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Abstract

We study defect structures in global minimizers of the Landau-de
Gennes energy on arbitrary three-dimensional (3D), simply connected
geometries with physically realistic Dirichlet boundary conditions. We
prove that global Landau-de Gennes minimizers must be biaxial for
su�ciently low temperatures. This follows from (i) a rigorous local
characterization of defect profiles in uniaxial critical points that satisfy
an energy bound, in terms of the well-known radial-hedgehog (RH)
solution and (ii) the local instability of the RH solution with respect
to biaxial perturbations for low temperatures.

1 Introduction

Nematic liquid crystals (LCs) are anisotropic liquids wherein the constituent
rod-shaped molecules exhibit a degree of long-range orientational order [7,
28]. Nematic LC textures often exhibit intricate defect patterns, the com-
monest examples being Schlieren textures with striking optical properties
[12], [4, 9]. These defect patterns are generic in condensed matter systems
and are a source of fascinating new problems for analysts, physicists and en-
gineers. Equally importantly, defects play a crucial role in non-equilibrium
dynamic processes such as switching mechanisms in LC devices, examples of
which can be found in [23].
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The mathematics of LC defects o↵ers plenty of open non-trivial questions,
particularly related to the structure of a defect core, the energy concentration
within defects, stability of defect structures and pattern formation etc. [1],
[18], [22], [6]. In a previous paper, we study defect structures within three-
dimensional spherical nematic droplets with homeotropic or radial boundary
conditions, for low temperatures well below the nematic-isotropic transition
temperature [11]. This model problem has been widely studied in the liter-
ature, particularly within the powerful continuum Landau-de Gennes (LdG)
theory for LCs [10], [24], [26], [27], [13]. It is generally believed that there
are two competing static equilibria for this model problem, (i) the radial-
hedgehog solution (RH) and (ii) the biaxial torus (BT) solution. The RH
solution is analogous to a degree +1-vortex in superconductivity [22]. It is a
perfectly uniaxial, spherically symmetric solution with a single distinguished
direction of molecular alignment, referred to as the director. The RH director
is identically aligned along the radial unit-vector with an isolated, isotropic
point at the droplet centre. The LC state loses all orientational order at the
isotropic point and consequently, the isotropic point is interpreted to be a
defect point. The BT solution has lesser symmetry than the RH solution
i.e. it is not radially symmetric about the droplet centre but has a biaxial
band, with two distinguished directions of molecular alignment, around the
droplet centre. It is analytically and numerically known that the RH solution
is unstable with respect to higher-dimensional biaxial perturbations for low
temperatures and the asymmetric BT solution is energetically preferable to
the RH solution for low temperatures [10, 13, 27, 26]. However, this does not
exclude the existence of other competing uniaxial equilibria which may have
lower energy than both the RH and BT solutions.

It has long been believed that the RH solution is the unique uniaxial
candidate for a LdG energy minimizer on a 3D spherical droplet with radial
boundary conditions for su�ciently low temperatures and we give rigorous
results in support of this conjecture in [11]. In [11], we adapt the division
trick in [19] and the radial symmetry results for the Ginzburg-Landau theory
for superconductivity [2, 18], to the LdG theory for nematic LCs. We prove
that if a global LdG minimizer is indeed uniaxial, for a 3D spherical droplet
with radial boundary conditions, then the uniaxial minimizer must have a
point isotropic defect near the droplet centre and the local structural profile
is indeed described by the RH solution (modulo a rotation), in the low-
temperature limit. This combined with the known instability of the RH
solution with respect to biaxial perturbations [15, 20] su�ces to prove that
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global LdG minimizers cannot be purely uniaxial i.e. must be biaxial, for
su�ciently low temperatures.

In this paper, we generalize the results in [11] to an arbitrary 3D simply-
connected geometry with topologically non-trivial, physically realistic Dirich-
let conditions. We follow the same strategy as in [11]. We assume the
existence of a sequence of uniaxial global LdG minimizers for low tempera-
tures and exploit the assumed uniaxial structure to prove that the uniaxial
sequence converges strongly (in the Sobolev space W

1,2) to a minimizing,
limiting harmonic map. The topologically non-trivial Dirichlet boundary
condition necessarily implies that every uniaxial minimizer must have an
isotropic or zero set and the strong convergence result gives us precise in-
formation about the localization of the zero/isotropic set near the singular
set of the limiting harmonic map, for low temperatures. We then adapt the
methods in [11] to locally resolve the defect profile and recover the RH profile
locally near the isotropic points of the assumed uniaxial minimizer. This lo-
cal characterization of defect profiles in uniaxial minimizers, when combined
with the known instability of the RH solution with respect to biaxial per-
turbations, su�ces to prove our main result: global LdG minimizers cannot
be purely uniaxial for low temperatures. In other words, biaxiality is not an
artefact of a special geometry and choice of boundary conditions as in [11]
but is generic for low temperatures and 3D simply-connected geometries, for
physically realistic topologically non-trivial Dirichlet conditions.

