
sums and with additional assumptions examine the smoothness of the multifractal
spectra. Note that the multifractal analysis of quotients of Birkhoff sums has al-
ready been studied in [KU] but with the assumption that the denominator is the
Lyapunov exponent.

One motivation for our work is that studying quotients of Birkhoff averages for a
countable branch Markov map can relate to studying Birkhoff averages for a finite
branch non-uniformly expanding map. In [JJOP] multifractal analysis for Birkhoff
on finite branch non-uniformly expanding maps was studied, while a conditional
variational principle was obtained the question of how the spectra varied was not
fully addressed. By tackling this problem via countable state expanding maps we
are able to obtain new results for Holder functions in this setting and to show
that while in some regions the spectrum varies analytically it is also possible for
it to have discontinuities. Another motivation is to study related problems for
suspension flows where Birkhoff averages on the flow correspond to quotients of
Birkhoff averages for the base map.

Let us be more precise and define the dynamical systems under consideration.
Denote by I = [0,1] the unit interval. As in [IJ] we consider the class of EMR
(expanding-Markov-Renyi) interval maps.

Definition 1.1. Let {I;}ien be a countable collection of closed intervals where
where int(1;) Nint(l;) = @ fori,j € N with i # j and I; C I for everyi € N. A
map T : US2 I, — I is an EMR map, if the following properties are satisfied

1. The intervals in the partition are ordered in the sense that for every i € N
we have sup{x : ¢ € I;11} <inf{z:z € I;11}. Moreover, zero is the unique
accumulation point of the set of endpoints of {I;}.

2. The map is C? on U int I;.

3. There exists £ > 1 and N € N such that for every x € U2, I; and n > N we
have |(T™) (x)] > &".

4. The map T is Markov and it can be coded by a full-shift on a countable
alphabet.

5. The map satisfies the Renyi condition, that is, there exists a positive number
K > 0 such that

7(2)
sup sup — ———— <
neN z,y,z€1, IT" ()| T"(2)]

The repeller of such a map is defined by
A :={x e UX I;: T"(z) is well defined for every n € N}.

The Markov structure assumed for EMR maps T, allows for a good symbolic rep-
resentation (see Section 2.1).

Example 1.2. The Gauss map G : (0,1] — (0,1] defined by

where [-] is the integer part, is a standard example of an EMR map.
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For ¢ € R and ¢ € R,, (see Definition 2.4 for a precise definition of the class of
potentials R and R,, ) we will denote

n—1 1
. Tz
U = inf{ lim 72;;01 i , )
n— oo Zi:o ’(/J(Tla?)
n—1
. Tz
apr =supq lim 7Z;i%¢( - ) tx €N
n—oo Zi:O ¢(T@$)
Throughout the paper we will assume that «,, # ajs since otherwise our results
become trivial. Note that, since the space A is not compact, it is possible for aps

to be infinity. For a € [y, ans] we define the level set of points having Birkhoff
ratio equal to a by

J(a):{xEA: lim W:a}.
n—oo Zi:O w(sz)

Note that these sets induce the so called multifractal decomposition of the repeller,

:xEA} and

A= OU J(e) |7,

where J’ is the irreqular set defined by,

n—1 i
. T
J =<{xz€A: thelimit lim w does not exist .
n—oo 3T v(Th)
The multifractal spectrum is the function that encodes this decomposition and it is
defined by
b(a) = dimy (J(«)),

where dimy(+) denotes the Hausdorff dimension (see Subsection 2.2). The form of
our results depend upon the value of c. We will split the open interval (a,, ar)
into two subsets. Firstly we define

a = inf {a € R : there exists {zy }neny where lim z, =0 and lim ¢(Zn) = a}

and

a = sup {a € R : there exists {z, }necy where lim z, =0 and lim z((wn; = a} )
n—oo n—oo ‘T7l

We let E = [a,a], U = (am,ay)\E and M(T) be the space of all T-invariant
probability measures for which ¢ and log|T”| are integrable. We can now state
our first result. In our first theorem we establish a variational principle for the
dimension of level sets.

Theorem 1.3. If ¢ € R and ¢ € R,, then for alla € U

{W.W_ }

b(a) := dimpJ(a) = sup o) | Todn a

HEM(T)
and for a € EN (o, apr)

b(a) := dimgJ(a) = lim  sup
P uer(n)
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Here A(p) is the Lyapunov exponent and M(T) is the space of T—invariant
measures (see section 2.1 for precise definitions). A particular case we will be
interested is when the function v satisfies that lim, . % = oo and also ¢
and ¢ are such that aj; < oo. With these additional assumptions we are able to
say more about the smoothness of the function o — dimyJ(«).

Theorem 1.4. Let ¢ € R and ¢ € R,; be such that

: Y(z)

1 —_— —

720 log [T(z)] — OO
and that ap; < oo. There then exists three pairwise disjoint intervals Jy, Jo, J3 such
that
JLUJoUJs = (amaaM)J
J1<Ja < T3
The function o — dimygX,, is analytic on J1 and J3
For a € Jy, dimpX, = dimgA
It is possible that J, = &, J3 = & or that Ja is a single point.

CU @ =

The rest of the paper is laid out as follows. In section 2 we give some preliminary
results necessary for the rest of paper. In sections 3 and 4 respectively the upper
and lower bounds for Theorem 1.3 are proved. In section 5 Theorem 1.4 is proved,
section 6 shows there may be examples with discontinuities in the spectrum and
gives applications to non-uniformly expanding maps. Section 7 looks at the case of
suspension flows and finally in section 8 we provide examples coming form number
theory.

2. PRELIMINARIES

This section is devoted to provide the necessary tools and definitions that will
be used in the rest of the paper.

2.1. Thermodynamic Formalism for EMR maps. In order to define the ther-
modynamic quantities and to establish their properties for an EMR map we will
make use of the analogous theory developed at a symbolic level. Let N be the
countable alphabet, the full-shift is the pair (X,0) where ¥ = {(z;);>1 : ; € N},
and o : ¥ — X is the shift map defined by o(x129---) = (zex3---). We equip X
with the topology generated by the cylinders sets

C; ={zeX:z;=1i;forl1 <j<n}

1

The Markov structure assumed in the definition of EMR map implies that there
exists a continuous map, the natural projection, 7 : ¥ — A such that roo =T on.
Moreover the map 7 : ¥ — A\ U,y T~ "E is surjective and injective except on at
most a countable set of points. Denote by I(i1,...4,) = 7(C;, .. 4, ) the cylinder of
length n for T'. For a function f € ¥ and n > 1 we will define the n—wvariations of
[ by

vary(f) = sup sup | f(z) — f(y)]

(il,...,in)eNn x,yeCilA,.in
and say that f is locally Holder if there exists 0 < v < 1 and A > 0 such that for all
n > 1 we have var, (f) < Ay™. We now define the main object in thermodynamic
formalism,
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Definition 2.1. The topological pressure of a potential ¢ : A — R such that pom
is locally Hélder is defined by

PT(¢):Sup{h(u)+/¢du:—/¢du<oo anduEMT},

where Mr denotes the space of T—invariant probability measures. A measure at-
taining the supremum is called an equilibrium measure for ¢.

