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Abstract

We analyze a discontinuous Galerkin FEM-BEM scheme for a second order elliptic trans-
mission problem posed in the three-dimensional space. The symmetric variational formula-
tion is discretized by nonconforming Raviart-Thomas finite elements on a general partition
of the interior domain coupled with discontinuous boundary elements on an independent
quasi-uniform mesh of the transmission interface. We prove (almost) quasi-optimal conver-
gence of the method and confirm the theory by a numerical experiment. In addition, we
consider the case when continuous rather than discontinuous boundary elements are used.

1 Introduction

Discontinuous Galerkin (DG) methods are known to be flexible and efficient solvers for a wide
range of partial differential equations. Among their advantages, when applied to second order
elliptic problems, we emphasize that they are locally conservative, they can handle general
meshes with hanging nodes and they allow the use of different polynomial degrees in each
element.

DG methods can be coupled with the boundary element method (BEM) in different ways
[3]. In [6] it was shown that it is possible to benefit from the features highlighted above when
approximating non-homogeneous (and even nonlinear [5]) exterior elliptic problems if a local
discontinuous Galerkin method (LDG) is used as an interior solver in combination with the
BEM.

The symmetric LDG-BEM formulation is obtained by rewriting locally the elliptic problem
in mixed form and considering a Calderón identity on the boundary. In this way, one ends up
with a system of two variational equations in the interior domain (involving both the potential
and the flux as independent variables) and a system of two boundary integral equations relating
the Cauchy datum of the problem on the coupling interface. In the first LDG-BEM formulation
[6], the coupling between the two systems is performed by using Costable’s approach. From the
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DG point of view, this amounts to using the normal derivative of the solution on the coupling
boundary as a Neumann datum when defining the numerical fluxes for the LDG method. In
the resulting coupled scheme, the normal derivative becomes an independent unknown and the
other BEM variable (the discrete trace) must match the discrete potential that comes from the
LDG method. The problem is that these unknowns are of different nature: the restriction of the
LDG approximation of the potential to the coupling interface is discontinuous while the BEM
discretization is conforming and produces a continuous and piecewise polynomial approximation
of this variable. This inconvenience is addressed in [6] by introducing a further unknown that
acts as a Lagrange multiplier and enforces weakly the imposition of the missing transmission
condition. A later paper [5] eliminated the need of the Lagrange multiplier by demanding
that the discontinuous piecewise polynomial functions that approximate the potential in the
LDG method be continuous at the coupling interface. Here, the normal derivative is the only
boundary unknown, which reduces the number of unknown functions by two with respect to the
first version. However, in order to deal properly with this formulation in practice a Lagrange
multiplier must come again into play. Moreover, this formulation imposes for the BEM the
mesh inherited from the interior partition of the domain, which reduces much of the flexibility
provided by the discrete Galerkin method near the coupling boundary. Finally, we point out
that recently non-symmetric couplings of DG with BEM have also been studied, cf. [9] and the
references therein.

In this paper, following [11], we take advantage of the fact that the flux variable is an LDG
active unknown (as in the traditional mixed formulation) and consider a dual approach: we
define the numerical fluxes by considering the trace of the solution on the coupling boundary
as Dirichlet datum. Hence, as opposed to the former strategy, the trace of the solution is an
independent variable while the LDG normal flux and the normal derivative must be merged on
the coupling boundary. Notice that in this case both variables are (naturally) nonconforming
and no Lagrange multiplier or special restriction is needed to match them. Consequently, the
resulting numerical scheme enjoys all the good properties of a typical DG method and allows
for using an independent boundary mesh. Moreover, one can employ both a conforming or a
nonconforming approximation on the boundary.

In this paper, we take advantage of the results from [7] to deal with a DG finite element
method on the boundary, the resulting scheme will be referred to as the LDG-FEM/DG-BEM
method. To our knowledge, this is the first FEM-BEM scheme that combines DG approximations
on the boundary and in the interior. Technical difficulties that already arose in [7], oblige us
to consider conforming and quasi-uniform families of triangulations on the coupling boundary.
Following the technique from [2], this can be relaxed to meshes that are conforming and quasi-
uniform on planar sub-surfaces of the coupling interface. However, for simplicity, the technical
details for such an extension are omitted here and we will consider globally conforming and quasi-
uniform boundary meshes. Fortunately, restrictions on the boundary mesh have no negative
impact on the triangulation of the interior domain since the two meshes are related by a mild
local condition, see (7) below. Finally, we analyze the scheme that is obtained by using a
conforming rather than non-conforming BEM on the interface. The resulting scheme will be
referred to as the LDG-FEM/BEM method.

The paper is organized as follows. In Section 2 we present our model problem and recall some
basic properties of boundary integral operators. For simplicity of exposition we will restrict our
interest to a three-dimensional problem posed in the whole space. In Section 3 we derive the
LDG-FEM/DG-BEM scheme and prove that it admits a unique solution. Stability and a priori
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error estimates are proved in Section 4. In Section 5 we show that the same technical arguments
provide (without the quasi-uniformity requirement for the meshes on the coupling boundary) a
convergence result for the LDG-FEM/BEM scheme. Finally, numerical experiments are reported
in Section 6.

Given a real number r ≥ 0 and a polyhedron O ⊂ Rd, (d = 2, 3), we denote the norms and
seminorms of the usual Sobolev space Hr(O) by ‖ · ‖r,O and | · |r,O respectively (cf. [10]). We
use the convention L2(O) := H0(O) and let (·, ·)O be the inner product in L2(O). We recall
that, for any t ∈ [−1, 1], the spaces Ht(∂O) have an intrinsic definition (by localization) on
the Lipschitz surface ∂O due to their invariance under Lipschitz coordinate transformations.
Moreover, for all 0 < t ≤ 1, H−t(∂O) is the dual of Ht(∂O) with respect to the pivot space
L2(∂O). Also, 〈·, ·〉∂O denotes both the L2(∂O) inner product and its extension to the duality
pairing of H−t(∂O)×Ht(∂O).

2 The model problem

Let Ω ⊂ R3 be a bounded polyhedral domain with a Lipschitz boundary Γ. We denote by n the
unit normal vector on Γ that points towards Ωe := R3 \ Ω̄. For the sake of simplicity, we assume
that Ωe is connected. We consider the transmission problem

−∆u = f in Ω

u = ue + g0 on Γ

∂u

∂n
=

∂ue

∂n
+ g1 on Γ

−∆ue = 0 in Ωe

ue = O(
1

|x|
) as |x| → ∞,

(1)

where f ∈ L2(Ω), g0 ∈ H1/2(Γ) and g1 ∈ L2(Γ) are given functions.
We can write the problem in Ω by introducing the flux σ as a new variable:

σ = ∇u in Ω,

−divσ = f in Ω.

With the notation

λ :=
∂ue

∂n
and ψ = ue|Γ,

the transmission conditions are

u = ψ + g0 on Γ

σ · n = λ+ g1 on Γ.
(2)

Using the integral representation of the harmonic function ue in Ωe gives

ue = ΨDL(ψ)−ΨSL(λ) in Ωe
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where

ΨSL(ξ)(x) :=

∫
Γ
E(|x− y|)ξ(y) dS(y) and ΨDL(ϕ)(x) :=

∫
Γ

∂E(|x− y|)
∂n(y)

ϕ(y) dS(y)

are the single and double layer potentials, respectively, and E(|x|) := 1
4π

1
|x| is the fundamental

solution of the Laplace operator. The jump properties of the single and double layer potentials
across Γ provide the following integral equations relating the Cauchy data on this boundary:

ψ = (
id

2
+K)ψ − V λ (3)

λ = −Wψ + (
id

2
−K ′)λ (4)

where V , K, K ′ are the boundary integral operators representing the single, double and adjoint
of the double layer, respectively, and W is the hypersingular operator.

