IDENTIFYING NEIGHBORS OF STABLE SURFACES

GIANCARLO URZÚA

Abstract

We identify the stable surfaces around the stable limit of the examples of Y. Lee and J. Park [LP07], and H. Park, J. Park and D. Shin [PPS09] using the explicit 3-fold Mori theory in [HTU13]. These surfaces belong to the Kollár-Shepherd-BarronAlexeev compactification of the moduli space of simply connected surfaces of general type with $p_{g}=0$ and $K^{2}=1,2,3$.

Contents

1. Introduction 1
Acknowledgements 2
2. Preliminaries 2
3. $K^{2}=1$ 10
4. $K^{2}=2$ 18
5. $K^{2}=3$ 20
6. Elliptic surfaces via \mathbb{Q}-Gorenstein smoothings 22
References 24

1. Introduction

A main application of [HTU13] is to have an explicit 3-fold Mori theory to find stable limits of \mathbb{Q}-Gorenstein one parameter degenerations of surfaces with only log terminal singularities. (We summarize some results of [HTU13] in Section 2.) The aim of this paper is to run [HTU13, §5] on the singular examples of Y. Lee and J. Park [LP07], and H. Park, J. Park and D. Shin [PPS09] to identify all the stable surfaces around them. These surfaces belong to the Kollár-Shepherd-Barron-Alexeev compactification of the moduli space of simply connected surfaces of general type with $p_{g}=0$ and $K^{2}=1,2,3$. This moduli space has no explicit description for any K^{2}. It is not even known whether it is irreducible. Moreover, the only explicit surfaces with those invariants

Date: October 16, 2013.
are Barlow surfaces [BHPV04, VII.10] ${ }^{1}$, where $K^{2}=1$, and for the rest we only know existence via the \mathbb{Q}-Gorenstein smoothing method pioneered in [LP07].

We work out one example for each K^{2}, and state results for the others. We find their stable models (i.e. their canonical models; see Lemma 3.1 for the general picture), and the smooth minimal models of the stable singular surfaces around them. Roughly speaking, these examples represent smooth points of the moduli space of stable surfaces (having dimension $10-2 K^{2}$ there), and each of its Wahl singularities $\frac{1}{n^{2}}(1, n a-1)$ defines a boundary divisor $\mathcal{D}\binom{n}{a}$. In this way, we will be identifying general points on these divisors.

This identification shows the presence of various special surfaces in the boundary. For example, there are singular stable surfaces whose smooth minimal models are $p_{g}=0$ surfaces of general type with certain configurations of curves inside (see Sections 4 and 5). There are also stable surfaces coming from Dolgachev surfaces (i.e. simply connected elliptic fibrations with $p_{g}=0$ and Kodaira dimension 1), and from special rational surfaces. In some cases, these rational examples are distinct from the type of examples in [LP07, PPS09] and related papers, where the construction depends on rational elliptic fibrations with certain singular fibers. Hence this brings new types of examples. We will discuss explicitness for them in a forthcoming article.

In the last section, we expose about elliptic surfaces with $p_{g}=0$ through \mathbb{Q}-Gorenstein smoothings, to put them in perspective with the general type constructions, and to use them when describing boundary divisors of the moduli spaces in the previous sections. Dolgachev surfaces appear in Corollary 6.2.

We would like to remark that the techniques used here can be applied to surfaces with other invariants. The choice of invariants in this paper reflects the interest of the author.

Acknowledgements. I have benefited from many conversations with Paul Hacking and Jenia Tevelev. I was supported by the FONDECYT Inicio grant 11110047 funded by the Chilean Government.

2. Preliminaries

The following is a summary of some results from [HTU13] which will be used to do computations in the next sections. We first recall some common terminology and facts. The ground field is \mathbb{C}.

[^0]Let Y be a cyclic quotient singularity $\frac{1}{m}(1, q)$, i.e. a germ at the origin of the quotient of \mathbb{C}^{2} by the action of μ_{m} given by $(x, y) \mapsto\left(\mu x, \mu^{q} y\right)$, where μ is a primitive m-th root of 1 , and q is an integer with $0<q<m$ and $\operatorname{gcd}(q, m)=1$. Let $\sigma: X \rightarrow Y$ be the minimal resolution of Y. Figure 1 shows the exceptional curves $E_{i}=\mathbb{P}^{1}$ of σ, for $1 \leq i \leq s$, and the proper transforms E_{0} and E_{s+1} of $(y=0)$ and $(x=0)$ respectively.

Figure 1. Exceptional divisors over $\frac{1}{m}(1, q), E_{0}$ and E_{s+1}
The intersection numbers $E_{i}^{2}=-e_{i}$ are computed using the HirzebruchJung continued fraction

$$
\frac{m}{q}=e_{1}-\frac{1}{e_{2}-\frac{1}{\ddots-\frac{1}{e_{s}}}}=:\left[e_{1}, \ldots, e_{s}\right] .
$$

A configuration of curves $\left[e_{1}, \ldots, e_{s}\right]$ in a nonsingular surface will mean the corresponding exceptional divisor of the singularity $\frac{1}{m}(1, q)$.

The continued fraction $\left[e_{1}, \ldots, e_{s}\right]$ defines the sequence of integers

$$
0=\beta_{s+1}<1=\beta_{s}<\ldots<q=\beta_{1}<m=\beta_{0}
$$

where $\beta_{i+1}=e_{i} \beta_{i}-\beta_{i-1}$. In this way, $\frac{\beta_{i-1}}{\beta_{i}}=\left[e_{i}, \ldots, e_{s}\right]$. Partial fractions $\frac{\alpha_{i}}{\gamma_{i}}=\left[e_{1}, \ldots, e_{i-1}\right]$ are computed through the sequences

$$
0=\alpha_{0}<1=\alpha_{1}<\ldots<q^{\prime}=\alpha_{s}<m=\alpha_{s+1},
$$

where $\alpha_{i+1}=e_{i} \alpha_{i}-\alpha_{i-1}\left(q^{\prime}\right.$ is the integer such that $0<q^{\prime}<m$ and $\left.q q^{\prime} \equiv 1(\bmod m)\right)$, and $\gamma_{0}=-1, \gamma_{1}=0, \gamma_{i+1}=e_{i} \gamma_{i}-\gamma_{i-1}$. We have $\alpha_{i+1} \gamma_{i}-\alpha_{i} \gamma_{i+1}=-1, \beta_{i}=q \alpha_{i}-m \gamma_{i}$, and $\frac{m}{q^{\prime}}=\left[e_{s}, \ldots, e_{1}\right]$. These numbers appear in the pull-back formulas

$$
\sigma^{*}\left(E_{0}\right)=\sum_{i=0}^{s+1} \frac{\beta_{i}}{m} E_{i}, \quad \text { and } \quad \sigma^{*}\left(E_{s+1}\right)=\sum_{i=0}^{s+1} \frac{\alpha_{i}}{m} E_{i},
$$

and $K_{X} \equiv \sigma^{*}\left(K_{Y}\right)-\sum_{i=1}^{s}\left(1-\frac{\beta_{i}+\alpha_{i}}{m}\right) E_{i}$.
The following terminology and facts are from [KSB88].
Let Y be a normal surface with only quotient singularities, and let \mathbb{D} be a smooth curve analytic germ. A deformation $(Y \subset \mathcal{Y}) \rightarrow$ $(0 \in \mathbb{D})$ of Y is called a smoothing if its general fiber is smooth. It is \mathbb{Q}-Gorenstein if $K_{\mathcal{Y}}$ is \mathbb{Q}-Cartier. A germ of a normal surface Y
is called a T-singularity if it is a quotient singularity and admits a \mathbb{Q}-Gorenstein smoothing. Any T-singularity is either a du Val singularity or a cyclic quotient singularity of the form $\frac{1}{d n^{2}}(1, d n a-1)$ with $\operatorname{gcd}(n, a)=1[\mathrm{KSB} 88$, Prop.3.10]. A T-singularity with a onedimensional \mathbb{Q}-Gorenstein versal deformation space is either a node A_{1} or a Wahl singularity $\frac{1}{n^{2}}(1, n a-1)$.