The following definition of pressure (at a symbolic level) is due to Mauldin and
Urbanski [MU1],

Definition 2.2. Let ¢ : ¥ — R be a potential of summable variations, the pressure
of ¢ is defined by

(1) Py(¢) = nlgrgoﬁlog > exp (i ¢(Uix)> :

o™ (z)=x =0

The above limit always exits, but it can be infinity. The next proposition re-
lates these two notions and allows us to translate results obtained by Mauldin and
Urbariski [MU1, MU2] and by Sarig [Sal, Sa2, Sa3] to our setting. For n € N we
will denote

YS.={rxeX:z <n}
and A, = 7(X,). Note that A, is a T-invariant set.
Proposition 2.3. Let T be an EMR map. If ¢ : A — R such that & = ¢pow is
locally Holder then
1.

2. (Approximation property.)
P(¢) = sup{P,|x(®) : K C (0,1] : K # & compact and o-invariant},

where Py (¢) is the classical topological pressure on K (for a precise defi-
nition see [W, Chapter 9]). In particular

P(¢) = Slelg{PTmn (®)}-

3. (Regularity.) If P(¢) < oo then there exists a critical value t* € (0,1] such
that for every t < t*we have that P(t¢) = oo and for every t > t*we have
that P(t¢) < oco. Moreover, if t > t* then the function t — P(t$) is real
analytic, strictly convexr and every potential t¢ has an unique equilibrium
measure. Moreover the function t — Prjy, (t¢) is analytic and convex for
allt € R.

Note that if T is an EMR map then the potential log |T”| o 7 is locally Holder
and P(—log|T"|) < oo. If 4 € My then the integral

A(p) = /log T dps,

will be called the Lyapunov exponent of p. Of particular interest will be the fol-
lowing classes of potentials,
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Definition 2.4. We define the following collections of potentials
R={¢: A —R: ¢ is uniformly bounded below and ¢ o 7 is locally Holder}
and form >0
Ry, ={¢ € R: for every x € A we have ¢(x) > n}.

2.2. Hausdorff Dimension. In this subsection we recall basic definitions from
dimension theory. We refer to the books [Ba, Fa] for further details. A countable
collection of sets {U; }ien is called a é-cover of F' C R if F' C |,y Ui, and for every
i € N the sets U; have diameter |U;| at most §. Let s > 0, we define

H;(F) := inf {Z |U;|® : {U;}: is a é-cover of F}
i=1

and
H(F) = lim H3(F)
The Hausdorff dimension of the set I is defined by
dimy(F) :=inf {s > 0: H*(F) =0}.
We will also define the Hausdorff dimension of a probability measure u by
dimg (@) := inf {dimp (Z) : u(Z) = 1}.

3. PROOF OF UPPER BOUND OF THEOREM 1.3

Throughout this section we will let let ¢ € R and ¢ € R,. We wish to prove
that

im a su M'f(bduzoz = («
@) i J( )sﬂeMI?T){ TR T ]

However to prove this we will need that « € U. When « ¢ U, in general, we can
only show that

- : h(w) | [ ¢du
O <t e (3|7 <

Our method will be to prove (3) for all & € (ayy,, apr) and then to deduce (2) for
a € U by showing that § is continuous in this region. We first show the continuity
of §(a) when a € U. To do this we need the following preparatory Lemma about
the set U. This Lemma will also be used in the proof of Theorem 1.4. Denote by
B(a,y) the ball of center « and radius ~.

Lemma 3.1. For any a € U there exists v > 0 and Cy > 0 such that if p € Moy

with fijz € B(a,v) then [vdu < Cy.

Proof. We will let a € U and assume that a < a, since the case when a > @ can
be treated analogously. We let v = % and note that by the definition of U there
exists ¢’ € (0,1) such that if z <y’ then ¢(z) > (a + 27y)¢(z). We also let Cy € R

be such that

max {jgg{ﬁb(xﬂ}nggﬂwuﬂ}} < O.
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Assume that p is a T-invariant probability measure such that

J ¢du
[ bdp

/z/;d,u<oo and € B(a,7).

We can estimate

(a+7) / dp > / oy > @du+(at+2y) [ (o)

z>y’ z<y’

and rearrange to get

—y (z)dp + (@ +7) b(z)dp — (z)dp > 0.

z<y’ x>y’ x>y’
Thus, using the definition of Cy we obtain

o (2)dp < Cola+v +1].
z<y’

1
Jvanz e (1220

which completes the proof. ([l

Therefore,

Lemma 3.2. The function § : (am,,an) — R defined by,

hw) . J odp _ }

§(a) := #:/1\1}11?71) {)\(M) Todu =

15 continuous on U.
Proof. Let o € U. We will show that
lirerliglfinf{é(fy) iy €(a—ea+e)} > () and
lim sup sup{d(7) : v € (@ — €, +€)} < 6(a).

We can find two measures pq, uo € Mo such that M), [dur, [dus < co and

Jodp _ [ ddpe
Jvdm S bdps
By Lemma 3.1 there also exists a constant K > 0 such that for any ¢ > 0 we can

find a measure p such that [¢du < K, ficdl’:bll = o and % > 6(a) — €. To prove

that liminf. o inf{d(y) : v € (@ — ¢, + €)} > §(c) we simply need to consider
the following convex families of measures pu + (1 — p)p; and pp + (1 — p)uz, where
p € (0,1).

To show that limsup,_,osup{d(7) : v € (o — ¢, + €)} < d(a) we consider a
sequence of T-invariant measures (v, ), such that

a <

> ) o J 2

By considering the appropriate convex combination with either p; or e we can now

find a sequence (7, ), of T-invariant measures with fi%é” =« and lim,, 00 ZEZ:; >

0(a). The result immediately follows. O
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Let C' > 0 be a constant such that

max {Z vary(¢), Z varg (1), Z varyg (log |T’|)} <C.
k=1 k=1

k=1

We work in a similar way to [LJ]. Let Sipé(x) := Zf:ol #(T'z) and
Spé(z)

JaNe: =<z E€EA:
. { Suib(x)

Note that for any € > 0 we have
Jo CUR_1J(a, Nye).

So we can obtain upper bounds of the dimension of the set J(«) by obtaining upper

bounds for the dimension of J(a, N,€). For k > N we will define covers by

Cr = {I(i1,... %) : I(i1,...,ix) N J(a, Nye) # @}

In [1J] analogous covers were defined in Section 3. However, in that setting these

covers had finite cardinality whereas here the cardinality can be infinite which will
cause additional difficulties. From now on o and € > 0 will be fixed. We will let

€(a—ea+e) foreverykZN}.

thr=infeteR: Y |I(iy,...,i)[ <1

A covering argument then gives that dimgJ(«, N, €) < limsup,_, ., tx. We wish to
relate the values tj, to T-invariant probability measures. We start with the following
lemma.

Lemma 3.3. There exists K € N such that for all k > K, 1(iy,... i) and x,y €
I(iy,..., i) we have

Sep(z) _ Skdly) _

Sip(x)  Sply) —
Proof. By the assumption that both ¢ and ¢ are of summable variations we know
that for all £k € N.

Sio(a) ~C _ Sioly) _ Suola) +C

Sip(z) +C = Spp(y) ~ Skb(x) — C”
However, we have by assumption that Sk (z) > kn for all x € A. The result now
immediately follows. O

We can now construct the measures we need.