Let us recall some important properties of the boundary integral operators, see [10] for
details. The boundary integral operators are formally defined at almost every point x ∈ Γ by

V ξ(x) :=

∫
Γ
E(|x− y|)ξ(y) dS(y), Kϕ(x) :=

∫
Γ

∂E(|x− y|)
∂n(y)

ϕ(y) dS(y),

K ′ξ(x) :=

∫
Γ

∂E(|x− y|)
∂n(x)

ξ(y) dS(y), Wϕ(x) := − ∂

∂n(x)

∫
Γ

∂E(|x− y|)
∂n(y)

ϕ(y) dS(y).

They are bounded as mappings V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ) and
W : H1/2 → H−1/2(Γ). The single layer operator is coercive, there exists C0 > 0 such that

〈χ, V χ〉Γ ≥ C0 ‖χ‖2−1/2,Γ ∀χ ∈ H−1/2(Γ) (5)

and

〈Wϕ,ϕ〉Γ +

(∫
Γ
ϕ

)2

≥ C0 ‖ϕ‖21/2,Γ ∀ϕ ∈ H1/2(Γ). (6)

Moreover, V : Hs−1(Γ)→ Hs(Γ) is bounded for any 0 ≤ s ≤ 1. We recall that the operators V
and W are related by

W = curlΓV curlΓ

where curlΓ is the surface curl operator and curlΓ is its adjoint operator, cf. [12]. Consequently,

〈Wψ,ϕ〉Γ = 〈curlΓψ, V curlΓϕ〉Γ, ∀ψ,ϕ ∈ H1/2(Γ).

3 The LDG-FEM/DG-BEM formulation

We denote by Th a subdivision of the domain Ω̄ into shape regular tetrahedra K of diameter
hK and unit outward normal to ∂K given by nK . We point out that the partition Th is not
necessarily a conforming mesh of Ω̄. We also introduce a shape regular conforming quasi-uniform
triangulation Gh := {T} of the interface Γ into triangles T of diameter hT . The set of edges of Gh
is denoted by Eh. The parameter h represents the mesh size, i.e., h := maxK∈Th; T∈Gh{hK , hT }.
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Henceforth, given any positive functions Ah and Bh of the mesh parameter h, the notation
Ah . Bh means that Ah ≤ CBh with C > 0 independent of h and Ah ' Bh means that Ah . Bh
and Bh . Ah.

We say that a closed subset F ∈ Ω is an interior face if F has a positive 2-dimensional
measure and if there are distinct elements K and K ′ such that F = K ∩K ′. A closed subset
F ∈ Ω is a boundary face if there exists K ∈ Th such that F is a face of K and F = K ∩ Γ. We
consider the set F0

h of interior faces and the set F∂h of boundary faces and introduce

Fh = F0
h ∪ F∂h .

For any element K ∈ Th, we introduce the set

F(K) := {F ∈ Fh; F ⊂ ∂K}

of faces composing the boundary of K. Similarly, for any T ∈ Gh, we introduce the set

E(T ) := {e ∈ Eh; e ⊂ ∂T} .

We also consider for any T ∈ Gh,

F(T ) :=
{
F ∈ F∂h ; F ∩ T 6= ∅

}
.

In what follows we assume that Th ∪ Gh is locally quasi-uniform, i.e., there exists δ > 1 inde-
pendent of h such that δ−1 ≤ hK

hK′
≤ δ for each pair K, K ′ ∈ Th sharing an interior face and

δ−1 ≤ hK
hT
≤ δ for each pair K ∈ Th, T ∈ Gh with K ∩ T 6= ∅. This assumption implies that

the sets F(K) and F(T ) have uniformly bounded cardinalities and that there exists a constant
C > 0 independent of h such that

hF ≤ hK ≤ CδhF ∀F ∈ F(K) and hF ≤ hT ≤ CδhF ∀F ∈ F(T ), (7)

where hF stands for the diameter of the face F .
For any s ≥ 0, we consider the broken Sobolev spaces

Hs(Th) :=
∏
K∈Th

Hs(K), Hs(Th) :=
∏
K∈Th

Hs(K)3,

Hs(Gh) :=
∏
T∈Gh

Hs(T ), Hs(Gh) :=
∏
T∈Gh

Hs(T )3.

For each v := {vK} ∈ Hs(Th), τ := {τK} ∈ Hs(Th) and ϕ := {ϕT } ∈ Hs(Gh), the components
vK , τK and ϕT represent the restrictions v|K , τ |K and ϕ|T . When no confusion arises, the
restrictions of these functions will be written without any subscript. The spaces Hs(Th) and
Hs(Th) are endowed with the Hilbertian norms

‖v‖2s,Th :=
∑
K∈Th

‖vK‖2s,K ‖τ‖2s,Th :=
∑
K∈Th

‖τK‖2s,K .

The corresponding seminorms are denoted by

|v|2s,Th :=
∑
K∈Th

|vK |2s,K |τ |2s,Th :=
∑
K∈Th

|τK |2s,K .
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Similarly, the norms and the seminorms on Hs(Gh) are given by

‖ϕ‖2s,Gh :=
∑
T∈Gh

‖ϕT ‖2s,T |ϕ|2s,Gh :=
∑
T∈Gh

|ϕT |2s,T .

Identical definition for the norms and the seminorms are considered on the vectorial counterpart
of Hs(Gh). We use the convention H0(Th) = L2(Th) for all the spaces defined previously.

We will also need the spaces given on the skeletons of the triangulations Th and Gh by

L2(Fh) :=
∏
F∈Fh

L2(F ), L2(F0
h) :=

∏
F∈F0

h

L2(F ), L2(Eh) :=
∏
e∈Eh

L2(e)

L2(Fh) :=
∏
F∈Fh

L2(F )3, L2(F0
h) :=

∏
F∈F0

h

L2(F )3, L2(Eh) :=
∏
e∈Eh

L2(e)3.

Similarly, the components µF and βF of µ := {µF } ∈ L2(Fh) and β := {βF } ∈ L2(Fh) coincide
with the restrictions µ|F and β|F and the components ϕe and ψe of ϕ := {ϕe} ∈ L2(Eh) and
ψ := {ψe} ∈ L2(Eh) are given by the restrictions ϕ|e and ψ|e respectively. We introduce the
inner products

〈λ, µ〉Fh :=
∑
F∈Fh

〈λF , µF 〉F , 〈λ, µ〉F0
h

:=
∑
F∈F0

h

〈λF , µF 〉F and 〈ψ,ϕ〉Eh :=
∑
e∈Eh

〈ψe, ϕe〉e.

and the corresponding norms

‖µ‖20,Fh := 〈µ, µ〉Fh , ‖µ‖20,F0
h

:= 〈µ, µ〉F0
h

and ‖ϕ‖20,Eh := 〈ϕ,ϕ〉Eh

on L2(Fh), L2(F0
h) and L2(Eh) respectively.

Given v ∈ H1(Th), we define averages {v} ∈ L2(F0
h) and jumps JvK ∈ L2(F0

h) by

{v}F := 1/2(vK + vK′) and JvKF := vKnK + vK′nK′ ∀F ∈ F(K) ∩ F(K ′).