Let $(Q \in Y)$ be a germ of a two dimensional quotient singularity. A proper birational map $f: X \rightarrow Y$ is called a P-resolution if f is an isomorphism away from Q, X has T-singularities only, and K_{X} is ample relative to f [KSB88, Def.3.8].

By [KSB88, 3.9], there is a natural bijection between P-resolutions $X^{+} \rightarrow Y$ and irreducible components of the formal deformation space $\operatorname{Def}(Y)$. Namely, let $\operatorname{Def}^{\mathrm{QG}}\left(X^{+}\right)$denote the versal \mathbb{Q}-Gorenstein deformation space of X^{+}. Recall that for any rational surface singularity Z and its partial resolution $X \rightarrow Z$, there is an induced map Def $X \rightarrow$ Def Z of formal deformation spaces [Wahl76, 1.4], which we refer to as blowing down deformations. In particular, we have a map $\operatorname{Def}^{\mathrm{QG}}\left(X^{+}\right) \rightarrow \operatorname{Def}(Y)$. The germ $\operatorname{Def}^{\mathrm{QG}}\left(X^{+}\right)$is smooth, the map $\operatorname{Def}^{\mathrm{QG}}\left(X^{+}\right) \rightarrow \operatorname{Def}(Y)$ is a closed embedding, and it identifies $\operatorname{Def}^{\mathrm{QG}}\left(X^{+}\right)$with an irreducible component of $\operatorname{Def}(Y)$. All irreducible components of $\operatorname{Def}(Y)$ arise in this fashion (in a unique way).

Now some definitions from [KM92]. An extremal neighborhood

$$
\left(C^{-} \subset \mathcal{X}^{-}\right) \rightarrow(Q \in \mathcal{Y})
$$

is a proper birational morphism between normal 3 -folds $\mathcal{X}^{-} \rightarrow \mathcal{Y}$ such that
(1) The canonical class $K_{\mathcal{X}^{-}}$is \mathbb{Q}-Cartier and \mathcal{X}^{-}has only terminal singularities.
(2) There is a distinguished point $Q \in \mathcal{Y}$ such that $F^{--1}(Q)$ consists of an irreducible curve $C^{-} \subset \mathcal{X}^{-}$.
(3) $K_{\mathcal{X}^{-}} \cdot C^{-}<0$.

There are two types of extremal nbds according to the dimension of the exceptional loci $\operatorname{Exc}\left(F^{-}\right)$of F^{-}. An extremal nbd is flipping if $\operatorname{Exc}\left(F^{-}\right)=C^{-}$. Otherwise, $\operatorname{Exc}\left(F^{-}\right)$is two dimensional and F^{-}is called divisorial.

In the flipping case, $K_{\mathcal{Y}}$ is not \mathbb{Q}-Cartier. Then one attempts another type of surgery. A flip of a flipping extremal nbd

$$
F^{-}:\left(C^{-} \subset \mathcal{X}^{-}\right) \rightarrow(Q \in \mathcal{Y})
$$

is a proper birational morphism

$$
F^{+}:\left(C^{+} \subset \mathcal{X}_{4}^{+}\right) \rightarrow(Q \in \mathcal{Y})
$$

where \mathcal{X}^{+}is normal with terminal singularities, $\operatorname{Exc}\left(F^{+}\right)=C^{+}$is a curve, and $K_{\mathcal{X}+}$ is \mathbb{Q}-Cartier and F^{+}-ample. A flip induces a birational map $\mathcal{X}^{-} \rightarrow \mathcal{X}^{+}$to which we also refer as flip. When a flip exists then it is unique (cf. [KM98]). Mori [Mori88] proves that (3-fold) flips always exist.

In [HTU13], we focus in two particular types of extremal nbds which appear naturally when working on the Kollár-Shepherd-Barron-Alexeev compactification of the moduli of surfaces of general type [KSB88].
Definition 2.1. Let $(Q \in Y)$ be a two dimensional cyclic quotient singularity germ. Assume there is a partial resolution $f^{-}: X^{-} \rightarrow Y$ of Y such that $f^{-1}(Q)$ is a smooth rational curve C^{-}with one (two) Wahl singularity(ies) on it. Suppose $K_{X^{-}} \cdot C^{-}<0$. Let $\left(X^{-} \subset \mathcal{X}^{-}\right) \rightarrow$ $(0 \in \mathbb{D})$ be a \mathbb{Q}-Gorenstein smoothing of X^{-}over a smooth curve germ \mathbb{D}. Let $(Y \subset \mathcal{Y}) \rightarrow(0 \in \mathbb{D})$ be the corresponding blowing down deformation of Y. The induced birational morphism $\left(C^{-} \subset \mathcal{X}^{-}\right) \rightarrow$ $(Q \in \mathcal{Y})$ is called extremal neighborhood of type mk1A (mk2A); we denote it by mk1A (mk2A).

These extremal neighborhoods are of type k1A and k2A (cf. [KM92, Mori02]), and minimal with respect to the second betti number ($=1$)) of the Milnor fiber of $(Y \subset \mathcal{Y}) \rightarrow(0 \in \mathbb{D})$ (see [HTU13, Prop.2.1] for more discussion on this).
Definition 2.2. A P-resolution $f^{+}: X^{+} \rightarrow Y$ of a two dimensional cyclic quotient singularity germ $(Q \in Y)$ is called extremal P-resolution if $f^{+-1}(Q)$ is a smooth rational curve C^{+}, and X^{+}has only Wahl singularities (at most two).

Proposition 2.3. If a mk1A or mk2A is flipping, then the fip $\left(C^{+} \subset\right.$ $\left.\mathcal{X}^{+}\right) \rightarrow(Q \in \mathcal{Y})$ is induced by the blowing down deformation of a \mathbb{Q}-Gorenstein smoothing of a surface X^{+}of an extremal P-resolution $\left(C^{+} \subset X^{+}\right) \rightarrow(Q \in Y)$. The commutative diagram of morphisms is

Proof. [KM92, Sect. 11 and Thm.13.5]. (See [Mori02, HTU13] for explicit equations.)

Proposition 2.4. If a mk1A or mk2A is divisorial, then $(Q \in Y)$ is a Wahl singularity. The divisorial contraction $\mathcal{X}^{-} \rightarrow \mathcal{Y}$ induces the blowing down of a (-1)-curve between the smooth fibers of $\mathcal{X} \rightarrow \mathbb{D}$ and $\mathcal{Y} \rightarrow \mathbb{D}$.

Proof. See [HTU13, §3.3].
The following is the numerical description of the X^{-}in a mk1A or in a mk 2 A , and of the X^{+}in an extremal P-resolution.

Let us fix a mk1A with Wahl singularity $\frac{1}{m^{2}}(1, m a-1)$. Let $\frac{m^{2}}{m a-1}=$ $\left[e_{1}, \ldots, e_{s}\right]$ be its continued fraction. Let E_{1}, \ldots, E_{s} be the exceptional curves of the minimal resolution \widetilde{X}^{-}of X^{-}with $E_{j}^{2}=-e_{j}$ for all j. Notice that $K_{X^{-}} \cdot C^{-}<0$ and $C^{-} \cdot C^{-}<0$ imply that the proper transform of C^{-}in \widetilde{X}^{-}is a (-1)-curve intersecting only one component E_{i} transversally at one point. This data will be written as $\left[e_{1}, \ldots, \overline{e_{i}}, \ldots, e_{s}\right]$ so that

$$
\frac{\Delta}{\Omega}=\left[e_{1}, \ldots, e_{i}-1, \ldots, e_{s}\right]
$$

${ }^{2}$ where $0<\Omega<\Delta$, and $(Q \in Y)$ is $\frac{1}{\Delta}(1, \Omega)$. Let $\beta_{i}, \alpha_{i}, \gamma_{i}$ be the numbers defined above for $\left[e_{1}, \ldots, e_{s}\right]$. Then

$$
\Delta=m^{2}-\beta_{i} \alpha_{i} \quad \Omega=m a-1-\gamma_{i} \beta_{i}
$$

and, if $\delta:=\frac{\beta_{i}+\alpha_{i}}{m}$, we have $K_{X^{-}} \cdot C^{-}=\frac{-\delta}{m}<0$ and $C^{-} \cdot C^{-}=\frac{-\Delta}{m^{2}}<0$; See [HTU13, §2.2].