Lemma 3.4. Ift € R satisfies that
Z |I(Zl7alk)|t>1
I(i1,...,ix)ECK

then there exists a T-invariant probability measure g such that

fiflﬁ: € (o — 2€e, a0 + 2¢)
and ”
Ny =1 AW

where A(k) — 0 as k — oo.
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Proof. By the assumptions in our theorem it is possible to find a finite set Dy, C C

such that
Z ‘[(il,...,ik)|t=Zk>1.
I(i1,...,ik)EDg
We can now construct a T* invariant Bernoulli measure, 7y by assigning each
cylinder in Dy, weight ﬁH(il, ...,ix)|t. We can now estimate

BITY) =i nenn Byl i) 08 (g G  i)])
A@r, TF) A(r, TF)
B _Zl(il,‘..,ik)eDk ﬁU(il,...,ik)|tlog|l(i1,...,ik)|t Zy log | Dy|
B )‘(VTW Tk) |Dk|>‘(ﬁv Tk)
tA\Tg, T — C C

> — L >t — .
= TAmTH T klogé

By Lemma 3.3 we have that for k£ sufficiently large % € (a — 26, + 2e).
To complete the proof we let i = %Zf;olfk o T~* and note that %g& — 0 as
k — oo. (I

It now follows that for any § > 0 we can find a sequence of T-invariant measures

(Tik )& such that limsup,_, .o ‘tk - igﬁ::; < § and where fzif;’; € (o — 2¢, a0 + 2¢).

Hence, for all € > 0 we have

sup {h(,u) : f¢du
pexur) LAR) [ dp

To complete the proof of the upper bound for o« € U we simply apply Lemma 3.2.

dimyg J(«) <

e(a—e,a—l—e)}.

4. PROOF OF THE LOWER BOUND OF THEOREM 1.3

Our method to prove the lower bound is to find an ergodic measure p with

fd)dl" fd’dl‘n —
T¥du Todu, = @ and
h(p)

then use the fact that the dimension of ergodic measures with finite entropy is )

= a, or a sequence of ergodic measures pu, with lim,

see [MU2, Thereom 4.4.2]. For o € U we will use the thermodynamic formalism to
show that there is an ergodic equilibrium measure with dimension d(«), which will
show that dimgJ(a) > 6(«). For o ¢ U we will need to work slightly harder.

We define the function G : R® — R U {cc} by

G]_(Oé, q, 6) = P<q(¢ - Oﬂp) - 610g |TI|)
Note that G; can be infinite and we will adopt the convention co > 0. We have the
following lemma.

Lemma 4.1. Let a € (am,ap) and § > 0. If for all ¢ € R we have that
G1(a,q,0) > 0 then dimpJ(a) > 6.

Proof. Since a € (qm, arpy) it follows that
lim Gi(a,q,0) = lim Gi(a,q,d) = .
g—o0 g——00
Indeed, this is a consequence of ergodic optimisation results that relate the asymp-

totic derivative of the pressure to maximising/minimising measures for the poten-
tial ¢ — ap (see for instance [JMU, Theorem 1]). This means that if we let ¢~ :=
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inf{g € R: G1(a,q,8) < oo} and ¢+ := sup{q € R : G1(a,q,) < oo} then either
lim, - G(o,q,0) = 00 or G(a,q™,d) < oo and similarly lim, .+ G(c, q,9) = o0
or G(a,q",8) < oo. Thus if {g € R: Gi(a,q,0) < 0o} # & then, by convexity and
our assumption, Gp(«, ¢,d) has a minimum which must be greater than 0. There-
fore, by the approximation property of pressure (see Proposition 2.3) we can find
n € N such that the T-invariant compact set A,, satisfies

Py, (q(¢ — avy) — dlog|T"]) > 0
for all ¢ € R and
lim_ P, (a(6 — av) — log|T']) = Tim_ P(a( — av) — Slog |T']) =

Moreover, the function ¢ — Py, (¢(¢ — atp) — dlog |T’|) is real analytic and strictly
convex (see [SU, Sa2]). Thus, there exists a unique point ¢. € R such that

0

— Py, (q,0,0 =0.

dq ( 7 ) q9=qc
Denote by g the unique equilibrium state for the potential ¢.(¢ — at)) — 6 log |T”|
restricted to A,,. Note that such a measure exists because the space A,, is compact

and the potential Hélder. Then infl’; < =« and so

h(pe) = 6A(pe) > 0.

Since p. is ergodic we have that p.(J(«)) = 1 and dimpgp,. = ﬁgzz > ¢§. This

completes the proof. O

NV N

The following lemma now completes the proof of the lower bound for the case
when o € U.

Lemma 4.2. If a € U then for all ¢ € R and any € > 0 we have that
P(q(¢ — ag) — (6(a) — €)log [T"]) > 0.
Proof. By the deﬁnition of §(a) there exists a T-invariant measure p such that

J ¢dp
Jvdu

=« and > d(a)) —e. Thus, for any g € R, the variational principle yields

(¢ — o)) = (6(c) — €) log |T"]) =

(/@m—a/ﬁmo — OA) + h(n)

(0(c) = )A(u) + h(p) > 0

O

For o ¢ U we cannot use the argument in Lemma 4.2. Instead, we need to use
a sequence of measures. Fix oo ¢ U and let

. h(p) | J ¢du ‘ }
= lim —< - €.
’ u?i{xm Juda | =

Lemma 4.3. There exists a sequence of T-ergodic measures (), such that,

. h(iin . djin
lim,, — o0 )\EZ ; = s and lim,,_, o fzdﬁn

= Q.
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Proof. 1t follows from the definition of s that we can find a sequence of invariant
measures with this property. In order to construct a sequence of ergodic measures
with the desired property we proceed as follows. Let p be an invariant measure
with max{h(p), [ du} < co. For any n € N we can define a T"-ergodic Bernoulli

measure 1, with 1, ([é1,...,9,]) = w([é1,...,i,]) for each n € N. If we let v, =
%Z;:Ol N, o T~1 then v, is a T-ergodic measure. Moreover lim,, o % = %
and lim,, fii;’: = ff;iﬁ (]
Thus we have a sequence of T-invariant ergodic measures (g, ), such that
h d
lim (s2n) =gsand lim J odpn =«
If limsup,,_, o [%du, < oo then we can adapt the method in Lemma 3.2 to find
a sequence of T-invariant measures (v,), with lim, iEZ"g = s and f Z/ii"j" =

a. We can then proceed as in the case when o € U. On the other hand, if
limsup,,_, f Ydp, = oo we can adapt the technique in [IJ, Section 7] which is
in turn based on the method in Gelfert and Rams, [GR] to prove the following
proposition to complete the proof.

Proposition 4.4. If there exists a sequence of T-ergodic measures (fin)n Such

hlpn) _ o [ édun _ . . .
i) =5 Todue = O and hmn;oo(f)wdun = 00 then there exists a
n¢(z

measure v, such that dimyv = s and lim, . 3 v = Q for v-almost all x.

that lim,,_,

Note that the measure v is not required to be invariant and in certain cases an
invariant measure with the required property will not exist.

