
IDENTIFYING NEIGHBORS OF STABLE SURFACES

GIANCARLO URZÚA

Abstract. We identify the stable surfaces around the stable limit
of the examples of Y. Lee and J. Park [LP07], and H. Park, J.
Park and D. Shin [PPS09] using the explicit 3-fold Mori theory in
[HTU13]. These surfaces belong to the Kollár–Shepherd-Barron–
Alexeev compactification of the moduli space of simply connected
surfaces of general type with pg = 0 and K2 = 1, 2, 3.
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1. Introduction

A main application of [HTU13] is to have an explicit 3-fold Mori the-
ory to find stable limits ofQ-Gorenstein one parameter degenerations of
surfaces with only log terminal singularities. (We summarize some re-
sults of [HTU13] in Section 2.) The aim of this paper is to run [HTU13,
§5] on the singular examples of Y. Lee and J. Park [LP07], and H. Park,
J. Park and D. Shin [PPS09] to identify all the stable surfaces around
them. These surfaces belong to the Kollár–Shepherd-Barron–Alexeev
compactification of the moduli space of simply connected surfaces of
general type with pg = 0 and K2 = 1, 2, 3. This moduli space has
no explicit description for any K2. It is not even known whether it is
irreducible. Moreover, the only explicit surfaces with those invariants
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are Barlow surfaces [BHPV04, VII.10] 1, where K2 = 1, and for the
rest we only know existence via the Q-Gorenstein smoothing method
pioneered in [LP07].

We work out one example for each K2, and state results for the
others. We find their stable models (i.e. their canonical models; see
Lemma 3.1 for the general picture), and the smooth minimal models
of the stable singular surfaces around them. Roughly speaking, these
examples represent smooth points of the moduli space of stable surfaces
(having dimension 10− 2K2 there), and each of its Wahl singularities
1
n2 (1, na− 1) defines a boundary divisor D

(
n
a

)
. In this way, we will be

identifying general points on these divisors.
This identification shows the presence of various special surfaces in

the boundary. For example, there are singular stable surfaces whose
smooth minimal models are pg = 0 surfaces of general type with cer-
tain configurations of curves inside (see Sections 4 and 5). There are
also stable surfaces coming from Dolgachev surfaces (i.e. simply con-
nected elliptic fibrations with pg = 0 and Kodaira dimension 1), and
from special rational surfaces. In some cases, these rational examples
are distinct from the type of examples in [LP07, PPS09] and related
papers, where the construction depends on rational elliptic fibrations
with certain singular fibers. Hence this brings new types of examples.
We will discuss explicitness for them in a forthcoming article.

In the last section, we expose about elliptic surfaces with pg = 0
through Q-Gorenstein smoothings, to put them in perspective with the
general type constructions, and to use them when describing bound-
ary divisors of the moduli spaces in the previous sections. Dolgachev
surfaces appear in Corollary 6.2.

We would like to remark that the techniques used here can be applied
to surfaces with other invariants. The choice of invariants in this paper
reflects the interest of the author.

Acknowledgements. I have benefited from many conversations with
Paul Hacking and Jenia Tevelev. I was supported by the FONDECYT
Inicio grant 11110047 funded by the Chilean Government.

2. Preliminaries

The following is a summary of some results from [HTU13] which will
be used to do computations in the next sections. We first recall some
common terminology and facts. The ground field is C.

1Conjecturally we also have the Craighero-Gattazzo surfaces.
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Let Y be a cyclic quotient singularity 1
m
(1, q), i.e. a germ at the origin

of the quotient of C2 by the action of µm given by (x, y) 7→ (µx, µqy),
where µ is a primitivem-th root of 1, and q is an integer with 0 < q < m
and gcd(q,m) = 1. Let σ : X → Y be the minimal resolution of Y .
Figure 1 shows the exceptional curves Ei = P1 of σ, for 1 ≤ i ≤ s, and
the proper transforms E0 and Es+1 of (y = 0) and (x = 0) respectively.

...
E E

E
s-12

1

E
E

E
s

s+1
0

Figure 1. Exceptional divisors over 1
m
(1, q), E0 and Es+1

The intersection numbers E2
i = −ei are computed using theHirzebruch-

Jung continued fraction

m

q
= e1 −

1

e2 − 1

...− 1
es

=: [e1, . . . , es].

A configuration of curves [e1, . . . , es] in a nonsingular surface will
mean the corresponding exceptional divisor of the singularity 1

m
(1, q).

The continued fraction [e1, . . . , es] defines the sequence of integers

0 = βs+1 < 1 = βs < . . . < q = β1 < m = β0

where βi+1 = eiβi − βi−1. In this way, βi−1

βi
= [ei, . . . , es]. Partial

fractions αi

γi
= [e1, . . . , ei−1] are computed through the sequences

0 = α0 < 1 = α1 < . . . < q′ = αs < m = αs+1,

where αi+1 = eiαi − αi−1 (q′ is the integer such that 0 < q′ < m and
qq′ ≡ 1(mod m)), and γ0 = −1, γ1 = 0, γi+1 = eiγi − γi−1. We have
αi+1γi − αiγi+1 = −1, βi = qαi − mγi, and

m
q′

= [es, . . . , e1]. These

numbers appear in the pull-back formulas

σ∗(E0) =
s+1∑
i=0

βi

m
Ei, and σ∗(Es+1) =

s+1∑
i=0

αi

m
Ei,

and KX ≡ σ∗(KY )−
∑s

i=1(1−
βi+αi

m
)Ei.

The following terminology and facts are from [KSB88].
Let Y be a normal surface with only quotient singularities, and let

D be a smooth curve analytic germ. A deformation (Y ⊂ Y) →
(0 ∈ D) of Y is called a smoothing if its general fiber is smooth. It
is Q-Gorenstein if KY is Q-Cartier. A germ of a normal surface Y
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is called a T -singularity if it is a quotient singularity and admits a
Q-Gorenstein smoothing. Any T -singularity is either a du Val sin-
gularity or a cyclic quotient singularity of the form 1

dn2 (1, dna − 1)
with gcd(n, a) = 1 [KSB88, Prop.3.10]. A T -singularity with a one-
dimensional Q-Gorenstein versal deformation space is either a node A1

or a Wahl singularity 1
n2 (1, na− 1).

Let (Q ∈ Y ) be a germ of a two dimensional quotient singularity.
A proper birational map f : X → Y is called a P -resolution if f is
an isomorphism away from Q, X has T -singularities only, and KX is
ample relative to f [KSB88, Def.3.8].