There are two main new mathematical ingredients in this paper: (i) a
Bochner-type inequality (analogous to inequalities derived in [17]) for uni-
axial minimizers in the low-temperature limit that allows us to prove the
existence of (at least) one isotropic point near each singular point of the
minimizing limiting harmonic map and (ii) a local energy quantization result
near each singular point of the limiting harmonic map [5] which reduces the
local analysis near each isotropic point to the model problem of a 3D spheri-
cal droplet with radial boundary conditions as in [11]. In particular, our main
result is a 3D result that is independent of the the details of the geometry,
except for simply-connectedness. Mathematically, these tools set up analytic
machinery for ‘zooming into’ or ‘blowing up’ the defect core. Indeed, these
results reveal the Ginzburg-Landau-type character of uniaxial equilibria and
allow us to identify the mathematical di↵erences in the analysis of uniaxial
and biaxial equilibria. From a practical point of view, the uniaxial versus
biaxial character of LC equilibria is a question of great interest in the phys-
ical sciences community [7, 10, 21, 28]. In particular, biaxiality may o↵er
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new possibilities for LC-based applications and rigorous analysis on these
lines, such as ours, may aid future experimental work. For example, we be-
lieve that our methods can be generalized to polymer dispersed LC systems
and systems with enlarged defect cores e.g. LC systems in external fields,
macro-molecular systems etc.

The paper is organized as follows. In Section 2, we review the theoretical
background and state our main results. In Section 3, we give the proofs and
in Section 4, we conclude with future perspectives.

2 Statement of results

Let ⌦ ⇢ R3 be an arbitrary simply-connected 3D domain with smooth bound-
ary. Let S2 be the set of unit vectors in R3 and let S

0

denote the set of
symmetric, traceless 3⇥ 3 matrices i.e.

S

0

=
�

Q 2 M

3⇥3;Qij = Qji;Qii = 0
 

(1)

where M

3⇥3 is the set of 3⇥ 3 matrices. The corresponding matrix norm is
defined to be [17]

|Q|2 = QijQij i, j = 1 . . . 3 (2)

and we use the Einstein summation convention throughout the paper.
We work with the Landau-de Gennes (LdG) theory for nematic liquid

crystals [7] whereby a LC state is described by a macroscopic order parame-
ter: the Q-tensor order parameter. The Q-tensor is a macroscopic measure
of the LC anisotropy. Mathematically, the LdG Q-tensor order parameter
is a symmetric, traceless 3 ⇥ 3 matrix in the space S

0

in (1). A LC state
is said to be (i) isotropic (disordered with no orientational ordering) when
Q = 0, (ii) uniaxial when Q has two degenerate non-zero eigenvalues and
(iii) biaxial when Q has three distinct eigenvalues. The LdG theory is a
variational theory and has an associated LdG free energy. The LdG energy
density is a nonlinear function of Q and its spatial derivatives [7, 21]. We
work with the simplest form of the LdG energy functional that allows for a
first-order nematic-isotropic phase transition and spatial inhomogeneities as
shown below [17, 21] :

I
LG

[Q] =

Z

⌦

L

2
|rQ|2 + fB (Q) dV. (3)

4



Here, L > 0 is a small material-dependent elastic constant, |rQ|2 = Qij,kQij,k

(note that Qij,k = @Qij

@xk
) with i, j, k = 1, 2, 3 is an elastic energy density and

fB : S
0

! R is the bulk energy density that dictates the preferred phase of
the nematic configuration : isotropic/uniaxial/biaxial. For our purposes, we
take fB to be a quartic polynomial in the Q-tensor invariants:

fB(Q) =
A(T )

2
trQ2 � B

3
trQ3 +

C

4

�

trQ2

�

2

(4)

where trQ3 = QijQjpQpi with i, j, p = 1, 2, 3; A(T ) = ↵(T �T

⇤); ↵, B, C > 0
are material-dependent constants, T is the absolute temperature and T

⇤ is
a characteristic temperature below which the isotropic phase, Q = 0, loses
its stability [21, 15]. We work in the low temperature regime with T << T

⇤

(or A < 0) and subsequently investigate the A ! �1 limit, known as the
low temperature limit. One can readily verify that fB is bounded from below
and attains its minimum on the set of Q-tensors given by [15, 16]

Q
min

=

⇢

Q 2 S

0

;Q = s

+

✓

n⌦ n� I

3

◆

, n 2 S2

�

, (5)

I is the 3⇥ 3 identity matrix and

s

+

=
B +

p

B

2 + 24|A|C
4C

. (6)

Our aim is to study the uniaxial versus biaxial character of defect cores
in global minimizers and critical points of the LdG energy in (3), subject to
topologically non-trivial Dirichlet boundary conditions. In what follows, we
take the Dirichlet boundary condition to be

Qb,A(x) = s

+

✓

nb ⌦ nb �
I

3

◆

(7)

for some arbitrary smooth unit-vector field, nb, with topological degree d 6= 0
(see, e.g., [1] for the definition and the main properties of the topological
degree).We take our admissible space to be

AA =
�

Q 2 W

1,2 (⌦;S
0

) ;Q = Qb,A on @⌦
 

, (8)

where W 1,2 (⌦;S
0

) is the Soboblev space of square-integrable Q-tensors with
square-integrable first derivatives [8], with norm

||Q||W 1,2 =

✓

Z

⌦

|Q|2 + |rQ|2 dV

◆

1/2

.
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The existence of a global minimizer of I
LG

in the admissible space, AA,
is immediate from the direct method in the calculus of variations [8]; the
details are omitted for brevity. It follows from standard arguments in elliptic
regularity that all global minimizers are smooth and real analytic solutions
of the Euler-Lagrange equations associated with I

LG

on ⌦,

L�Q = AQ� B

✓

Q2 �
�

trQ2

� I

3

◆

+ C

�

trQ2

�

Q, (9)

where B
3

(trQ2) I

3

is a Lagrange multiplier accounting for the tracelessness
constraint [17].