Proof of Proposition 4.4. Note that it suffices to proof this in the case where
Q> 0 since if this is not the case we can add a suitable constant multiple of ¥ to
¢ to ensure it is the case. We let

o o J9dun h(pn)
" fwd,un A(pn)
We may also assume that the sequence s, is monotone increasing. Finally we fix
a sequences of positive real numbers 0 < &, such that [[°2 (1 —§,) > 0 and fix
0 < e< inf,en min{ana Sns f¢7adﬂn}-
Lemma 4.5. For each measure u, there exists a set J, and j, € N such that
tn(Jn) > 1 =208, and for all x =11(i) € J,, and j > j, we have that
1. For ally € I(iy,...i5), Sj(y) € (5 ([ vdun —€/2™)),5 ([ Vdu, + €/27)
and S;¢(y)/ S (y) € (o — €/2", am + €/27).
3 3 . n . n lo, n I(i1,..., ij
2. |1t -yi5)] € (G (n) = €/2°), 5(A(n) + €/2")) and 8alrlidd)) ¢
((sn —€/2™, s, + €/2™).
Proof. This is a straightforward consequence of the Birkhoff ergodic theorem and

the Shannon-McMillan-Brieman Theorem combined with Egorov’s Theorem and
our assumptions on ¢, v, log |T"|. a

and s, =

We now define a sequence of natural numbers k,, using the following inductive
procedure. We let k; satisfy the following conditions:

1. kl Z jla
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2. ek [Ydpn > 4jaan [pdps,
3. erkiA(p1) > 4jaa2 A (p2),
4. kle Z 4]2)\(/12)

For n > 1 we can choose k11 to satisfy:

1. (kn+1 - kn)efwdﬂ'n-i-l > |2n+2kn(0¢n+1 - an) f¢dﬂn|7
EknJrl fwdﬂnJrl 2 2n+2jn+2an+2 fl/]dﬂn+27

(knt1 — kn)eA(piny1) > |2n+2kn(sn+1 = 8n)A ()]s
knt1A(pnt1) > 2n+2jn+25n+2)‘(ﬂn+2)7

(knt1 = kn)e > 272N (png1) — Apa)|

6. knJrlE Z 2n+2jn+2>\(,ufn+2)~

Now consider a point z € JyNo k1 (Jy)No=k2(J3)N- - . By the construction of the

Snip(z)
a measure supported on this set as follows. Let 7, denote the finitely supported

measure such that

CU N

= a. We can also define

sets J,, and the values k,, it follows that lim,, ..o

; ) B 0 it I(i,...,i5, )Ny =0
’7”([(“"“’“%)){Mn(z(il,...,ikn)) it I(in,.... ik ) Oy £ ©.

It follows that 0, (J,) > 1 — d,, and thus if we define the measure
n=m@mnoT M @nolT *g...

we will have

n(JLNne M (J)Nne *(J)Nn--) > ﬁ(l —6,) >0

and we can normalise to a measure v. Let C = ([[7_,(1 — (5n))_1

Lemma 4.6. For v almost all x we have that

Sno(z) . logv(B(x, 7))

nlLrI;o o) =« and lnrn_}(r)lfT s.

Proof. By the construction of the measure v we have that for v almost all x = 7 (),
where i € 3, is that

o Spo(x) . logv(I(in,...,in))
lim =« and lim - - =
n—oo S, 1)(x) n—oo log |I(i1,...,0n)]

To complete the proof we will fix r > 0 sufficiently small. We fix n > 2 and first of
all consider the case when

efkn(A(Nn)ff/Qn_l) 2 r 2 efk'n(/\(N'n)fe/zn_l)fijrl(A(N1L+1)+€/2n).

In this case B(z,r) contains at most e/n+1(A#n+1)+¢/2") gots of the form [iy, . . . , i, |.
Thus

log u(B(a,r) < 1ogC + kuM(n)(sn — €/2") + juss Alttns1) + /27)

<
< =k M) (8n — €r) <logC + (85, — €,) log .

Now consider the case where j,+1 < k < k41 — k, and

efkn()‘(l"n)fk(A(/‘n+l)75/2n)) Z r> efkn(A(N’n)f(k‘i’l)()‘(ﬂvHrl75/2n+1)).
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Thus we have that
log pu(B(z, 1)) log C' +log A(pin+1) +log (I (i1, .- - ik, +k))

log Clog A(ttn+1) + knA(kin) (s — €/2"71) + kA(tni1) (Sn41 — €/2"71)
log C + (s, — €/2" 1) log .

Finally note that by the definition of k,,

VAN VARV

e FnA(kn)=knt1)—kn(A(tn+1)—€nt1/2) < e~ Fn(Aun)—€)

and so we have considered all possibles case for r < e #2(A1)=€1) and the result
follows. O

The proof of Proposition 4.4 is now complete.

5. PROOF OF THEOREM 1.4

We now turn to the question of when the spectrum is analytic. Throughout this
section ¢, are both locally Holder, aps < oo , ¢/t is uniformly bounded above

and
lim 71/}(@
z—0 log |TI(.'I})|
An important consequence of our assumptions is that if p is a T-invariant measure
for which £2% ¢ U/ then by Lemma 3.1 [ ¢dp cannot be too large and thus A(s)

Jddp
cannot be too large.

= OQ.

Lemma 5.1. For any C7 > 0 there exists Cy > 0 such that if p is a T—invariant
measure for which A() > Cy then [¢dp > CiA(p).
Proof. Let § > 0, then there exists A € (0,1) such that if z € (0, A) then
log |[T" ()|
(x)

Moreover, there exists a constant C' > 0 such that if z € (A, 1) then log |T'(z)| < C.
Let p be a T—invariant measure satisfying A(u) > C, then we have that

< 4.

1 A 1
M) = / log [T (z)|ds = / log [T (x)|dys + /A log |T"(x)|du
0 0

A A
< / log |7/ (2)|dp + u([A,1]))C < / log |T"(2)ldu + C.
0 0

That is N
N~ € < [ log 7'(0)d.
0
We thus have,
A
Jo log |T"(@)ldp _ A(u) —C
A Y :
Jo Wdu Jo vdn
Therefore, since ¥ > 0, we have

' 4 Ap) —C
(4) /0 wduz/o vap > 2 €

o>
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Thus, given Cy > 0 choose § > 0 such that 1 — §C; > 0 and let
C
1-46C,°
Therefore, if A(p) > Cy then A(p)(1 — 6Cy) > C, which implies that
Alw) —C
0

Combining this with equation (4) we obtain that

/ i > / pap > 2 =C 5 oo,

which completes the proof. O

Cy >

> Ol)\(ﬂ)

Lemma 5.2. For a € U we have that for any § > 0 either

1. G1(a, q,96) < oo for all g >0 or
2. G1(a,q,0) < o0 for all ¢ < 0.

Proof. Since a € U we know that either a > @ or a < . To start we will assume
that a > @. We fix v € (@, a) and ¢ > 0. By the variational principle we need to
show that there is a uniform upper bound on

h() + g ( [oan—a | wdu) A

for all T-invariant probability measures u. We will split the set of invariant measures
into two sets depending on whether or not

Jodp _
Jdu —

Firstly, if [¢dp < v [¢du then ([ ¢dp — o [dp) < q(y — a) [¢du < 0.
Furthermore, by taking C; = (—¢q(y — «))~! in Lemma 5.1 it follows that there
exists C2 > 0 such that if A() > C3 we have that (using Ruelle’s inequality)

[ 00 = iy = —

<.