By [KSB88, 3.9], there is a natural bijection between P-resolutions
X+ → Y and irreducible components of the formal deformation space
Def(Y ). Namely, let DefQG(X+) denote the versal Q-Gorenstein de-
formation space of X+. Recall that for any rational surface singu-
larity Z and its partial resolution X → Z, there is an induced map
DefX → Def Z of formal deformation spaces [Wahl76, 1.4], which
we refer to as blowing down deformations. In particular, we have a
map DefQG(X+) → Def(Y ). The germ DefQG(X+) is smooth, the
map DefQG(X+) → Def(Y ) is a closed embedding, and it identifies
DefQG(X+) with an irreducible component of Def(Y ). All irreducible
components of Def(Y ) arise in this fashion (in a unique way).

Now some definitions from [KM92]. An extremal neighborhood

(C− ⊂ X−) → (Q ∈ Y)

is a proper birational morphism between normal 3-folds X− → Y such
that

(1) The canonical class KX− is Q-Cartier and X− has only terminal
singularities.

(2) There is a distinguished point Q ∈ Y such that F−−1
(Q) con-

sists of an irreducible curve C− ⊂ X−.
(3) KX− · C− < 0.

There are two types of extremal nbds according to the dimension
of the exceptional loci Exc(F−) of F−. An extremal nbd is flipping
if Exc(F−) = C−. Otherwise, Exc(F−) is two dimensional and F− is
called divisorial.

In the flipping case, KY is not Q-Cartier. Then one attempts another
type of surgery. A flip of a flipping extremal nbd

F− : (C− ⊂ X−) → (Q ∈ Y)

is a proper birational morphism

F+ : (C+ ⊂ X+) → (Q ∈ Y)
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where X+ is normal with terminal singularities, Exc(F+) = C+ is a
curve, and KX+ is Q-Cartier and F+-ample. A flip induces a birational
map X− 99K X+ to which we also refer as flip. When a flip exists then it
is unique (cf. [KM98]). Mori [Mori88] proves that (3-fold) flips always
exist.

In [HTU13], we focus in two particular types of extremal nbds which
appear naturally when working on the Kollár–Shepherd-Barron–Alexeev
compactification of the moduli of surfaces of general type [KSB88].

Definition 2.1. Let (Q ∈ Y ) be a two dimensional cyclic quotient
singularity germ. Assume there is a partial resolution f− : X− → Y
of Y such that f−1(Q) is a smooth rational curve C− with one (two)
Wahl singularity(ies) on it. Suppose KX− ·C− < 0. Let (X− ⊂ X−) →
(0 ∈ D) be a Q-Gorenstein smoothing of X− over a smooth curve
germ D. Let (Y ⊂ Y) → (0 ∈ D) be the corresponding blowing down
deformation of Y . The induced birational morphism (C− ⊂ X−) →
(Q ∈ Y) is called extremal neighborhood of type mk1A (mk2A); we
denote it by mk1A (mk2A).

These extremal neighborhoods are of type k1A and k2A (cf. [KM92,
Mori02]), and minimal with respect to the second betti number (= 1))
of the Milnor fiber of (Y ⊂ Y) → (0 ∈ D) (see [HTU13, Prop.2.1] for
more discussion on this).

Definition 2.2. A P-resolution f+ : X+ → Y of a two dimensional
cyclic quotient singularity germ (Q ∈ Y ) is called extremal P-resolution

if f+−1
(Q) is a smooth rational curve C+, and X+ has only Wahl

singularities (at most two).

Proposition 2.3. If a mk1A or mk2A is flipping, then the flip (C+ ⊂
X+) → (Q ∈ Y) is induced by the blowing down deformation of a
Q-Gorenstein smoothing of a surface X+ of an extremal P-resolution
(C+ ⊂ X+) → (Q ∈ Y ). The commutative diagram of morphisms is

C− ⊂ X− ⊂ X−

""E
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
E

))RR
RRR

RRR
RRR

RRR
flip //____________ C+ ⊂ X+ ⊂ X+

uulll
lll

lll
lll

ll

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

Q ∈ Y ⊂ Y

��
0 ∈ D

Proof. [KM92, Sect.11 and Thm.13.5]. (See [Mori02, HTU13] for ex-
plicit equations.) �
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Proposition 2.4. If a mk1A or mk2A is divisorial, then (Q ∈ Y ) is
a Wahl singularity. The divisorial contraction X− → Y induces the
blowing down of a (−1)-curve between the smooth fibers of X → D and
Y → D.

Proof. See [HTU13, §3.3]. �
The following is the numerical description of the X− in a mk1A or

in a mk2A, and of the X+ in an extremal P-resolution.
Let us fix a mk1A with Wahl singularity 1

m2 (1,ma− 1). Let m2

ma−1
=

[e1, . . . , es] be its continued fraction. Let E1, . . . , Es be the exceptional

curves of the minimal resolution X̃− of X− with E2
j = −ej for all j.

Notice that KX− · C− < 0 and C− · C− < 0 imply that the proper

transform of C− in X̃− is a (−1)-curve intersecting only one com-
ponent Ei transversally at one point. This data will be written as
[e1, . . . , ei, . . . , es] so that

∆

Ω
= [e1, . . . , ei − 1, . . . , es]

2 where 0 < Ω < ∆, and (Q ∈ Y ) is 1
∆
(1,Ω). Let βi, αi, γi be the

numbers defined above for [e1, . . . , es]. Then

∆ = m2 − βiαi Ω = ma− 1− γiβi

and, if δ := βi+αi

m
, we have KX− ·C− = −δ

m
< 0 and C− ·C− = −∆

m2 < 0;
See [HTU13, §2.2].

Similarly, for a mk2A with Wahl singularities 1
m2

j
(1,mjaj − 1) (j =

1, 2), let E1, . . . , Es1 and F1, . . . , Fs2 be the exceptional divisors over
1
m2

1
(1,m1a1 − 1) and 1

m2
2
(1,m2a2 − 1) respectively, such that

m2
1

m1a1−1
=

[e1, . . . , es1 ] and
m2

2

m2a2−1
= [f1, . . . , fs2 ] with E2

i = −ei and F 2
j = −fj.

We know that the proper transform of C− in the minimal resolution X̃−

of X− is a (−1)-curve intersecting only one Ei and one Fj transversally
at one point, and these two exceptional curves are at the ends of these
exceptional chains. The data for mk2A will be written as [fs2 , . . . , f1]−
[e1, . . . , es1 ] so that the (−1)-curve intersects F1 and E1, and

∆

Ω
= [fs2 , . . . , f1, 1, e1, . . . , es1 ]

where 0 < Ω < ∆ and (Q ∈ Y ) is 1
∆
(1,Ω).

We define δ := m1a2 +m2a1 −m1m2, and so

∆ = m2
1 +m2

2 − δm1m2, Ω = (m2 − δm1)(m2 − a2) +m1a1 − 1.