We recall a few definitions from [10, 11, 17] to motivate and state our
main results.

Definition 1. Let ⌦ be a measurable subset of R3. We say that a tensor-
valued map, Q : ⌦ ! S

0

, is purely uniaxial if Q(x) can be written as

Q(x) = s(x)

✓

n(x)⌦ n(x)� I

3

◆

, (10)

for some s(x) 2 R and some unit-vector n(x) 2 S2, for a.e. x 2 ⌦. The
unit-vector n is the director or equivalently, the single distinguished direction
of molecular alignment in the sense that all directions orthogonal to n are
physically equivalent.

The set (5) is the set of uniaxialQ-tensors with constant order parameter,
s

+

. Next, we recall the definitions of the reduced temperature t, the uniaxial
nematic correlation length ⇠b and a limiting harmonic map as shown below

t =
27|A|C
B

2

, ⇠b =

s

L

|A| =
r

27CL

B

2

t

. (11)

Definition 2. A (minimizing) limiting harmonic map with respect to the
Dirichlet condition (7) is a uniaxial map of the form

Q0 =

r

3

2

✓

n0 ⌦ n0 � I

3

◆

, (12)

where n0 is a minimizer of the Dirichlet energy

I[n] =

Z

⌦

|rn|2 dV (13)

in the admissible space A
nb

= {n 2 W

1,2 (⌦; S2) ;n = nb on @⌦} [25].
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Our two main theorems are:

Theorem 1. Let ⌦ ⇢ R3 be simply-connected, open, bounded, and with a
smooth boundary. Let {Aj}j2N and {Qj}j2N be such that

• Aj
j!1�! �1,

• for each j 2 N, Qj 2 AAj is a critical point of the LdG energy i.e. is
an analytic solution of the Euler-Lagrange equations (9),

• for each j 2 N, Qj is uniaxial with non-negative scalar order parameter
as shown below:

Qj(x) = sj(x)

✓

nj(x)⌦ nj(x)�
I

3

◆

, (14)

for some sj(x) � 0 and a unit-vector field nj(x) 2 S2, for a.e. x 2 ⌦,

• for each j 2 N, Qj satisfies the following energy bound

lim sup
j!1

1

s

2

+

I
LG

[Qj]  L

✓

inf
n2Anb

I[n]

◆

, (15)

with I[n] and A
nb

as in (13).

Then, passing to a subsequence (still indexed by j),

(i) as j ! 1, the rescaled maps,
n

1

s+

q

3

2

Qj

o

, converge strongly in W

1,2(⌦;S
0

),

to a (minimizing) limiting harmonic map Q̄0 =
q

3

2

�

n0 ⌦ n0 � I

3

�

,

such that Q̄0 has a finite number of isolated, interior point defects,
{x

1

, . . . ,xN}, with N � d (where d is the topological degree of the field
nb defined in (7)), in ⌦,

(ii) 1

s+

q

3

2

|Qj(x)|
j!1�! 1 for every x 2 ⌦ \ {x

1

, . . . ,xN}, the convergence

being uniform in every compact set K ⇢ ⌦ \ {x
1

, . . . ,xN},

(iii) given any compact set K ⇢ ⌦\{x
1

, . . . ,xN}, there exists a constant C,

depending only on K, such that 1

s+

q

3

2

krQjkL1
(K)

 C, for all j 2 N,
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(iv) for each i = 1, . . . , N , there exists {x(j)
i }j2N such that Qj(x

(j)
i ) = 0 for

all j 2 N and x
(j)
i

j!1�! xi,

(v) given any sequence, {x(j)}j2N ⇢ ⌦, such that Qj(x(j)) = 0 8 j 2 N,
there exists a subsequence {jk}k2N and an orthogonal transformation
T 2 O(3) (which may depend on the subsequence) such that the shifted

maps

(

x̃ 7! 1

s

+

r

3

2
Qjk

�

x(jk) + ⇠bx̃
�

)

k2N

converge to

H
T

(x̃) :=

r

3

2
h(|x̃|)

✓

Tx̃⌦Tx̃

|x̃|2 � I

3

◆

, x̃ 2 R3

, (16)

in C

r
loc

(R3;S
0

) for all r 2 N, where h : [0,1) ! R+ is the unique,
monotonically increasing solution, with r = |x̃|, of the boundary-value
problem

d

2

h

dr

2

+
2

r

dh

dr

� 6h

r

2

= h

3 � h, h(0) = 0, lim
r!1

h(r) = 1. (17)

