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Abstract

We study fracture and delamination of a thin sti↵ film bonded on a rigid substrate through a thin compliant
bonding layer. Starting from the three-dimensional system, upon a scaling hypothesis, we provide an
asymptotic analysis of the three-dimensional variational fracture problem as the thickness goes to zero,
using �-convergence. We deduce a two-dimensional limit model consisting of a brittle membrane on a
brittle elastic foundation. The fracture sets are naturally discriminated between transverse cracks in the
film (curves in 2D) and debonded surfaces (two-dimensional planar regions). We introduce the vectorial
plane-elasticity case, applying the rigorous results established for scalar displacement fields, in order to
numerically investigate the typical cracking scenarios encountered in applications. To this end, we formulate
a reduced-dimension, rate-independent, irreversible evolution law for transverse fracture and debonding of
thin film systems. Finally, we propose a numerical implementation based on a regularized formulation of
the fracture problem via a gradient damage functional. We provide an illustration of the capabilities of the
formulation exploring complex crack patterns in one and two dimensions, showing a qualitative comparison
with geometrically involved real life examples.

Keywords: Thin films, fracture mechanics, asymptotic analysis, variational mechanics

1. Introduction

Cracking of thin films systems is often experienced in everyday life. Ceramic painted artefacts, coated
materials, stickers, paintings and muds are some of the physical systems that exhibit the appearance of com-
plex networks of cracks channeling through the topmost layer in the stack. In addition, the phenomenology is
enriched by the possible interplay with mechanisms of spontaneous interfacial debonding. Although within
the three-dimensional multilayer system cracks may appear anywhere and with arbitrary geometry, it is
a common observation that cracks are either transverse, channeling through the film, or planar debonding
surfaces at the interface. A comprehensive review of common fracture patterns may by found in (Hutchinson
and Suo, 1992).

Within the framework of classical fracture mechanics, the propagation of crack tip(s) along a pre-defined
crack path is obtained through a criterion of critical energy release rate. In their seminal paper, Hutchinson
and Suo (1992) provide closed form computations of the energy release rate associated to isolated straight or
kinked cracks for general layered materials. The concept of steady-state cracking is first formulated as the
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condition for which the “crack driving force” is independent of the crack’s size and it is attained as soon as the
crack is long compared to the film thickness. Xia and Hutchinson (2000) propose a reduced two-dimensional
model for a thin film system as an elastic membrane on an elastic foundation. Then, they investigate the
steady-state propagation of isolated cracks and arrays of cracks, illustrate the interaction between parallel
or perpendicular neighboring cracks and show, under additional hypotheses, the existence of a particular
solution of a crack evolving along an Archimedean spiral. A comparison between the reduced model and the
full three-dimensional non-homogeneous layer stack is carried out in Yin et al. (2008), validating the reduced
model in the regime of sti↵ films over a compliant substrate. The presence of an elasto-plastic interface is
investigated by McGuigan et al. (2003) and a family of visco-elasto-plastic e↵ective laws for the bonding
layer have been analyzed by Handge (2002).

From a numerical standpoint, fracture of thin films has been investigated via phenomenological spring-
network models by Crosby and Bradley (1997); Leung and Néda (2000); Sadhukhan et al. (2011), whilst Liang
(2003) and Fan et al. (2011) proposed to tackle the problem by means of an extended finite leements
discretisation. However, XFEM approaches still have di�culties in correctly describing crack branching,
coalescence and nucleation. Neither of these works accounts for the interplay between channel cracking and
debonding.

In the applied mathematics community, static fractures in single-layer thin films have been investigated
by means of a �-convergence analysis that allows the identification of an e↵ective reduced 2D model (Braides
and Fonseca, 2001; Bouchitte et al., 2002). Babadjian (2006) studied the quasi-static evolution of cracks in
thin films proving the convergence of the full three-dimensional evolution to the reduced two-dimensional
one. These results are obtained considering a single-layer system resulting in cracks that are invariant in
the thin direction. The dimension reduction of a bilayer thin film allowing for debonding at the interface
has been investigated by Bhattacharya et al. (2002). The debonding is penalized by a phenomenological
interfacial energy paying for the jump of the deformation at the interface. The limiting models are discussed
according to the weight of interfacial energy. Rigorous derivations of decohesion-type energies have been
given in (Ansini et al., 2007; Ansini, 2004) by means of a homogenization procedure. In these works the
interfacial energy appears as the limit of a Neumann sieve, debonding being regarded as the e↵ect of the in-
teraction of two thin films through a suitably periodically distributed contact zone. More recently, Dal Maso
and Iurlano (2013); Iurlano (2012); Focardi and Iurlano (2013) have also derived similar cohesive fracture
models by means of an Ambrosio-Tortorelli approximation (Ambrosio and Tortorelli, 1992) involving an
internal damage variable. Finally, several works have focused on the quasi-static evolution of debonding
problems with a prescribed debonding zone. In particular, Roub́ıček et al. (2009) model the debonding
phenomenon through an internal variable representing the volume fraction of adhesive contact between the
layers.

In this paper we investigate the brittle thin film systems system within the framework of variational
fracture mechanics (Francfort and Marigo, 1998; Bourdin et al., 2008), using techniques from the calculus of
variations and the notion of variational convergence, which provide a key to reveal the consequences of the
energy minimality requirement. We consider a thin film bonded to a rigid substrate through a compliant
bonding layer. Under precise scaling hypotheses on the geometric and material properties of the film and
the bonding layer, we use asymptotic analysis and �-convergence to deduce a limit two-dimensional model
consisting of a membrane on an elastic foundation, similar to the one considered by Xia and Hutchinson
(2000). The result includes the presence of cracks, showing that, in the limit, the energetically favored
cracks are channeling cracks in the film and in-plane cracks in the bonding layer. We solve numerically the
limit two-dimensional variational problem using a regularized formulation and a finite element discretization,
which extends the one proposed by Bourdin et al. (2000). Then, we illustrate through several examples the
complex crack patterns arising when applying inelastic strain in the film, showing the competing roles of
traverse fracture and debonding. The results are obtained without any a priori hypotheses on the shape
of the crack and without any ad-hoc criterion for crack initiation and propagation, the energy minimality
requirements being the only guiding principle of the analytical and numerical work.

The present work may be regarded as a follow-up of León Baldelli et al. (2013), where the fractur-
ing/debonding problem of a thin film has been studied analytically in one dimension. Recently, Mesgarnejad
et al. (2013) considered the fracture of thin films in bending, but without delamination, reporting numerical
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results obtained with the same methods used here. Corson et al. (2010) present an interesting phase-field
approach to study hierarchical patterns under mechanical stresses with a model that for many aspects is
similar to the one proposed in the present paper. In all these works, the brittle thin-film model is postulated
without deducing it as a limit of a three-dimensional brittle system.

The paper is organized as follows. In Section 2 we introduce the three-dimensional system, from which we
derive an asymptotic two-dimensional reduced model in brittle elasticity. We define the three-dimensional
total energy in the framework of linear elasticity with free discontinuities and state the variational principle
that rules the static and evolution problems. In Section 3 we present the main result of dimensional
reduction in the case of scalar elasticity, namely Theorem 3.1, along with its fundamental implications
from a mechanical standpoint. The proof of the mathematical result is reported in Appendix B, to favor
readability. In Section 4, we apply to vectorial elasticity the model rigorously derived in the scalar case
(without proof) and formulate the corresponding quasi-static evolution problem. Section 5 presents the
regularized formulation and the numerical implementation. The results of several numerical experiments
are reported in Section 6. Conclusions are drawn in Section 7.

2. Formulation of the problem

2.1. Preliminaries and notation

We use Einstein’s summation convention throughout the paper, unless specified otherwise. Roman and
greek subscripts denote components of tensors of rank 1, 2 or 3, respectively spanning the sets {1, 2, 3}
and {1, 2}. We deal with “thin” domains in nD (n = 2, 3), i.e. with domains for which one characteristic
dimension is much smaller than the remaining n� 1. We denote by ⌦ the reference configuration of a three-
dimensional brittle elastic (possibly non-homogeneous) cylinder whose basis is ! ⇢ R2. The associated
energy density function is denoted by W : Rm⇥n ! R, where Rm⇥n stands for the set of real m ⇥ n
tensors. In the sequel we deal with 3D elasticity (m = n = 3), 2D plane elasticity (m = n = 2) and scalar
elasticity (m = 3, n = 1). Accordingly, the linearized gradient of the deformation is ✏(u) := 1

2

(ru+r>u) =
1

2

(@
j

u
i

+ @
i

u
j

) in 3D elasticity, ✏(u) := 1

2

(r0u + r0>u) := 1

2

(@
↵

u
�

+ @
�

u
↵

) in 2D elasticity – the prime
sign indicating derivatives with respect to the in-plane coordinates – and reduces to the gradient ✏(u) = ru
in scalar elasticity. We denote by a dot the scalar (inner) product. We shall use the usual notations for
function spaces: H1(⌦;Rn), L2(⌦;Rn), L1(⌦;Rn) and SBV (⌦;Rn) are respectively the space of square
integrable functions with squared integrable derivatives, the Lebesgue space of square integrable functions,
the space of functions with finite sup-norm and the space of special functions of bounded variations, defined
on the set ⌦ and with values in Rn. Whenever n = 1, for simplicity, we will use the abbreviated notations
H1(⌦), L2(⌦), L1(⌦) and SBV (⌦). We mark with a superposed tilde dimensional functions, domains and
operators. We shall distinguish between the strong and the weak problem of brittle films. The strong
problem will always be defined for admissible displacements in a suitable subspace of the usual Sobolev
space H1(·). For the weak problem, we denote by a calligraphic capital letter, e.g. C(·), the subset of special
functions of bounded variations SBV (·) of admissible displacements. In favor of legibility, we commit an
abuse of notation allowing us to label di↵erent functions with the same symbol, provided that they have
a di↵erent number of arguments, so that e.g. no ambiguity shall arise between the two di↵erent functions
P (u,�) and P (u).