2We use same notation for continued fractions even when some entries are 1.
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We have KX− · C− = −δ
m1m2

< 0 and C− · C− = −∆
m2

1m
2
2
< 0.

In analogy to a mk2A, an extremal P-resolution has data [fs2 , . . . , f1]−
c− [e1, . . . , es1 ], so that

∆

Ω
= [fs2 , . . . , f1, c, e1, . . . , es1 ]

where −c is the self-intersection of the proper transform of C+ in the
minimal resolution of X+, 0 < Ω < ∆, and (Q ∈ Y ) is 1

∆
(1,Ω). As

above, here
m2

1

m1a1−1
= [e1, . . . , es1 ] and

m2
2

m2a2−1
= [f1, . . . , fs2 ]. If a Wahl

singularity (or both) is (are) actually smooth, then we set mi = ai = 1.
We define

δ = cm1m2 −m1a2 −m2a1,

and so ∆ = m2
1 +m2

2 + δm1m2 and, when both mi ̸= 1,

Ω = −m2
1(c− 1) + (m2 + δm1)(m2 − a2) +m1a1 − 1.

One easily computes Ω when one or both mi = 1. We have

KX+ · C+ =
δ

m1m2

> 0 and C+ · C+ =
−∆

m2
1m

2
2

< 0.

In [HTU13, §2.3] it is proved that a given exceptional nbhd of type
mk1A degenerates to two mk2A sharing the following numerics.

Proposition 2.5. Let [e1, . . . , ei, . . . , es] be the data of a mk1A with
m2

ma−1
= [e1, . . . , es]. Let δ,∆,Ω be its numbers. Let m2

m2−a2
= [e1, . . . , ei−1]

and m1

m1−a1
= [es, . . . , ei+1], if possible (this is, for the first i > 1, for

the second i < s). Then, there are mk2A with data

[fs2 , . . . , f1]− [e1, . . . , es] and [e1, . . . , es]− [g1, . . . , gs1 ],

where
m2

2

m2a2−1
= [f1, . . . , fs2 ],

m2
1

m1a1−1
= [g1, . . . , gs1 ], such that the cor-

responding cyclic quotient singularity 1
∆
(1,Ω) and δ are the same for

the mk1A and the mk2A. Moreover, each of the mk2A deforms (over
a smooth curve germ) to the mk1A by Q-Gorenstein smoothing up
1
m2

i
(1,miai − 1) while keeping 1

m2 (1,ma − 1), and there are two pos-

sibilities: either these three extremal nbds are

(1) flipping, with the same extremal P-resolution for the flip, or
(2) divisorial, with ∆ = δ2 > 1.

Proposition 2.5 allows us to compute the flip or the divisorial contrac-
tion for any mk1A through the Mori algorithm [Mori02] for extremal
neighborhoods of type k2A as follows.
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Consider a mk2A with Wahl singularities defined by m2, a2 and
m1, a1, and numbers δ, ∆ and Ω, such that δm1 −m2 ≤ 0. We call it
initial mk2A. We also allow the mk1A special case m1 = a1 = 1.

For i ≥ 2, we have the Mori recursions

d(1) = m1, d(2) = m2, d(i− 1) + d(i+ 1) = δd(i)

and c(1) = a1, c(2) = m2 − a2, c(i− 1) + c(i+ 1) = δc(i).
When δ > 1, we have for each i a mk2A with datam2 = d(i+1), a2 =

d(i + 1) − c(i + 1) and m1 = d(i), a1 = c(i), with same δ, ∆ and Ω.
For two consecutive i’s, we actually have the two mk2A of Proposition
2.5. We call this sequence of mk2A’s a Mori sequence. If δ = 1, then
the initial mk2A must be flipping, and Mori’s recursion gives only one
more mk2A with data m2 = d(2)− d(1), a2 = d(2)− d(1) + c(1)− c(2)
and m1 = d(2), a1 = c(2).

In [Mori02], Mori proves that any mk2A belongs to a unique Mori
sequence (including the case δ = 1), and that it is flipping if and only
if δd(1)− d(2) < 0.

Below we do computations for divisorial and flipping nbhds using
the initial mk2A of a Mori sequence with δm1 −m2 ≤ 0.

(= 0) For divisorial type, we have that m1 = δ, m2 = δ2 = ∆, Ω =
δa1 − 1, and a2 = δ2 − Ω.

(< 0) For flipping type, we have that the corresponding extremal P-
resolution has m2 = d(1), a2 = d(1)− c(1), and

m1 = d(2)− δd(1), a1 ≡ c(2)− δc(1) (mod d(2)− δd(1)).

(The self-intersection of the flipping curve can be found using
the formula for the δ of an extremal P-resolution.)

Conversely, for a given Wahl singularity 1
δ2
(1, δa − 1) we have one

Mori sequence of divisorial type following the previous recipe. For
a given extremal P-resolution we have at most two Mori sequences,
corresponding to each of its Wahl singularities, following the recipe
above.

Example 2.6. Consider the Wahl singularity (Q ∈ Y ) = 1
4
(1, 1). Then

the numerical data of any mk1A and any mk2A of divisorial type as-
sociated to (Q ∈ Y ) can be read from

[4]− [2, 2̄, 6]− [2, 2, 2, 2̄, 8]− [2, 2, 2, 2, 2, 2̄, 10]− · · ·
Notice that δ = 2.

Example 2.7. Let 1
11
(1, 3) be the cyclic quotient singularity (Q ∈ Y ).

Consider the extremal P-resolution [4]− 3. Here δ = 3, and the “mid-
dle” curve is a (−3)-curve. Then the numerical data of any mk1A and
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any mk2A associated to X+ can be read from

[2̄, 5, 3]− [2, 3, 2̄, 2, 7, 3]− [2, 3, 2, 2, 2, 2̄, 5, 7, 3]− · · ·

and

[4]− [2, 2̄, 5, 4]− [2, 2, 3, 2̄, 2, 7, 4]− [2, 2, 3, 2, 2, 2, 2̄, 5, 7, 4]− · · ·

These two Mori sequences are the numerical data of the universal an-
tiflip [HTU13, §3] of [4]− 3.

A flip which shows up very often in calculations is the following

Proposition 2.8. Let [e1, . . . , es−1, es] be a flipping mk1A. Let ei ≥ 3
be such that ej = 2 for all j > i.

Then the data for X+ is e1 − [e2, . . . , ei − 1].