That is,
—ay—a) / e > h(p).

(M)+Q</¢dua/wdu> —0A(p) <

~aty =) [vdu-taly - ) [ vdp = 5\ = ~A) <0
On the other hand, if

We therefore have

[ ¢du .

Jdu
By Lemma 3.1 there exists a constant K’ such that [¢dpu < K’. We also have that
there exists a uniform upper bound for K" > 0 for

Alw) ”
K.
Jédn =
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Therefore, there exists K > 0 such that max {h(u), A(11), [ ¥dp} < K. This means
that

h() +q ( [oan—a | wdu) ~ S(@)A() < K + qan K.

So for « € (@, aps) we have that for all ¢ > 0 the function G1(«,q,d) is bounded
above,

Gl (av q, 5) < 0.
For the case where a € (a;,,a) we fix ¢ < 0 and v € (o, a). The same argument

allow us to conclude that G1(o, q,0) < co.
O

As a result of Lemma 5.2 we can investigate the behaviour of the function G,
when 0 = 6(a) and o € U.

Lemma 5.3. For a € U we have that G1(a, q,d(a)) > 0 for all ¢ € R and that
either

1. there exists a unique q. # 0 such that G1(a, q,0(a)) =0 and

0
a—qu(q,é(a), a)’q:qc =0
or

2. §(a) = dimgA and P(—=d(a)log|T']) = 0.

Proof. We first prove that for all ¢ € R we have Gy (a, q,d(c)) > 0. Note that since
a € U, there exists a constant C' > 0 and a sequence of T-invariant measures (fin )n

such that A(u,) < C, fig’;: = « and lim,, igﬁ:g = §(a). We thus have for all

q € R and n € N that

Gi(a,q,0(a)) = h(pn) — 0(a)A(pn).
Letting n tend to infinity we obtain
Gi(a,q,0(a)) = 0.
If §(a) = dimpgA the above argument together with Bowen’s formula,
P(~dimuAlog|T"]) < 0,

implies that P(—d(«)log |T']) = 0.
From now on we can suppose that 6(a) < dimgA. In particular,

0 < P(=5(a) log |T"]),
note that it could be infinite. Moreover, since «,, < a < ajp; we have that
Jim Gi(a,q,6(e) = lim Gi(e,q,0(a)) = oo.
Now, in order to obtain a contradiction, suppose there exists C; > 0 such that

Gi(a,q,0(a)) >C1 >0

for all ¢ € R. Then we can find a compact T-invariant subset A,,, where A, C A,
such that for every ¢ € R we have

0 < C1/2 < Pryp, (q(¢ — arp) — 6() log [T']) < oo
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and such that the following holds
lim Prya, (¢(¢ — ap) — 6(a)log|T"|) = oo and
g——00
Tim_ Py, (46— at)) — 6(a) log ")) = oc.
Thus there will exist a turning point ¢; € R and the equilibrium state p; associated

to q1(¢—arp) — () log |T| restricted to A, satisfying fzi’;i =« and ZE‘}:Z; > §(a),

which is a contradiction.
Thus, there exists a nonzero point ¢. € R such that Gy («, ¢, d(a)) = 0. Since
G1(,0,0(P(—d(x)log|T’]) > 0 and

lim Gi(a,¢,0(a)) = lim Gi(a,q,0(a)) =0
q—0o0 q——00

it follows from Lemma 5.2 that g. must be a turning point and the result follows.
O

We can now split the region (a;,,ans) up into three intervals depending on
whether v in U or not and if so which case of Lemma 5.3 is true.

Lemma 5.4. We can write (o, apn) = J1 U Jo U J3 where Jy, Js are intervals or
the empty set, Jo is an interval or a single point such that E = [, @] C Jo and
1. For a € Ja, dimpJ(a) = dimgA.
2. For a € JyUJ3 we have that there exists a unique q. # 0 such that P(q.(¢ —
a)) — §(a)log |T'| = 0 and %Gl(qc,(S(aLa) =0

Proof. We define

Jy ={a € (am,an) : P(q(¢ — av) — (dimpgA — €)log|T'|) > 0 for ¢ € R and € > 0}
and also let
J1 ={a € (m, an) : a < v for every v € Jo} and
Js = {a € (am,an) : a > v for every v € Ja}.
For a € J; we have combining Lemma 4.1 with Theorem 1.3 that dimpJ(®) =
If aq,c0 € Jy and v € (g a2) then v € Jy by the convexity of the pressure
function. Therefore .J; is either a single point or an interval and it thus follows that

both J; and Js are either empty or intervals.
To show that £ = [a,@] C Jy we fix @ € F and choose € > 0 and ~ satisfying

that there exist a T-invariant measure p such that A(p) < oo, % > dimpgA — €/2

and fij’; = . Suppose that v > a and let o € (a, 7). Since a € E we can find a
sequence of T-invariant measures v, and 0 < p,, < 1 such that
[odv,, _ . _
’I’LILOO Todn =q, nlgrolop")\(]/") =0 and nlirrgcpn Ydy, = co.
Thus, if we consider the measures 1, = ppvn+ (1 —p,)+ v then lim, o f 332" =

h(1n)
. . A(n’ﬂ) . .
combination, we can find a T-invariant measure v such that

h(v) J ¢dv

——= > dimgA — € and =«

Av) [ pdv

and limsup,,_, > dimpgA — €/2. Therefore, by taking an appropriate convex
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By the variational principle, this means that for all ¢ € R we have
P(q(¢ — a) — (dimgA — €) log [T”]) > 0.

The case when « > v can be dealt with analogously by using the interval (v, @).
Finally note that if v+ = o = @ then we can verify that v € Jy directly by the
variational principle.

Now fix o € J;. This means that o € U and that there exists ¢ € R such that

P(q(¢ — o) — (dimpA) log |T"[) < 0.
Thus, by Lemma 5.3 we know that §(«) < dimgA and since then
P(—6(a)log|T'(x)]) >0

we must be in case 1 of Lemma 5.3. The case when a € J3 can be dealt with
analogously. This completes the proof. ]

The three intervals Ji, Jo, J3 will be exactly the three intervals in the statement
of Theorem 1.4. To complete the proof of Theorem 1.4 we simply need to prove
that o« — dimpJ(«) varies analytically on J; and Js.

Lemma 5.5. The function « — J(«) is analytic in J; and Js.

Proof. We will proof this result for the interval Ji, since the proof for the interval
J3 is analogous. Note that for a € J; we have that dimpgJ (o) = §(a). We will let
Gs : Jo x RT x (0,dimgA) — R be defined by

Gal0,0.0) = 5. Gala0.0)
and note that since G is finite throughout the specified region G5 is well defined.
Let G : Jo x RT x (0,dimgA) — R? be defined by
G, q,0) = (Gi(e, q,0), Ga(a, ¢, 6)).
For each o € J; by Lemma 5.4 that there exists a unique g(«) € R such that
G(o, q(@),0(a)) = (0,0) and dimpJ(a) = §(«).