2.2. The three-dimensional brittle system

The three-dimensional model system is sketched in Figure 1. A thin film ⌦̃
f

= ! ⇥ (0, h
f

) is bonded to
a rigid substrate ⌦̃

s

= ! ⇥ (�h
s

,�h
b

) by means of a bonding layer ⌦̃
b

= ! ⇥ [�h
b

, 0], where ! ⇢ R2 is a
bounded open set with Lipschitz boundary. In all that follows, the subscript b indicates quantities relative
to the bonding layer and f to the film. The interface between the latter and the substrate is denoted by
⌃̃ = ! ⇥ {�h

b

}. We assume the two layers to be isotropic and linearly elastic, the elasticity tensor being
characterized by two material constants, e.g. the Lamé parameters (�

f

, µ
f

) and (�
b

, µ
b

) respectively for the
coating film and bonding layer. We denote by ⌦̃ := ⌦̃

f

[ ⌦̃
b

[ ⌦̃
s

the full medium composed of the film, the
bonding layer and the substrate.
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Figure 1: The three-dimensional model of the brittle system: a thin film ⌦
f

is bonded to a rigid substrate ⌦
s

via a bonding
layer ⌦

b

. Crack surfaces are noted �.

We consider two types of loading modes. The first is the displacement imposed at the interface ⌃̃ by the
substrate (Dirichlet boundary condition). We denote it by w : ⌃̃! R3. Considering the substrate infinitely
sti↵ with respect to the film and bonding layer, the displacement w(x̃) at the interface can be identified
as the displacement that the structure would undergo neglecting the presence of the surface coating layers
under structural loads. The second load type is an inelastic strain ✏

0

: ⌦̃
f

! R3⇥3. Physically, it may
rise due to thermal loadings, humidity or drying processes, just to note some of the possible multi-physical
couplings that may take place. The inelastic strain ✏

0

(x̃) is interpreted as the strain that the film and the
bonding layer would undergo if they were free from compatibility constraints. We study the specific case
of in-plane loads, i.e. loads for which only the in-plane components (✏

0

)
↵�

and (w)
↵

are non-vanishing, and
when the inelastic strains are constant through the thickness of each layer. We choose not to account for
all the multi-physical phenomena that may induce shrinking and model both loads as independent given
parameters.

We represent cracks by discontinuity surfaces of the displacement field, we denote them by � and let
them free to appear anywhere inside the body without any a priori geometric restriction. Hence, cracks
may be any set � ⇢ ⌦̃ of finite 2-dimensional Hausdor↵ measure. For clarity, the ones inside the film are
denoted by �

f

:= � \ ⌦̃
f

whereas those inside the bonding layer are �
b

:= � \ ⌦̃
b

. We assume that the
cracks are created at the expense of a surface energy of Gri�th-type, i.e. proportional to the measure of the
crack surface by a material constant, the toughness G

c

. We define it as follows:

S(�) :=
Z

�

G
c

(x) dH2, G
c

(x) :=

(

G
f

, if x 2 ⌦̃
f

,

G
b

, if x 2 ⌦̃
b

,
(1)

where H2 is the Hausdor↵ surface measure.
In the framework of three-dimensional linear elasticity, the space of admissible displacements is that of

square integrable vector fields with square integrable derivatives, defined on the sound part of the body ⌦̃\�
and satisfying the boundary condition on the extended domain ⌦̃

s

, namely:

H1

w

(⌦̃ \ �;R3) :=
n

v 2 H1(⌦̃ \ �;R3), v = w on ⌦̃
s

o

.

To each admissible field we associate the three-dimensional potential elastic energy:

P(u,�) :=
1

2

Z

˜

⌦\�
W (✏(u(x))� ✏

0

(x)) dx (2)

where the elastic energy density W (✏) reads:

W (✏) = �(x)tr(✏)2 + 2µ(x)✏ · ✏. (3)
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In the last expression �(x) and µ(x) are the piecewise constant elasticity parameters of the non-homogeneous
body, namely:

(�, µ)(x) :=

(

(�
f

, µ
f

) if x 2 ⌦̃
f

,

(�
b

, µ
b

) if x 2 ⌦̃
b

.
(4)

Finally, the total energy of the thin film system is the sum of the elastic and the surface energies, namely:

E(u,�) := P(u,�) + S(�).

2.3. Static fracture problem

Following the variational approach to fracture (Francfort and Marigo, 1998; Bourdin et al., 2008), we
introduce the following definition of static fracture problem. The label static emphasizes that the solution
is sought for a fixed load intensity and crack irreversibility does not play any role.

Problem 1 (Static problem for the three-dimensional brittle system). The static three-dimensional problem
of brittle thin film systems consists in finding, for a given load intensity (✏

0

, w), crack sets � and (possibly)
discontinuous displacement fields u 2 H1

w

(⌦̃ \ �;R3) that solve the following minimization problem

inf{E(u,�) : � ⇢ ⌦̃, u 2 H1

w

(⌦̃ \ �;R3)}, (5)

i.e. that satisfy the following global minimality condition:

E(u,�)  E(û, �̂), 8�̂ ⇢ ⌦̃, 8û 2 H1

w

(⌦̃ \ �̂;R3). (6)

The relevant minimization framework when dealing with Gri�th-type surface energies is that of global
minimization. With such surface energies, the elastic state is a local minimizer regardless of the loading
magnitude (see Chambolle et al., 2007, 2010), so that cracks can never nucleate in a body without strong
singularities. In some sense, a pre-existing crack or a geometric singularity on the boundary is required in
order to release enough elastic energy to balance increase of surface energy. This issue may be mitigated by
the introduction of more refined models, such as cohesive or gradient damage models (see Bourdin et al.,
2008; Pham et al., 2011b, and also Section 5.3.).

2.4. Quasi-static evolution problem

Unlike in the static case, irreversibility plays a fundamental role in evolution problems. Upon prescrib-
ing a load history, parametrized by a scalar t, the three-dimensional evolution problem for brittle thin film
systems consists in finding displacements and crack sets verifying a variational statement under the irre-
versibility constraint which forbids self-healing of cracks during the loading process. In the framework of
variational fracture mechanics, the energetic formulation of evolution problem falls into the class of rate-
independent processes as studied in Mielke (2005). The rate-independence implies that solutions to the
evolution problem are stable under a reparametrization of the loading parameter, i.e. solutions are the same
regardless of the velocity of the load. In this context we allow ourselves to interpret the arbitrarily increasing
loading parameter t as a “time” variable. We focus here in the time-discrete formulation of the problem.
The reader can refer to Mielke (2005) for a time-continuous formulation.

Problem 2 (Time-discrete evolution problem for the three-dimensional system). Let 0 = t
0

 t
1

 . . . 
t
N

= T be the discretization of the time interval [0, T ] into N time steps. A time-discrete quasi-static
evolution of the displacement field and crack set of the three-dimensional system is a mapping t

i

7! (ui,�i)
that, given the initial crack state �0 and the loading history (✏i

0

, wi), verifies the following global unilateral
minimality conditions 8i 2 1, . . . , N :

�i ◆ �i�1, (7a)

E(ui,�i)  E(u,�) 8� with �i�1 ✓ � ⇢ ⌦̃, 8u 2 H1

w

i

(⌦̃ \ �;R3), with ✏
0

= ✏i
0

. (7b)

These conditions are equivalent to require (ui,�i) to be a solution of the minimization problem

inf{E(u,�) : �i�1 ✓ � ⇢ ⌦̃, u 2 H1

w

i

(⌦̃ \ �;R3)}. (8)

5



In the problem above, the condition (7a) ensures the irreversibility of the fracturing process and prevent
crack self-healing, whilst condition (7b) requires the constrained energy minimality of the solution at a given
time step among all the admissible competitors. The weak regularity assumption on the crack set (finiteness
of the two-dimensional Hausdor↵ measure) will allow the crack to take complex spatial shapes, branch,
intersect and coalesce.

2.5. Scaling hypotheses

A natural “small parameter”, denoted henceforth by ", appears in thin film systems as the ratio between
the thickness of the surface coating and its in-plane dimension, say L. In addition, thin film systems often ex-
hibit abrupt variations of the material parameters characterizing the material behavior of the di↵erent layers,
spanning several orders of magnitude. The separation of length scales and the material inhomogeneity ren-
ders the numerical solution computationally costly and motivates the derivation of reduced two-dimensional
limit models. In order to study the asymptotic behavior of the brittle system we consider a specific scaling
law for the elastic and geometric quantities and for the material toughnesses, as functions of the small
parameter " = h

f

/L. Amongst all possible choices, we focus on the case where the layers’ thicknesses h
b

and h
f

are of the same order of magnitude and the bonding layer is more compliant and weaker than the
coating film. We formalize the two hypotheses by the following scaling laws on the geometric and elastic
constants:

Hypothesis 1 (Scaling law of thicknesses and elastic moduli). Being

" :=
h
f

L
⌧ 1 ,

we assume that the thickness of the bonding layer h
b

scales with " as the thickness of the film h
f

, and that
the ratio between the elastic constant of the bonding layer and that of the film scales as "2:

h
b

h
f

= ⇢
h

,
µ
b

µ
f

= "2 ⇢
µ

,
�
b

�
f

= "2 ⇢
�

(9)

where ⇢
h

, ⇢
�

, ⇢
µ

are dimensionless coe�cients independent of ".

Remark 2.1. Hypothesis 1 can be translated into the assumption that the shear energy of the bonding layer
and the membrane energy of the film are of the same order of magnitude. A more general scaling law than
(9) reflecting this coupling can be envisaged. However, one can show that the asymptotic elastic limit of the
whole class of systems is the same. In this sense, a system satisfying (9) is taken as a representative of the
whole class.

Regarding the material toughness, we focus on the interesting case where an interplay between cracking
within the film and in the bonding layer takes place, the energy of transverse cracks in the film and the
energy of in-plane cracks in the bonding layer being of the same order of magnitude. The former is of
order G

f

h
f

L and the latter of order G
b

L2, this hypothesis translates in the following scaling of the material
toughnesses:

Hypothesis 2 (Scaling law of toughnesses). Being " = h
f

/L, the fracture toughnesses of the film G
f

and
of the bonding layer G

b

are such that
G

b

G
f

= " ⇢
G

(10)

where ⇢
G

is a dimensionless constant independent of ".
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3. Reduced Model in Scalar Elasticity

Our goal now is to study the asymptotic behavior " & 0 of a system verifying the geometric and
constitutive Hypotheses 1 and 2. We expect a non-trivial coupling between the elastic energies of the layers
and the competition between film and bonding layer cracks in order to release the stored elastic energy.