A corollary is the useful fact

Proposition 2.9. [HP10, p.188] Let Ỹ be a smooth surface with a
chain of rational smooth curves E1, . . . , Es, which is the exceptional

divisor of a Wahl singularity. Let C1, C2 be (−1)-curves in Ỹ such that
C1 ·C2 = 0, C1 ·E1 = 1, and C2 ·Es = 1, and C1, C2 do not intersect any

other Ei’s. Let σ : Ỹ → Y be the contraction of the chain E1, . . . , Es

(to a Wahl singularity), and let C0 = σ(C1) ∪ σ(C2). Assume there is
a Q-Gorenstein smoothing (Y ⊂ Y) → (0 ∈ D).

Then there is a (−1)-curve Ct in the smooth fiber over t ∈ D \ {0}
which degenerates to C0.

Proof. Notice that C− := σ(C2) defines a mk1A of flipping type as in
Proposition 2.8. After be perform the flip, we obtain a surface Y + (from
the corresponding extremal P-resolution) and the proper transform of
σ(C1) in Y + does not pass through the singularity. Therefore the Q-
Gorenstein smoothing of Y +, which gives the flip, would have a (−1)-
curve Ct in the general fiber that deforms to σ(C2). It is clear that in
(Y ⊂ Y) → (0 ∈ D) this (−1)-curve degenerates to C0. �

We point out that the previous proposition can be generalized for
other “positions” of the (−1)-curves C1, C2 according to the extremal
P-resolution of the flipping mk1A coming from σ(C2).

Finally some notation. We write the same letter to denote a curve
and its proper transform under a birational map. We use Kodaira’s
notation for singular fibers of elliptic fibrations. Throughout this paper
we use the dotted diagrams of [HTU13, §5] to perform the birational
operations associated to mk1A and mk2A.
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3. K2 = 1

We begin with the example corresponding to [LP07, Fig.5]. Consider
the pencil of curves in P2

x0,x1,x2

αx3
0 + βx1(x

2
0 + x2

1 − x2
2) = 0

with (α : β) ∈ P1
α,β. We have base points p = (0 : 1 : 1), q = (0 : 1 :

−1), and r = (0 : 0 : 1) which we blow-up three times each to obtain
an elliptic fibration g : Y → P1 with a configuration of singular fibers
IV ∗, 2I1, I2. Let A = {x0 = 0}, B = {x1 = 0}, and C = {x2

0+x2
1 = x2

2}.
Let P and Q be the last exceptional divisors over p and q. This and
more notation is shown in Figure 2.

G4

G2

G5

G1

G6

G3

P

F F B
A

1 2

Q

C

Figure 2. Elliptic fibration with IV ∗, 2I1, I2

We now blow-up Y 11 times as in Figure 5 of [LP07] (see Figure 3).
Let Y ′ be the corresponding surface, and let X ′ be the singular normal
projective surface obtained by contracting the configurations of curves
[2, 2, 2, 7], [4], [6, 2, 2], and [2, 6, 2, 3]. One can check that KX′ is not
nef: the intersection of the image of G (see Figure 3) in X ′ with KX′ is
− 1

12
. However, a Q-Gorenstein smoothing of these 4 singularities has

the claimed properties in [LP07]. To see this, we perform a flip of type
mk2A (Definition 2.1) on a Q-Gorenstein one parameter smoothing of
X ′. We flip the curveG− := G inX ′. It passes through the singularities
corresponding to [4] and [2, 6, 2, 3]. The flip of G− produces a surface
X ′+, and a curve G+ (the flip of G−) which passes through two Wahl
singularities. The diagram of this operation is shown in Figure 4. For
the computation of any flip we refer to [HTU13].

After this flip, the minimal resolution Ỹ of X ′+ is the blow-up of
Y 10 times. The new configuration of relevant curves is in Figure 5.
Hence X := X ′+ is the contraction of the configurations [4] (C), [2, 2, 6]
(E4+E3+F1), [2, 2, 2, 7] (A+G5+G6+Q), and [2, 5, 3] (E7+F2+P ).
It is easy to check there are no local-to-global obstructions to deform
X via an argument as in [LP07]. (This is actually inherited from X ′.)

10



G

-2

-3

-6

-2

-7

-2

-2

-1 -1
-4

-1

-1

-1

-2

-2
-2

-2 -2

-2

-2

-2
-1 -1

-6

Figure 3. The blow-up Y ′ of Y 11 times

- +
-2 -6 -2 -3 -2 -5 -3 -4-4

Figure 4. A flip

We have the Q-numerical equivalence

KỸ ≡ −1

2
F1−

1

2
F2+

1

2
E2+

1

2
E3+

3

2
E4+

5

2
E5+

1

2
E7+

3

2
E8+E9+E10,

and so, by adding the discrepancies of the singularities of X, we verify
that the pull-back of KX is Q-numerically effective and nef. Therefore,
the general fiber of the Q-Gorenstein smoothing is a smooth minimal
projective surface of general type with K2 = 1, pg = 0, and trivial π1.

-7

-2

-2

-1

-1
-2

-2
-2

-2 -2

-2

-2

-1
-6

-5
-1

-2

-1

-4 -2

-1

-1

-3

E1 E6

E7

E8

E9

E10

F2

E4

E5

E3

F1

E2

G1

G3 G4

G5 G6

G2

A
BC

P

Q

Figure 5. The blow-up Ỹ of Y 10 times

We are going to find the canonical model Xcan ⊂ Xcan of X ⊂ X .
The following lemma says what type of singularities we can have in
Xcan in general.
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Lemma 3.1. Assume we have a Q-Gorenstein smoothing (X ⊂ X ) →
(0 ∈ D) of a projective surface X with only Wahl singularities and KX

nef. Suppose that K2
X > 0. Then, its canonical model (Xcan ⊂ Xcan) →

(0 ∈ D) has Xcan projective surface with only T-singularities, this is, it
has du Val singularities or cyclic quotient singularities 1

dn2 (1, dna− 1)
with gcd(n, a) = 1.

Proof. We know there is (Xcan ⊂ Xcan) → (0 ∈ D); cf. [KM98]. We
have a birational morphism X → Xcan over D such that KXcan is Q-
Cartier and ample. Notice that Xcan has log terminal singularities
because X does [KM98, pp.102–103]. The singularities of Xcan must
be T-singularities by [KSB88, §5.2]. �

Notice first that Xcan is not X since G4 ·KX = 0. Let π : Ỹ → X be
the minimal resolution. The strategy to find Xcan will be to identify
all curves Γ in Ỹ not contracted by π, such that Γ · π∗(KX) = 0. In
his case we have Γ ·KỸ = 0, because of the curves in the Q-numerical
effective support of π∗(KX). Also, since Γ · Ei ̸= 0 may only happen
for i = 1 and i = 6, we have that Γ ·KZ = 0 for Z equal to the blow-up
of Y at the nodes of F1 and F2. Notice that Γ does not intersects P
and Q as well.