Similarly, for a mk2A with Wahl singularities $\frac{1}{m_{j}^{2}}\left(1, m_{j} a_{j}-1\right)(j=$ $1,2)$, let $E_{1}, \ldots, E_{s_{1}}$ and $F_{1}, \ldots, F_{s_{2}}$ be the exceptional divisors over $\frac{1}{m_{1}^{2}}\left(1, m_{1} a_{1}-1\right)$ and $\frac{1}{m_{2}^{2}}\left(1, m_{2} a_{2}-1\right)$ respectively, such that $\frac{m_{1}^{2}}{m_{1} a_{1}-1}=$ $\left[e_{1}, \ldots, e_{s_{1}}\right]$ and $\frac{m_{2}^{2}}{m_{2} a_{2}-1}=\left[f_{1}, \ldots, f_{s_{2}}\right]$ with $E_{i}^{2}=-e_{i}$ and $F_{j}^{2}=-f_{j}$. We know that the proper transform of C^{-}in the minimal resolution \widetilde{X}^{-} of X^{-}is a (-1)-curve intersecting only one E_{i} and one F_{j} transversally at one point, and these two exceptional curves are at the ends of these exceptional chains. The data for mk 2 A will be written as $\left[f_{s_{2}}, \ldots, f_{1}\right]-$ $\left[e_{1}, \ldots, e_{s_{1}}\right]$ so that the (-1)-curve intersects F_{1} and E_{1}, and

$$
\frac{\Delta}{\Omega}=\left[f_{s_{2}}, \ldots, f_{1}, 1, e_{1}, \ldots, e_{s_{1}}\right]
$$

where $0<\Omega<\Delta$ and $(Q \in Y)$ is $\frac{1}{\Delta}(1, \Omega)$.
We define $\delta:=m_{1} a_{2}+m_{2} a_{1}-m_{1} m_{2}$, and so

$$
\Delta=m_{1}^{2}+m_{2}^{2}-\delta m_{1} m_{2}, \quad \Omega=\left(m_{2}-\delta m_{1}\right)\left(m_{2}-a_{2}\right)+m_{1} a_{1}-1 .
$$

[^1]We have $K_{X^{-}} \cdot C^{-}=\frac{-\delta}{m_{1} m_{2}}<0$ and $C^{-} \cdot C^{-}=\frac{-\Delta}{m_{1}^{2} m_{2}^{2}}<0$.
In analogy to a mk2A, an extremal P-resolution has data $\left[f_{s_{2}}, \ldots, f_{1}\right]-$ $c-\left[e_{1}, \ldots, e_{s_{1}}\right]$, so that

$$
\frac{\Delta}{\Omega}=\left[f_{s_{2}}, \ldots, f_{1}, c, e_{1}, \ldots, e_{s_{1}}\right]
$$

where $-c$ is the self-intersection of the proper transform of C^{+}in the minimal resolution of $X^{+}, 0<\Omega<\Delta$, and $(Q \in Y)$ is $\frac{1}{\Delta}(1, \Omega)$. As above, here $\frac{m_{1}^{2}}{m_{1} a_{1}-1}=\left[e_{1}, \ldots, e_{s_{1}}\right]$ and $\frac{m_{2}^{2}}{m_{2} a_{2}-1}=\left[f_{1}, \ldots, f_{s_{2}}\right]$. If a Wahl singularity (or both) is (are) actually smooth, then we set $m_{i}=a_{i}=1$. We define

$$
\delta=c m_{1} m_{2}-m_{1} a_{2}-m_{2} a_{1},
$$

and so $\Delta=m_{1}^{2}+m_{2}^{2}+\delta m_{1} m_{2}$ and, when both $m_{i} \neq 1$,

$$
\Omega=-m_{1}^{2}(c-1)+\left(m_{2}+\delta m_{1}\right)\left(m_{2}-a_{2}\right)+m_{1} a_{1}-1
$$

One easily computes Ω when one or both $m_{i}=1$. We have

$$
K_{X^{+}} \cdot C^{+}=\frac{\delta}{m_{1} m_{2}}>0 \quad \text { and } \quad C^{+} \cdot C^{+}=\frac{-\Delta}{m_{1}^{2} m_{2}^{2}}<0 .
$$

In [HTU13, $\S 2.3$] it is proved that a given exceptional nbhd of type mk1A degenerates to two mk2A sharing the following numerics.

Proposition 2.5. Let $\left[e_{1}, \ldots, \overline{e_{i}}, \ldots, e_{s}\right]$ be the data of a mk1A with $\frac{m^{2}}{m a-1}=\left[e_{1}, \ldots, e_{s}\right]$. Let δ, Δ, Ω be its numbers. Let $\frac{m_{2}}{m_{2}-a_{2}}=\left[e_{1}, \ldots, e_{i-1}\right]$ and $\frac{m_{1}}{m_{1}-a_{1}}=\left[e_{s}, \ldots, e_{i+1}\right]$, if possible (this is, for the first $i>1$, for the second $i<s)$. Then, there are mk2A with data

$$
\left[f_{s_{2}}, \ldots, f_{1}\right]-\left[e_{1}, \ldots, e_{s}\right] \quad \text { and } \quad\left[e_{1}, \ldots, e_{s}\right]-\left[g_{1}, \ldots, g_{s_{1}}\right] \text {, }
$$

where $\frac{m_{2}^{2}}{m_{2} a_{2}-1}=\left[f_{1}, \ldots, f_{s_{2}}\right], \frac{m_{1}^{2}}{m_{1} a_{1}-1}=\left[g_{1}, \ldots, g_{s_{1}}\right]$, such that the corresponding cyclic quotient singularity $\frac{1}{\Delta}(1, \Omega)$ and δ are the same for the mk1A and the mk2A. Moreover, each of the mk2A deforms (over a smooth curve germ) to the mk1A by \mathbb{Q}-Gorenstein smoothing up $\frac{1}{m_{i}^{2}}\left(1, m_{i} a_{i}-1\right)$ while keeping $\frac{1}{m^{2}}(1, m a-1)$, and there are two possibilities: either these three extremal nbds are
(1) flipping, with the same extremal P-resolution for the flip, or
(2) divisorial, with $\Delta=\delta^{2}>1$.

Proposition 2.5 allows us to compute the flip or the divisorial contraction for any mk1A through the Mori algorithm [Mori02] for extremal neighborhoods of type k2A as follows.

Consider a mk2A with Wahl singularities defined by m_{2}, a_{2} and m_{1}, a_{1}, and numbers δ, Δ and Ω, such that $\delta m_{1}-m_{2} \leq 0$. We call it initial $m k 2 A$. We also allow the mk1A special case $m_{1}=a_{1}=1$.

For $i \geq 2$, we have the Mori recursions

$$
d(1)=m_{1}, \quad d(2)=m_{2}, \quad d(i-1)+d(i+1)=\delta d(i)
$$

and $c(1)=a_{1}, c(2)=m_{2}-a_{2}, c(i-1)+c(i+1)=\delta c(i)$.
When $\delta>1$, we have for each i a mk2A with data $m_{2}=d(i+1), a_{2}=$ $d(i+1)-c(i+1)$ and $m_{1}=d(i), a_{1}=c(i)$, with same δ, Δ and Ω. For two consecutive i 's, we actually have the two mk2A of Proposition 2.5. We call this sequence of mk2A's a Mori sequence. If $\delta=1$, then the initial mk2A must be flipping, and Mori's recursion gives only one more mk2A with data $m_{2}=d(2)-d(1), a_{2}=d(2)-d(1)+c(1)-c(2)$ and $m_{1}=d(2), a_{1}=c(2)$.

In [Mori02], Mori proves that any mk2A belongs to a unique Mori sequence (including the case $\delta=1$), and that it is flipping if and only if $\delta d(1)-d(2)<0$.