Note that G is finite and varies analytically in each of the three variables ¢, «, d
throughout its range. Thus, to complete the proof we wish to apply the Implicit
Function Theorem. To be able to do this it suffices to show that the matrix

is invertible at each point («, g(a),d(a)). At such points aanl = 0 and 886;1 <0

(Indeed, it corresponds to the Lyapunov exponent with a minus sign). So we need
to show that 86622 is nonzero at («,g(a),d(a)). If ¢ — aw is not cohomologous
to a constant then the function G; is strictly convex in the variable ¢ and the
proof is complete. To deduce that ¢ — a1y is not cohomologous to a constant note
that oy, < a < ajps and thus there exist T-invariant measures p; and po such that
J(¢—ap)dpr < 0and [(¢—arp)dus > 0 therefore ¢ —arp cannot be cohomologous
to a constant. (]
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6. DISCONTINUITIES IN THE SPECTRUM AND APPLICATIONS TO NON-UNIFORMLY
HYPERBOLIC SYSTEMS

In this section we show that in the setting of Theorem 1.4 it is possible that the
function o« — dimgJ(«) is discontinuous at a point in (., anr). We stress that
this is a new phenomenon that does not occur in the uniformly hyperbolic setting
with regular potentials. Here we not only establish conditions for this to happen,
but also exhibit very natural non-uniformly hyperbolic dynamical systems where
these conditions are satisfied and therefore, regular potentials have discontinuous
spectrum.

We will denote by pusrp the T-invariant measure of maximal dimension and by
Seo = Inf{s: P(—slog|T’|) < co}. We have the following result,

Proposition 6.1. Let ¢ € R and ¢ € R, be such that

Y()

lim — )
sy log |77 (x)] >

Assume that

2. there exists a T-invariant probability measure, p, such that [ ¢du < 0;
3. dimgA > so0,
4. [ ¢dusrp >0

then the function o — dimpJ () is discontinuous at oo = 0.

_ [ ¢dusrs
Proof. To start we let o, = T0dnsns

Theorem 1.4 that J1 = [aum, 0], J2 = [0, ] and J5 = [, apg]. It also follows from
Theorem 1.4 that dimygJ(0) = dimpgA. Assume by way of contradiction that the
function « — dimg(J(«)) is continuous at o = 0. In particular it is continuos from
the left. That is

and note that we have under the notation of

lim dimpgJ (o) = dimgA.

a—0—
There exist a sequence (o), such that for every n € N we have a, € (ayy,0) and
lim dimgJ (o) = dimgA.
n—oo
In virtue of the variational principle there exists a sequence of T'—invariant measures
(tn)rn such that

dpn, 1 h(per, . 1
(W — ozn> < — and ( (n) —dlmHJ(ozn)> < =
In particular, for each n € N we have [¢du, < 0, lim, . fijl;n = 0 and
lim, oo ’}\EZ’; = dimgA. The existence of such sequence imply by [FJLR, Propo-
sition 6.1] ! that there exists a T-invariant measure v such that [¢dv < 0 and
hlv) dimygA. Thus v is an equilibrium state for the potential —(dimyA) log |17
) S
and since this equilibrium state is unique we must have v = uggrp. However,

LThe method of proof of [FJLR, Proposition 6.1] allows us to deduce the existence of such a
measure v. Note that in the notation of [FJLR, Proposition 6.1] we take ¢; = ¢ for all : € N
and note that while ¢; is required to be bounded for [FJLR, Proposition 6.1] to hold, it can be
adapted to this setting by replacing [ ¢;dv =v; by [ ¢du < limsup [ ¢;dpn < 0 by using [JMU,
Lemma 1].
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J ¢dpsrs > 0 and [ ¢dv < 0 which is obviously a contradiction. Therefore
there exists no such sequence of measures and o — dimpJ(a) is discontinuous
at a = 0. g

6.1. Manneville-Pomeau. In this subsection we discuss an example that illus-
trates how our results Theorem 1.4 and Proposition 6.1 can be applied to certain
classes of non-uniformly expanding maps. In [JJOP] the authors proved a vari-
ational principle for Birkhoff averages for continuous potentials and certain non-
uniformly expanding maps. A particular case of this is the Manneville-Pomeau
map, F : [0,1] + [0, 1], which is the map defined by F(z) = = + z'*# mod 1,
where 0 < 8 < 1. This map has an indifferent fixed point at = 0 and it has
an absolutely continuous (with respect to Lebesgue) invariant probability measure.
We will denote A = USS_ o F~™({0}) and let 0 < ¢ < 1 satisfy ¢t +¢'+” = 1. We define
a partition P; = {[0,t],[t,1]} and P, = \/§ " T~"P;. For a function f : [0,1] — R
let

var,(f) = sup sup{|f(z) = f(y)| : 2,y € P}.
PeP,

We will assume that var,(f) = O(0™) for some 0 < 6 < 1, f(0) = 0, that f is
non-negative in a neighbourhood of 0, let

O, = inf {/fd,u D is F—invariant}
and
Qpp = sup {/ fdup o pis F—invariant} .
We define,

J(a) = {x €1[0,1]: nlinéo%if(F%) = a} .
i=0

We stress that in [JJOP] the Hausdorff dimension of the level sets, dimyJ(«), is
found for a more general class of functions. The result is that if & € [am,, aap] \ 0

then
h
dimpJ () = sup{(ﬂ) RS MF,/f dp = a}
Alp)
and it is also shown that dimgyJ(0) = 1.

With these stronger assumptions on our function f we can use our results from
Theorem 1.4 to say more about the function oo — dimgJ (). It is well known that
F' can be related to a countable EMR map T

ne)={ 1 it xzelt]
| inf{n: F"(x) eI} +1 if =z¢|t1]
and T(z) = F"®)(z). Note that T is an EMR map and we have that A = [0, 1]\ A
and since A is a countable set dimgA = 1. We can also calculate so, = % (indeed
see the proof of [Sa2, Proposition 1]). We can define ¢(x) = z;iﬁ)_l f(Fir) and
P(x) = r"(z) and note that ¢(z) € R and ¢(x) € Ry. For a € R let

X, = {x €[0,1\A+ lim S:z((g = a}.

Proposition 6.2. dimpJ(a) = dimgX,.
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Proof. Tt is immediate that J(a) C X, for all a except for a = 0. We also have that
J(0) C XoUA and since A is a countable set it follows that dimy Xy > dimyJ(0) =
1. Thus dimg Xy = dimyJ(0) = 1.

For the case when a # 0 we first note that this implies that « € U. Thus there
exists C' > 0 such that for all x € X, we have that limsup,,_, ., 5@ ¢ We

n

now let x € X, and note that lim,,_, ., Sg%d(’x) = 1. Thus, if we let r, = S, (x)

we have that for r, <k <r,4

k— i Tn i
Yico J(Fiw) _ S f(Fw) rui
k - Tn41 Tn

and by taking limits as n — oo we can see that x € J(«) and so the proof is
complete. (Il

This means that we can apply Theorem 1.4 to obtain more information about
the function o — dimpgJ(«).