For vector valued functions τ ∈ H1(Th), we define {τ} ∈ L2(F0
h) and Jτ K ∈ L2(F0

h) by

{τ}F := 1/2(τK + τK′) and Jτ KF := τK · nK + τK′ · nK′ ∀F ∈ F(K) ∩ F(K ′).

Similarly, given ϕ ∈ H1(Gh), we define averages {ϕ} ∈ L2(E0
h) and jumps JϕK ∈ L2(Eh) by

{ϕ}e := 1/2(ϕT + ϕT ′) and JϕKe := ϕT te + ϕT ′te′ ∀e ∈ E(T ) ∩ E(T ′).

Here, te is the tangent unit vector along the edge e given by te = (n×n∂F )|e, where n∂F is the
outward unit normal vector to the boundary of the face F in the hyperplane defined by n|F .

Hereafter, given an integer k ≥ 0 and a domain D ⊂ R3, Pk(D) denotes the space of
polynomials of degree at most k on D. We consider the linear spaces

P0(Fh) :=
∏
F∈Fh

P0(F ) and P0(F0
h) :=

∏
F∈F0

h

P0(F ),

and for any m ≥ 1, we introduce the finite element spaces

Vh :=
∏
K∈Th

Pm(K) and Σh :=
∏
K∈Th

RTm(K),
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where
RTm(K) :=

{
Pm−1(K)3 + xPm−1(K)

}
is the finite element of Raviart-Thomas of order m− 1.

We consider the following formulation in the bounded domain Ω: find (σh, uh) ∈ Σh × Vh
such that for each K ∈ Th there holds

(σh, τ )K − (∇uh, τ )K + 〈uh − ū, τ · nK〉∂K = 0 ∀τ ∈ Σh

(σh,∇v)K − 〈σ̄ · nK , v〉∂K = (f, v)K ∀v ∈ Vh.
(8)

Before defining the numerical traces ū and σ̄ let us consider the finite element approximation
of the boundary integral equations (3) and (4).

We consider the operator T defined for any ϕ ∈ H1(Gh) by

(Tϕ)|e := (V curlhϕ)|e (e ∈ Eh),

where curlh stands for the element-wise curl operator:

(curlhϕ)|F := curlF (ϕ|F ), ∀F ∈ Gh.

We consider two sequences of boundary element spaces

Λh := {τ · n; τ ∈ Σh} ⊂ H−1/2(Γ),

Ψh :=
∏
T∈Gh

Pm(T ) ∩ L2
0(Γ) ⊂ H1/2

0 (Gh) := H1/2(Gh) ∩ L2
0(Γ)

with L2
0(Γ) :=

{
ϕ ∈ L2(Γ); 〈1, ϕ〉Γ = 0

}
. We then replace (3), (4) by the Galerkin equations:

find ψh ∈ Ψh, λ?h ∈ Λh such that

〈ψh, τ · n〉Γ = 〈( id
2 +K)ψh, τ · n〉Γ − 〈V (λ?h − g1), τ · n〉Γ ∀τ ∈ Σh

〈(λ?h − g1), ϕ〉Γ = −d(ψh, ϕ) + 〈( id
2 −K

′)(λ?h − g1), ϕ〉Γ ∀ϕ ∈ Ψh.
(9)

Here we used the transmission condition for λ, (2), and λ?h will be an approximation to λ+ g1 =
σ · n. Furthermore,

d(ψ,ϕ) := 〈V curlhψ, curlhϕ〉Γ + 〈Tψ, JϕK〉Eh − 〈JψK,Tϕ〉Eh + 〈νJψK, JϕK〉Eh (10)

and ν ∈
∏
e∈Eh P0(e) is a piecewise constant function such that

ν ' 1. (11)

Let α ∈ P0(Fh), and β ∈ P0(F0
h)3 be given piecewise constant functions satisfying

max
F∈F0

h

|βF | . 1 and hF α ' 1, (12)

where hF ∈ P0(Fh) is defined by hF |F := hF , ∀F ∈ Fh.
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We substitute ū and σ̄ given by

ūF =

{uh}F + βF · JuhKF if F ∈ F0
h

ψh + g0 if F ∈ F∂h

and

σ̄F =

{σh}F − JσhKFβF − αF JuhKF if F ∈ F0
h

σh|F − αF (uh|F − ψh − g0)n|F if F ∈ F∂h
in (8) and add the equations over K ∈ Th to obtain the following LDG formulation of the
problem in Ω: find (σh, uh) ∈ Σh × Vh such that

(σh, τ )Ω − {(∇huh, τ )Ω − S(uh, τ )} − 〈ψh, τ · n〉Γ = 〈g0, τ · n〉Γ

{(∇hv,σh)Ω − S(v,σh)}+α0(uh, v) + 〈α(uh − ψh), v〉Γ = (f, v)Ω + 〈αg0, v〉Γ,
(13)

for all τ ∈ Σh and v ∈ Vh, where ∇h stands for the element-wise gradient and

S(u, τ ) := 〈JuK, {τ} − Jτ Kβ〉F0
h

+ 〈u, τ · n〉Γ, ∀u ∈ H1(Th), ∀τ ∈ H1(Th),

α0(u, v) = 〈αJuK, JvK〉F0
h

∀u, v ∈ H1(Th),

In order to simplify the notations, let us denote by ûh = (uh, ψh) and v̂ := (v, ϕ) couples of
elements from Vh ×Ψh. We also consider

JûhK :=

{
JuhKF if F ∈ F0

h

(uh − ψh)n|F if F ∈ F∂h
and Jv̂K :=

{
JvKF if F ∈ F0

h

(v − ϕ)n|F if F ∈ F∂h
.

We now couple (9) and (13) by identifying λ?h = σh · n and by approximating the transmission
condition for the traces in (2) by

〈α(uh − ψh), ϕ〉Γ = 〈αg0, ϕ〉Γ ∀ϕ ∈ Ψh.

A combination of (9) and (13) then yields our LDG-FEM/DG-BEM coupling: find (σh, ûh) ∈
Σh × (Vh ×Ψh) such that

a(σh, τ ) + b(τ , ûh) = 〈g0, τ · n〉Γ + 〈V g1, τ · n〉Γ ∀τ ∈ Σh

−b(σh, v̂) + c(ûh, v̂) = (f, v)Ω + 〈αg0, v − ϕ〉Γ + 〈( id
2 +K ′)g1, ϕ〉Γ ∀v̂ ∈ Vh ×Ψh.

(14)

Here,

a(σh, τ ) := (σh, τ )Ω + 〈τ · n, V (σh · n)〉Γ, c(ûh, v̂) := 〈αJûhK, Jv̂K〉Fh + d(ψh, ϕ)

and

b(τ , v̂) := −(∇hv, τ )Ω + 〈τ · n, ( id

2
−K)ϕ〉Γ + 〈JvK, {τ} − Jτ Kβ〉F0

h
+ 〈Jv̂K, τ 〉Γ.

Problem (14) can be rewritten in the more compact form as follows: Find σh ∈ Σh and ûh =
(uh, ψh) ∈ Vh ×Ψh such that

A(σh, ûh; τ , v̂) = F (τ , v̂), (15)
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by setting
A(σh, ûh; τ , v̂) := a(σh, τ ) + b(τ , ûh)− b(σh, v̂) + c(ûh, v̂) (16)

and

F (τ , v̂) := (f, v)Ω + 〈V g1 + g0, τ · n〉Γ + 〈αg0, v − ϕ〉Γ + 〈( id

2
+K ′)g1, ϕ〉Γ.