In this section we show a rigorous approximation result in the framework of scalar elasticity, i.e. when the
displacement field is a scalar function. Although the case of scalar elasticity has an obvious physical meaning
only in the case of two-dimensional domains (anti-plane elasticity), we consider the 3D case. This allows
us to get, without any further mathematical burden, a clearer analogy to the full vector–valued problem.
We prove that under the scaling hypotheses of Section 2.5, the three-dimensional brittle fracture problem
admits a limit two-dimensional representation, providing the geometric characterization of crack surfaces
both in the film and in the bonding layer, the shape of the optimal displacement field through the thickness
and the two-dimensional limit energy. The result is based on the direct method of the calculus of variations
and on �-convergence techniques. To make the mathematical argument rigorous, the problem is put into
a convenient variational setting by considering displacement fields in the functional space SBV of special
functions of bounded variation (see Appendix A), as is classical in free-discontinuity problems Ambrosio
et al. (2000). A displacement field u in that space may be discontinuous and have jumps on a set denoted by
J
u

which can be identified with the cracks. Outside the jump set, such displacements have an (approximate)
gradient denoted by ru, which is essentially the regular part of the di↵erential of u. The reader is referred
to Ambrosio et al. (2000) for a precise definition of this space and associated problems.

We formulate the problem on an extended domain ⌦̃ = ⌦̃
f

[ ⌦̃
b

[ ⌦̃
s

including a portion of the substrate,
say ⌦̃

s

:= !̃ ⇥ (�2h
b

,�h
b

). The space of all admissible displacements is given by the space

C
w

(⌦̃) := {ũ 2 SBV (⌦̃) : ũ = w a.e. in ⌦̃
s

, and kũk
L

1 M}.

Note that the Dirichlet datum w is a priori only defined at the interface ⌃̃ between the substrate and the
bonding layer. We implicitly extend it constantly to the whole domain ⌦̃ so that, from now on, w is identified
to a function on ⌦̃ independent of the out of plane variable. Therefore, the boundary condition ũ = w on
⌃̃ = !⇥{�h

b

} is expressed on the whole set of finite volume ⌦̃
s

. We further assume that every deformation
takes place in a container K which is a compact subset of R3, i.e. kũk

L

1
(⌦)

 M for some fixed constant
M > 0, and kwk

L

1
(⌦

s

)

 M . The latter hypothesis can be removed at the expense of some additional
technicalities (see Dal Maso et al. (2005)).

3.1. Variational formulation in SBV and rescaling of the energy

In the case of scalar elasticity, the elastic energy density (3) reduces to µ
"

|ru|2. To state the variational
problem in a framework well suited for the mathematical analysis we rewrite the energy functional, defined
for admissible displacements in ũ 2 C

w

(⌦̃), in the following form:

Ẽ
"

(ũ) =
µ
f

2

Z

˜

⌦

f

|rũ� ✏
0

|2 dx̃+
µ
b

2

Z

˜

⌦

b

|rũ� ✏
0

|2 dx̃+G
f

H2(J
ũ

\ ⌦̃
f

) +G
b

H2(J
ũ

\ ⌦̃
b

). (11)

As is customary in asymptotic methods (Lions, 1973; Ciarlet, 1997), we apply a change of variables in
order to formulate the problem on a domain independent of the small parameter ". The new non-dimensional
space variable x is defined by the following anisotropic scaling:

x = (x0, x
3

) =

✓

x̃0,
x̃
3

"

◆

, with x̃0 = (x̃
1

, x̃
2

), x0 = (x
1

, x
2

).

In the new variables, the film, the bonding layer and the substrate occupy the domains ⌦
f

= ! ⇥ (0, L),
⌦

b

= !⇥ [�⇢
h

L, 0] and ⌦
s

:= !⇥(�2⇢
h

L,�⇢
h

L), respectively. In that configuration, the new displacement
u is defined by:

u(x) = ũ(x̃),
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and the gradient operator may be decomposed into its dimensionless in-plane and out-of-plane component
as follows:

rũ(x̃) =
✓

r0u(x),
1

"
@
3

u(x)

◆

, where r0 =

✓

@

@x
1

,
@

@x
2

◆

, @
3

=
@

@x
3

.

Moreover, denoting respectively by ⌫
ũ

and ⌫
u

the unit normal to the jump sets J
ũ

and J
u

before and after
the change of variables, the surface measure of J

ũ

is written as:

H2(J
ũ

) =

Z

J

ũ

|⌫
ũ

| dH2 =

Z

J

u

|(" ⌫0
u

, ⌫
u3

)| dH2, where ⌫0
u

= (⌫
u1

, ⌫
u2

).

Hence, the total energy (up to a multiplicative constant 1/") reads as

E
"

(u) :=
Ẽ
"

(ũ)

"
=

µ
f

2

 

Z

⌦

f

⇣

|r0u� ✏0
0

|2 + 1

"2
(@

3

u)2
⌘

dx+ ⇢
µ

Z

⌦

b

⇣

"2|r0u� ✏0
0

|2 + (@
3

u)2
⌘

dx

!

+G
f

 

Z

J

u

\⌦

f

�

�

�

⇣

⌫0
u

,
⌫
u3

"

⌘

�

�

�

dH2 + ⇢
G

Z

J

u

\⌦

b

|(" ⌫0
u

, ⌫
u3

)| dH2

!

. (12)

In the previous expression of the energy we have supposed for simplicity that the inelastic strain is of the
form ✏

0

= (✏0
0

, 0), where ✏0
0

2 L2(⌦;R2). Note that this change of variable does not a↵ect the imposed
boundary displacement w since it is independent of the out of plane variable. Identifying w with a function
defined only on the plane, we henceforth assume that w 2 H1(!)\L1(!). Consequently, the rescaled space
of all admissible displacements is:

C
w

(⌦) := {u 2 SBV (⌦) : u = w a.e. in ⌦
s

, and kuk
L

1
(⌦

f

)

M}

is independent of ". The static fracture mechanics problem is reformulated as follows.

Problem 3 (Static problem for scalar elasticity. Weak formulation). For a given load intensity (✏
0

, w), find
u 2 C

w

(⌦) that satisfy the following global minimality condition:

E
"

(u)  E
"

(û), 8û 2 C
w

(⌦) (13)

Standard arguments ensure that this problem is well posed for fixed ", in the sense that there exists at
least a solution. The result is formalized by the following proposition. For the proof, the reader can refer
to Ambrosio et al. (2000).

Proposition 3.1. (Existence of minimizers at fixed ") For each " > 0, ✏0
0

2 L2(!;R2) and w 2 H1(!) \
L1(!), there exists a minimizer

u
"

2 argmin
u2C

w

(⌦)

E
"

(u).

3.2. Limit model for "! 0

Our aim is to determine a limit functional E
0

and an associated minimization problem formulated on the
two-dimensional domain ! that approximates the full three-dimensional problem for small ". This energy
will turn out to be finite over a set of kinematically admissible displacements which are invariant in the film
with respect to the out-of-plane direction. They will be identified with displacements defined only on the
plane ! and spanning the set:

C(!) = {u 2 SBV (!) : kuk
L

1
(!)

M}.

Note that the approximate gradient of such displacements is given by ru = (r0u, 0), while the jump set is
of the form J

u

= J 0
u

⇥ (0, L).
The main result is summarized in the following theorem:
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L

⇢
h

L

µ
f

µ
b

= "2⇢
µ

µ
f

J
u

�
u

⌦
f

⌦
b

⌦
s

Figure 2: Rescaled brittle multilayer in scalar elasticity. Cracks are identified by the jump set J
u

of the admissible displacement
field u 2 SBV (⌦

f

[ ⌦
b

). Thicknesses, sti↵nesses and toughnesses verify a scaling law depending upon the small parameter ".

Theorem 3.1. For any u 2 C(!) let us define:

E
0

(u) :=
Lµ

f

2

Z

!

|r0u� ✏0
0

|2 dx0 +
Lµ

b

2h
f

h
b

Z

!\�
u

|u� w|2 dx0 + LG
f

H1(J 0
u

) +
LG

b

h
f

H2(�
u

), (14)

where

�
u

:=

(

x0 2 ! : |u(x0)� w(x0)| > u
d

:=

s

2G
b

h
b

µ
b

)

(15)

is the delamination set. Then the energy E
0

admits at least one minimizer over C(!) and

min
u2C(!)

E
0

(u) = lim
"!0

min
u2C

w

(⌦)

E
"

(u).

In addition, if u
"

is a minimizer of E
"

over C
w

(⌦), and u
"

! u
0

strongly in L2(⌦
f

) for some u
0

2 C(!),
then u

0

is a minimizer of E
0

over C(!).

The energy (14) of the limit model can be mechanically interpreted as the energy of a membrane on
an elastic foundation à la Wrinkler undergoing in-plane displacements u 2 C(!). The fracture energies
naturally discriminate transverse cracks J 0

u

and debonded regions �
u

, the former being of codimension 1
while the latter are of codimension 0 in the two-dimensional limit domain !. The debonded regions are
explicitly determined by the local threshold criterion (15) on the absolute value of the mismatch between
the membrane displacement u and the imposed displacement w on the substrate. The elastic energy density
comprises a contribution Lµ

f

2

|r0u� ✏0
0

|2, a membrane energy, estimating the elastic energy in the film; and

a contribution Lµ

b

2

|u � w|2/(h
f

h
b

) due to the interaction with the substrate, estimating the elastic energy
in the bonding layer. The latter contribution is present only in bonded regions ! \�

u

The proof of Theorem 3.1 is based on a �-convergence approach, and its structure is rather classical in
dimensional reduction. It rests on three lemmas:

1. Compactness: If (u
"

) is a sequence with uniformly bounded energy E
"

, then (up to a subsequence) it
converges strongly in L2(⌦

f

) to some u 2 C(!);

2. Lower bound : For any u 2 C
w

(!) and for any sequence (u
"

) ⇢ C
w

(⌦) such that u
"

! u strongly in
L2(⌦

f

), then
E
0

(u)  lim inf
"!0

E
"

(u
"

); (16)
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3. Upper bound (existence of a recovery sequence): For any u 2 C(!), there exists a sequence (u
"

) ⇢ C
w

(⌦)
such that u

"

! u strongly in L2(⌦
f

) and

E
0

(u) � lim sup
"!0

E
"

(u
"

). (17)

The three previous properties ensure the convergence of minimizers as well as the convergence of the
minimal value of the energy. Indeed, the compactness property implies that, if u

"

is a minimizer of E
"

over
C
w

(⌦), then a suitable subsequence converges strongly in L2(⌦
f

) to some u
0

2 C(!), and the lower bound
gives:

E
0

(u
0

)  lim inf
"!0

E
"

(u
"

). (18)

On the other hand, if v 2 C(!) is a competitor for the reduced two-dimensional problem, the upper bound
gives in turn the existence of some recovery sequence (v

"

) ⇢ C
w

(⌦) converging strongly in L2(⌦
f

) to v, and
such that:

E
0

(v) � lim sup
"!0

E
"

(v
"

).