Below we do computations for divisorial and flipping nbhds using the initial mk2A of a Mori sequence with $\delta m_{1}-m_{2} \leq 0$.
$(=0)$ For divisorial type, we have that $m_{1}=\delta, m_{2}=\delta^{2}=\Delta, \Omega=$ $\delta a_{1}-1$, and $a_{2}=\delta^{2}-\Omega$.
(<0) For flipping type, we have that the corresponding extremal Presolution has $m_{2}=d(1), a_{2}=d(1)-c(1)$, and

$$
m_{1}=d(2)-\delta d(1), \quad a_{1} \equiv c(2)-\delta c(1)(\bmod d(2)-\delta d(1))
$$

(The self-intersection of the flipping curve can be found using the formula for the δ of an extremal P-resolution.)
Conversely, for a given Wahl singularity $\frac{1}{\delta^{2}}(1, \delta a-1)$ we have one Mori sequence of divisorial type following the previous recipe. For a given extremal P-resolution we have at most two Mori sequences, corresponding to each of its Wahl singularities, following the recipe above.
Example 2.6. Consider the Wahl singularity $(Q \in Y)=\frac{1}{4}(1,1)$. Then the numerical data of any $m k 1 \mathrm{~A}$ and any mk2A of divisorial type associated to $(Q \in Y)$ can be read from

$$
[4]-[2, \overline{2}, 6]-[2,2,2, \overline{2}, 8]-[2,2,2,2,2, \overline{2}, 10]-\cdots
$$

Notice that $\delta=2$.
Example 2.7. Let $\frac{1}{11}(1,3)$ be the cyclic quotient singularity $(Q \in Y)$. Consider the extremal P-resolution [4] - 3. Here $\delta=3$, and the "middle" curve is a (-3)-curve. Then the numerical data of any mk1A and
any mk2A associated to X^{+}can be read from

$$
[\overline{2}, 5,3]-[2,3, \overline{2}, 2,7,3]-[2,3,2,2,2, \overline{2}, 5,7,3]-\cdots
$$

and

$$
[4]-[2, \overline{2}, 5,4]-[2,2,3, \overline{2}, 2,7,4]-[2,2,3,2,2,2, \overline{2}, 5,7,4]-\cdots
$$

These two Mori sequences are the numerical data of the universal antiflip [HTU13, §3] of [4] - 3 .

A flip which shows up very often in calculations is the following
Proposition 2.8. Let $\left[e_{1}, \ldots, e_{s-1}, \overline{e_{s}}\right]$ be a flipping mk1A. Let $e_{i} \geq 3$ be such that $e_{j}=2$ for all $j>i$.

Then the data for X^{+}is $e_{1}-\left[e_{2}, \ldots, e_{i}-1\right]$.
A corollary is the useful fact
Proposition 2.9. [HP10, p.188] Let \widetilde{Y} be a smooth surface with a chain of rational smooth curves E_{1}, \ldots, E_{s}, which is the exceptional divisor of a Wahl singularity. Let C_{1}, C_{2} be (-1)-curves in \widetilde{Y} such that $C_{1} \cdot C_{2}=0, C_{1} \cdot E_{1}=1$, and $C_{2} \cdot E_{s}=1$, and C_{1}, C_{2} do not intersect any other E_{i} 's. Let $\sigma: \tilde{Y} \rightarrow Y$ be the contraction of the chain E_{1}, \ldots, E_{s} (to a Wahl singularity), and let $C_{0}=\sigma\left(C_{1}\right) \cup \sigma\left(C_{2}\right)$. Assume there is $a \mathbb{Q}$-Gorenstein smoothing $(Y \subset \mathcal{Y}) \rightarrow(0 \in \mathbb{D})$.

Then there is a (-1)-curve C_{t} in the smooth fiber over $t \in \mathbb{D} \backslash\{0\}$ which degenerates to C_{0}.

Proof. Notice that $C^{-}:=\sigma\left(C_{2}\right)$ defines a mk1A of flipping type as in Proposition 2.8. After be perform the flip, we obtain a surface Y^{+}(from the corresponding extremal P-resolution) and the proper transform of $\sigma\left(C_{1}\right)$ in Y^{+}does not pass through the singularity. Therefore the \mathbb{Q} Gorenstein smoothing of Y^{+}, which gives the flip, would have a (-1) curve C_{t} in the general fiber that deforms to $\sigma\left(C_{2}\right)$. It is clear that in $(Y \subset \mathcal{Y}) \rightarrow(0 \in \mathbb{D})$ this (-1)-curve degenerates to C_{0}.

We point out that the previous proposition can be generalized for other "positions" of the (-1)-curves C_{1}, C_{2} according to the extremal P-resolution of the flipping mk1A coming from $\sigma\left(C_{2}\right)$.

Finally some notation. We write the same letter to denote a curve and its proper transform under a birational map. We use Kodaira's notation for singular fibers of elliptic fibrations. Throughout this paper we use the dotted diagrams of [HTU13, §5] to perform the birational operations associated to mk1A and mk2A.

$$
\text { 3. } K^{2}=1
$$

We begin with the example corresponding to [LP07, Fig.5]. Consider the pencil of curves in $\mathbb{P}_{x_{0}, x_{1}, x_{2}}^{2}$

$$
\alpha x_{0}^{3}+\beta x_{1}\left(x_{0}^{2}+x_{1}^{2}-x_{2}^{2}\right)=0
$$

with $(\alpha: \beta) \in \mathbb{P}_{\alpha, \beta}^{1}$. We have base points $p=(0: 1: 1), q=(0: 1$: $-1)$, and $r=(0: 0: 1)$ which we blow-up three times each to obtain an elliptic fibration $g: Y \rightarrow \mathbb{P}^{1}$ with a configuration of singular fibers $I V^{*}, 2 I_{1}, I_{2}$. Let $A=\left\{x_{0}=0\right\}, B=\left\{x_{1}=0\right\}$, and $C=\left\{x_{0}^{2}+x_{1}^{2}=x_{2}^{2}\right\}$. Let P and Q be the last exceptional divisors over p and q. This and more notation is shown in Figure 2.

Figure 2. Elliptic fibration with $I V^{*}, 2 I_{1}, I_{2}$
We now blow-up $Y 11$ times as in Figure 5 of [LP07] (see Figure 3). Let Y^{\prime} be the corresponding surface, and let X^{\prime} be the singular normal projective surface obtained by contracting the configurations of curves $[2,2,2,7],[4],[6,2,2]$, and $[2,6,2,3]$. One can check that $K_{X^{\prime}}$ is not nef: the intersection of the image of G (see Figure 3) in X^{\prime} with $K_{X^{\prime}}$ is $-\frac{1}{12}$. However, a \mathbb{Q}-Gorenstein smoothing of these 4 singularities has the claimed properties in [LP07]. To see this, we perform a flip of type mk 2 A (Definition 2.1) on a \mathbb{Q}-Gorenstein one parameter smoothing of X^{\prime}. We flip the curve $G^{-}:=G$ in X^{\prime}. It passes through the singularities corresponding to [4] and $[2,6,2,3]$. The flip of G^{-}produces a surface $X^{\prime+}$, and a curve G^{+}(the flip of G^{-}) which passes through two Wahl singularities. The diagram of this operation is shown in Figure 4. For the computation of any flip we refer to [HTU13].

After this flip, the minimal resolution \tilde{Y} of $X^{\prime+}$ is the blow-up of Y 10 times. The new configuration of relevant curves is in Figure 5. Hence $X:=X^{\prime+}$ is the contraction of the configurations [4] (C), $[2,2,6]$ $\left(E_{4}+E_{3}+F_{1}\right),[2,2,2,7]\left(A+G_{5}+G_{6}+Q\right)$, and $[2,5,3]\left(E_{7}+F_{2}+P\right)$. It is easy to check there are no local-to-global obstructions to deform X via an argument as in [LP07]. (This is actually inherited from X^{\prime}.)