Proposition 3.1. The LDG-FEM/DG-BEM method defined by (14) provides a unique approx-
imate solution (σh, (uh, ψh)) ∈ Σh × (Vh ×Ψh).

Proof. It suffices to prove that if f = 0, g0 = 0 and g1 = 0, then (14) admits only the trivial
solution. Taking τ = σh and v̂ = ûh in (15) yields

a(σh,σh) + c(ûh, ûh) = 0,

which proves that σh = 0, JûhK = 0, curlhψh = 0 and JψhKe = 0 for all e ∈ Eh. Consequently,
ψh is constant on Γ and, as it has zero mean value, it must vanish identically. Now, ψh = 0 and
JûhK = 0 implies that uh = 0 on Γ. On the other hand, it follows from

b(τ , ûh) = −(∇huh, τ )Ω = 0 ∀τ ∈ Σh

and the fact that ∇h(Vh) ⊂ Σh that ∇huh = 0. We can now conclude that uh = 0 since it is
constant in each T , it has no jumps across the interior faces of Th (JuhKF = 0 for all F ∈ F0

h)
and it vanishes on Γ.

We end this section by proving that our LDG-FEM/DG-BEM scheme is consistent.

Proposition 3.2. Let u be the solution of (1) in Ω, σ := ∇u and ψ := u|Γ − g0. Under the
regularity assumptions u ∈ H2(Ω) and Wψ ∈ L2(Γ) we have that

A(σ, (u, ψ); τ , (v, ϕ)) = F (τ , (v, ϕ)) ∀τ ∈ Σh, ∀(v, ϕ) ∈ Vh ×Ψh.

Proof. Taking into account that λ := σ · n− g1 =
∂u

∂n
− g1, it is straightforward to show that

A(σ, (u, ψ); τ , (v, ϕ)) = 〈τ · n, g0 + V g1〉Γ + 〈αg0, v − ϕ〉Γ + 〈( id

2
+K ′)g1, ϕ〉Γ

+ 〈τ · n, V λ+ (
id

2
−K)ψ〉Γ + 〈( id

2
+K ′)λ, ϕ〉Γ + 〈V curlΓψ, curlhϕ〉Γ + 〈Tψ, JϕKe〉Eh

+
∑
K∈Th

(∇u,∇v)K − 〈∇u, JvK〉F0
h
− 〈 ∂u

∂n
, v〉Γ.

Taking into account the integration by parts formula

〈V curlΓψ, curlhϕ〉Γ + 〈Tψ, JϕKe〉Eh =∑
T∈Gh

〈V curlΓψ, curlTϕ〉T + 〈t∂T · V curlΓψ,ϕ〉∂T = 〈Wψ,ϕ〉,

we deduce the result from (3), (4) and from the fact that∑
K∈Th

(∇u,∇v)K =
∑
K∈Th

(f, v)K + 〈∇u, JvK〉F0
h

+ 〈 ∂u
∂n

, v〉Γ.
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4 Convergence analysis

In this section, we develop the error analysis of the LDG-FEM/DG-BEM scheme (14). We first
introduce a series of technical results that are used in the proof the Céa’s error estimate provided
by Theorem 4.1). Then, we use well-known interpolation error estimates to obtain the main
convergence result stated in Theorem 4.2.

4.1 Technical results

The following discrete trace inequality is standard, [4].

Lemma 4.1. For all K ∈ Th, all integer k ≥ 0, and all v ∈ Pk(K),

hK‖v‖20,∂K . ‖v‖20,K . (17)

Proposition 4.1. For all v ∈ H1(Th),

‖JvK‖20,F0
h
.
∑
K∈Th

‖v‖20,∂K .

Proof. The proof relies on the local quasi-uniformity of Th. Indeed,

‖JvK‖20,F0
h

=
∑
F∈F0

h

‖JvK‖20,F ≤ 2
∑
K∈Th

∑
F∈F(K)

‖v‖20,F ,

and the result follows from the fact that the cardinality of the set F(K) is uniformly bounded.

The H1/2(Gh)-ellipticity of the bilinear form 〈V curlhψ, curlhϕ〉Γ in Ψh is essential for the
stability of our method. The main difficulty that we had to deal with in our analysis is that this
bilinear form is not uniformly bounded on Ψh with respect to this broken-norm.

Lemma 4.2. There holds

〈V curlhϕ, curlhϕ〉Γ & |ϕ|21/2,Gh , ∀ϕ ∈ Ψh.

Proof. The result is a consequence of (5) and the fact that (cf. [9])

|ϕ|21/2,Gh .
∑
T∈Gh

‖curlTϕ‖2−1/2,T ≤ ‖curlhϕ‖2−1/2,Γ ∀ϕ ∈ Ψh. (18)

The following estimate is a Poincaré-Friedrichs inequality for piecewise polynomial functions.

Lemma 4.3. There holds

‖ϕ‖20,Γ .
(
| log h||ϕ|21/2,Gh + ‖JϕK‖20,Eh

)
∀ϕ ∈ Ψh. (19)
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Proof. We know from [8, Theorem 8] that

‖ϕ‖20,Γ . ε−1|ϕ|21/2+ε,Gh +
∑
e∈Eh

h−1−2ε
e

∣∣∣∣∫
e
JϕKe

∣∣∣∣2 +

∣∣∣∣∫
Γ
ϕ

∣∣∣∣2
for all ϕ ∈ H1/2+ε(Gh) and for all ε ∈ (0, 1/2). The inverse inequality

|ϕT |1/2+ε,T . h−εT |ϕT |1/2,T ∀ϕT ∈ Pm(T ),

and the fact that Gh is quasi-uniform yields

‖ϕ‖20,Γ . ε−1h−2ε|ϕ|21/2,Gh + h−2ε
∑
e∈Eh

h−1
e

∣∣∣∣∫
e
JϕKe

∣∣∣∣2
for all ϕ ∈ Ψh and for all ε ∈ (0, 1/2). The result follows now by choosing ε = 1

2(log 1/h)−1 and
applying the Cauchy-Schwarz inequality.

Finally, the following bound for T can be found in [7, Equation (4.27)].

Lemma 4.4. We have that,

‖Tϕ‖0,Eh .
(
h−1‖ϕ‖20,Γ + h|ϕ|21,Γ

)1/2
, for all ϕ ∈ H1(Γ).

4.2 Stability of the LDG-FEM/DG-BEM method

For all K ∈ Th, we introduce the L2(K)-orthogonal projector ΠK onto Pm(K). Moreover, we
consider on each T ∈ Gh the usual triangular Lagrange finite element of order m (m ≥ 1) and
denote by π̃T : C0(T )→ Pm(T ) the corresponding Lagrange interpolation operator. We will also
use the Raviart-Thomas interpolation operator ΠK in RTm(K), see [13]. The global operators
Π : L2(Th)→ Vh, Π : H1(Th)→ Σh and π̃ : C0(Γ)→ Ψh ∩ C0(Γ) are given by

(Πv)|K := ΠK(vK), (Πτ )|K := ΠK(τK) ∀K ∈ Th and (π̃ϕ)|T := π̃T (ϕT ) ∀T ∈ Gh

respectively.
For all τ ∈ H1(Th) and v̂ := (v, ϕ) ∈ H1(Th)×H1(Gh), we introduce the semi-norms

‖(τ , v̂)‖ :=
(
‖τ‖20,Ω + ‖τ · n‖2−1/2,Γ + |ϕ|21/2,Gh + ‖α1/2Jv̂K‖20,Fh + ‖ν1/2JϕK‖20,Eh