According to the minimality property of u
"

at fixed ", we infer that:

E
0

(u
0

)  lim inf
"!0

E
"

(u
"

)  lim sup
"!0

E
"

(u
"

)  lim sup
"!0

E
"

(v
"

)  E
0

(v),

which ensures that u
0

is a minimizer of E
0

over C(!). Taking in particular v = u
0

in the previous chains of
inequalities yields:

min
u2C

w

(⌦)

E
"

(u) = E
"

(u
"

)! E
0

(u
0

) = min
u2C(!)

E
0

(u)

which gives the convergence of the minimal value.

For the sake of conciseness and in order not to distract the readers not interested in the mathematical
developments, we postpone the rigorous proofs of the above three lemmas to Appendix B. We report below
some comments on the key features of the limit behavior of the system that are revealed by the mathematical
analysis.

• Requiring the energy of the three-dimensional model (12) to be bounded as " ! 0 implies that the
terms @

3

u and ⌫
u3

must vanish in the film ⌦
f

. Hence, in the limit "! 0 the displacements are expected
to be constant through the thickness of the film, and the cracks in the film are purely transverse and
span its whole thickness. This reasoning is made rigorous in the proof of the compactness property in
Section Appendix B.1.

• The scaling hypotheses of Section 2.5 imply that the energy contributions associated to in-plane
deformations in the film, through-the-thickness shear in the bonding layer, transverse cracks in the
film, and in-plane cracks in the bonding layer are of the same order in " in (12). This entails the
emergence of an interesting coupled problem involving all these phenomena, which is the one caught
by the limit energy (14).

• In the energy (12) the elastic energy density associated to the in-plane gradient of the displacement
inside the bonding layer ⌦

b

is proportional to "2, and thus vanishing for " ! 0. This fact implies
that in the limit " ! 0 these gradients may possibly diverge. From a mathematical point of view, it
translates into a lack of compactness inside the bonding layer. However, the displacement within the
bonding layer is controlled by the imposed displacement on the interface with the substrate (Dirichlet
boundary condition) and by the displacement of the film thanks to the continuity at the interface.

• The recovery sequence used in the proof of the upper bound (17) gives a deeper insight on the way in
which the limit two-dimensional model approximates the three-dimensional system. Given a membrane
displacement u 2 C(!), this recovery sequence gives an optimal displacement field defined on the three-
dimensional domain ⌦ to minimize the total energy E

"

in the limit "! 0. Its full expression is given

10



in (B.10). Figure 3(b) sketches the through the thickness distribution of this displacement field and
the associated crack sets. In bonded regions, displacements are constant through the thickness of the
film and a�ne within the bonding layer, varying from the boundary condition on ⌃ to the value of the
displacement of the film. In debonded regions no compatibility between the substrate and the film is
enforced, hence the film is free to accommodate the inelastic strain.

!

�

�

(a) Top view

⌦
f

⌦
b

⌦
s

u(x
2

)

w(x
2

)

u(x
1

)

w(x
1

)

(b) Profile of the optimal displacement (recovery
sequence)

Figure 3: In the limit two-dimensional body !, transverse cracks � and debonded regions � are naturally discriminated, as
shown in subfigure (a). Their nucleation and evolution under imposed loads is ruled by the variational principle. The recovery
sequence used in the �-convergence giving an optimal through-the-thickness distribution of the displacement field is sketched
in subfigure 3(b) at points in bonded (x1) and debonded (x2) regions.

4. Reduced model for two-dimensional vectorial elasticity

The results of the previous section concern the case of scalar elasticity. Obviously, the physically relevant
setting is that of vectorial elasticity, in which the displacement field is a vector. In this case, the rigorous
asymptotic deduction of the limit two-dimensional brittle model involves further technical di�culties from
the mathematical point of view. Here we proceed by induction and transpose (without proof) the results of
the preceding section in the vectorial setting. In particular, we retain the form of the limit elastic energy, as
the sum of the membrane energy of the film and the elastic foundation estimating the energy of the bonding
layer; the geometric characterization of the crack surfaces and of the surface energy, naturally decoupling the
two fracture modes, as the sum of the contributions due to transverse fracture and debonding. Currently,
we are able to provide a full proof (not reported here) of this limit model only in the purely elastic case
without fractures. As in Section 2, we formulate the problem in a strong form, i.e. without resorting to
the use of functional spaces which allow for arbitrary discontinuities (the space SBD of special functions
of bounded deformation, the vectorial generalization of SBV ). In the present context, this choice is mainly
formal because we do not report on the mathematical analysis in the vectorial case.

4.1. The reduced limit energy in two-dimensional elasticity

We consider a two-dimensional brittle elastic membrane occupying the domain ! ⇢ R2. In analogy to
the scalar case, we discriminate between transverse cracks � and debonded regions �. In two dimensions,
the former are a subdomain of ! of codimension 1 whereas the latter are a subdomain of codimension 0. We
assume that the membrane undergoes only in-plane displacements u = (u

1

, u
2

) and that the displacement
field is regular on the crack-free domain ! \ �. The space of admissible displacements is:

H1(! \ �;R2).

11



In analogy with the reduced elastic energy (14) for the scalar case, given the loading as an inelastic
isotropic strain ✏

0

2 L2(!;R2⇥2) and an imposed displacement of the substrate w 2 H1(!;R2)\L1(!;R2),
the elastic energy of the two-dimensional limit model for the vectorial case is taken as follows:

P (u,�,�) :=
1

2

Z

!\�
A(✏(u)� ✏

0

) · (✏(u)� ✏
0

) dx+
1

2

Z

!\�

µ
b

h
b

|u� w|2 dx, (19)

where A is the fourth-order tensor representing the isotropic stress-strain relation for the film as a two-
dimensional membrane in plane-strain. It is defined by:

A ✏ := h
f

�
f

µ
f

�
f

+ 2µ
f

(tr ✏)I
2

+ 2µ
f

h
f

✏ (20)

where I
2

is the two-dimensional identity tensor. The second integral in the potential energy (19) accounts
for the presence of the bonding layer as an elastic foundation. The surface energy is assumed to be the sum
of the contributions given by the transverse cracks � and the debonded regions �:

S(�,�) := h
f

G
f

H1(�) +G
b

H2(�). (21)

Hence, the total energy of the two dimensional model is:

E(u,�,�) := P (u,�,�) + S(�,�). (22)

Remark 4.1. Equation (19) is the energy of a linear elastic prestressed plate undergoing purely in-plane
displacements plus the energy of a linear elastic foundation in the bonded regions. In the purely elastic case
(i.e. when � = � = ;), for the scaling hypotheses (9) and the assumed in-plane loading, the elastic energy
(19) can be obtained as an asymptotic limit for "! 0 of the elastic energy of the three dimensional system
introduced in Section 2. The problem is much more di�cult in the brittle case because of the technicalities
related to the handling of vectorial fields in free discontinuity problems.

4.2. Nondimensionalization and free parameters

Introducing the non-dimensional space variable and displacement field defined by

x⇤ = x/x
0

, u⇤ =
u� w

p

G
f

x
0

/µ
f

, (23)

the total energy (22) may be rewritten in the following non-dimensional form:

E⇤(u⇤,�⇤,�⇤) =
1

2

Z

!

⇤\�⇤
A⇤(✏⇤(u⇤)� ✏

0

⇤) · (✏⇤(u⇤)� ✏
0

⇤) dx⇤ +
1

2

Z

!

⇤\�⇤
|u⇤|2 dx⇤

+H1(�⇤) + �H2(�⇤), (24)

where

E⇤ =
E

h
f

G
f

x
0

, A⇤ =
A

µ
f

h
f

, ✏⇤ =
r

µ
f

x
0

G
f

✏, ✏⇤
0

=
r

µ
f

x
0

G
f

(✏
0

+ ✏(w)) (25)

and

 =
µ
b

µ
f

x2

0

h
f

h
b

, � =
G

b

G
f

x
0

h
f

. (26)

Henceforth we consider the total energy in this form dropping the superscripted ⇤ for the sake of concise-
ness. We conclude from this dimensional analysis that the non-dimensional parameters that fully characterize
the energy are:
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• The loading parameter ✏⇤
0

, which absorbs the imposed displacement of the substrate and models both
loading modes;

• The relative sti↵ness of the bonding layer and the film ;

• The debonding to transverse cracking relative fracture toughness �;

• The Poisson ratio ⌫
f

of the film, that uniquely identifies the non-dimensional sti↵ness tensor A⇤.

Note that one can always choose the scaling length x
0

=
p

h
f

h
b

µ
f

/µ
b

in order to have  = 1. However
in that case the dimension of the domain (in x

0

-units) will be an additional parameter. In the following we
will adopt the opposite point of view, setting x

0

such that the diameter of the domain !⇤ is 1 and keeping
 as a free parameter. Note also that the competition between the membrane and the elastic foundation
energies entails the existence of a non-dimensional internal characteristic length scale `

e

:= �1/2, measuring
the decay of the elastic perturbations on the displacement field.

4.3. Problem formulation

We formulate below the static problem and the discrete-in-time evolution problem for the reduced model
by extending those of Sections 2.3-2.4 to include the presence of the two fracture modes given by transverse
and debonding cracks.

Problem 4 (Static solution of the reduced model). Given a loading ✏
0

, find u 2 H1(! \ �;R2), � ⇢ !,
� ✓ ! such that

E(u,�,�)  E(û, �̂, �̂), 8�̂ ⇢ !, 8�̂ ✓ !, 8û 2 H1(! \ �̂;R2). (27)

This condition is equivalent to require that (u,�,�) solve the following minimization problem

inf{E(u,�,�) : � ⇢ !, � ✓ !, u 2 H1(! \ �̂;R2)}. (28)

Remark 4.2. As done in the case of scalar elasticity, for any admissible u, one can find explicitly the
optimal debonded set by solving a linear optimization problem for the characteristic function �

�

of the
domain �, see Theorem 3.1, which gives:

�
u

:=

(

x 2 ! : |u(x)| > u
d

:=

r

2�



)

. (29)

Hence the static problem may be alternatively reformulated as the minimization of the energy

E(u,�) :=

Z

!\�

1

2
A(✏(u(x))� ✏

0

) · (✏(u)� ✏
0

) dx+H1(�) +

Z

!\�
u



2
|u|2 dx+

Z

�

u

� dx (30)

In Equation (30), the energy density due to the film is a quadratic function of the the mismatch between
the geometric strains ✏(u) and inelastic strains ✏

0

. On the other hand the energy density due to the bonding
layer, say f , is quadratic in u (f(u) =  |u|2/2) before debonding (|u|  u

c

) and constant (f(u) = �) after
debonding. Its dependence on u is sketched in Figure 4. Even in the case without transverse cracks, the total
elastic energy E(u, ;) is non-linear, non-smooth and non-convex with respect to u. As a consequence of the
lack of convexity, we expect lack of uniqueness of the displacement solution as soon as debonding is triggered,
even without considering transverse cracks. This problem has been studied is detail in the one-dimensional
case in León Baldelli et al. (2013).