Theorem 6.3. If o, <0 = f(0) < a, = [ fdusrp < an then
1. The function a — dimgJ(a) is analytic on (am,,0) and (o, apr).
2. dimpgJ(a) =1 for a € [0, o]
3. If auy < 0 then o — dimpJ () is discontinuous at oo = 0.
Proof. To prove this Theorem we first note that the potentials ¢, satisfy the

assumptions for Theorem 1.4. Note that the absolutely continuous measure for T
projects to the absolutely continuous measure for F. Thus, in Theorem 1.4 we

have that J3 = (au,aa). We can determine that if lim,,_ %(I) = oo then
lim, o0 g:ﬁg =0 and so U = 0. Thus J; = (0, ) and we can conclude that

J3 = (am,0). The first two parts of the Theorem now immediately follow from
Theorem 1.4 and the final part follows since so, < 1 and thus the assumptions for
Proposition 6.1 are met. U

Remark 6.4. We would be able to proof analogous results if a, < 0 and f is
negative in a neighbourhood of 0. The theorem would hold with weaker assumption
on the function f. What we need is that ¢ is locally Hélder.

7. MULTIFRACTAL ANALYSIS FOR SUSPENSION FLOWS

Let T be an EMR map and 7 : (0, 1] — R a positive function in R,,. We consider
the space
Y :={(z,t) € (0,1]] xR: 0 <t < 7(x)},
with the points (x, 7(z)) and (T'(z), 0) identified for each = € (0, 1]. The suspension
semi-flow over T with roof function 7 is the semi-flow ® = (¢;);>0 on Y defined by

ot(z, s) = (x,s +t) whenever s+t € [0, 7(x)].

In particular,
Pr(z) (z,0) = (T'(z),0).
Because of the Markov structure of 7' the flow ® can be coded with a suspension
semi-flow over a Markov shift defined on a countable alphabet. Let g : ¥ — R be
a potential and define
t

K(a):= {(:17,1") €Y : lim % ; g(ps(z,r))ds = a}.

t—o0
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We define the Birkhoff spectrum of g by
B(a) := dimy (K ().

It turns out that the results obtained to study multifractal analysis for quotients
allow us to study the Birkhoff spectrum for flows.

Remark 7.1 (Invariant measures). We denote by Mg the space of ®-invariant
probability measures on'Y . Recall that a measure p on'Y is ®-invariant ifu(@;lA) =
w(A) for every t > 0 and every measurable set A C'Y. Consider as well the space
M(T) of T-invariant probability measures on (0,1] and

M(T)(r) = {u e M(T) : /Tdu < oo} .

Denote by m the one dimensional Lebesgue measure and let p € M(T)(7) then it
follows directly from classical results by Ambrose and Kakutani [AK] that

(nxm)ly/(pxm)(Y) € Mg.

Moreover, If 7 : (0,1] — R is bounded away from zero then there is a bijection
between the spaces Mg and M(T)(T).

Remark 7.2 (Kac’s formula). Given a continuous function g: Y — R we define
the function Ag: (0,1] — R by

7(x)
A, (z) = /O o, 1) dt.

The function Ay is also continuous, moreover

5 _IEAgdl/
) [ odm) = 570

Remark 7.3 (Abramov’s formula). The entropy of a flow with respect to an
invariant measure can be defined by the entropy of the corresponding time one
map. Abramov [A] and later Savchenko [Sav] proved that if u € Mg is such that
p=wxm)y/(vxm)(Y), where v € M(T) then

©) halo) = o

The following Lemma establishes a relation between the level sets determined
by Birkhoff averages for the flow and the level sets of quotients for the map T

Lemma 7.4. If
1 t
lim — [ g(ps(x,7))ds = a,
0

t—oo t

then _
21‘:0 Ag (T"z)

lim &=5———F =a.
n—oo ) o 7(T'x)

Proof. Denote by
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We have that

i=0 7i(z)
m—1 -,—(Tiw) m—1
[ stean ds= 3" a,mi)
i=0 =0

In particular if
t

1
im + [ g(ps(z,m)ds = a,
0

t—oo t

since t — oo implies that m — oo, we have that

i 2imo Ag(TH(@)) _
e Y (T a))

. 1
lim ——
m—oo Ty, ()

S A (T (@)
1=0

Let

A (T
J(a) == {x € (0,1] : lim M a}.
n—oo 3o 7(T'x)
Our main results establishes that we can compute the Hausdorff dimension of
K (a) once we know the Hausdorff dimension of J(«).

Theorem 7.5. Let a € R be such that K (o) # &, then
dimg K (a) = dimgJ(a) + 1.

We divide the proof of this results in a couple of Lemmas. The proof of the upper
bound for the dimension of K («) in terms of he dimension of J(«) is simpler.

Lemma 7.6. Let a € R be such that K (o) # @, then
dimp K (o) < dimy (J (o) x R) = dimpJ(a) + 1.
Proof. First note that if (x,r) € K(«) then by virtue of Lemma 7.4 we have that

x € J(a). Also if (x,r) € K(a) then (z,s) € K(«) for every s € [0,7(z)). We
therefore have

K(a) C {(z,r) e R? : z € J(a) and r € [0,7(z)]} .

The box dimension of R and its Hausdorff dimension coincide, both are equal to
one. Therefore, the dimension of the Cartesian product is the sum of the dimensions
of each of the factors (see [Fa, p.94]). The result now follows. O

In order to prove the lower bound we will use an approximation argument.

Remark 7.7 (Compact setting). Let C C Y is a compact P—invariant set and
consider the restriction of g to the set C (which is a Hélder map). Then, it was
proven by Barreira and Saussol [BS2, Proposition 6] that, (x,r) € K(a) if and only
if x € J(a).

The following Lemma completes the proof of Theorem 7.5.
Lemma 7.8. Let a € R be such that K (o) # &, then
dimp K () > dimyg (J(@) x R) = dimpgJ(a) + 1.
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Proof. Let (C,), be an increasing sequence of a compact ®—invariant set that
exhaust Y, denote by C,, the projection of C,, onto (0,1]. We define

K,(a):=K(a)NC, and J, () := J(a) N C,.
By Remark 7.7 we have that
Ky(o) = {(z,r) eR*: z € J,() and r € [0, 7(2)]} .
Hence, using the formula for the Hausdorff dimension of a Cartesian product (see
[Fa, p.94]), we have
dimp K, () = dimgJ, (o) + 1.
Therefore
lim dimpK,(a) = lim (dimpgJ,(a) +1) = dimgJ(a) + 1 < dimg K ().

n—oo n—oo

(]

It is a direct consequence of Theorem 7.5 that in order to describe the behaviour
of the function B(«) we only need to understand b(«). Recall that A denotes the
repeller for T. The following is a version of Theorem 1.4 in the suspension flow
setting. It thus, describe the regularity properties of the map B(«).

Theorem 7.9. Let T' be an EMR map, 7 € R, a roof a function and ® the
associated suspension semi-flow. Let g : Y — R be a continuous potential such that
Ay € R. Assume that

. 7(z)

lim —\,

20 log [T ()]
then there exist three pairwise disjoint intervals Ji, Jo, J3 such that
The domain of K(«) can be written as J; U Jo U J3,
J1 << J3
The function a« — dimyK,, is analytic on J, and J3
For a € Jy, dimpK, = dimgA +1
It is possible that J, = &, J3 = & or that Ja is a single point.