Theorem 1 gives us a local description of the structural profile near a
set of isotropic points in the uniaxial critical points, Qj, in terms of the
well-known RH solution. The RH solution is simply given by

H(x̃) :=

r

3

2
h(|x̃|)

✓

x̃⌦ x̃

|x̃|2 � I

3

◆

, x̃ 2 R3 (18)

where h is defined as in (17). The boundary-value problem (17) has been
studied in detail in [14, 16], in connection to existence and qualitative prop-
erties of solutions. The RH solution is locally unstable with respect to biaxial
perturbations, as has been demonstrated in [15, 20]. Hence, we conclude that

Theorem 2. Let ⌦ ⇢ R3 be simply-connected, open, bounded, and with a
smooth boundary. There exists A

0

< 0 such that for every A < A

0

, the
minimizer of I

LG

[Q] in the space AA (defined in (8)), is not purely uniaxial.

The proofs of Theorems 1 and 2 frequently require us to recall Propo-
sitions 4, 8 and Theorem 3 from [11]. In fact, Theorem 1 is a local version
of the global results for a 3D spherical droplet with radial boundary condi-
tions, contained in Propositions 4 and 8 of [11]. For completeness, we recall
Propositions 4, 8 and Theorem 3 from [11].
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Proposition 2.1. [Proposition 4, [11]] For each t > 0, let Q̃t 2 W

1,2(B(0, R̃t);S0

)
be a uniaxial minimizer of the dimensionless LdG energy, ĨLG, on a re-scaled

spherical droplet, B(0, R̃t) =
n

x̃ = x

⇠b
2 R3; |x̃|  R0

⇠b

o

, where R

0

is indepen-

dent of t, ⇠b is the nematic correlation length defined above and

ĨLG[Q̃] =

Z

B(0, ˜Rt)

1

2
|rQ̃|2 � tr Q̃2

2
�

p
6h

+

t

tr Q̃3 +
h

2

+

2t

⇣

tr Q̃2

⌘

2

+ C(t) dV.(19)

Here h

+

= 3+

p
9+8t
4

and C(t) is an additive constant. We add the constant
C(t) to ensure that the bulk potential is non-negative. Then, for every se-
quence {tj}j2N with tj ! 1 as j ! 1, there exists a sequence {x̃⇤

j}j2N ⇢ R3

such that

(i) x̃⇤
j 2 B(0, R̃tj) for each j 2 N and lim

j!1

x̃⇤
j

R̃tj

= 0,

(ii) Q̃tj(x̃⇤
j) = 0 for every j 2 N,

(iii) Q̃tj has non-negative scalar order parameter

(iv) the sequence of maps, {x̃ 7! Q̃tj(x̃ + x̃⇤
j)}j2N, has a subsequence that

converges to a uniaxial solution, Q̃1 2 C

1(R3;S
0

), of the Ginzburg-
Landau equations (20)

�Q̃ = (|Q̃|2 � 1)Q̃, x̃ 2 R3

, (20)

in C

k
loc

(R3;S
0

) for every k 2 N, with Q̃1(0) = 0 and

1

R

Z

B(0,R)

1

2
|rQ̃1|2 + (1� |Q̃1|2)2

4
dV  12⇡ (21)

for all R > 0.

Proposition 2.2 (Proposition 8, [11]). Let Q 2 C

2(R3;S
0

) be a uniaxial
solution of (20) with Q(0) = 0 and non-negative scalar order parameter,
satisfying the energy bound (21). Let h denote the unique solution for the
boundary-value problem (17). Then there exists an orthogonal matrix T 2
O(3) such that

Q(x) =

r

3

2
h(|x|)

✓

Tx⌦Tx

|x|2 � I

3

◆

, x 2 R3

. (22)
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Proposition 2.3 (Radial-hedgehog solution; Theorem 3 [11]). For every t

su�ciently large, there exists a unique solution, ht : [0, R̃t] ! R, for the
ordinary di↵erential equation

d

2

h

dr

2

+
2

r

dh

dr

� 6h

r

2

= h

3 � h+
3h

+

t

�

h

3 � h

2

�

(23)

subject to the boundary conditions

h(0) = 0, h(R̃t) = 1 (24)

(recall the definition of h

+

and R̃t = R0
⇠b
; for t = 1, the boundary-value

problem is to be understood as in (17)). Define the radial-hedgehog solution
to be

Ht(x) =

r

3

2
ht(r)

✓

x⌦ x

|x|2 � I

3

◆

. (25)

Then Ht is a solution of the Euler-Lagrange equations associated with the
dimensionless LdG energy in (19) and there exists a t

⇤
> 0, such that Ht is

an unstable equilibrium of ĨLG for all t > t

⇤.

3 Proof of the theorems

Proof of Theorem 1. Part (i) is proved as [11, Prop. 2]; we sketch the proof

for completeness. Define the re-scaled maps, Q̄j :=
1

s+

q

3

2

Qj. Let

tj :=
27|Aj|C

B

2

, h

+

=
3 +

p

9 + 8tj
4

, ⇠b =

r

27LC

B

2

t

and L̄ :=
27C

2B2

L.