)1/2
,

‖(τ , v̂)‖# :=
(
‖τ‖20,Ω + ‖τ · n‖2−1/2,Γ + ‖α1/2Jv̂K‖20,Fh+

‖curlhϕ‖2−1/2,Γ + ‖ν1/2JϕK‖20,Eh
)1/2

and for all τ ∈ H1(Th) and v̂ := (v, ϕ) ∈ H1(Th)×H1(Γ), we introduce

‖(τ , v̂)‖∗ :=
(
‖(τ , v̂)‖2 +

∑
K∈Th

‖α−1/2τ · nK‖20,∂K + ‖τ · n‖20,Γ +
∑
K∈Th

‖α1/2v‖20,∂K+

‖ϕ‖21/2,Γ + h−1‖ϕ‖20,Γ + h|ϕ|21,Γ
)1/2

.
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It is clear that

‖(τ , v̂)‖ ≤ ‖(τ , v̂)‖∗ ∀(τ , v̂) ∈ H1(Th)× (H1(Th)×H1(Γ)). (20)

Moreover, taking into account (18), we deduce that

‖(τ , v̂)‖ . ‖(τ , v̂)‖# ∀(τ , v̂) ∈ H1(Th)× (H1(Th)×H1(Gh)). (21)

In the following we abbreviate

πσ := σ −Πσ, πu := u−Πu, π̃ψ := ψ − π̃ψ and πû := (u−Πu, ψ − π̃ψ).

Lemma 4.5. Let us assume that σ ∈ H1/2+ε(Ω)3 with ε > 0 and ψ ∈ H1(Γ). Then, there exists
a constant C̄ > 0 independent of h such that

|A(πσ, πû; τ , v̂)| ≤ C̄| log h|1/2 ‖(πσ, πû)‖∗‖(τ , v̂)‖# ∀(τ , v̂) ∈ Σh × (Vh ×Ψh).

Proof. First of all, the definition of A(·, ·) and the triangle inequality yield

|A(πσ, πû; τ , v̂)| ≤ |a(πσ, τ )|+ |c(πû, v̂)|+ |b(πσ, v̂)|+ |b(τ , πû)| =: T1 + T2 + T3 + T4

for all (τ , v̂) ∈ Σh × (Vh ×Ψh). Using Cauchy-Schwarz’s inequality it is straightforward to see
that

T1 .
(
‖πσ‖20,Ω + ‖πσ · n‖2−1/2,Γ

)1/2 (
‖τ‖20,Ω + ‖τ · n‖2−1/2,Γ

)1/2

. ‖(πσ, πû)‖‖(τ , v̂)‖. (22)

Applying Lemma 4.4 and the Cauchy-Schwarz inequality we deduce that

T2 ≤ |〈αJπûK, Jv̂K〉Fh |+ |d(π̃ψ, ϕ)| ≤ |〈αJπûK, Jv̂K〉Fh |+

|〈V curlhπ̃ψ, curlhϕ〉Γ|+ |〈T π̃ψ, JϕK〉Eh |+ |〈Jπ̃ψK,Tϕ〉Eh |+ |〈νJπ̃ψK, JϕK〉Eh |

= |〈αJπûK, Jv̂K〉Fh |+ |〈V curlΓπ̃ψ, curlhϕ〉Γ|+ |〈T π̃ψ, JϕK〉Eh |

. ‖α1/2JπûK‖0,Fh‖α
1/2Jv̂K‖0,Fh + ‖curlΓπ̃ψ‖−1/2,Γ‖curlhϕ‖−1/2,Γ+

‖ν1/2T π̃ψ‖0,Eh‖ν
1/2JϕK‖0,Eh .

Taking advantage of the fact that curlΓ : H1/2(Γ)→ H−1/2(Γ)3 is bounded we conclude that

T2 . ‖(πσ, πû)‖∗‖(τ , v̂)‖#. (23)

By definition of the Raviart-Thomas interpolation operator, (πσ,∇v)K = 0 for all v ∈ Vh, which
implies that

T3 =
∣∣∣〈πσ · n, ( id

2
−K)ϕ〉Γ + 〈JvK, {πσ} − JπσKβ〉F0

h
+ 〈Jv̂K, πσ〉Γ

∣∣∣.
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We apply the Cauchy-Schwarz inequality and hypothesis (12) on α to deduce that

T3 .
(
‖α−1/2({πσ} − JπσKβ) · n‖20,F0

h
+ max{1, hF}‖πσ · n‖20,Γ

)1/2

(
‖( id

2
−K)ϕ‖20,Γ + ‖α1/2Jv̂K‖20,Fh

)1/2

.

Hypothesis (12) on β and Proposition 4.1 yield

‖α−1/2({πσ} − JπσKβ) · n‖20,F0
h
.
∑
K∈Th

‖α−1/2πσ · nK‖20,∂K .

Moreover, the boundedness of id
2 −K : L2(Γ)→ L2(Γ) and the fractional order discrete Poincaré

inequality (19) imply the estimate

‖( id

2
−K)ϕ‖20,Γ . | log h|

(
|ϕ|21/2,Gh + ‖JϕK‖20,Eh

)
. | log h|

(
‖curlhϕ‖2−1/2,Γ + ‖ν1/2JϕK‖20,Eh

)
.

This yields the following estimate,

T3 . | log h|1/2
‖(πσ, πû)‖2 + ‖πσ · n‖20,Γ +

∑
K∈Th

‖α−1/2πσ · nK‖20,∂K

1/2

‖(τ , v̂)‖#. (24)

To bound the last term T4, we begin by using integration by parts and the characterization
of the L2(K)-orthogonal projection onto Pm(K),

(πu, divτ )K = 0 ∀τ ∈ Σh,

to deduce that

T4 =
∣∣∣〈JπuK,βJτ K + {τ}〉F0

h
+ 〈τ · n, ( id

2
+K)π̃ψ〉Γ

∣∣∣.
Now, from the Cauchy-Schwarz inequality, the boundedness of K : H1/2(Γ) → H1/2(Γ), the
boundedness of β and Proposition 4.1, it follows that

T4 .

‖τ · n‖2−1/2,Γ +
∑
K∈Th

‖α−1/2τ · nK‖20,∂K

1/2

‖π̃ψ‖21/2,Γ +
∑
K∈Th

‖α1/2πu‖20,∂K

1/2

.

Finally, by virtue of (7), (12) and (17),

‖α−1/2τ · nK‖20,∂K =
∑

F∈F(K)

(hKαF )−1hK‖τ · nK‖20,F .
∑

F∈F(K)

hK‖τ‖20,F ,
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which means that

T4 . ‖(τ , v̂)‖

‖π̃ψ‖21/2,Γ +
∑
K∈Th

‖α1/2πu‖20,∂K

1/2

. (25)

The result follows now directly from (22), (23), (24) and (25).

Let us introduce the errors

eσ := σ − σh, eu := u− uh, eψ := ψ − ψh and eû := (u− uh, ψ − ψh).

We notice that, under the regularity hypothesis of Proposition 3.2, we have the following Galerkin
orthogonality

A(eσ, eû; τ , v̂) = 0 ∀(τ , v̂) ∈ Σh × (Vh ×Ψh). (26)

Lemma 4.6. There exists C > 0 such that

sup
(τ ,v̂)∈Σh×(Vh×Ψh)

A(σ, û; τ , v̂)

‖(τ , v̂)‖#
≥ C ‖(σ, û)‖ (27)

for all (σ, û) ∈ Σh × (Vh ×Ψh).