Problem 5 (Time-discrete evolution of the reduced model). Let 0 = t
0

 t
1

 . . .  t
N

= T be the
discretization of the time interval [0, T ] into N time steps. A time-discrete quasi-static evolution for the dis-
placement field and crack set of the reduced two-dimensional model is a mapping t

i

7! (ui,�i,�i) that, given
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f(u)

��

0�
q

2�

k

q

2�

k

u

Figure 4: Qualitative properties of the energy density of the reduced model. The total energy density in the film is quadratic
with respect to u in the elastic phase and constant after debonding, see Eqn. (30).

the initial crack state (�0,�0) and the loading history ✏i
0

, verifies the following global unilateral minimality
conditions 8i 2 1, . . . , N :

�i ◆ �i�1, �i ◆ �i�1, (31a)

E(ui,�i,�i)  E(û, �̂, �̂), 8�̂ with �i�1 ✓ �̂ ⇢ !, 8�̂ with �i�1 ✓ �̂ ✓ !, 8û 2 H1(! \ �̂;R2). (31b)

These conditions are equivalent to require (ui,�i,�i) to be a solution of the minimization problem

inf{E(u,�,�) : �i�1 ✓ � ⇢ !, �i�1 ✓ � ✓ !, u 2 H1(! \ �;R2)}. (32)

5. Regularized formulation and implementation

This section details the numerical strategy followed to solve the quasi-static evolution problem for the
reduced model presented in Section 4. It relies on the approximation by the means of elliptic functionals
of the free discontinuity problem, as originally proposed in Ambrosio and Tortorelli (1990, 1992) for the
Mumford-Shah functional (Mumford and Shah, 1989) in the field of image segmentation and exploited
in Bourdin et al. (2008) in the framework of variational fracture mechanics.

5.1. Regularized Formulation

The solution of the quasi-static evolution of Problem 5 requires to minimize the energy with respect
to the displacement field u, the debonded domain � and the crack set �, on which the displacement itself
can be discontinuous. Resolving directly this kind of free-discontinuity problem is a major issue, because
of the di�culty of the numerical treatment of the unknown crack set. The presence of the irreversibility
condition, a unilateral constraint on the crack sets, further complicates the problem. As is now classical in
variational fracture mechanics (Bourdin et al., 2008), we adopt here a regularized approach, in which the
original problem is approximated by the minimization of a new functional where the transverse cracks � are
replaced by the localization of a smooth scalar field ↵(x) : x 2 ! ! [0, 1], taking the value 0 at sound points
and 1 along cracks. The regularization of the energy functional (24) reads:

E
⌘

(u,↵,�) :=
1

2

Z

!

a(↵)A(✏(u)� ✏
0

) · (✏(u)� ✏
0

) dx+
1

2

Z

!

|u|2 (1� �
�

) dx

+ c
w

Z

!

✓

w(↵)

⌘
+ ⌘|r0↵|2

◆

dx+

Z

!

� �
�

dx (33)

where �
�

is the characteristic function of the debonded domain �, ⌘ is a scalar parameter,

a(↵) = (1� ↵)2 + k
⌘

, w(↵) = ↵, (34)

and c
w

= 1/(4
R

1

0

p

w(↵)d↵) = 3/8 is a normalization constant whose value is set to associate the transverse
fracture energy of the Gri�th model to a fully developed localization of the regularized field ↵ (see Braides,
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1998; Pham et al., 2011a). In the expression (34) for a(↵), the constant k
⌘

⌧ ⌘ is a small residual sti↵ness
required to ensure the regularity of the solutions when ↵ reaches 1.

The solution of the static problem formulated in the Problem 4 is approximated by

min{E
⌘

(u,↵,�) : u 2 H1(!;R2), ↵ 2 H1(!), 0  ↵  1, � ✓ !} (35)

For ⌘ ! 0 the solutions of (35) tend to the solutions of (24) in the sense of �-convergence1. This implies the
term by term convergence of (33) to (24). In particular, the first integral of (33) approximates the elastic
energy of the cracked film given by the first term of (24) and the second integral approximates the total
transverse crack length given by the second term of (24). Note that regularization is performed only on
transverse cracks � since debonding cracks � are explicitely determined in the asymptotic process and do
not induce discontinuities on the limit two-dimensional displacements. The advantages of using w(↵) = ↵,
instead of w(↵) = ↵2 as in Bourdin et al. (2000), are explained in some detail in Pham et al. (2011a). For
quasi-static evolutions, the solutions of Problem 5 are approximated by formulating at each time step t

i

the
constrained minimization problem:

min{E
⌘

(u,↵,�) : u 2 H1(!;R2), ↵ 2 H1(!), 0  ↵i�1  ↵  1, �i�1 ✓ � ✓ !} (36)

The proof of the convergence of the evolution problems is proved in Giacomini (2005) for the case of scalar
elasticity, assuming that at each time one performs a global minimization of the regularized energy.

5.2. Implementation

Solving numerically the global minimization problem (36) for systems with a large number of degrees of
freedom is not a viable option for the current state of the art in optimization methods. Motivated also by
the physical considerations that will be detailed in the next subsection, we instead determine at each time
t
i

a solution u
i

2 H1(!;R2), ↵
i

(� ↵
i�1

) 2 H1(!), �i�1 ✓ � ✓ ! verifying only the associated first order
(local) optimality conditions. Denoting by

D
f

F (f)(f̂) :=
d

dh
F (f + hf̂)

�

�

�

�

h=0

(37)

the directional derivative of the functional F with respect to the function f in the direction f̂ , these conditions
give the following system of coupled variational problems:

u�problem: D
u

E
⌘

(u,↵,�)(û) = 0, 8û 2 H1(!;R2) (38a)

��problem: D
�

E
⌘

(u,↵,�)(�̂��) � 0, 8�̂ ◆ �
i�1

(38b)

↵�problem: D
↵

E
⌘

(u,↵,�)(↵̂� ↵) � 0, 8↵̂ 2 H1(!), ↵̂ � ↵
i�1

(38c)

where

D
u

E
⌘

(u,↵,�)(û) =

Z

!

(a(↵)A(✏(u)� ✏
0

) · ✏(û) + u · û (1� �
�

)) dx (39a)

D
�

E
⌘

(u,↵,�)(�̂) =

Z

!

⇣

� � 

2
|u|2
⌘

�
ˆ

�

dx (39b)

D
↵

E
⌘

(u,↵,�)(↵̂) =

Z

!

✓✓

da

d↵
(↵)A(✏(u)� ✏

0

) · (✏(u)� ✏
0

) +
c
w

⌘

dw

d↵
(↵)

◆

↵̂+ c
w

⌘r↵ ·r↵̂
◆

dx (39c)

1 The rigorous proof of this statement is omitted in the present paper for the sake of conciseness. The convergence without
substrate energy (� = ;,  = 0) and w(↵) = ↵

2 is proven in Chambolle (2004). The statement can be trivially adapted to the
case � 6= ;,  6= 0) observing that the additional terms are nothing but a continuous perturbation of the functional considered
in Chambolle (2004) with respect to which the �-convergence (see e.g. Braides (1998)). The extension to more general energies
including the case w(↵) = ↵ is done in Braides (1998) for scalar elasticity and can be generalized without major issues to
vectorial elasticity. Note also that, up to the debonding e↵ect, the energy functional (24) is equivalent (at fixed elasticity) to
a vectorial Mumford-Shah functional Mumford and Shah (1989), where the role of the “fidelity term” is played here by the
elastic foundation.
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To solve this system at each time-step we extend to the present three-field case the alternate minimiza-
tions algorithm proposed by Bourdin et al. (2000). We solve iteratively each subproblem with respect to the
corresponding field, leaving the other two fixed to the previously available values. More precisely we first
solve in this way the u�� subproblem until convergence at fixed ↵ and then iterate solving the ↵-problem
(see Algorithm 1). The u problem at fixed ↵ and � is a linear variational equation, which, after space-
discretization, we solve using standard iterative Krylov Subspace Solvers. Considering the irreversibility
condition on the debonding set, the condition (38b) simply gives �

�

(x) = 1 if the displacement passes a
given threshold at the point x. On the other hand, the ↵-problem at fixed u and � is a linear variational
inequality, which we solve using the bound-constrained Newton Trust-Region solver provided in the opti-
mization toolbox TAO (Munson et al., 2012). Parallel data representation and linear algebra are based on
the PETSc toolkit (Balay et al., 2012). On the other hand the solution of the problem (38b) at fixed u is
explicit and local in space.

We do not need any special treatment for the discretization of the computational domain. An un-
structured conforming triangulation of the reference domain is obtained by a Delaunay algorithm and the
discretization of the fields is done by standard triangular finite elements of class P1 on the fixed mesh. The
discrete fields are subscripted by an h referring to the average diameter of the triangulation. The parameter
⌘ controls the width of the localization band of the fracture field, which is of the same order of magnitude of
⌘. The computational mesh is uniformly fine (the mesh is such that h⌧ ⌘) in order to capture and represent
the steep gradients within the localization band. A coarse mesh produces a systematic overestimation of
the dissipated surface energy.