Figure 3. The blow-up Y^{\prime} of $Y 11$ times

Figure 4. A flip
We have the \mathbb{Q}-numerical equivalence
$K_{\tilde{Y}} \equiv-\frac{1}{2} F_{1}-\frac{1}{2} F_{2}+\frac{1}{2} E_{2}+\frac{1}{2} E_{3}+\frac{3}{2} E_{4}+\frac{5}{2} E_{5}+\frac{1}{2} E_{7}+\frac{3}{2} E_{8}+E_{9}+E_{10}$, and so, by adding the discrepancies of the singularities of X, we verify that the pull-back of K_{X} is \mathbb{Q}-numerically effective and nef. Therefore, the general fiber of the \mathbb{Q}-Gorenstein smoothing is a smooth minimal projective surface of general type with $K^{2}=1, p_{g}=0$, and trivial π_{1}.

Figure 5. The blow-up \tilde{Y} of $Y 10$ times
We are going to find the canonical model $X_{\text {can }} \subset \mathcal{X}_{\text {can }}$ of $X \subset \mathcal{X}$. The following lemma says what type of singularities we can have in $X_{\text {can }}$ in general.

Lemma 3.1. Assume we have a \mathbb{Q}-Gorenstein smoothing $(X \subset \mathcal{X}) \rightarrow$ $(0 \in \mathbb{D})$ of a projective surface X with only Wahl singularities and K_{X} nef. Suppose that $K_{X}^{2}>0$. Then, its canonical model $\left(X_{\text {can }} \subset \mathcal{X}_{\text {can }}\right) \rightarrow$ $(0 \in \mathbb{D})$ has $X_{\text {can }}$ projective surface with only T-singularities, this is, it has du Val singularities or cyclic quotient singularities $\frac{1}{d n^{2}}(1$, dna -1$)$ with $\operatorname{gcd}(n, a)=1$.
Proof. We know there is $\left(X_{\text {can }} \subset \mathcal{X}_{\text {can }}\right) \rightarrow(0 \in \mathbb{D})$; cf. [KM98]. We have a birational morphism $\mathcal{X} \rightarrow \mathcal{X}_{\text {can }}$ over \mathbb{D} such that $K_{\mathcal{X}_{\text {can }}}$ is \mathbb{Q} Cartier and ample. Notice that $X_{\text {can }}$ has \log terminal singularities because X does [KM98, pp.102-103]. The singularities of $X_{\text {can }}$ must be T-singularities by [KSB88, §5.2].

Notice first that $X_{\text {can }}$ is not X since $G_{4} \cdot K_{X}=0$. Let $\pi: \tilde{Y} \rightarrow X$ be the minimal resolution. The strategy to find $X_{\text {can }}$ will be to identify all curves Γ in \tilde{Y} not contracted by π, such that $\Gamma \cdot \pi^{*}\left(K_{X}\right)=0$. In his case we have $\Gamma \cdot K_{\tilde{Y}}=0$, because of the curves in the \mathbb{Q}-numerical effective support of $\pi^{*}\left(K_{X}\right)$. Also, since $\Gamma \cdot E_{i} \neq 0$ may only happen for $i=1$ and $i=6$, we have that $\Gamma \cdot K_{Z}=0$ for Z equal to the blow-up of Y at the nodes of F_{1} and F_{2}. Notice that Γ does not intersects P and Q as well.

The following turns out to be a useful lemma at this point.
Lemma 3.2. Let $Y \rightarrow \mathbb{P}^{1}$ be a rational elliptic fibration. Assume it has two fibers F_{1}, F_{2} of type I_{1}, and two sections P, Q. Let Y^{\prime} be the surface obtained by blowing up the nodes of both F_{1} and F_{2} in Y, and blowing down P and Q. Then, Y^{\prime} is a Halphen surface [CD12, §2] of index 2, i.e., Y^{\prime} has an elliptic fibration with a unique multiple fiber of multiplicity 2. The curve $F_{1}+F_{2}$ in Y^{\prime} is a non-multiple fiber of type I_{2}.
Proof. Let $\pi: Y \rightarrow \mathbb{P}^{2}$ be a blow-down to \mathbb{P}^{2} starting with the sections P, Q (see proof of [CD12, Prop. 2.2] for example). Then, the elliptic fibration $Y \rightarrow \mathbb{P}^{1}$ comes from the pencil of cubics

$$
\left\{a f_{1}+b f_{2}:(a: b) \in \mathbb{P}^{1}\right\}
$$

where f_{1}, f_{2} are the cubic polynomials of the images of F_{1}, F_{2} under π. Notice that the node of F_{i} is not in F_{j} for $i \neq j$. Hence there exists a unique cubic Λ passing through the node of F_{1}, the node of F_{2}, and the 7 base points of the pencil above not including the ones corresponding to P and Q. This gives the existence of the Halphen pencil of index 2

$$
\left\{c f_{1} f_{2}+d \lambda^{2}:(c: d) \in \mathbb{P}^{1}\right\}
$$

where $\lambda=0$ is the equation of Λ. The associated Halphen surface is the Y^{\prime} described in the statement of this lemma.

Now contract P and Q to obtain a Halphen surface Z^{\prime} of index 2 as in Lemma 3.2. In Z^{\prime} we have $\Gamma \cdot K_{Z^{\prime}}=0$. But this means that Γ does not intersect a general fiber, and so it is contained in a singular fiber. In this way, Γ must be a smooth rational curve with self-intersection (-2). The elliptic fibration on Z^{\prime} has three singular fibers: one I_{2}^{*} and two I_{2}. The two I_{2} are $F_{1}+F_{2}$ and $B+D$, where $D=\left\{x_{0}^{2}+3 x_{1}^{2}=3 x_{2}^{2}\right\}$. The two conics $M=\left\{x_{0}^{2}+3 x_{1}^{2}=3 x_{1} x_{2}\right\}$ and $N=\left\{x_{0}^{2}+3 x_{1}^{2}=-3 x_{1} x_{2}\right\}$ are part of I_{2}^{*}, together with G_{4}, G_{3}, A, G_{1}, and G_{5}. In this way, we conclude that Γ can only be G_{4}, and the canonical model $X_{\text {can }}$ of X is the contraction of G_{4}.

The surface $X_{\text {can }}$ belongs to the Kollár-Shepherd-Barron-Alexeev compactification of the moduli space of surfaces of general type with $K^{2}=1$ and $p_{g}=0$. The versal \mathbb{Q}-Gorenstein deformation space of $X_{\text {can }}$, denoted by $\operatorname{Def}^{\mathrm{QG}}\left(X_{\text {can }}\right)$, is smooth and 8 dimensional; cf. [H11].

This is the argument. The smoothness of $\operatorname{Def}^{\mathrm{QG}}\left(X_{\text {can }}\right)$ follows from $H^{2}\left(T_{X_{\text {can }}}\right)=0$ and [H11, Sect.3]. To compute the dimension, we observe that if $\mathcal{X}_{\text {can }} \rightarrow \Delta$ is a \mathbb{Q}-Gorenstein smoothing of $\mathcal{X}_{\text {can }, 0}=X_{\text {can }}$ and $\mathcal{T}_{\mathcal{X}_{\text {can }} \mid \Delta}$ is the dual of $\Omega_{\mathcal{X}_{\text {can }} \mid \Delta}^{1}$, then $\mathcal{T}_{\mathcal{X}_{\text {can }} \mid \Delta}$ restricts to $\mathcal{X}_{\text {can }, t}$ as $T_{\mathcal{X}_{\text {can }, t}}$ (tangent bundle of $\mathcal{X}_{\text {can }, t}$) when $t \neq 0$, and $\mathcal{T}_{\mathcal{X}_{\text {can }} \mid \Delta} \mid \mathcal{X}_{\text {can, } 0} \subset T_{\mathcal{X}_{\text {can }, 0}}$ with cokernel supported at the singular points of $\mathcal{X}_{\text {can }, 0}$; cf. [Wahl81]. Then the flatness of $\mathcal{T}_{\mathcal{X}_{\text {can }} \mid \Delta}$ and semicontinuity in cohomology plus the fact that $H^{2}\left(\mathcal{T}_{X_{\text {can }}}\right)=0$ gives $H^{2}\left(\mathcal{X}_{\text {can }, t}, T_{\mathcal{X}_{\text {can }, t}}\right)=0$ for any t. But then, since $\mathcal{X}_{\text {can,t }}$ is of general type, the Hirzebruch-Riemann-Roch Theorem says

$$
H^{1}\left(\mathcal{X}_{\text {can }, t}, T_{\mathcal{X}_{\text {can }, t}}\right)=10 \chi\left(\mathcal{X}_{\text {can }, t}, \mathcal{O}_{\mathcal{X}_{\text {can }, t}}\right)-2 K_{\mathcal{X} \text { can }, t}^{2}=10-2=8 .
$$