Proof. It follows straightforwardly from (5) and (21) that, for all (τ , v̂) ∈ Σh × (Vh ×Ψh),

A(τ , v̂; τ , v̂)

= ‖τ‖20,Ω + 〈τ · n, V (τ · n)〉Γ + ‖α1/2Jv̂K‖20,Fh + 〈V curlhϕ, curlhϕ〉Γ + ‖ν1/2JϕK‖20,Eh

&
(
‖τ‖20,Ω + ‖τ · n‖2−1/2,Γ + ‖α1/2Jv̂K‖20,Fh + ‖curlhϕ‖2−1/2,Γ + ‖ν1/2JϕK‖20,Eh

)
= ‖(τ , v̂)‖2# & ‖(τ , v̂)‖‖(τ , v̂)‖#,

which proves the result.

Theorem 4.1. Under the hypothesis of Proposition 3.2,

‖(eσ, eû)‖ ≤ (1 +
C̄

C
)| log h|1/2‖(πσ, πû)‖∗.

Proof. The Galerkin orthogonality (26) and (27) yield

C ‖(σh −Πσ, (uh −Πu, ψh − π̃ψ))‖ ≤

sup
(τ ,v̂)∈Σh×(Vh×Ψh)

A(σh −Πσ, (uh −Πu, ψh − π̃ψ); τ , v̂)

‖(τ , v̂)‖#
=

sup
(τ ,v̂)∈Σh×(Vh×Ψh)

A(πσ, πû; τ , v̂)

‖(τ , v̂)‖#
Applying Lemma 4.5 we deduce that

‖(σh −Πσ, (uh −Πu, ψh − π̃ψ))‖ ≤ C̄

C
| log h|1/2‖(πσ, πû)‖∗ (28)

and the result follows from triangle inequality

‖(eσ, eû)‖ ≤ ‖(πσ, πû)‖+ ‖(σh −Πσ, (uh −Πu, ψh − π̃ψ))‖.
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4.3 Asymptotic error estimates

In this section we need to handle functions that are piecewise smooth on the boundary Γ of the
polyhedron Ω. Let {Γ1, · · · ,ΓN} be the open polygons, contained in different hyperplanes of R3,
such that Γ = ∪Nj=1Γj . For any t ≥ 0, we consider the broken Sobolev space Ht

b(Γ) :=
∏
j H

t(Γj)
endowed with the graph norm

‖ϕ‖2t,b,Γ :=
N∑
j=1

‖ϕ‖2Ht(Γj)
.

Let us recall some well-known approximation properties related with the (local and global)
projection and interpolation operators.

Lemma 4.7. For all K ∈ Th, if w ∈ Hr+1(K) with r ≥ 0, then

hK‖∇(w −ΠKw)‖0,K + ‖w −ΠKw‖0,K . h
min{r,m}+1
K ‖w‖r+1,K

and
‖w −ΠKw‖0,∂K . h

min{r,m}+1/2
K ‖w‖r+1,K .

Lemma 4.8. For all K ∈ Th, if τ ∈ Hr(K)3 with r > 1/2, then

‖τ −ΠKτ‖0,K . h
min{r,m}
K ‖τ‖r,K ,

and
‖(τ −ΠKτ ) · nK‖0,∂K . h

min{r,m}−1/2
K ‖τ‖r,K .

Proof. The first estimate is standard (cf. [13]), we only prove the second one. Let us denote by
K̂ the reference tetrahedron and consider the Piola transformation

τ =
1

det(BK)
BK τ̂

where BK is the matrix associated with the affine map from K̂ onto K. We consider a face F
of T and we denote by F̂ the corresponding face in T̂ under the affine map. It is easy to show
that

|F |‖τ · nF ‖20,F = |F̂ |‖τ̂ · nF̂ ‖
2
0,F̂

∀τ ∈ H1(K).

Let us denote by Π̂ the Raviart-Thomas interpolation in RTm(K̂). It follows from the trace
theorem in Hmin{r,m}(K̂) and the Bramble-Hilbert theorem that

‖(τ̂ − Π̂τ̂ ) · nF̂ ‖0,F̂ . |τ̂ |min{r,m},K̂ ,

where | · |min{r,m},K̂ stands for the semi-norm in Hmin{r,m}(K̂). Combining the last two estimates

and recalling that Π̂Kτ = Π̂τ̂ we obtain

‖τ −ΠKτ‖0,F . |F |−1/2|τ̂ |min{r,m},K̂ ,

and transforming back to K this gives

‖τ −ΠKτ‖0,F . |F̂ |1/2|F |−1/2|det(BK)|1/2‖B−1
K ‖‖BK‖

min{r,m}‖τ‖r,K .

The result follows now from the shape regularity of the partition Th.
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Lemma 4.9. Assume that ϕ ∈ Hr+1/2
b (Γ) ∩H1(Γ) with r > 1/2, then

‖ϕ− π̃Tϕ‖0,T . h
min{r+1/2,m+1}
T ‖ϕ‖r+1/2,T ∀T ∈ Gh

and
‖ϕ− π̃ϕ‖t,Γ . hmin{r+1/2,m+1}−t‖ϕ‖r+1/2,b,Γ, t ∈ {0, 1/2, 1}.

Proof. See [14, Proposition 4.1.50]

Lemma 4.10. Assume that λ ∈ H−1/2(Γ) ∩Hr
b (Γ) for some r ≥ 0 and let

Λh =
{
µ ∈ L2(Γ); µ|T ∈ Pm−1(T ) ∀T ∈ Gh

}
.

Then,
‖λ− µh‖−t,Γ . hmin{r,m}+t‖λ‖r,b,Γ t ∈ {0, 1/2},

where µh the best L2(Γ) approximation of λ in Λh.

Proof. See [14, Theorem 4.3.20].

Theorem 4.2. Assume that that the solution of (1) satisfies u ∈ Hs+2(Ω), ψ ∈ H
s+3/2
b (Γ)

∩H1(Γ) and σ · n ∈ Hs+1
b (Γ) for some s ≥ 0. Then,

‖(σ − σh, (u− uh, ψ − ψh))‖ . | log h|1/2 hmin{s+1,m}

(‖u‖s+2,Ω + ‖ψ‖s+3/2,b,Γ + ‖σ · n‖s+1,b,Γ).

Proof. Let us first notice that, thanks to (7), (12) and Proposition 4.1,

‖α1/2Jv̂K‖20,Fh .

∑
K∈Th

h−1
K ‖v‖

2
0,∂K +

∑
T∈Gh

h−1
T ‖ϕ‖

2
0,T

 ∀(v, ϕ) ∈ H1(TH)×H1/2(Γ).