1 Init: u
0

,↵
0

,�
0

 0, tol = 10�4 ; /* sound, unloaded */

2 for i = 1 : n do
3 u

i

,↵
i

,�
i

 u
i�1

,↵
i�1

,�
i�1

; /* Initial guess with solution at previous TS */

4 ↵old

i

 ↵
i

;
5 repeat /* Alternate minimizations */

6 �old

i

 �
i

;
7 repeat /* Solve for (u,�) */

8 u
i

solution of (38a) with ↵ = ↵
i

, � = �
i

; /* linear elastic solver */

9 �
i

 �
i�1

;
10 �

i

(x) 1 if |u
i

(x)| > u
c

/* debonding to satisfy (38b) with ↵ = ↵
i

*/

11 err
�

= sup(�
i

� �old

i

);
12 �old

i

 �
i

13 until err
�

= 0;
14 ↵

i

solution of (38c) with u = u
i

, � = �
i

; /* Solve for ↵ (constrained solver) */

15 err
↵

= k↵
i

� ↵old

i

k1;
16 ↵old

i

 ↵
i

17 until err
↵

 tol;
18 end
Algorithm 1: Algorithm for the solution of the quasi-static time-discrete evolution problem with trans-
verse fracture and debonding. At each minimization in (u,�) and ↵ are performed at each time step, until
convergence. For the sake of conciseness, we replace here �

�

by �.

5.3. Mechanical interpretation of the regularized model with local minimization

The regularized energy (33) falls within the class of the Ambrosio-Tortorelli approximations of free
discontinuity problems and is an instance of the gradient damage functional studied in (Pham et al., 2011a,b;
Pham and Marigo, 2012). Indeed, the functions w(↵) and a(↵), besides satisfying the hypotheses underlying
the �-convergence result (see Braides (1998)), verify the additional constitutive assumptions that allow us
to identify a(↵) as a sti↵ness function, w(↵) as a dissipation function, and ↵ as a damage field (Pham et al.,
2011b). In this framework, the parameter ⌘ becomes the internal characteristic length of the damage model,
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and it has to be thought of as a material parameter. The evolutions associated to the computed solutions
of (36), numerically obtained enforcing the first order necessary optimality conditions (38), are consistent
with the notion of irreversible evolution of energetically stable states, i.e. of unilateral local minimizers of
the total energy. In this sense, transitions between states take place in correspondence to the loss of stability
of the current state. Although a study of the stability properties of the energy E(u,↵,�) of Equation (33)
depending upon the parameters (, ⌫, �, ⌘) is beyond the scope of this work, we provide an interpretation
of the critical loads in the one-dimensional traction test of a slender strip in Section 6.1. Denoting by
� = a(↵)A (✏(u)� ✏

0

) the (dimensionless) stress tensor in the film, equation (38c) implies that an elastic
state where ↵ = 0 is admissible only if

A�1� · �  3

8⌘(1 + k
⌘

)
. (40)

The inequality above gives an explicit relation between the internal length ⌘ and the elastic limit stress �
c

in the film, showing that �
c

/ 1/
p
⌘.

6. Numerical Experiments

We perform three sets of numerical experiments to illustrate the capabilities of the formulation in simple
cases. We focus on the cases of multiple cracking and possible debonding of a slender strip, of a disk and
on cracking of a geometrically complex domain. The first set of experiments is also intended to verify the
numerical code against the closed form solutions presented in León Baldelli et al. (2013). The second set
of experiments shows the capability of capturing geometrically complex two-dimensional crack patterns.
Lastly, the third experiment provides a qualitative comparison with a real-life example inspired by the
multiple cracking of a vinyl lettering panel.

In what follows, we consider the systems loaded by an inelastic isotropic strain ✏
0

= tI
2

increasing linearly
with time.

6.1. Multiple cracking and debonding of a slender strip

We perform a set of verification experiments for the problem of multifissuration and delamination of a
one-dimensional sti↵ film bonded to a substrate. Let us consider a slender brittle elastic body, its reference
domain being ! : {x 2 [0, x

0

L] ⇥ [0, x
0

a]}, with a ⌧ L. To get an exact reference solution, the problem
may be conveniently approximated by the one-dimensional model considered in León Baldelli et al. (2013),
provided that a ⌧ `

e

, `
e

= �1/2 being the characteristic length of the elastic problem. The condition
a⌧ `

e

implies that the stress field, under an equi-biaxial imposed inelastic strain, is essentially uniaxial.
The computational domain is of unit length and height a = 2 · 10�2, it consists of approximately 7 · 103

degrees of freedom. The average mesh size is h = 2 · 10�3, the value of ⌘ = 2 · 10�2 is held fixed for the
three experiments, the ratio ⌘/h is 10 and the quasi-static simulation consider loading multipliers up to
T
max

= 11. Note that as long as ⌘ ⌧ `
e

no coupling arises at the length scale of ⌘ between the damage
localization bands and the elastic displacement field, which varies over a length scale of order `

e

.
We perform numerical experiments based on the closed form evolutions reported in León Baldelli et al.

(2013). The analytical computation in the latter work is obtained by a global minimization statement,
whereas the numerically computed solutions presented here satisfy only first order local optimality conditions
and may not be global minimizers.

Transverse fracture experiment. In Figure 5 we represent the outcome of a transverse fracture experiment.
The non-dimensional parameters characterizing the experiment are:  = 36.0 and � = 10 · 104. The chosen
sti↵ness ratio  corresponds to an internal characteristic elastic length scale `

e

= 1/6, hence ⌘/`
e

= 0.12.
The sound elastic energy branch loses stability at t = 4.81, see Figure 5(c), when the system jumps towards
the cracked state with one transverse crack in the center of the domain. This releases elastic energy at the
expense of the surface energy, as it can be seen in the energy chart in Figure 5(c). As the load increases
further, the system undergoes the elastic loading phase of the two segments. At t = 7.46 the loss of stability
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Figure 5: Top: snapshot of the fracture field at t = T

max

for the perfectly bonded transverse fracture experiment. Cracks
are equidistributed and represented by the localization of the damage field ↵. The values of ↵ 2 [0, 1] are mapped onto
a “inverted-hot” color table, blue corresponding to ↵ = 0 (sound material), red corresponding to ↵ = 1 (fully developed
fracture). Middle: displacement and fracture field along the axis [�L/2, L/2] ⇥ {0} for t = T

max

. The displacement field
u

⇤(x) = u(x)/max
x2!

u(x) is normalized and displayed with a thick solid line. The fracture field ↵ is shown with a thin black
stroke. Bottom: in the energy chart (left) the total energy is plotted in bold line, the energy transverse fracture energy with
a dashed line and the elastic energy with a thin solid line. Grid lines indicate the critic loads for transverse cracking. The
total energy of the closed form solutions reported in León Baldelli et al. (2013) is plotted with a dotted line. In the space-time
evolution diagram (right), the domain ! is represented on the vertical axis and the load on the horizontal axis. Solid black
horizontal lines indicate the position of cracks during the evolution.

of this solution leads to the appearance of two add-cracks, each at the middle of the segments. The snapshot
of the last loading step is shown in Figure 5(a) and the profile of the displacement and fracture fields are
shown in Figure 5(b). The computed energy branches are seamlessly superposed to the analytical ones, and
the evolution of the system is illustrated by the space-time chart in Figure 5(d). Critical times at which
cracking happens di↵er between the numerical experience and the analytic computation, due to the global
vs. local setting of minimization. As expected, the critical loads corresponding to the local minimization
criterion systematically overestimate those satisfying the global criterion.
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c

 = 9  = 36

Figure 6: Critical loads of the transverse fracture experiments are compared to the elastic limit (Equation (40)) computed
with the stability condition (38c) and plotted against the relative sti↵ness . The plot is for ⌘ = 0.02. The asymptote  ! 1
corresponds to the limit case of a long film with homogeneous stress. For  ! 0 the critic load t

c

! 1, this corresponds to the
limit case of system in which no energy is stored in the bonding layer and the film freely accommodates the inelastic strain.

The critical fracture loads are interpreted under the light of the considerations sketched in Section 5.3.
Using a one-dimensional model, the critical loading for leaving the purely elastic regime may be established
analytically, using Equation (40). Indeed, for the elastic solution (↵ = 0), the stress � as a function of the
loading may be easily computed analytically (see León Baldelli et al., 2013). Substituting this expression
into Equation (40), one finds that purely elastic solutions are admissible for loadings not greater than

t
c

(, ⌘) :=

p

3/8
p

⌘ (1 + k
⌘

)

1
⇣

1� sech
⇣p



2

⌘⌘ . (41)

The critical time for the elastic solution is plotted in Figure 6.1 as a function of the sti↵ness ratio  for
⌘ = 0.02. It is a monotonic function of  decreasing from +1 for  ! 0+ to

p

3/8 ⌘(1 + k
⌘

) for  ! 1.
In the same figure, we display with black dots the critical load captured by the numerical experiment.
The first transverse fracture appears for the strip of sti↵ness ratio  = 36.0 for t = 4.81. It creates two
uncracked strips of half-length that, recalling the definition of , have an equivalent sti↵ness ratio /4 = 9.
Both these two strips further break into two parts at the second critical load t = 7.46. Both critical
loads coincide, within a small error, with the critical loads of the elastic solution given by equation (41)
for  equal to 36 and 9, respectively (see Figure 6.1). Indeed, as done in (Pham et al., 2011b) for the
case of a bar in traction, it may be shown that for su�ciently long strips the elastic limit also coincides
with the stability limit of the solution without damage localizations (i.e. fractures). When passing this
limit, the fundamental undamaged solution becomes unstable. The numerical algorithm based on alternate
minimizations detects new descent directions and automatically jumps to a new (stable) solution branch,
implying newly added cracks. Note that after the first transverse crack, the first order stability properties
of the two cracked segments are almost insensitive of the half localizations at the boundaries. This does not
hold asymptotically when inducing further fragmentations, upon increasing the load and producing small
segments whose characteristic elastic length is comparable to the internal length ⌘ associated to the damage
localization. This regime is not explored in the present work, in all the experiments the internal length of
the damage process ⌘ is kept smaller than the elastic length `

e

= �1/2.

Debonding experiment. Figure 7 refers to a debonding experiment with the same equivalent sti↵ness  =
36.0 as the experiment above (and hence the same elastic length `

e

= 1/6) and a lower toughness ratio
� = 0.50. The sound elastic bonded branch is followed by the debonding phase, whose onset is at t = 2.25.
Elastic energy is released at the expense of the debonding surface energy. The total energy asymptotically
approaches the limit of the energy of the completely debonded film E1 = L�. The computed energy
coincide with the analytical energies and also the evolution are identical. In fact, di↵erently from the
perfectly bonded transverse cracking experiment, both in the numerical and closed form computations, the
evolution of debonding relies only on first order optimality conditions León Baldelli et al. (2013). A snapshot
of the last time step is displayed in Figure 7(a) and the displacement and debonding fields in Figure 7(b).
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Figure 7: Top: Fracture and debonding fields at t = T

max

for the deboonding experiment. Debonding (��(x) = 1 is the
darker area) is symmetric about the two axes. Middle: The characteristic function of the debonded domain is shaded gray,
displacement is plotted with a thick stroke. Note that, in debonded regions, the displacement in linear and accommodates
the imposed strain. Bottom: energy chart (left) and evolution diagram (right). Debonding onset and its evolution coincide in
both numeric and analytic computations as they are derived as consequences of the first order necessary condition for energy
optimality. The thin black line in the space-time evolution plot (right) is the analytical solution to the debonding problem
obtained in León Baldelli et al. (2013).