(26)

Then

s

+

=
B

3C
h

+

(27)

and the minimum of the bulk energy density, fB in (4), is

min
Q2S0

fB (Q) = �1

8
(t+ h

+

) . (28)

The sequence
�

Q̄j

 

is uniaxial by assumption. By [3, 11] (see for example

Lemma 1 in [11]), Q̄ is uniaxial if and only if
�

tr Q̄2

�

3

= 6
�

tr Q̄3

�

2

. Since

10



Q̄j has non-negative scalar order parameter by assumption (for each j), we
necessarily have that

tr Q̄3 =
|Q̄|3p

6
.

The re-scaled LdG energy functional for the uniaxial sequence,
�

Q̄j

 

, is then
given by

3L̄

2Ls2
+

IjLG[Q̄j] =

Z

⌦

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j) dV, (29)

where

ḡj(Q̄j) :=
1

8

�

1� |Q̄j|2
�

2

+
h

+

8tj
(1 + 3|Q̄j|4 � 4|Q̄j|3). (30)

The re-scaled energy follows from (3), from which we have subtracted (28),
to ensure that the integrand is strictly non-negative.

The associated Euler-Lagrange equations for
�

Q̄j

 

are

L̄�Q̄j =
tj

2
(|Q̄j|2 � 1)Q̄j +

3h
+

2
(|Q̄j|2 � |Q̄j|)Q̄j. (31)

and by a standard maximum principle argument (taking the product with
Q̄j), we obtain the global bound

|Q̄j(x)|  1 for all x 2 ⌦. (32)

This global bound, in particular, implies that

(1 + 3|Q̄j|4 � 4|Q̄j|3) � 0

for all Qj in the sequence. The right-hand side vanishes if and only if Q̄ is
of the form (12).

The scaled maps satisfy the boundary condition, Q̄j =
q

3

2

�

nb ⌦ nb � I

3

�

,

on @⌦. The corresponding admissible space is non-empty and from the en-
ergy bound (15) in Theorem 1, the re-scaled energy (29) can be bounded
independently of tj as tj ! +1. Therefore, the sequence {rQ̄j}j2N is

bounded in W

1,2(⌦;S
0

) and after passing to a subsequence, Q̄j
W 1,2

* Q̄
0

for
some Q̄0 2 W

1,2(⌦;S
0

).
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Passing to a subsequence converging pointwise a.e. and noting that the
constraint of uniaxiality, 6 (trQ3)2 = |Q|6, is weakly closed (with non-
negative scalar order parameter), we deduce that Q̄0 is uniaxial. From (32),
(29), (30) and the energy bound it follows that

Z

⌦

(1� |Q̄0|2)2 dV  lim sup
j!1

✓

8

tj
· 27

2

C

3

4h2

+

B

2

IjLG[Qj] +
�p
tj

◆

= 0 (33)

for some constant � > 0. Therefore, |Q̄0| = 1 a.e. and from the orientability

result in [3, Th. 2], Q̄0 can be written as, Q̄0 =
q

3

2

(n0 ⌦ n0 � I

3

) for some

n0 2 W

1,2(⌦; S2). From (29) and the energy upper bound, we obtain

3L̄

2

Z

⌦

|rn0|2 dV =

Z

⌦

L̄

2
|rQ̄0|2 dV

 lim sup
j!1

Z

⌦

L̄

2
|rQ̄j|2 dV  3L̄

2

✓

inf
n2Anb

Z

⌦

|rn|2 dV
◆

,

(34)

i.e. Q̄0 is a (minimizing) limiting harmonic map and the above inequalities are
in fact equalities. This convergence of the L

2-norms of the gradients implies
that the weak convergence to Q̄0 in W

1,2 is, in fact, a strong convergence.
From the theory of harmonic maps, it is known that n0 has a finite number,
N � d, of isolated interior point defects, {x

1

, . . . ,xN}, and each of these
defects has degree ±1 [1, 5].

Proof of (ii): we refer the reader to [17, Props. 4 and 6]. From the energy
bound (v) in Theorem 1 and the strong convergence to a minimizing limiting
harmonic map (as defined in (12)), we have that

lim
j!+1

Z

⌦

tj

⇢

1

8

�

1� |Q̄j|2
�

2

+
h

+

8tj
(1 + 3|Q̄j|4 � 4|Q̄j|3)

�

dV = 0.

We combine the above with the monotonicity inequality for solutions of the
Euler-Lagrange equations (31) (as derived in [17]):

1

R

1

Z

B(x,R1)

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j) dV  1

R

2

Z

B(x,R2)

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j) dV

for all x 2 ⌦, R
1

< R

2

such that B(x, R
2

) ⇢ ⌦, to obtain the following
pointwise convergence result

lim
j!1



1

8

�

1� |Q̄j|2
�

2

+
h

+

8tj
(1 + 3|Q̄j|4 � 4|Q̄j|3)

�

= 0,
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everywhere away from the singular set of Q̄0. We can then argue as in
Proposition 4 in [17] to deduce the uniform convergence in the interior. We
can deduce the uniform convergence up to the boundary, away from the
singular set of the minimizing limiting harmonic map, by using the boundary
monotonicity lemma derived in [17, Lemma 9] and arguing as above.