It follows that

‖(πσ, πû)‖∗ .
(
‖πσ‖20,Ω +

∑
K∈Th

hK‖πσ · nK‖20,∂K + ‖πσ · n‖2−1/2,Γ + ‖πσ · n‖20,Γ+

∑
K∈Th

h−1
K ‖πu‖

2
0,∂K + h−1‖π̃ψ‖20,Γ + ‖π̃ψ‖21/2,Γ + h|π̃ψ|21,Γ

)1/2
. (29)

Using Lemma 4.8 we obtain

‖πσ‖20,Ω +
∑
K∈Th

hK‖πσ · nK‖20,∂K ≤ C2h
2 min{s+1,m}‖u‖2s+2,Ω. (30)

On the other hand, we recall that (by definition of the Raviart-Thomas interpolation operator)
(Πσ)|Γ · n is the best L2(Γ) approximation of σ · n in Λh. Consequently, by virtue of the
regularity assumption σ · n ∈ H1+s

b (Γ) and Lemma 4.10,

‖πσ · n‖−1/2,Γ . hmin{s+3/2,m+1/2}‖σ · n‖1+s,b,Γ (31)
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and
‖πσ · n‖0,Γ . hmin{s+1,m}‖σ · n‖1+s,b,Γ (32)

Applying now the estimates given in Lemma 4.9 we deduce that∑
T∈Gh

h−1
T ‖π̃ψ‖

2
0,T + ‖π̃ψ‖21/2,Γ + h−1‖π̃ψ‖20,Γ + h‖π̃ψ‖21,Γ . h2 min{s+1,m+1/2}‖ψ‖2s+3/2,b,Γ. (33)

Finally, Lemma 4.7 proves that∑
K∈Th

h−1
K ‖πu‖

2
0,∂K . h2 min{s+1,m}‖u‖2s+2,Ω. (34)

Plugging (30), (32), (33) and (34) in (29) and using that min{s+ 1,m+ 1/2} ≥ min{s+ 1,m}
yield

‖(πσ, πû)‖∗ . hmin{s+1,m}
(
‖u‖2s+2,Ω + ‖ψ‖2s+3/2,b,Γ + ‖σ · n‖21+s,b,Γ

)1/2
. (35)

It follows now from Lemma 4.1 that

‖(eσ, eû)‖ . | log h|1/2 hmin{s+1,m}
(
‖u‖2s+2,Ω + ‖ψ‖2s+3/2,b,Γ + ‖σ · n‖21+s,b,Γ

)1/2
.

Remark 4.1. We point out that if g0 = g1 = 0 and the solution is harmonic in a neighborhood

of Γ then, the boundary regularity assumption ψ ∈ H
s+3/2
b (Γ) ∩ H1(Γ) and σ · n ∈ Hs+1

b (Γ)
will hold true for any s ≥ 0. This condition can always be fulfilled be choosing Ω big enough to
contain the jumps of the solution.

5 Conforming approximation on the boundary

With little more effort we can provide the convergence analysis for a Galerkin scheme based on
a conforming BEM-approximation. To this end, we introduce

Ψ̃h :=
∏
T∈Gh

Pm(T ) ∩H1/2
0 (Γ) ⊂ H1/2

0 (Γ) := H1/2(Γ) ∩ L2
0(Γ)

and consider the problem: find (σh, ûh) ∈ Σh × (Vh × Ψ̃h) such that

a(σh, τ ) + b(τ , ûh) = 〈g0, τ · n〉Γ + 〈V g1, τ · n〉Γ ∀τ ∈ Σh

−b(σh, v̂) + c(ûh, v̂) = (f, v)Ω + 〈αg0, v − ϕ〉Γ + 〈( id
2 +K ′)g1, ϕ〉Γ ∀v̂ ∈ Vh × Ψ̃h.

(36)

Note that the restriction of the bilinear form d(·, ·), used in the definition of c(·, ·) and introduced
in (10), reduces to

d(ψ,ϕ) := 〈V curlΓψ, curlΓϕ〉Γ
for functions ψ and ϕ in Ψ̃h. This will simplify considerably the analysis of the scheme. All
the other bilinear forms in (36) remain unchanged. Apart from the fact that the shape regular
conforming triangulation Gh := {T} is no longer needed to be quasi-uniform, in the sequel,
we will use the same hypothesis on the triangulations and we will also use the same notations
introduced in previous sections.

The well-posedness and the consistency of the scheme (36) follow by straightforward simpli-
fications of the arguments used in the proofs of Propositions 3.1 and 3.2.
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Proposition 5.1. The LDG-FEM/BEM defined by (36) provides a unique approximate solution
(σh, (uh, ψh)) ∈ Σh×(Vh×Ψ̃h). Moreover, if u is the solution of (1) in Ω, σ := ∇u, ψ := u|Γ−g0

and u ∈ H2(Ω) then,

A(σ, (u, ψ); τ , (v, ϕ)) = F (τ , (v, ϕ)) ∀τ ∈ Σh, ∀(v, ϕ) ∈ Vh × Ψ̃h.

Reexamining carefully the proof of Lemma 4.5 we obtain the following stability property for
scheme (36).

Lemma 5.1. Let us assume that σ ∈ H1/2+ε(Ω)3 with ε > 0. Then,

|A(πσ, πû; τ , v̂)| . ‖(πσ, πû)‖c∗ ‖(τ , v̂)‖c ∀(τ , v̂) ∈ Σh × (Vh × Ψ̃h),

where

‖(τ , v̂)‖c :=
(
‖τ‖20,Ω + ‖τ · n‖2−1/2,Γ + ‖ϕ‖21/2,Γ + ‖α1/2Jv̂K‖20,Fh

)1/2

and

‖(τ , v̂)‖c∗ :=

‖(τ , v̂)‖2 +
∑
K∈Th

‖α−1/2τ · nK‖20,∂K +
∑
K∈Th

‖α1/2v‖20,∂K

1/2

.

It is straightforward to deduce from (5) and (6) that

A(τ , v̂; τ , v̂) & (‖(τ , v̂)‖c)2 ∀τ ∈ H1(Th), ∀v̂ = (v, ϕ) ∈ H1(Th)×H1/2
0 (Γ). (37)

Combining (37) with Lemma 5.1 yields the following error estimate.

Theorem 5.1. Under the hypothesis of Proposition 5.1,

‖(eσ, eû)‖c . ‖(πσ, πû)‖c∗.

In the conforming BEM case, we can also provide an estimate of the error u − uh in the
L2(Ω)-norm. To this end, we follow [1] and use a duality argument. For any ρ ∈ L2(Ω) we
consider the exterior problem

∆w = ρ̃ in R3,

w = O(
1

|x|
) as |x| → ∞,

where ρ̃ is the extension by zero of ρ outside Ω. It is well known from the theory of regularity
of elliptic problems that w ∈ H2(Ω) and there exists Creg > 0 such that

‖w‖2,Ω ≤ Creg‖ρ‖0,Ω. (38)

Proposition 5.2. Let us introduce τ ρ := ∇w and v̂ρ = (vρ, ϕρ) := (−w|Ω,−w|Γ). Then,

A(σ, û; τ ρ, v̂ρ) = (u, ρ)Ω ∀σ ∈ H1(Th), ∀û := (u, ψ) ∈ H1(Th)×H1/2(Γ).
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Proof. The definition (16) of the bilinear form A(·, ·) yields

A(σ, û; τ ρ, v̂ρ) = (σ,∇w)Th + 〈σ · n, V ∂w
∂n
〉Γ − (∇hu,∇w)Th + 〈∂w

∂n
, (

id

2
−K)ψ〉Γ

+ 〈JuK, {∇w}〉F0
h

+ 〈∂w
∂n

, u− ψ〉F∂h − (∇w,σ)Th + 〈σ · n, ( id

2
−K)w〉Γ − 〈Wψ,w〉Γ.

Taking into account that

V
∂w

∂n
+ (

id

2
−K)w = 0 and (

id

2
+K ′)

∂w

∂n
+Ww = 0

we deduce that

A(σ, û; τ ρ, v̂ρ) = −
∑
K∈Th

(∇u,∇w)K + 〈JuK, {∇w}〉F0
h

+ 〈∂w
∂n

, u〉F∂h

=
∑
K∈Th

(∆w, u)K −
∑
K∈Th

〈∂w
∂n

, u〉∂K + 〈JuK, {∇w}〉F0
h

+ 〈∂w
∂n

, u〉F∂h = (ρ, u)Ω

and the result follows.