The following turns out to be a useful lemma at this point.

Lemma 3.2. Let Y → P1 be a rational elliptic fibration. Assume it
has two fibers F1, F2 of type I1, and two sections P,Q. Let Y ′ be the
surface obtained by blowing up the nodes of both F1 and F2 in Y , and
blowing down P and Q. Then, Y ′ is a Halphen surface [CD12, §2] of
index 2, i.e., Y ′ has an elliptic fibration with a unique multiple fiber of
multiplicity 2. The curve F1 + F2 in Y ′ is a non-multiple fiber of type
I2.

Proof. Let π : Y → P2 be a blow-down to P2 starting with the sections
P,Q (see proof of [CD12, Prop. 2.2] for example). Then, the elliptic
fibration Y → P1 comes from the pencil of cubics

{af1 + bf2 : (a : b) ∈ P1},
where f1, f2 are the cubic polynomials of the images of F1, F2 under π.
Notice that the node of Fi is not in Fj for i ̸= j. Hence there exists a
unique cubic Λ passing through the node of F1, the node of F2, and the
7 base points of the pencil above not including the ones corresponding
to P and Q. This gives the existence of the Halphen pencil of index 2

{cf1f2 + dλ2 : (c : d) ∈ P1}
where λ = 0 is the equation of Λ. The associated Halphen surface is
the Y ′ described in the statement of this lemma. �
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Now contract P and Q to obtain a Halphen surface Z ′ of index 2 as
in Lemma 3.2. In Z ′ we have Γ ·KZ′ = 0. But this means that Γ does
not intersect a general fiber, and so it is contained in a singular fiber.
In this way, Γ must be a smooth rational curve with self-intersection
(−2). The elliptic fibration on Z ′ has three singular fibers: one I∗2 and
two I2. The two I2 are F1+F2 and B+D, where D = {x2

0+3x2
1 = 3x2

2}.
The two conics M = {x2

0+3x2
1 = 3x1x2} and N = {x2

0+3x2
1 = −3x1x2}

are part of I∗2 , together with G4, G3, A, G1, and G5. In this way, we
conclude that Γ can only be G4, and the canonical model Xcan of X is
the contraction of G4.

The surface Xcan belongs to the Kollár–Shepherd-Barron–Alexeev
compactification of the moduli space of surfaces of general type with
K2 = 1 and pg = 0. The versal Q-Gorenstein deformation space of
Xcan, denoted by DefQG(Xcan), is smooth and 8 dimensional; cf. [H11].

This is the argument. The smoothness of DefQG(Xcan) follows from
H2(TXcan) = 0 and [H11, Sect.3]. To compute the dimension, we ob-
serve that if Xcan → ∆ is a Q-Gorenstein smoothing of Xcan,0 = Xcan

and TXcan|∆ is the dual of Ω1
Xcan|∆, then TXcan|∆ restricts to Xcan,t as

TXcan,t (tangent bundle of Xcan,t) when t ̸= 0, and TXcan|∆|Xcan,0 ⊂ TXcan,0

with cokernel supported at the singular points of Xcan,0; cf. [Wahl81].
Then the flatness of TXcan|∆ and semicontinuity in cohomology plus the
fact that H2(TXcan) = 0 gives H2(Xcan,t, TXcan,t) = 0 for any t. But then,
since Xcan,t is of general type, the Hirzebruch-Riemann-Roch Theorem
says

H1(Xcan,t, TXcan,t) = 10χ(Xcan,t,OXcan,t)− 2K2
Xcan,t

= 10− 2 = 8.

The space DefQG(Xcan) has 5 divisors whose general point represents
a singular normal surface with one singularity. These general points
are obtained by Q-Gorenstein smoothing up four of the five singular-
ities of Xcan. The singularities are 1

2
(1, 1), 1

4
(1, 1), 1

16
(1, 11), 1

25
(1, 19),

and 1
25
(1, 9). We denote the corresponding divisors by D(A1), D

(
2
1

)
,

D
(
4
1

)
, D

(
5
1

)
, and D

(
5
2

)
. It is well-known that for du Val singularities we

have simultaneous resolutions, and so there is no question for D(A1).
The goal now is to identify the smooth minimal model of the surface
represented by a general point of D

(
n
a

)
.

The general point of D
(
2
1

)
. Since there are no local-to-global

obstructions to deform X, we consider a one parameter Q-Gorenstein
smoothing of all singularities of X except 1

4
(1, 1). In this family, we

simultaneously resolve the singularity 1
4
(1, 1), obtaining aQ-Gorenstein

smoothing Xt → D of X0 (= X with 1
4
(1, 1) resolved), where D is a

smooth curve germ with parameter t. The general fiber is the minimal
13
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Figure 6. Flips for D
(
2
1

)
resolution of the general fiber of the old deformation. The minimal
resolution of X0 is still Ỹ . On this surface Ỹ , we considerer the relevant
curves to perform flips of type mk1A and mk2A on Xt → D. The flips
are shown in Figure 6. We use 4 flips total.

Let Xt,5 → D be the final deformation. The minimal resolution X̃5

of X0,5 = X5 is the blow-up of Y at four points: the nodes of F1 and
F2, the intersection of P and F1, and the intersection between Q and
F2. The surface X5 is obtained by contracting P + F2 and Q + F1 in

X̃5. By Lemma 3.2, we can see X̃5 as the blow-up at four points of a
Halphen surface of index 2, and then Lemma 6.2 with a configuration
[3, 3] (coming from [2, 5] − 1 − [2, 5]), we obtain that a Q-Gorenstein
smoothing of X5 is a Dolgachev surface of type (2, 3) (cf. [BHPV04,
p.383]).

Proposition 3.3. The minimal resolution of a surface representing the
general point in D

(
2
1

)
is a Dolgachev surface of type (2, 3). It contains

a smooth rational curve with self-intersection (−4).

Because of the simplicity of the singularity 1
4
(1, 1), the previous

proposition can also be proved in the following way. Let Y be a
smooth projective surface containing a (−4)-curve Γ and K2

Y = 0. Let
f : Y → X be the contraction of Γ. If KX is nef, then Y is not rational.
Indeed, if Y is rational, then by Riemann-Roch h0(Y,−KY ) ≥ 1 and
so −KY ∼ E ≥ 0. Since KY · Γ = 2, we have Γ ⊂ E. We know that
f ∗(2KX) ∼ −2E + Γ. But E ̸= Γ, and so f ∗(2KX) cannot be nef.
In this way, in Proposition 3.3 we cannot have that the resolution of
1
4
(1, 1) is rational. Also, the Kodaira dimension cannot be 0 because

of Γ and cannot be 2 because of Proposition 3.9. Therefore it is 1,
and so it has an elliptic fibration. Since it is simply connected, then
it has exactly two multiple fibers of multiplicities a and b. But now it

14



is easy to check using the canonical class formula and Γ that the only
possibility is a = 2 and b = 3: a Dolgachev surface of type (2, 3).