Proof of (iii): The proof closely follows Lemma 6, Lemma 7 and Propo-
sition 5 in [17]. The key step is to prove a Bochner-type inequality of the
form

��

✓

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j)

◆

 C(K)|rQ̄j|4 (35)

on any compact subset, K ⇢ ⌦ \ {x
1

, . . . ,xN}, that does not contain any
singularities of the limiting harmonic map, Q̄0. A direct computation shows
that

��

✓

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j)

◆

= �L̄Q̄j,↵� · Q̄j,↵� � L̄�Q̄j,↵ · Q̄j,↵ (36)

� tj(Dḡj),↵ · Q̄j,↵ � tjDḡj ·�Q̄j. (37)

We define

Dḡj(Q̄) =
@ḡj(Q̄)

@Q̄
= �

✓

1

2
(1� |Q̄|2)Q̄+

3h
+

2tj
(|Q̄|� |Q̄|2)Q̄

◆

, (38)

and this is directly related to the Euler-Lagrange equations, (31), by

L̄�Q̄j = tjDḡj(Q̄j(x)). (39)

Therefore,

��

✓

L̄

2
|rQ̄j|2 + tj ḡj(Q̄j)

◆

 �2tj(Dḡj),↵ · Q̄j,↵ �
t

2

j

L̄

|Dḡj|2. (40)

In order to prove (35), note that

�tj

⇣

Dḡj(Q̄j(x))
⌘

,↵
· Q̄j,↵ = �L̄�Q̄j,↵ · Q̄j,↵

= �
✓

tj +
3h

+

2

✓

2� 1

|Q̄j|

◆◆

3

X

↵=1

|Q̄j · Q̄j,↵|2

+

✓

tj
1 + |Q̄j|

2
+

3h
+

2
|Q̄j|

◆

(1� |Q̄j|)|rQ̄j|2

(41)
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and

t

2

j

L̄

|Dḡj|2 =
t

2

j

L̄

⇥
(

1

4

�

1� |Q̄j|2
�

2 |Q̄j|2 +
✓

3h
+

2tj

◆

2

|Q̄j|4
�

1� |Q̄j|
�

2

+

+
3h

+

2tj
|Q̄j|3(1 + |Q̄j|)(1� |Q̄j|)2

)

.

(42)

Finally, we use the global bound |Q̄j|  1 a.e. and the uniform convergence,
|Q̄j| ! 1 uniformly in K as j ! +1, to obtain

�2tj(Dḡj),↵ · Q̄j,↵  2tj

✓

1 +
3h

+

2tj

◆

(1� |Q̄j|)|rQ̄j|2 (43)

 C�(1� |Q̄j|)2t2j +
1

�

|rQ̄j|4; (44)

�
t

2

j

L̄

|Dḡj|2  �
t

2

j

L̄

✓

1 +
3h

+

2tj

◆

(1� |Q̄j|)2. (45)

The last step is to choose � su�ciently small and j su�ciently large so that
inequality (35) follows. The rest of the proof is identical to Lemma 7 and
Proposition 5 of [17].

Proof of (iv): we prove that for each i = 1, . . . , N and every fixed r

0

> 0
su�ciently small, there exists j

0

2 N such that for every j � j

0

, the map Q̄j

has an isotropic point, x(j)
i , in B(xi, r0). The stated conclusion then follows

by a diagonal argument on r

0

. Suppose, for a contradiction, that we can find a
subsequence, {jk}k2N, such that minB(xi,r0) |Q̄jk | > 0 for all k 2 N. Then, we
can apply the orientability result in [3, Th. 2] to

¯

Qjk

| ¯Qjk
| =

q

3

2

�

njk ⌦ njk � I

3

�

in B(xi, r0) to conclude, without loss of generality, that the corresponding
director, njk 2 W

1,2(B(xi, r0); S2) (in (14)). The gradient, rnjk , can be
estimated as shown below

r

3

2
njk,↵ = n

✓

Q̄jk

|Q̄jk |

◆

,↵

=
1

|Q̄jk |
⇣

Q̄jk,↵ � Q̄jk

|Q̄jk |2
(Q̄jk · Q̄jk,↵)

⌘

. (46)

We have that |rQ̄jk | is uniformly bounded (independently of tjk) and that
|Q̄jk | ! 1 uniformly away from the singularities of the limiting harmonic
map, for jk su�ciently large. Therefore, njk and Q̄jk are Lipschitz-continuous
in B(xi, r0)\B(xi, r0/2), uniformly with respect to k. For a.e. r

0

/2 < r < r

0

,

14



we can use Fubini’s theorem to extract a subsequence, which may possibly
depend on r and is still labelled by jk, such that

njk ! n uniformly on @B(xi, r) for some n : @B(xi, r) ! S2, and

Q̄jk(x) !
r

3

2

✓

n0(x)⌦ n0(x)� I

3

◆

for Hn�1-a.e. x 2 @B(xi, r),
(47)

where n0 2 W

1,2(⌦; S2) is related to the (minimizing) limiting harmonic map,
Q̄0, as in part (i) of Theorem 1. We combine the two ingredients above to
obtain that n ⌦ n = n0 ⌦ n0 so that n(x) = ±n0(x) for a.e. x 2 @B(xi, r).
Since n · n0 2 W