The space $\operatorname{Def}^{\mathrm{QG}}\left(X_{c a n}\right)$ has 5 divisors whose general point represents a singular normal surface with one singularity. These general points are obtained by \mathbb{Q}-Gorenstein smoothing up four of the five singularities of $X_{\text {can }}$. The singularities are $\frac{1}{2}(1,1), \frac{1}{4}(1,1), \frac{1}{16}(1,11), \frac{1}{25}(1,19)$, and $\frac{1}{25}(1,9)$. We denote the corresponding divisors by $\mathcal{D}\left(A_{1}\right), \mathcal{D}\binom{2}{1}$, $\mathcal{D}\binom{4}{1}, \mathcal{D}\binom{5}{1}$, and $\mathcal{D}\binom{5}{2}$. It is well-known that for du Val singularities we have simultaneous resolutions, and so there is no question for $\mathcal{D}\left(A_{1}\right)$. The goal now is to identify the smooth minimal model of the surface represented by a general point of $\mathcal{D}\binom{n}{a}$.

The general point of $\mathcal{D}\binom{2}{1}$. Since there are no local-to-global obstructions to deform X, we consider a one parameter \mathbb{Q}-Gorenstein smoothing of all singularities of X except $\frac{1}{4}(1,1)$. In this family, we simultaneously resolve the singularity $\frac{1}{4}(1,1)$, obtaining a \mathbb{Q}-Gorenstein smoothing $\mathcal{X}_{t} \rightarrow \mathbb{D}$ of $X_{0}\left(=X\right.$ with $\frac{1}{4}(1,1)$ resolved), where \mathbb{D} is a smooth curve germ with parameter t. The general fiber is the minimal

Figure 6. Flips for $\mathcal{D}\binom{2}{1}$
resolution of the general fiber of the old deformation. The minimal resolution of X_{0} is still \tilde{Y}. On this surface \tilde{Y}, we considerer the relevant curves to perform flips of type mk1A and mk2A on $\mathcal{X}_{t} \rightarrow \mathbb{D}$. The flips are shown in Figure 6. We use 4 flips total.

Let $\mathcal{X}_{t, 5} \rightarrow \mathbb{D}$ be the final deformation. The minimal resolution \widetilde{X}_{5} of $\mathcal{X}_{0,5}=X_{5}$ is the blow-up of Y at four points: the nodes of F_{1} and F_{2}, the intersection of P and F_{1}, and the intersection between Q and F_{2}. The surface X_{5} is obtained by contracting $P+F_{2}$ and $Q+F_{1}$ in \widetilde{X}_{5}. By Lemma 3.2, we can see \widetilde{X}_{5} as the blow-up at four points of a Halphen surface of index 2, and then Lemma 6.2 with a configuration $[3,3]$ (coming from $[2,5]-1-[2,5]$), we obtain that a \mathbb{Q}-Gorenstein smoothing of X_{5} is a Dolgachev surface of type (2,3) (cf. [BHPV04, p.383]).

Proposition 3.3. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{2}{1}$ is a Dolgachev surface of type (2,3). It contains a smooth rational curve with self-intersection (-4).

Because of the simplicity of the singularity $\frac{1}{4}(1,1)$, the previous proposition can also be proved in the following way. Let Y be a smooth projective surface containing a (-4)-curve Γ and $K_{Y}^{2}=0$. Let $f: Y \rightarrow X$ be the contraction of Γ. If K_{X} is nef, then Y is not rational. Indeed, if Y is rational, then by Riemann-Roch $h^{0}\left(Y,-K_{Y}\right) \geq 1$ and so $-K_{Y} \sim E \geq 0$. Since $K_{Y} \cdot \Gamma=2$, we have $\Gamma \subset E$. We know that $f^{*}\left(2 K_{X}\right) \sim-2 E+\Gamma$. But $E \neq \Gamma$, and so $f^{*}\left(2 K_{X}\right)$ cannot be nef. In this way, in Proposition 3.3 we cannot have that the resolution of $\frac{1}{4}(1,1)$ is rational. Also, the Kodaira dimension cannot be 0 because of Γ and cannot be 2 because of Proposition 3.9. Therefore it is 1 , and so it has an elliptic fibration. Since it is simply connected, then it has exactly two multiple fibers of multiplicities a and b. But now it
is easy to check using the canonical class formula and Γ that the only possibility is $a=2$ and $b=3$: a Dolgachev surface of type (2,3).

The general point of $\mathcal{D}\binom{4}{1}$. As in the previous case, we do the same but now with the singularity $\frac{1}{16}(1,11)$. We perform 7 flips as shown in Figure 7. Let X_{7} be the central singular fiber of the corresponding deformation after the 7 th flip. It has only a $\frac{1}{4}(1,1)$ singularity. The minimal resolution of X_{7} is the blow up of Y at two points, which are disjoint from the (-4)-curve. This situation is as in Theorem 6.1 part (-1). The general fiber of the \mathbb{Q}-Gorenstein smoothing is rational.

Figure 7. Flips for $\mathcal{D}\binom{4}{1}$

Proposition 3.4. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{4}{1}$ is a rational surface with $K^{2}=-2$. It contains the configuration of rational smooth curves $[6,2,2]$ and a (-1)-curve intersecting the (-6)-curve transversally at two points.

The (-1)-curve intersecting the (-6)-curve transversally at two points comes from the (-1)-curve having the same property in the special fiber. This curve does not contain any singularity of the special fiber and so it lifts in any deformation.

The general point of $\mathcal{D}\binom{5}{1}$. Following the same recipe for the singularity $\frac{1}{25}(1,19)$, we perform the sequence of 3 flips shown in Figure 8. Notice that the situation after the last flip is very similar to the previous case.

Proposition 3.5. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{5}{1}$ is a rational surface with $K^{2}=-3$. It contains the configuration of rational smooth curves $[7,2,2,2]$ and two

Figure 8. Flips for $\mathcal{D}\binom{5}{1}$
disjoint (-1)-curves intersecting the (-7)-curve transversally at two points each.

The existence of the (-1)-curves intersecting the (-7)-curve is an application of Proposition 2.9. It is applied several times via partial smoothings. We start with X_{0}, which is X with $\frac{1}{5^{2}}(1,4)$ resolved, and \mathbb{Q}-Gorenstein smooth up $\frac{1}{4^{2}}(1,3)$. Then the curves E_{2} and E_{5} produce a (-1)-curve E_{t} in the general fiber, intersecting the (-7)-curve at one point, using Proposition 2.9. We now \mathbb{Q}-Gorenstein smooth up $\frac{1}{4}(1,1)$, and by the same proposition we obtain a (-1)-curve E_{t}^{\prime} in the general fiber from E_{10} and E_{9}. Finally we \mathbb{Q}-Gorenstein smooth up $\frac{1}{5^{2}}(1,9)$ to get the two claimed (-1)-curves, each from E_{t}, E_{8}, and E_{t}^{\prime}, E_{8}, applying again Proposition 2.9. The intersection properties can be easily checked.

The general point of $\mathcal{D}\binom{5}{2}$. In this case we perform the flips shown in Figure 9. At the end, the special fiber is not singular anymore, and so we know that the general fiber of the deformation is a rational surface.

Proposition 3.6. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{5}{2}$ is a rational surface with $K^{2}=-2$. It contains the configuration of rational smooth curves $[2,5,3]$ and a (-1 -curve intersecting the (-5)-curve transversally at two points.

The (-1)-curve comes from the (-1)-curve E_{6} intersecting the (-5)curve transversally at two points.