Lemma 5.2. It holds that

‖eu‖0,Ω . ‖(πσ, πû)‖∗∗ sup
ρ∈L2(Ω)

‖(πτρ , πv̂ρ)‖∗∗
‖ρ‖0,Ω

,

where

‖(τ , v̂)‖∗∗ :=

(‖(τ , v̂)‖c∗)2 +
∑
K∈Th

‖∇vK‖20,K

1/2

.

Proof. We deduce from Proposition 5.2 that

A(eσ, eû; τ ρ, v̂ρ) = (eu, ρ)Ω,

and it follows from the definition of A(·, ·) that

(eu, ρ)Ω = A(eσ, eû;πτρ , πv̂ρ) = A(Πeσ, (Πeu, π̃eψ);πτρ , πv̂ρ) +A(πσ, πû;πτρ , πv̂ρ)

= A(−πτρ , πv̂ρ ;−Πeσ, (Πeu, π̃eψ)) +A(πσ, πû;πτρ , πv̂ρ).

Consequently, by virtue of Lemma 5.1 and Theorem 5.1,

‖eu‖0,Ω ≤ sup
ρ∈L2(Ω)

|A(−πτρ , πv̂ρ ;−Πeσ, (Πeu, π̃eψ))|
‖ρ‖0,Ω

+ sup
ρ∈L2(Ω)

|A(πσ, πû;πτρ , πv̂ρ)|
‖ρ‖0,Ω

. ‖(πσ, πû)‖c∗ sup
ρ∈L2(Ω)

‖(πτρ , πv̂ρ)‖c∗
‖ρ‖0,Ω

+ sup
ρ∈L2(Ω)

|A(πσ, πû;πτρ , πv̂ρ)|
‖ρ‖0,Ω

.
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Moreover, it follows from the straightforward estimate

|A(πσ, πû;πτρ , πv̂ρ)| . ‖(πσ, πû)‖∗∗‖(πτρ , πv̂ρ)‖∗∗,

that

‖eu‖0,Ω . ‖(πσ, πû)‖∗∗ sup
ρ∈L2(Ω)

‖(πτρ , πv̂ρ)‖∗∗
‖ρ‖0,Ω

,

which proves the result.

Theorem 5.2. Assume that the solution of (1) satisfies u ∈ Hs+2(Ω) and ψ ∈ H
s+3/2
b (Γ) ∩

H1(Γ) for some s ≥ 0. Then,

‖u− uh‖0,Ω + h‖(σ − σh, (u− uh, ψ − ψh))‖c . hmin{s+2,m+1}(‖u‖s+2,Ω + ‖ψ‖s+3/2,b,Γ).

Proof. Similar arguments to those used in the proof of Theorem 4.2 yield

‖(eσ, eû)‖c . hmin{s+1,m}
(
‖u‖2s+2,Ω + ‖ψ‖2s+3/2,b,Γ

)1/2
.

By virtue of (35) and Lemma 4.7, it is also true that

‖(πσ, πû)‖∗∗ . hmin{s+1,m}
(
‖u‖2s+2,Ω + ‖ψ‖2s+3/2,b,Γ

)1/2

and
‖(πτρ , πv̂ρ)‖∗∗ . h‖w‖2,Ω . h‖ρ‖0,Ω,

where the last estimate comes from (38). Consequently, using Lemma 5.2 we conclude that

‖u− uh‖0,Ω . hmin{s+1,m}+1
(
‖u‖2s+2,Ω + ‖ψ‖2s+3/2,b,Γ

)1/2

and the result follows.

6 Numerical results

In this section we present a numerical experiment confirming the theoretical error estimate
obtained for the LDG-FEM/DG-BEM scheme (14) and the LDG-FEM/BEM scheme (36). For
simplicity we consider our model problem in two dimensions. The corresponding theory and
results from three dimensions apply with trivial modifications.

We choose Ω = (0, 1)2 and select the data so that the exact solution is given by

u(x1, x2) = sin(10x1 + 3x2) in Ω and ue(x1, x2) =
x1 + x2 − 1

(x1 − 0.5)2 + (x2 − 0.5)2
in Ωe.

We consider uniform triangular meshes Th on Ω and inherited meshes Gh on Γ (and for simplicity
denote h to be the length of the shortest edge). Lowest order discrete spaces are taken, i.e.
m = 1, so that

Vh =
∏
K∈Th

P1(K), Σh =
∏
K∈Th

RT1(K),
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Figure 1: Errors and O(h), O(h3/2) versus total number of unknowns for the LDG-FEM/DG-
BEM method.
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Figure 2: Errors and O(h), O(h3/2), O(h2) versus total number of unknowns for the LDG-
FEM/BEM method.
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Ψh =
{
ϕ ∈ L2

0(Γ); ϕ|T ∈ P1(T ) ∀T ∈ Gh
}

and
Ψ̃h =

{
ϕ ∈ H1/2

0 (Γ); ϕ|T ∈ P1(T ) ∀T ∈ Gh
}
.

Moreover, we select β to be normal on the interior edges (in a certain direction) with |β| = 1, and
α = h−1

F . In this case Theorem 4.2 proves the behaviors ‖ψ − ψh‖1/2,Gh = O(h), ‖σ − σh‖0,Ω +

‖(σ−σh) ·n‖−1/2,Γ = O(h) and ‖JûhK‖0,Fh = O(h3/2). In Figure 1 the errors ‖ψ−ψh‖[0,1],1/2,Gh ,
‖σ − σh‖0,Ω and ‖JûhK‖0,Fh are labeled “psi”, “sigma” and “jump” respectively and they are
depicted versus the total number of unknowns on a double-logarithmic scale. Here,

‖ψ − ψh‖[0,1],1/2,Gh :=
(
‖ψ − ψh‖20,Γ +

∑
T∈Gh

‖ψ − ψh‖0,T |ψ − ψh|1,T
)1/2

which, by interpolation, is an upper bound for ‖ψ − ψh‖1/2,Gh up to a constant factor. The

curves h and h3/2 are also given multiplied by appropriate factors to shift them closer to the
corresponding curves. The numerical experiment confirms the convergence rates ‖σ−σh‖0,Ω =
O(h), ‖JûhK‖0,Fh = O(h3/2) and suggests the stronger convergence ‖ψ − ψh‖1/2,Gh = O(h3/2).

In Figure 2, the errors ‖ψ−ψh‖[0,1],1/2,Γ, ‖σ−σh‖0,Ω, ‖u−uh‖0,Ω and ‖JûhK‖0,Fh are labeled
“psi”, “sigma”, “u” and “jump” respectively and they are represented again versus the total
number of unknowns on a double-logarithmic scale. Here,

‖ψ − ψh‖[0,1],1/2,Γ :=
(
‖ψ − ψh‖20,Γ + ‖ψ − ψh‖0,Γ|ψ − ψh|1,Γ

)1/2

which, by interpolation, is an upper bound for ‖ψ − ψh‖1/2,Γ up to a constant factor. The
numerical results are in agreement with the convergence rates ‖σ−σh‖0,Ω = O(h), ‖u−uh‖0,Ω =
O(h2) and ‖JûhK‖0,Fh = O(h3/2) obtained in Theorem 5.2, and indicate the stronger convergence
‖ψ − ψh‖1/2,Γ = O(h3/2).
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