1,2(@B(xi, r)) (because n : @B(xi, r) ! S2 is also Lipschitz)
and hence is absolutely continuous on almost every curve on @B(xi, r), then
either n(x) = n

0

(x) for a.e. x or n(x) = �n
0

(x) for a.e. x. In particular,
| deg(n, @B(xi, r))| = | ± deg(n

0

, @B(xi, r))| = 1 (recall that each singular
point of Q̄0 has degree, d = ±1, from standard results in the theory of
minimizing harmonic maps, see [5]). By the continuity of the degree with
respect to the uniform convergence, this implies that deg(njk , @B(xi, r)) =
±1 for all k su�ciently large. However, Q̄jk is uniaxial and infB(xi,r0)

Q̄jk > 0

by assumption and therefore, Q̄jk has two degenerate non-zero eigenvalues
on B(xi, r0). The leading eigenvector, njk , has the same degree of regularity
as Q̄jk as long as the number of distinct eigenvalues does not change [17].
The map Q̄jk is analytic and consequently, njk is analytic on B(xi, r0), since
Q̄jk is free of any isotropic points in B(xi, r0). This leads to a contradiction
since deg(njk , @B(xi, r)) = ±1 for all k su�ciently large and the proof is now
complete.

Proof of (v): The aim is to prove that Q̄j has a radial-hedgehog type of
profile, (16), near each singular point of the limiting harmonic map, for j

su�ciently large. The proof follows from the strong W

1,2-convergence of the
rescaled Q-tensors, Q̄j, to a limiting harmonic map; the celebrated energy
quantization result for the energy of minimizing harmonic maps at singular
points, established in [5]:

lim
r!0

1

r

Z

B(xi,r)

1

2
|rn0|2 dV = 4⇡, i = 1, . . . , N (48)

and Propositions 4 and 8 in [11], quoted in Section 2.
We begin by noting that for each i = 1 . . . N in {x

1

, . . . ,xN}, we can
extract a sequence,

�

x(j)
 

, such that Q̄j

�

x(j)
�

= 0 and x(j) ! xi as j ! 1,
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from (iv) above. The inequalities in (34), together with the strong W

1,2-
convergence, imply that

1

r

Z

B(xi,r)

1

2
|rQ̄j|2 +

tj

L̄

ḡj(Q̄j) dV
j!1�! 3

r

Z

B(xi,r)

1

2
|rn0|2 dV (49)

for every small r > 0. Let

⇠j :=

s

2L̄

tj
, x̃ :=

x� x(j)

⇠j
, Q̃j(x̃) := Q̄j(x

(j) + ⇠jx̃). (50)

The goal is to prove that a subsequence of {Q̃j}j2N converges to the radial-
hedgehog solution in (16), in C

r
loc

(R3;S
0

) for all r 2 N. By the monotonicity
formula in [17, Lemma 2], for every fixed R > 0, every small r > |x(j)�xi|+
⇠jR, and every j su�ciently large, we have that

1

R

Z

|˜x|<R

1

2
|rQ̃j(x̃)|2 +

(1� |Q̃j|2)2
4

dV (51)

 1

⇠jR

Z

|x�x

(j)|<⇠jR

1

2
|rQ̄j(x)|2 +

tj

L̄

ḡj(Q̄j(x)) dV (52)

 1

r � |x(j) � xi|

Z

B(x

(j),r�|x(j)�xi|)

1

2
|rQ̄j(x)|2 +

tj

L̄

ḡj(Q̄j(x)) dV (53)

 r

r � |x(j) � xi|
· 1
r

Z

B(xi,r)

1

2
|rQ̄j(x)|2 +

tj

L̄

ḡj(Q̄j(x)) dV (54)

(we have used the inequality (1�| ˜Qj |2)2
4

 gj(Q̄j(x)) above). This combined
with (49) and (48) yields the following inequality

lim sup
j!1

1

R

Z

|˜x|<R

1

2
|rQ̃j(x̃)|2 +

(1� |Q̃j|2)2
4

dV

 3

✓

lim sup
r!0

+

1

r

Z

B(xi,r)

1

2
|rn0|2 dV

◆

 12⇡

(55)

for every R > 0.
Using the energy bound above, we can extract a diagonal subsequence,

converging weakly in W

1,2
loc

\ L

4

loc

(R3;S
0

), to a uniaxial limit map, Q̃1, with
non-negative scalar order parameter that satisfies the following energy bound

1

R

Z

|˜x|<R

1

2
|rQ̃j(x̃)|2 +

(1� |Q̃j|2)2
4

dV  12⇡ 8R > 0. (56)
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One can check that Q̃1 solves the weak form of the Ginzburg-Landau equa-
tions, �Q̃ = (|Q̃|2�1)Q̃, in R3 (write the weak form of the partial di↵erential
equations for Q̄jk and pass to the limit when k ! 1). Standard arguments
in elliptic regularity show that Q̃1 is a classical solution of the Ginzburg-
Landau equations and that the diagonal subsequence converges in

T

r2N C
k
loc

to Q̃1. Finally Q̃1(0) = 0 because Q̃jk(x
(jk)) = 0 for each k, by assump-

tion. We conclude that the hypotheses of [11, Prop. 8] are satisfied, yielding
the conclusion of Theorem 1.