This finishes the description of the stable neighbors of $X_{\text {can }}$.
Remark 3.7. The construction of a surface Z with same Wahl singularities as X can be done over an elliptic rational surface with singular fibers $I_{4}+6 I_{1}+I_{2}$. This elliptic fibration has moduli dimension 4 . From the 4 Wahl singularities $\frac{1}{4}(1,1), \frac{1}{16}(1,3), \frac{1}{25}(1,4)$, and $\frac{1}{25}(1,9)$ we get the other 4 dimensions to complete the 8 dimensions we have around the stable surface in the moduli space.

Figure 9. Flips for $\mathcal{D}\binom{5}{2}$
Remark 3.8. For the other example with $K^{2}=1$ in [LP07, Fig.6] we have a surface with Wahl singularities and canonical class nef. This example is related to the previous in the following way. Take a (-1)-curve from [LP07, Fig.6] between the configuration [2,2,6] and [4] (there are two choices). The configuration $[2,2,6]-1-[4]$ represents the data of an extremal P-resolution of $\frac{1}{36}(1,13)$. But this singularity admits another extremal P-resolution: $[3,5,2]-2$. (We recall that in [HTU13, §4] we have a section devoted to this type of singularities.) Now consider the corresponding "dual" deformation. The canonical class of the central fiber is now not nef, because there is a (-1)-curve intersecting the (-8)-curve at one point. So we perform one flip of type mk1A and obtain the previous example. Therefore, we have a sort of dual families. This is a common phenomena in these sort of examples, coming from a cyclic quotient singularity having two extremal P-resolutions.

The analog results for partial smoothings of the Wahl singularities in the example [LP07, Fig. 6] are: for both [4] Dolgachev surfaces of type $(2,3)$ (for $[3,3]$ we also have Dolgachev surfaces of the same type), for the other singularities we obtain rational surfaces.

One may wonder at this point what sort of surfaces with only Wahl singularities one can expect in the boundary in general. The following proposition, due to Kawamata [K92], says that at least there is a hierarchy with respect to K^{2} and the Kodaira dimension.

Proposition 3.9. Let $f: \mathcal{X} \rightarrow \mathbb{D}$ be a \mathbb{Q}-Gorenstein smoothing of a normal singular projective surface X_{0} with only Wahl singularities over a smooth curve germ \mathbb{D}. Let Y_{0} be the minimal resolution of X_{0}, and let Z_{0} be the smooth minimal model of Y_{0}. Assume that $K_{\mathcal{X}}$ is nef. If
Z_{0} is of general type, then the general fiber X_{t} is of general type and $K_{X_{t}}^{2}>K_{Z_{0}}^{2}$.
Proof. By Kawamata [K92, Lemma 2.4], there exist positive integers m_{1} and m_{2} such that the inequalities of m-plurigenera $P_{m}\left(X_{t}\right)>$ $P_{m}\left(Z_{0}\right)$ hold for positive integers m with m_{1} dividing m and $m_{2}<m$. This implies that X_{t} is of general type. Moreover, this inequality becomes [BHPV04, VII Cor(5.4)]

$$
\frac{m(m-1)}{2} K_{X_{t}}^{2}+\chi\left(X_{t}\right)>\frac{m(m-1)}{2} K_{Z_{0}}^{2}+\chi\left(Z_{0}\right)
$$

for those m, and so we have the claim.
This implies that the stable boundary appearing in this way for $K^{2}=$ 1 consists of surfaces whose minimal resolution is not of general type. This is not the case for $K^{2}>1$, as we will see in the next sections.

$$
\text { 4. } K^{2}=2
$$

We take the example [LP07, Fig.2]. It uses the same elliptic fibration of Section 3. The corresponding surface X with only Wahl singularities has K_{X} nef. One can use Lemma 3.2 to show that K_{X} is ample in this case, so X is a stable surface. The 5 Wahl singularities define 5 boundary divisors. We label them as before: $\mathcal{D}\binom{2}{1}$ for [4], $\mathcal{D}\binom{3}{1}$ for $[2,5], \mathcal{D}\binom{5}{1}$ for $[7,2,2,2], \mathcal{D}\binom{9}{4}$ for $[2,7,2,2,3]$, and $\mathcal{D}\binom{15}{7}$ for $[2,10,2,2,2,2,2,3]$.

Figure 10. The example [LP07, Fig. 2]
The general point of $\mathcal{D}\binom{2}{1}$. We proceed as in Section 3. We perform 4 flips as in Figure 11: the first two are mk1A flips, the last two are mk2A flips. If X_{4} is the last singular surface, then it has 5 Wahl singularities and $K_{X_{4}}$ is nef. Notice that $K_{X_{4}}^{2}=1$.
Proposition 4.1. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{2}{1}$ is a simply connected surface of general type with $p_{g}=0$ and $K^{2}=1$. It contains a (-4)-curve.

Figure 11. Flips for $\mathcal{D}\binom{2}{1}$
Notice that this flipping procedure gives in this case new examples for $K^{2}=1$ from X_{4} : its minimal resolution has T-configurations [4], [4], $[2,6,2,3],[7,2,2,2]$, and $[3,2,2,2,8,2]$.

Figure 12. Flips for $\mathcal{D}\binom{3}{1}$
The general point of $\mathcal{D}\binom{3}{1}$. Here we perform the 11 flips shown in Figure 12. One can check that X_{11}, the last surface, has $K_{X_{11}}^{2}=0$ and $K_{X_{11}}$ nef. Therefore, the general fiber of the \mathbb{Q}-Gorenstein smoothing is a Dolgachev surface of some type (n_{1}, n_{2}), since we know it is also simply connected. To find n_{1}, n_{2}, one can argue that a \mathbb{Q}-Gorenstein smoothing of X_{11} was used in the second example with $K^{2}=1$ of the previous section. There we knew that the Dolgachev surface contained a (-4)-curve, and so one obtains $n_{1}=2, n_{2}=3$. So we have same
multiplicities for our current example (although we do not know if there is a (-4)-curve inside).

Proposition 4.2. The minimal resolution of a surface representing the general point in $\mathcal{D}\binom{3}{1}$ is a Dolgachev surface of type $(2,3)$ which contains a configuration $[2,5]$.

For the other 3 divisors we perform some flips to deduce that its general point is rational and
$\mathcal{D}\binom{5}{1}: K^{2}=-2$ with a configuration $[2,2,2,7]$ inside.
$\mathcal{D}\binom{9}{4}: K^{2}=-3$ with a configuration $[3,2,2,7,2]$ inside.
$\mathcal{D}\binom{15}{7}: K^{2}=-6$ and a configuration $[3,2,2,2,2,2,10,2]$ inside.
For the other example [LP07, Fig.4], we find: for each of the [4] a simply connected surface of general type with $K^{2}=1$ and $p_{g}=0$, when keeping both singularities $\frac{1}{4}(1,1)$ a Dolgachev surface $(2,3)$ with two disjoint (-4)-curves, and finally for each of the other Wahl singularities we obtain rational surfaces.

$$
\text { 5. } K^{2}=3
$$

In [PPS09] there are five examples producing simply connected surfaces of general type with $p_{g}=0$ and $K^{2}=3$. We take the one in [PPS09, Fig.8] because, as explained in [PPS09e], it contains a negative curve which makes the canonical divisor of the singular surface not nef. This curve gives the data of a flipping mk2A. The flip is shown in Figure 13.

Figure 13. Flip for [PPS09, Fig.8]
We can show that after this flip, the resulting surface has nef canonical divisor. Therefore, the example has the claimed properties in [PPS09]. The minimal resolution \widetilde{X} of the singular resulting surface X is in Figure 14. Let F be the general fiber of the induced elliptic fibration on \widetilde{X}. Then, following the notation in Figure 14, we have

$$
K_{\tilde{X}} \sim \sum_{i=1}^{15} E_{i}+E_{7}+2 E_{8}+E_{11}+E_{13}+E_{15}-F
$$

and so $K_{\tilde{X}} \equiv-\frac{1}{2} F_{1}-\frac{1}{2} F_{2}+E_{1}+E_{2}+\frac{1}{2} E_{4}+\frac{1}{2} E_{5}+\frac{1}{2} E_{7}+E_{8}+\frac{1}{2} E_{9}+$ $E_{10}+2 E_{11}+E_{12}+2 E_{13}+E_{14}+2 E_{15}$. We add the discrepancies and get an effective \mathbb{Q}-divisor for $\sigma^{*}\left(K_{X}\right)$. One checks that it is indeed nef.