The general point of D
(
4
1

)
. As in the previous case, we do the same

but now with the singularity 1
16
(1, 11). We perform 7 flips as shown

in Figure 7. Let X7 be the central singular fiber of the corresponding
deformation after the 7th flip. It has only a 1

4
(1, 1) singularity. The

minimal resolution of X7 is the blow up of Y at two points, which are
disjoint from the (−4)-curve. This situation is as in Theorem 6.1 part
(-1). The general fiber of the Q-Gorenstein smoothing is rational.
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Figure 7. Flips for D
(
4
1

)
Proposition 3.4. The minimal resolution of a surface representing the
general point in D

(
4
1

)
is a rational surface with K2 = −2. It contains

the configuration of rational smooth curves [6, 2, 2] and a (−1)-curve
intersecting the (−6)-curve transversally at two points.

The (−1)-curve intersecting the (−6)-curve transversally at two points
comes from the (−1)-curve having the same property in the special
fiber. This curve does not contain any singularity of the special fiber
and so it lifts in any deformation.

The general point of D
(
5
1

)
. Following the same recipe for the

singularity 1
25
(1, 19), we perform the sequence of 3 flips shown in Figure

8. Notice that the situation after the last flip is very similar to the
previous case.

Proposition 3.5. The minimal resolution of a surface representing
the general point in D

(
5
1

)
is a rational surface with K2 = −3. It

contains the configuration of rational smooth curves [7, 2, 2, 2] and two
15
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Figure 8. Flips for D
(
5
1

)
disjoint (−1)-curves intersecting the (−7)-curve transversally at two
points each.

The existence of the (−1)-curves intersecting the (−7)-curve is an
application of Proposition 2.9. It is applied several times via partial
smoothings. We start with X0, which is X with 1

52
(1, 4) resolved, and

Q-Gorenstein smooth up 1
42
(1, 3). Then the curves E2 and E5 produce

a (−1)-curve Et in the general fiber, intersecting the (−7)-curve at one
point, using Proposition 2.9. We now Q-Gorenstein smooth up 1

4
(1, 1),

and by the same proposition we obtain a (−1)-curve E ′
t in the general

fiber from E10 and E9. Finally we Q-Gorenstein smooth up 1
52
(1, 9) to

get the two claimed (−1)-curves, each from Et, E8, and E ′
t, E8, ap-

plying again Proposition 2.9. The intersection properties can be easily
checked.

The general point of D
(
5
2

)
. In this case we perform the flips shown

in Figure 9. At the end, the special fiber is not singular anymore, and so
we know that the general fiber of the deformation is a rational surface.

Proposition 3.6. The minimal resolution of a surface representing the
general point in D

(
5
2

)
is a rational surface with K2 = −2. It contains

the configuration of rational smooth curves [2, 5, 3] and a (−1)-curve
intersecting the (−5)-curve transversally at two points.

The (−1)-curve comes from the (−1)-curve E6 intersecting the (−5)-
curve transversally at two points.

This finishes the description of the stable neighbors of Xcan.

Remark 3.7. The construction of a surface Z with same Wahl singu-
larities as X can be done over an elliptic rational surface with singular
fibers I4+6I1+I2. This elliptic fibration has moduli dimension 4. From
the 4 Wahl singularities 1

4
(1, 1), 1

16
(1, 3), 1

25
(1, 4), and 1

25
(1, 9) we get

the other 4 dimensions to complete the 8 dimensions we have around
the stable surface in the moduli space.
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Figure 9. Flips for D
(
5
2

)
Remark 3.8. For the other example with K2 = 1 in [LP07, Fig.6] we
have a surface with Wahl singularities and canonical class nef. This ex-
ample is related to the previous in the following way. Take a (−1)-curve
from [LP07, Fig.6] between the configuration [2, 2, 6] and [4] (there are
two choices). The configuration [2, 2, 6] − 1 − [4] represents the data
of an extremal P-resolution of 1

36
(1, 13). But this singularity admits

another extremal P-resolution: [3, 5, 2]−2. (We recall that in [HTU13,
§4] we have a section devoted to this type of singularities.) Now con-
sider the corresponding “dual” deformation. The canonical class of the
central fiber is now not nef, because there is a (−1)-curve intersecting
the (−8)-curve at one point. So we perform one flip of type mk1A and
obtain the previous example. Therefore, we have a sort of dual fami-
lies. This is a common phenomena in these sort of examples, coming
from a cyclic quotient singularity having two extremal P-resolutions.

The analog results for partial smoothings of the Wahl singularities
in the example [LP07, Fig. 6] are: for both [4] Dolgachev surfaces of
type (2, 3) (for [3, 3] we also have Dolgachev surfaces of the same type),
for the other singularities we obtain rational surfaces.

One may wonder at this point what sort of surfaces with only Wahl
singularities one can expect in the boundary in general. The follow-
ing proposition, due to Kawamata [K92], says that at least there is a
hierarchy with respect to K2 and the Kodaira dimension.

Proposition 3.9. Let f : X → D be a Q-Gorenstein smoothing of a
normal singular projective surface X0 with only Wahl singularities over
a smooth curve germ D. Let Y0 be the minimal resolution of X0, and
let Z0 be the smooth minimal model of Y0. Assume that KX is nef. If
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Z0 is of general type, then the general fiber Xt is of general type and
K2

Xt
> K2

Z0
.

Proof. By Kawamata [K92, Lemma 2.4], there exist positive integers
m1 and m2 such that the inequalities of m-plurigenera Pm(Xt) >
Pm(Z0) hold for positive integers m with m1 dividing m and m2 < m.
This implies that Xt is of general type. Moreover, this inequality be-
comes [BHPV04, VII Cor(5.4)]

m(m− 1)

2
K2

Xt
+ χ(Xt) >

m(m− 1)

2
K2

Z0
+ χ(Z0)

for those m, and so we have the claim. �
This implies that the stable boundary appearing in this way forK2 =

1 consists of surfaces whose minimal resolution is not of general type.
This is not the case for K2 > 1, as we will see in the next sections.