Proof of Theorem 2. We proceed by contradiction. Suppose that there exist
sequences, {Aj}j2N with Aj ! �1, and a sequence {Qj}j2N ⇢ W

1,2(⌦;S
0

),
such that for each j 2 N:

(i) Qj(x) is uniaxial for a.e. x 2 ⌦, i.e. it can be written in the form

Q(x) = s(x)

✓

n(x)⌦ n(x)� I

3

◆

, (57)

for some s(x) 2 R (not necessarily nonnegative) and some unit-vector
field n(x) 2 S2;

(ii) and Qj is a global minimizer of Landau-de Gennes energy, I
LG

[Q], in
the space AAj .

Then, by global minimality [15, Lemma 2], Qj necessarily has non-negative
scalar order parameter for each j 2 N, i.e. s(x) above is necessarily nonneg-
ative. Also, by elliptic regularity theory, Qj is a real-analytic solution of (9)
(see, e.g. [17]). Finally, let Q(1) be a minimizing limiting harmonic map with
respect to the Dirichlet condition (7), as defined in (12). We are guaranteed
the existence of a minimizing limiting harmonic map from direct methods in

the calculus of variations [8]. Then the tensor-valued map
q

2

3

s

+

Q(1) 2 AAj ,

and since Qj is a global LdG minimizer in the space AAj , we obtain the
following inequality

1

s

2

+

I
LG

[Qj] 
1

s

2

+

I
LG

[Q(1)] (58)

=
1

s

2

+

· 2s
2

+

3

Z

⌦

L

2
|rQ(1)|2 dV = L

✓

inf
n2Anb

I[n]

◆

(59)
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for every j 2 N. This is precisely the energy bound in (15) of Theorem 1.
We now combine Theorem 1, part (v), with the instability result for the RH
solution with respect to biaxial perturbations as in [11, Th. 3], also see [11,
Sect. 5]; (the statement of [11, Th. 3] has been reproduced in Section 2 for
completeness and the reader’s convenience) to complete the proof.

4 Conclusions

In this paper, we generalize the results in [11] to an arbitrary three-dimensional
simply-connected domain with topologically non-trivial Dirichlet conditions.
In [11], we consider a specific model problem of a three-dimensional spherical
droplet with radial boundary conditions. In this case, the minimizing limit-

ing harmonic map is Q̄0 =
q

3

2

⇣

x⌦x

|x|2 � I

3

⌘

, with a single singular point at the

droplet centre. For the general problem studied in this paper, the minimiz-
ing limiting harmonic map may not be unique and will have several singular
points (N singular points where N is bounded from below by the topolog-
ical degree of the Dirichlet boundary condition, see e.g. [1]). We derive a
Bochner-type inequality for the energy density away from the singular set of
the limiting harmonic map and use convergence properties of the topological
degree to establish a correspondence between the isotropic set of uniaxial
critical points and the singular set of a minimizing limiting harmonic map
(as described in Theorem 1, part (iv)). We use energy quantization results
near singular points of energy-minimizing harmonic maps (see [5]) to prove
that such uniaxial critical points have a generic radial-hedgehog type of pro-
file near sequences of isotropic points, that converge to a singular point of a
minimizing limiting harmonic map in the low-temperature limit (see (16)).
This characterization allows us to prove that such uniaxial critical points are
unstable with respect to biaxial perturbations and hence, cannot be global
energy minimizers.

There are close analogies and di↵erences between the vanishing elastic
constant limit studied in [17] and the low-temperature limit studied here and
in [11]. In the vanishing elastic constant limit, any sequence of global Landau-
de Gennes energy minimizers converges strongly (in W

1,2) to a minimizing
limiting harmonic map. This is not the case for the low-temperature limit, i.e.
arbitrary sequences do not converge strongly to minimizing limiting harmonic
maps, but sequences of uniaxial critical points (as in Theorem 1) converge
strongly to minimizing limiting harmonic maps. Further, we exclude the
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global minimality of uniaxial critical points satisfying the energy bound (15)
in Theorem 1, for su�ciently low temperatures. However, these uniaxial
critical points may be stable in restricted classes of uniaxial Q-tensors or
other sub-classes of Q-tensors. It would be interesting to further investigate
the existence and stability of uniaxial critical points for low temperatures.

There are several natural generalizations of the problem studied in this
paper. For example, it would be physically more relevant to consider weak
anchoring conditions or surface energies, as opposed to Dirichlet conditions.
Our mathematical machinery heavily relies on the one-constant isotropic elas-
tic energy density in (3). There are more general quadratic elastic energy
densities in the literature [20], [28] and it is natural to ask if the conclusion
of Theorem 1 holds with elastic anisotropy. This opens the door for new
mathematical challenges since we do not even have a maximum principle
argument for anisotropic quadratic elastic energy densities.
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