= 00,

CU @ =

8. CONTINUED FRACTIONS

In this section we consider examples involving the Gauss map and, hence, the
continued fraction expansion of a number. Every irrational number x € [0,1] can
be written in a unique way as a continued fraction,

1
x = = [arazas3...],

ag + ——
2 asz+ ...

where a; € N. Tt well known that the Gauss map, G : (0,1] — (0, 1], acts as the
shift in the continued fraction expansion (see [EW, Chapter 3]), that is

G([alagag .. ]) = [a2a3a4 N ]
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8.1. Arithmetic and Geometric averages. Let ¢ : [0,1] — R be defined by
Y([aragas . ..]) = a;. Note that the Birkhoff average of G with respect to the
potential 1 is nothing but the arithmetic average of the digits in the continued
fraction expansion

n— o0 n

ol _artast-tay
lim — G (z)) = 1 .
nggon;w( (z)) = lim

Note that [EW, p.83] for Lebesgue almost every point the arithmetic average is
infinite. The level sets induced by the arithmetic averages where studied in [1J].
Consider now the function ¢ : [0,1] — R defined by ¢(x) = loga;. The Birkhoff
average of G with respect to that function is the logarithm of the geometric average,

1 oo
lim — E o(G™(z)) = lim log /ajas -~ ap.
n—oo N n— o0
n=1

For Lebesgue almost every point this sum takes the value [EW, p.83]

00 1 2\ logn/log2
log (H (L) ,
n=1 ’I’L(’I’L + )

The level sets determined by the geometric average were studied in [FLWW, KS,
PW]. On the other hand, the Birkhoff average corresponding to log |G'(z)| is the
Lyapunov exponent of the point x, that is

1 o0

Alz) == lim — log |G'(G™
(€)= Jim 3 1og /(6" ()

if this limit exists. This number measures the exponential speed of approximation
of an irrational number by its approximants, which are defined by,

Pn

=lay...ay,].
dn [ ' ]
That is (see [PW])
- Zﬁ = exp(—nA(x)).
For Lebesgue almost every point this number equal to [EW, p.83],
2
6log2’

The multifractal analysis for this function has been studied in [PW] and [KS]. The
techniques developed in this paper allow us to study the following related level sets
of the form

1
J(a) == {Jj €10,1] : lim og(a1as -~ an) = a}.
n—oo a; +as + -+ ay

Note that the quotient defining the level set is the quotient of the logarithm of the
geometric average with the arithmetic average. Indeed,

log(ajas - - ay) _ log(aias---a,)  log {/ajaz - ay

E =
ay+az+---+ap %a1+a2+-..+an w

Lemma 8.1. We have that a,, = 0 and apy = 10%3. Moreover, the set J(0) has
full Lebesque measure.
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Proof. We have that ,, = 0. This is clear, just consider the number x = [11111...].
It is easy to construct numbers belonging to J(0) as the following example shows,
let # = [1,2,22,23 ...,27...]. That is the number for which the digits in the
continued fraction expansion are in geometric progression with ratio equal to 2.
Then

atas+ta,=1+24+22423 4. 4 2n =271
On the other hand

-1
log(aias - - - an) = log(12223 ... 2771) = Jog 21 +2H3++(n=1) w log 2.

Therefore
(n—1)n
1 ceeay, =" log 2
lim 0g(a1a - an) = lim 2 %8s =0.
n—oooa; +ag+---+a, n—ooo 20 —1

The fact that the set J(0) has full Lebesgue measure is a direct consequence of the
fact that for Lebesgue almost every point the arithmetic average is infinite and the
geometric one is finite.

On the other hand we have that ay; = (log3)/3. Indeed, it is well known that
the arithmetic average is larger than the geometric one

ay+ag+---+an
n

> {/aras - anp,

with equality if and only if a1 = a2 = a3 = -+ = a,. Therefore the maximum of
the quotient
log(aias -+ - ay,)
a1 +as+---+ay,
is achieved in an algebraic number of the form z = [a,a,a,...]. In this case we
obtain

log(aiaz---a,)  loga
aitag+--+a, a
The maximum of the function f(z) = (logz)/z is attained at z = e. Since a € N

we have that the maximum is (log 3)/3. O

Lemma 8.2. We have that @
(0, (log 3)/3)
Proof. Note that

a = 0. In particular U = [am,anm] \ (@, @) =

lim L(I) = lim logn
xz—0 (.’E) n— oo n
That is @ = a = 0. Therefore U = (am, anr) = (0, (log 3)/3). O

=0.

Therefore, a direct consequence of Theorem 1.3 is that

Proposition 8.3. For every a € (0, (log 3)/3) we have that

; h(p) [ ddu
b(a) = dZmHJ(O[) = Sup { RO e )
HEM(G) AMp) "~ [Ydu
Lemma 8.4. We have that

. (@)
I e [T ()] ~
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Proof. Note that if z € (1/(n+ 1),1/n) then ¢ (z) = n and 2logn > log|T"(z)|.
Thus,
R
im ——~2— > lim
z—0log |T"(z)| — n—oo 2logn

|
In particular we have proved that the assumptions of Theorem 1.4 are satisfied.

8.2. Weighted arithmetic averages. Let p,v > 0 consider the level sets defined
as the quotient of weighted arithmetic averages,

ol T ot
J(a) :==qxz €0,1]: lim a})—i—ag—i— +a;‘:a .
n—oo ay + ay + -+ + an

Let ¢ : [0,1] — R be defined by ¢ ([a1azas...]) := af. Note that the Birkhoff
average of G with respect to the potential ¥ is nothing but the weighted arithmetic
average of the digits in the continued fraction expansion

m LS i o G e t--tap
i 1SS0 = A
In an analogous way we define ¢ : [0,1] — R by ¥([a1azas...]) := a]. The
level sets determined by Birkhoff averages of the potential ¢ where studied in [IJ,
Proposition 6.3]. In that context there exists essentially two different types of
behaviour, depending if p € (0,1) or if p > 1.

Remark 8.5. If v > p then
¢(x)

a=q=lim —=% = lim n”77 =0.
x—0 (,]j) n—oo

Since the level sets are defined by the quotient of positive numbers we have that

& = 0. Remark that if x = [a,a,a,...] then
llm a[7+a’7+...+a7 :apf’y.
n—oo P +af + .-+ af
In particular if x = [1,1,1,...] we have that & = 1 € [, am]. On the other hand

note that if a € N then a? < a”, therefore
YagY 4
‘m a'+a’+---+a <1
n%ooa/)—"—al)_"_..._i'_a)p

Thus, ap = 1.

Proposition 8.6. If v > p then for every a € (0,1) we have that
{h(u) S ¢du _a}
Ap) [ Ydp

Proof. In Remark 8.5 we proved that o, = 0 and E = {0}. The result now follows
by applying Theorem 1.3. (]

b(a) := dimgJ(a) = sup
HEM(T)

Lemma 8.7. We have that
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Proof. Note that if x € [1/(n 4+ 1),1/n] then ¥(z) = n” and 2logn > log|T"(z)|.
Thus,
-
im ﬂ > lim i
z—0 log |T"(z)| — n—oo 2logn

O

In particular we have proved that the assumptions of Theorem 1.4 are satisfied.
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