4. K2 = 2

We take the example [LP07, Fig.2]. It uses the same elliptic fibration
of Section 3. The corresponding surface X with only Wahl singularities
has KX nef. One can use Lemma 3.2 to show that KX is ample in this
case, so X is a stable surface. The 5 Wahl singularities define 5 bound-
ary divisors. We label them as before: D

(
2
1

)
for [4], D

(
3
1

)
for [2, 5], D

(
5
1

)
for [7, 2, 2, 2], D

(
9
4

)
for [2, 7, 2, 2, 3], and D

(
15
7

)
for [2, 10, 2, 2, 2, 2, 2, 3].
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Figure 10. The example [LP07, Fig. 2]

The general point of D
(
2
1

)
. We proceed as in Section 3. We

perform 4 flips as in Figure 11: the first two are mk1A flips, the last
two are mk2A flips. If X4 is the last singular surface, then it has 5
Wahl singularities and KX4 is nef. Notice that K2

X4
= 1.

Proposition 4.1. The minimal resolution of a surface representing
the general point in D

(
2
1

)
is a simply connected surface of general type

with pg = 0 and K2 = 1. It contains a (−4)-curve.
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Figure 11. Flips for D
(
2
1

)
Notice that this flipping procedure gives in this case new examples

for K2 = 1 from X4: its minimal resolution has T-configurations [4],
[4], [2, 6, 2, 3], [7, 2, 2, 2], and [3, 2, 2, 2, 8, 2].

Figure 12. Flips for D
(
3
1

)
The general point of D

(
3
1

)
. Here we perform the 11 flips shown in

Figure 12. One can check that X11, the last surface, has K
2
X11

= 0 and
KX11 nef. Therefore, the general fiber of the Q-Gorenstein smoothing
is a Dolgachev surface of some type (n1, n2), since we know it is also
simply connected. To find n1, n2, one can argue that a Q-Gorenstein
smoothing of X11 was used in the second example with K2 = 1 of the
previous section. There we knew that the Dolgachev surface contained
a (−4)-curve, and so one obtains n1 = 2, n2 = 3. So we have same
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multiplicities for our current example (although we do not know if there
is a (−4)-curve inside).

Proposition 4.2. The minimal resolution of a surface representing
the general point in D

(
3
1

)
is a Dolgachev surface of type (2, 3) which

contains a configuration [2, 5].

For the other 3 divisors we perform some flips to deduce that its
general point is rational and

D
(
5
1

)
: K2 = −2 with a configuration [2, 2, 2, 7] inside.

D
(
9
4

)
: K2 = −3 with a configuration [3, 2, 2, 7, 2] inside.

D
(
15
7

)
: K2 = −6 and a configuration [3, 2, 2, 2, 2, 2, 10, 2] inside.

For the other example [LP07, Fig.4], we find: for each of the [4] a
simply connected surface of general type withK2 = 1 and pg = 0, when
keeping both singularities 1

4
(1, 1) a Dolgachev surface (2, 3) with two

disjoint (−4)-curves, and finally for each of the other Wahl singularities
we obtain rational surfaces.

5. K2 = 3

In [PPS09] there are five examples producing simply connected sur-
faces of general type with pg = 0 and K2 = 3. We take the one in
[PPS09, Fig.8] because, as explained in [PPS09e], it contains a nega-
tive curve which makes the canonical divisor of the singular surface not
nef. This curve gives the data of a flipping mk2A. The flip is shown in
Figure 13.

-

+

-5 -3 -2 -2 -3 -2-5-5 -2 -3

-5 -2-2-3 -4 -5 -3 -2 -3

Figure 13. Flip for [PPS09, Fig.8]

We can show that after this flip, the resulting surface has nef canon-
ical divisor. Therefore, the example has the claimed properties in

[PPS09]. The minimal resolution X̃ of the singular resulting surface
X is in Figure 14. Let F be the general fiber of the induced elliptic

fibration on X̃. Then, following the notation in Figure 14, we have

KX̃ ∼
15∑
i=1

Ei + E7 + 2E8 + E11 + E13 + E15 − F

20



and so KX̃ ≡ −1
2
F1 − 1

2
F2 +E1 +E2 +

1
2
E4 +

1
2
E5 +

1
2
E7 +E8 +

1
2
E9 +

E10 + 2E11 + E12 + 2E13 + E14 + 2E15. We add the discrepancies and
get an effective Q-divisor for σ∗(KX). One checks that it is indeed nef.
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Figure 14. X̃ and relevant curves

Moreover, its support contains E5, F2, E6, E7, E8, and E9 which is
the support of a fiber. This implies that the only curves which could
have intersection 0 with KX are components of fibers. Then, the only
one is E13. Let Xcan be the contraction of E13 in X, so KXcan is ample
and Xcan is stable. As we did in Section 3, the corresponding stable
point in the moduli space is smooth of dimension 4. The singularities
of Xcan are 1

302
(1, 30 · 11− 1), 1

2·32 (1, 2 · 3 · 1− 1), and 1
162

(1, 16 · 11− 1).
Their Q-Gorenstein deformation spaces give precisely the dimension
4 = 1 + 2 + 1. In that sense, this is a “maximal degeneration”.

The loci in the moduli space defined by keeping the singularity
1

2·32 (1, 2 · 3 · 1 − 1) has codimension 2. We have that the (minimal
model of a minimal resolution of) general point of it is a simply con-
nected surface of general type with K2 = 1 (and pg = 0), and they have
a configuration [4, 3, 2] inside. The singularity 1

2·32 (1, 2 · 3 · 1 − 1) also

Q-Gorenstein deforms to 1
9
(1, 2), and if we smooth up the other singu-

larities, we obtain a surface of general type withK2 = 1 as well. Finally,
for each of the other two singularities we have divisors parametrizing
rational surfaces.

Remark 5.1. With the example [PPS09, Fig.9] we can show that there
are K2 = 2 surfaces of general type with pg = 0 in the boundary of
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the moduli space for K2 = 3. We keep in a Q-Gorenstein deformation
the singularity 1

4
(1, 1) and smooth up the other two. After few flips we

get a singular surface with 4 Wahl singularities whose exceptional con-
figurations are [2, 3, 2, 3, 5, 4, 3], [2, 5], [2, 5], and [6, 2, 2]. Its canonical
class is nef and K2 = 2.

6. Elliptic surfaces via Q-Gorenstein smoothings

Notice that the exceptional divisor of any T-singularity

1

dn2
(1, dna− 1)

can be obtained from an Id elliptic singular fiber by blowing-up over
a node. We blow up a node of Id and subsequent nodes coming from
the new (−1)-curves. The exceptional divisor appears as the chain of
curves of the total transform of Id which does not contain the (last)
(−1)-curve. We call this construction a T-blow-up of Id. If g : Y → B
is the elliptic fibration with the singular fiber Id, then we denote by
σ : Y ′ → Y the composition of blow-ups. This way of looking at T-
singularities is in Kawamata’s paper [K92].