The debonded domain is symmetric with respect to the axes of the film. In the debonded domain, the
displacement is linear and accommodates the imposed inelastic strain, hence the energy vanishes. We
remark that in spite of the lack of uniqueness of the displacement field in the debonded solution (recall that
all states with equal debonded length have equal energy, irrespective of the location of the debonded area),
numerical computations seem to favor symmetric solutions. The space-time chart illustrates the evolution,
showing the bonded domain for a given load intensity.

Coupled experiments. Experiments in Figures 8 and 9 show the interplay between the two failure modes. In
these two experiments, the system exhibits one (resp. three) transverse cracks prior to peripheral debonding.
The evolutions are obtained choosing  = 36.0 (`

e

= 1/6) and � = 2.2 (resp.  = 64.0 and � = 3.1,
i.e. `

e

= 1/8). The corresponding energy chart and state diagrams are shown in Figures 8(c) and 9(c).
A higher order e↵ect is observed at the onset of debonding for the second coupled experiment due to the
boundary layer induced by the fracture field around the middle crack causing local softening. This breaks the
symmetry of the boundary conditions for the two segments. The e↵ect is visible in the space-time evolution
and in the debonding and elastic energy terms in Figure 9(d), although not noticeable at the global level of
the total energy.
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Figure 8: Top: fracture and debonding fields on the reference domain ! at t = T

max

for the first coupled experiment; one
transverse crack in the center and symmetric debonding starting from the boundaries. Middle: a single crack in the center
of the film, the symmetric debonded region and the displacement field. Bottom: the analytic solution (global minimization)
anticipates the appearance of the crack of the numerical experiment (local minimization). The debonding onset and evolution
in both cases are equal.

6.2. Multiple cracking and debonding of a thin disk

We illustrate the ability to capture complex crack geometries and time-evolutions considering the prob-
lem of a homogeneously prestressed circular elastic wafer. We analyze qualitatively the outcome of the
experiments showing its soundness on a mechanical basis and its coherence with the mechanical intuition
and commonly reported experimental observations. The computational domain is of unit diameter, each
experiment is univocally identified by four non-dimensional parameters: the relative sti↵ness , the relative
toughness �, the Poisson ratio ⌫ and the maximum load intensity T

max

.
We introduce a non-homogeneity in order to explore more complex crack patterns around the sound

elastic state. In the center of the wafer, we place a domain D
⌘

of size of O(⌘) where we set ↵ = 1, see
Figure 11(a).

Multiple cracking only. The non-dimensional parameters for this experiment are  = 200.0 (`
e

= 0.071),
� = 4.6, ⌫ = 0.3 and T

max

= 3.76. The wafer undergoes an elastic loading phase during which the domain
! \ D

⌘

remains sound. As the load increases, nucleation is localized in the neighborhood of the domain
D

⌘

. Sudden fracture occurs at t = 2.0: a network of cracks of finite length appears in a single loading step
and a network of hexagonal polygons forms. We observe a non-axisymmetric solution to a problem with
axisymmetric data. Away from the boundaries, the cracks are structured in a network of six hexagons all
with the same characteristic diameter. We capture the spontaneous nucleation of cracks within the domain,
away from possible boundary non-homogeneities, with preference of 2⇡/3-junctions over ⇡/2-junctions. This
feature corresponds to regimes in which the sound solution is stable until load intensities high enough to
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Figure 9: Top: fracture and debonding fields on the reference domain ! at t = T

max

for the second coupled experiment;
three equidistributed transverse cracks and debonding starting from the free boundaries of each segment. Middle: three
equidistributed cracks (thin solid), debonded region (light gray shaded) and displacement field (thick solid). Bottom: energy
chart and space-time evolution of the film. In (right) horizontal lines identify the position of the cracks: solid and dotted
strokes refer to the numerical experiment and the analytic solution, respectively. Note the higher order e↵ect due to softening
at the onset of debonding at x = 4.

release su�cient energy to pay for the creation of the network of cracks, which, in the numerical experiment,
consists in six hexagons. Fracture patterns with 2⇡/3-junctions are observed in the experiments of Groisman
and Kaplan (1994); Santanach Carreras et al. (2007); Toga and Alaca (2006). More commonly, experiments
on thin film fracture under isotropic and homogenous loads reports irregular mud cracks with ⇡/2-junctions.
This may be due to a regime in which the material heterogeneities and imperfections dominate the nucle-
ation phase letting a crack appear at lower load levels. In fact, in the cited experimental references, the
predominance of 2⇡/3-junctions is prominent in regimes where cracking is less likely, or equivalently, when
cracking appears for high (dimensional) load intensities, that is, for systems in which the film’s thickness
is close to the so-called critical thickness h

c

. The latter quantity identifies the thickness below which no
cracking is observed in the experimental conditions. A shift, from ⇡/2 to 2⇡/3, of the distribution of the
joint angles, is reported in Groisman and Kaplan (1994) in the regimes where h

f

approaches h
c

and in
Goehring et al. (2010) along cyclic loading tests which favour crack reorganization and maturation.

Note that when cracks intersecting free boundary form a right angle, instead of the 2⇡/3 angles observed
in the bulk of the domain. This is the case for all six intersections with the edge of the wafer. Indeed, under
homogeneous loads and near a boundary, the direction of maximum stress is parallel to that boundary and
elastic energy release per unit of crack length is maximized for crack advancing perpendicularly to it. As
soon as cracks are close enough to be able to interact, they turn and produce the same phenomenology
observed for the intersection of a crack with a free boundary. In Figures 11(b) and 11(c) we observe a
turning crack in order to approach the existing crack at an angle of ⇡/2.
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As the load intensity increases further, new cracks are created by subdivision of the polygons. New
isolated cracks appear forming joints at ⇡/2 with pre-existing cracks of free boundaries, and new 2⇡/3-
joints form, see Figures 11(d)-11(f). The crack pattern becomes tighter with all polygons having the same
characteristic size. As the polygons become smaller, new joints at sound points are less likely to appear and
straight joints become predominant.

Multiple cracking and debonding. Reducing the toughness of the bonding layer to � = 1.4, all other condi-
tions held fixed, highlights the interplay between transverse cracking and debonding. The evolution of the
elastic sound phase and the first stages of cracking are the same as in the previous experiment. Since polygons
have di↵erent sizes, unlike in the one-dimensional experiment, debonding does not appear simultaneously
at the boundary of each polygon. At t = 2.5 the largest cells start debonding from the outer boundary. As
the load increases further, smaller polygons undergo debonding. At t = T

max

all polygons have debonded
and the typical diameter of the bonded regions is the same for all polygons. In this experiment, like in the
one-dimensional slender strip, we observe a size e↵ect due to the existence of an intrinsic characteristic length
scale. The latter is revealed by the fracture processes. Indeed, the competition between the surface energies
fixes the maximum diameter (at a given load) of the domain that can be completely bonded. This quantity
is a decreasing function of the load and it determines a threshold distinguishing two phenomenologically
di↵erent regimes: that of multiple cracking and that of extensive debonding. In fact, cracking will occur as
long as the size of the subdomains identified by the cracks is smaller than the maximum diameter of the
domain that can be completely bonded. With the increase of the load and sequential cracking, debonding is
triggered in correspondence to subdomains where this threshold is passed. Debonding is hence energetically
favorable and releases energy continuously with the increasing load, no other transverse cracks will appear
and the energy is released through debonding. In this sense, the experiments presented here are weakly
coupled, for multiple fissuration and debonding do not occur simultaneously in order to release the stored
elastic energy but the latter follows the former, the transition between the two phenomena being determined
by the size e↵ect. Analytic proofs of this qualitative argument are given in one dimension in León Baldelli
et al. (2013).
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(a) In the multifissuration experiment a net-
work of six hexagonal cracks appears at t =
2.0.
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(b) In the coupled multifissuration and
debonding experiment, after appearence of the
network of cracks, debonding appears at t =
2.50.

Figure 10: Charts of the non-dimensional energy for the wafer experiments. Total, elastic, and surface energies are plotted
with thick solid, thin solid, and dashed lines, respectively. The evolution of the initial stages of cracking is the same for both
experiments. After the onset of debonding in (b), no other cracks form.

6.3. Vinyl lettering on a metal substrate

The last numeric experiment is inspired by a real-life example, given by the stickers identifying research
labs at the Ecole Polytechnique in Palaiseau, France. A thin vinyl sticker is bonded to a metal panel and
exposed to atmospheric conditions. Among others, the incident radiation from the Sun generates inelastic
mismatch strains leading to transverse cracking and possibly debonding. The inelastic stresses are due to
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(a) t = 0.62 (b) t = 1.99 (c) t = 2.03

(d) t = 2.26 (e) t = 2.39 (f) t = 2.48

(g) t = 2.92 (h) t = 3.57 (i) t = T

max

= 3.76

Figure 11: Snapshots of the fracture field in the wafer experiment under uniform load. The first fracture pattern consists of
periodic hexagonal cells while for higher loadings, new cracks intersect preexisting boundaries at a right angle.
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(a) t = 2.92 (b) t = 3.57 (c) t = T

max

= 3.76

Figure 12: Combined fracture and debonding of a wafer. Dark areas identify debonded regions, whose first onset is at the
boundaries of the largest cells. At the last time step all cells have undergone debonding.
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(d) (e) (f)

Figure 13: Computed crack pattern at (a) t = 1.05, (b) t = 1.25, (c) t = 1.65, (d) t = 1.88, (e) t = 2.15, (f) t = 2.48
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Figure 14: Energy charts for the subdomains corresponding to the digits “4”, “0”, and “1”.
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Figure 15: Cracked lettering at École Polytechnique, Palaiseau, France and numerical simulation for t = 1.75.