The following is a useful list of cases of Q-Gorenstein smoothings
from fibers of rational elliptic fibrations. We used it a bit to iden-
tify smooth models of surfaces around stable surfaces with only T-
singularities.

Theorem 6.1. Let g : Y → P1 be a minimal rational elliptic fibration
with a section.

(-1): Assume g has a fiber of type Id. Consider a T-blow-up of
Id with the notation above. Let {E1, . . . , Es} be the corresponding T-
configuration where 1

dn2 (1, dna− 1) = [e1, . . . , es] and E2
i = −ei. Write

σ∗(Id) =
∑s+1

i=1 νiEi, where Es+1 is the (−1)-curve. Then there are Q-
Gorenstein smoothings X of X ′, and any such X is rational. We have
n = νs+1, a = νs+1− νs, and the discrepancy at Ei is −1+ νi

νs+1
for any

i = 1, . . . , s.

(0): Assume g has two fibers Id1 and Id2. Let Y ′ be the blow-up of
Y at one node of Id1 and at one node of Id2. Hence we have two T-
configurations of type 1

4di
(1, 2di− 1). Let X ′ be the contraction of these

configurations. Then there are Q-Gorenstein smoothings X of X ′, and
any such X is an Enriques surface.

(1): Assume it has two fibers Id1 and Id2. We apply T-blow-ups to
each of them. Assume that for one of them we blew-up at least twice.
Let X ′ be the contraction of both T-configurations, where 1

din2
i
(1, diniai−
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1) are the T-singularities. Then there are Q-Gorenstein smoothings X
of X ′, and any such X has Kodaira dimension 1.

Proof. For the proof, we assume g has the singular fibers Id1 and Id2 .
This situation adjusts to prove all cases simultaneously. Let σ : Y ′ →
Y be the composition of blow ups for both T-blow-ups, so that Y ′

contains the T-configurations {E1, . . . , Es} and {F1, . . . , Fr} of types
1

d1n2
1
(1, d1n1a1 − 1) = [e1, . . . , es] and

1
d2n2

2
(1, d2n2a2 − 1) = [f1, . . . , fr],

where E2
i = −ei and F 2

i = −fi. We also have the (−1)-curves Es+1

and Fr+1, so that σ∗(Id1) =
∑s+1

i=1 νiEi, and σ∗(Id2) =
∑r+1

i=1 µiFi. Let
h : Y ′ → X ′ be the contraction of both T-configurations.

Through simple arguments as in [LP07], we know that there are no
local-to-global obstructions to deform X ′ because

H2(Y ′, TY ′(− log(E1 + . . .+ Es + F1 + . . .+ Fr))) = 0.

Let C be the general fiber of g. Then,

KY ′ ∼ −σ∗C +
s+1∑
i=1

(νi − 1)Ei +
r+1∑
i=1

(µi − 1)Fi

and KY ′ ≡ h∗KX′ −
∑s

i=1 discr(Ei)Ei −
∑r

i=1 discr(Fi)Fi, where discr
stands for minus the discrepancy. Then, by intersecting with all Ei’s
and Fi’s, we get a linear system of equations on the νi’s and µi’s, which
is uniquely solved by our numerical claims: discr(Ei) = 1 − νi

n1
and

discr(Fi) = 1− µi

n2
. In this way, we have

h∗(KX′) ≡ − 1

n1

s+1∑
i=1

νiEi ≡ − 1

n1

σ∗C

for the case (-1), and

h∗(KX′) ≡ n1 − 2

2n1

s+1∑
i=1

νiEi +
n2 − 2

2n2

r+1∑
i=1

µiFi ≡
(
1− 1

n1

− 1

n2

)
σ∗C

for cases (0) and (1). Then, in case (-1) we have that −KX′ is nef
and not ≡ 0, and so X is a rational surface. We recall that in any case,
K2

X = 0, q(X) = pg(X) = 0. For the case (0) we see that KX′ ≡ 0
and so for KX . It follows that X is an Enriques surface. For the last
case (1), KX′ is nef and not trivial, and so X is a minimal surface with
Kodaira dimension 1.

�
We recall that a Dolgachev surface of type Xn1,n2 is a simply con-

nected elliptic fibration with exactly two multiple fibers of multiplicities
n1 and n2; cf. [BHPV04, p.383].
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Corollary 6.2. If in case (1) we have gdc(n1, n2) = 1, then a smooth
fiber of any Q-Gorenstein smoothing is a Dolgachev surface of type
Xn1,n2.

Proof. First, we recall that given a Hirzebruch-Jung continued fraction
m
q
= [e1, . . . , es] has associated sequences αi, βi, γi as in Section 2. The

corresponding Ei divisor of the minimal resolution of 1
m
(1, q) has dis-

crepancy −1 + βi+αi

m
. Also, the fundamental group of a neighborhood

of the complement of the exceptional divisor is cyclic of order m and it
is generated by a loop ξ around E1 (or Es). The loops ξi around Ei are
conjugate to ξαi (or ξβi). (Cf. [Mum61].) For m = n2 and q = na− 1
with gcd(n, a) = 1, we have βi + αi = νin by Theorem 6.1, and so
νi = aαi − nγi.

We compute the fundamental group π1 of a smooth fiber of a Q-
Gorenstein smoothing following the strategy of [LP07, p.493]. The

computation is done on the minimal resolution X̃ ′ of the singular fiber

X ′. It is enough to show that π1(X̃ ′ \ E) is trivial, where E is the
exceptional divisor. We consider two small loops ξ and ρ around the two
components of E which intersect a section of the elliptic fibration. By
above, we notice that for those component the νji,i = 1 (i = 1, 2), and
so gcd(βji,i, ni) = 1 and these loops generate the fundamental groups
of the nbhds of the complements of each exceptional component. This
section, which is a P1, gives the relation ξ ∼ tρt−1 for some path t. We
now use that gcd(n1, n2) = 1 to conclude that ξ and ρ become trivial

in π1(X̃ ′ \ E). This implies that π1(X̃ ′ \ E) = 1.
Therefore, the smooth fiberXt is a simply connected elliptic fibration

with exactly two multiple fibers. If At and Bt are the reduced curves of
the multiple fibers of the elliptic fibrationXt → P1, and Ct is its general
fiber, then Ct becomes the general fiber of the elliptic fibration X ′ →
P1, and Mt, Nt become multiples of the reduced curves of the multiple
fibers of X ′ → P1. By means of the formula for the canonical class for
the fibrations X ′ → P1 and Xt → P1, and because the multiplicities for
both fibrations are coprime, we conclude that the multiplicities must
match. �
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