shrinkage of the sticker, as it can be argued by the trace of glue left on the panel. A few panels relative
to numbers in the range “401”–“408”, all of the same material and subject to similar loading conditions,
show recurring crack patterns. One picture is reproduced in Figure 15. From the analysis of the current
state, we infer qualitative informations about the evolution of the cracking process. The crack opening
can be related to the evolution of the cracks: wider openings indicate cracking at earlier stages of loading.
Peripheral debonding is present but limited to a tiny region, we decide for simplicity not to include its e↵ects
in the experiment. Comparing the cracks of all stickers (not shown here), the robustness of the cracks is
striking. The first cracks are the ones at the center of the number “4”, nucleating from the weak geometric
singularities. Within the number “0”, the first four cracks appear in the lower and upper lobes. After,
cracks open in the two longest vertical parts. The stem of the number “1” exhibits almost equidistributed
cracks, the extreme aspect ratio producing almost one-dimensional solutions. Foot’s and head’s serifs are
responsible of stress concentration and favor the appearance of cracks whereas slender segments show almost
equidistributed cracks. We perform a numerical experiment meshing a domain corresponding to the number
“401”. Material parameters as well as numerical parameters are the same for all digits, and in order to fix
debonding we set � = 2 · 104. Consequently the only parameters identifying the experiment are the relative
sti↵ness  = 17.68 (the corresponding elastic length `

e

= 0.056), the Poisson ratio ⌫ = 0.3 and the internal
length ⌘ = 72 · 10�4. The characteristic diameter of the triangular elements is h = 12 · 10�4 and the ratio
h/⌘ is 6. The digits “4”, “0”, “1” consist of (1.6, 0.6, 0.3)·106 dofs respectively. We do not model the
circadian loading and impose a uniform inelastic strain increasing linearly with time. Figure 14 shows the
energy evolution and Figure 13 successive snapshots of the crack field on the reference configuration. The
first cracks appear at the intersection of the stem and the crossbar of the number “4” nucleating at the weak
geometric singularities, see Figure 13(a). A triple junction is first created by three cracks originating at the
North-East, North-West and South-West corners. Subsequently a third crack nucleating at the South-East
corner intersects the free edge just created at a right angle. The same pattern is observed for the vinyl
sticker. In Figure 13(c) the stem and crossbar of the number “4” are cracked at the center and respectively
two and one cracks are produced at their intersection with the diagonal segment. In the numeric experiment,
six cracks appear simultaneously in the number “0”, two at each lobe (upper and lower) and a horizontal
crack at the center of each of the two side arches. The crack pattern is symmetric. Here, the aspect ratio of
the domain plays an important role and as the width-to-height ratio increases the cracks on the side arches
are favored over those on the lobes. For the same load intensity, the number “1” shows three cracks at the
serifs and two in the stem. The cracks at the serifs are favored by the sudden thickness variation and match
the observed pattern. At higher loadings the periodicity of the cracks becomes prominent (Figure 13(d))
and secondary cracks (orthogonal to the former) appear (Figures 13(e-f)). A comparison of the observed
patterns and our numerical experiments is shown in Figure 15.
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7. Conclusions

We studied the problem of fracture and debonding of a thin film bonded on an infinitely sti↵ substrate
in the framework of the variational approach to fracture. The variational setting allowed us to perform
dimensional reduction through a �-convergence technique and tackle the problem from the numerical point
of view using a regularized formulation. The dimension reduction result accounts for the presence of the
cracks and gives a limit fracture mechanics model in the case of a thin film bonded to the substrate through
a soft brittle bonding layer whose fracture toughness is much smaller than the one of the film. The reduced
model obtained under these scaling hypotheses may be mechanically interpreted as a brittle elastic membrane
on a brittle elastic foundation. The elastic foundation term accounts for the strain energy of the bonding
layer and the final model is similar to the one proposed by Xia and Hutchinson (2000) in a di↵erent setting.
Fractures may appear both in the membrane and in the bonding layer. The asymptotic analysis characterizes
their respective nature. In the limit two-dimensional model, transverse cracks in the membrane are curves
where the displacement may jump, whilst debonding cracks are two-dimensional surfaces not associated
to displacement discontinuities. The debonding condition reduces to a simple threshold criterion on the
norm of the displacement. This naturally demands a di↵erent numerical treatment of the two cracking
modes: debonding cracks are represented by their characteristic function, while we adopted a regularized
representation of transverse cracks. We reported several numerical examples comparing our numerical
approach with analytical solutions and real-life examples.

The model presented here is based on several strong hypotheses, which may be di�cult to reproduce in
experimental conditions. Perhaps the strongest among them is to assume a perfectly linear-elastic/brittle
behavior of the bonding layer, while in real materials plastic e↵ects may play an important role. Further work
should be conducted to achieve a quantitive comparison with experimental data. From the mathematical
point of view, the present dimensional reduction results should be extended to fully justify the limit model
in the framework of vectorial elasticity and to consider more general scaling hypotheses on the material and
geometric properties of the three-dimensional system.
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Appendix A. Special functions of bounded variation

The object of this section is to recall some notations about the space of special functions of bounded
variation. Let U be a bounded open subset of Rn. The Lebesgue measure is denoted by Ln while Hk stands
for the k-dimensional Hausdor↵ measure.

The space SBV (U) of special functions of bounded variation is made of all (scalar) functions u 2 L1(U)
such that the distributional derivative Du is a bounded Radon measure which can be written as

Du = ruLn + (u+ � u�)⌫
u

Hn�1 J
u

.

In the previous formula:

• ru 2 L1(U ;Rn) denotes the approximate gradient, i.e. the density of Du with respect to the Lebesgue
measure Ln;

• J
u

is the jump set of u. It is a rectifiable set whose unit normal is denoted ⌫
u

;
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• u± are the one-sided traces of u on J
u

.

We refer to Ambrosio et al. (2000) for a detailed description of this space.

Appendix B. Proof of the dimensional reduction for scalar elasticity

This section is devoted to give a rigorous proof of Theorem 3.1. As explained in Section 3.2, it will
be obtained in three steps: we first show that sequences with uniformly bounded energy admit converging
subsequences. Then we prove a lower bound for the limit energy. Eventually, we show that this lower bound
is optimal through the construction of a recovery sequence which gives an upper bound.

Let us recall that the three-dimensional energy is defined as in (12) by
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for any u is the space of all kinematically admissible displacements
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We henceforth assume that ✏0
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Appendix B.1. Compactness in the film
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Proof. According to (B.1), the definition of the energy E
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and of that of the space of kinematically admissible
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(⌦), we have the following bounds
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for some constant C > 0 independent of n. According to Ambrosio’s compactness Theorem in SBV (see
(Ambrosio et al., 2000, Thms 4.7 and 4.8)), we deduce the existence of a subsequence (u

n

k

) ⇢ (u
n

) and a
function u 2 SBV (⌦

f

) such that u
n

k

! u strongly in L2(⌦
f

), u
n

k

* u weakly* in L1(⌦
f

), ru
n

k

* ru
weakly in L2(⌦

f

;R3), and
H2(J

u

\ ⌦
f

)  lim inf
k!+1

H2(J
u

n

k

\ ⌦
f

).

28



Let us prove that u is actually independent of x
3

. Using the expression of the energy in the film, we
deduce that
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Since the left hand side of the previous inequality is lower semicontinuous with respect to the convergences
established for (u

n
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) (see e.g. Babadjian (2006); Braides and Fonseca (2001); Bouchitte et al. (2002)), we
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which completes the proof of the proposition.

The previous compactness result suggests to define the set
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For any u 2 C(!), we recall that the reduced two-dimensional energy is defined by
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Appendix B.2. Lower bound
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Consequently, it is enough to consider the energy in the bonding layer ⌦
b

, and to check that
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The rest of the proof is devoted to show (B.4). The main di�culty consists in defining the debonding
set. This is performed as follows: let x0 2 !, we define the transverse section of the jump set of u
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Step 2. We next show lower bounds in terms of the density # of debonding for the volume and surface
energies in the bonding layer:
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Intuitively the term of order "2
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in (B.6) and the term of order "
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in (B.7) can be neglected so that we
only focus on terms of order 1. Let us start by proving (B.6). Using the Cauchy-Schwarz inequality and the
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Thus (B.6) follows from (B.8).

We next prove (B.7). Let us denote by ⇡ : R3 ! R2⇥{0} the orthogonal projection onto the hyperplane
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We thus obtain that
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which completes the proof of (B.7).
Step 3. Let us prove that
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where �
u

is the debonding set defined by (15). Clearly, one has
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and (B.9) follows from the definition (15) of the debonding set.

Appendix B.3. Upper bound and existence of a recovery sequence

Proposition Appendix B.3. For any u 2 C(!) and any sequence ("
n

) & 0+, there exists (u
n
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w

(⌦)
such that u

n
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Proof. In order to get an intuition of the form of the recovery sequence, let us analyze what would make
optimal the lower bound established in Proposition Appendix B.2. Concerning the part in the film, we expect
a displacement independent of the transverse variable x

3

in order to ensure that the term of order 1/"2
n

in
the bulk energy, and that of order 1/"

n

in the surface energy, do not blow up. Concerning the bonding layer,
as already observed in the proof of the lower bound, we expect no contributions from the in-plane strain and
the out-of-plane cracks since these terms vanish as the thickness tends to zero. On the other hand, according
to estimate (B.8), we used the Cauchy-Schwarz inequality for the function x

3

7! @
3

u(x0, x
3

) when x0 lives
outside the debonding set. It is known that such inequality is an equality whenever the function is constant.
Therefore, when x0 does not belong to the debonding set, we expect that the function x

3

7! u(x0, x
3

) is
a�ne, joining continuously the prescribed displacement w(x0) on the substrate and the displacement u(x0)
of the film. Finally, if x0 is a debonded point, then the displacement of the film does not match that of the
substrate.

Let us make this observation rigorous. By the coarea formula in BV ((Ambrosio et al., 2000, Theorem
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It remains to compute the surface energy in the bonding layer. To this end, we observe that
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where @⇤E stands for the reduced boundary of the set of finite perimeter E (see (Ambrosio et al., 2000,
Definition 3.54)). Then, for each k 2 N,
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Gathering (B.11), (B.12), (B.13), (B.14) yields, for each k 2 N,
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Letting k ! +1 and using the monotone convergence theorem leads to
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Finally, thanks to a diagonalization procedure, it is possible to find a sequence k
n

%1 such that
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with u
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n , which completes the proof of the proposition.

We end this section by pointing out that there is a connection, at the conceptual level, between the
derivation of the cohesive energy in the argument we just presented and the derivation of the cohesive
energy in the works by Dal Maso and Iurlano (2013), Iurlano (2012), and Focardi and Iurlano (2013).
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