Figure 14. \widetilde{X} and relevant curves
Moreover, its support contains $E_{5}, F_{2}, E_{6}, E_{7}, E_{8}$, and E_{9} which is the support of a fiber. This implies that the only curves which could have intersection 0 with K_{X} are components of fibers. Then, the only one is E_{13}. Let $X_{\text {can }}$ be the contraction of E_{13} in X, so $K_{X_{c a n}}$ is ample and $X_{\text {can }}$ is stable. As we did in Section 3, the corresponding stable point in the moduli space is smooth of dimension 4 . The singularities of $X_{\text {can }}$ are $\frac{1}{30^{2}}(1,30 \cdot 11-1), \frac{1}{2 \cdot 3^{2}}(1,2 \cdot 3 \cdot 1-1)$, and $\frac{1}{16^{2}}(1,16 \cdot 11-1)$. Their \mathbb{Q}-Gorenstein deformation spaces give precisely the dimension $4=1+2+1$. In that sense, this is a "maximal degeneration".

The loci in the moduli space defined by keeping the singularity $\frac{1}{2 \cdot 3^{2}}(1,2 \cdot 3 \cdot 1-1)$ has codimension 2 . We have that the (minimal model of a minimal resolution of) general point of it is a simply connected surface of general type with $K^{2}=1$ (and $p_{g}=0$), and they have a configuration $[4,3,2]$ inside. The singularity $\frac{1}{2 \cdot 3^{2}}(1,2 \cdot 3 \cdot 1-1)$ also \mathbb{Q}-Gorenstein deforms to $\frac{1}{9}(1,2)$, and if we smooth up the other singularities, we obtain a surface of general type with $K^{2}=1$ as well. Finally, for each of the other two singularities we have divisors parametrizing rational surfaces.

Remark 5.1. With the example [PPS09, Fig.9] we can show that there are $K^{2}=2$ surfaces of general type with $p_{g}=0$ in the boundary of
the moduli space for $K^{2}=3$. We keep in a \mathbb{Q}-Gorenstein deformation the singularity $\frac{1}{4}(1,1)$ and smooth up the other two. After few flips we get a singular surface with 4 Wahl singularities whose exceptional configurations are $[2,3,2,3,5,4,3],[2,5],[2,5]$, and $[6,2,2]$. Its canonical class is nef and $K^{2}=2$.

6. Elliptic surfaces via \mathbb{Q}-Gorenstein smoothings

Notice that the exceptional divisor of any T-singularity

$$
\frac{1}{d n^{2}}(1, d n a-1)
$$

can be obtained from an I_{d} elliptic singular fiber by blowing-up over a node. We blow up a node of I_{d} and subsequent nodes coming from the new (-1)-curves. The exceptional divisor appears as the chain of curves of the total transform of I_{d} which does not contain the (last) (-1)-curve. We call this construction a T-blow-up of I_{d}. If $g: Y \rightarrow B$ is the elliptic fibration with the singular fiber I_{d}, then we denote by $\sigma: Y^{\prime} \rightarrow Y$ the composition of blow-ups. This way of looking at Tsingularities is in Kawamata's paper [K92].

The following is a useful list of cases of \mathbb{Q}-Gorenstein smoothings from fibers of rational elliptic fibrations. We used it a bit to identify smooth models of surfaces around stable surfaces with only Tsingularities.

Theorem 6.1. Let $g: Y \rightarrow \mathbb{P}^{1}$ be a minimal rational elliptic fibration with a section.
(-1): Assume g has a fiber of type I_{d}. Consider a T-blow-up of I_{d} with the notation above. Let $\left\{E_{1}, \ldots, E_{s}\right\}$ be the corresponding T configuration where $\frac{1}{d n^{2}}(1, d n a-1)=\left[e_{1}, \ldots, e_{s}\right]$ and $E_{i}^{2}=-e_{i}$. Write $\sigma^{*}\left(I_{d}\right)=\sum_{i=1}^{s+1} \nu_{i} E_{i}$, where E_{s+1} is the (-1)-curve. Then there are \mathbb{Q} Gorenstein smoothings X of X^{\prime}, and any such X is rational. We have $n=\nu_{s+1}, a=\nu_{s+1}-\nu_{s}$, and the discrepancy at E_{i} is $-1+\frac{\nu_{i}}{\nu_{s+1}}$ for any $i=1, \ldots, s$.
(0): Assume g has two fibers $I_{d_{1}}$ and $I_{d_{2}}$. Let Y^{\prime} be the blow-up of Y at one node of $I_{d_{1}}$ and at one node of $I_{d_{2}}$. Hence we have two T configurations of type $\frac{1}{4 d_{i}}\left(1,2 d_{i}-1\right)$. Let X^{\prime} be the contraction of these configurations. Then there are \mathbb{Q}-Gorenstein smoothings X of X^{\prime}, and any such X is an Enriques surface.
(1): Assume it has two fibers $I_{d_{1}}$ and $I_{d_{2}}$. We apply T-blow-ups to each of them. Assume that for one of them we blew-up at least twice. Let X^{\prime} be the contraction of both T-configurations, where $\frac{1}{d_{i} n_{i}^{2}}\left(1, d_{i} n_{i} a_{i}-\right.$

1) are the T-singularities. Then there are \mathbb{Q}-Gorenstein smoothings X of X^{\prime}, and any such X has Kodaira dimension 1.

Proof. For the proof, we assume g has the singular fibers $I_{d_{1}}$ and $I_{d_{2}}$. This situation adjusts to prove all cases simultaneously. Let $\sigma: Y^{\prime} \rightarrow$ Y be the composition of blow ups for both T-blow-ups, so that Y^{\prime} contains the T-configurations $\left\{E_{1}, \ldots, E_{s}\right\}$ and $\left\{F_{1}, \ldots, F_{r}\right\}$ of types $\frac{1}{d_{1} n_{1}^{2}}\left(1, d_{1} n_{1} a_{1}-1\right)=\left[e_{1}, \ldots, e_{s}\right]$ and $\frac{1}{d_{2} n_{2}^{2}}\left(1, d_{2} n_{2} a_{2}-1\right)=\left[f_{1}, \ldots, f_{r}\right]$, where $E_{i}^{2}=-e_{i}$ and $F_{i}^{2}=-f_{i}$. We also have the (-1)-curves E_{s+1} and F_{r+1}, so that $\sigma^{*}\left(I_{d_{1}}\right)=\sum_{i=1}^{s+1} \nu_{i} E_{i}$, and $\sigma^{*}\left(I_{d_{2}}\right)=\sum_{i=1}^{r+1} \mu_{i} F_{i}$. Let $h: Y^{\prime} \rightarrow X^{\prime}$ be the contraction of both T-configurations.

Through simple arguments as in [LP07], we know that there are no local-to-global obstructions to deform X^{\prime} because

$$
H^{2}\left(Y^{\prime}, T_{Y^{\prime}}\left(-\log \left(E_{1}+\ldots+E_{s}+F_{1}+\ldots+F_{r}\right)\right)\right)=0
$$

Let C be the general fiber of g. Then,

$$
K_{Y^{\prime}} \sim-\sigma^{*} C+\sum_{i=1}^{s+1}\left(\nu_{i}-1\right) E_{i}+\sum_{i=1}^{r+1}\left(\mu_{i}-1\right) F_{i}
$$

and $K_{Y^{\prime}} \equiv h^{*} K_{X^{\prime}}-\sum_{i=1}^{s} \operatorname{discr}\left(E_{i}\right) E_{i}-\sum_{i=1}^{r} \operatorname{discr}\left(F_{i}\right) F_{i}$, where discr stands for minus the discrepancy. Then, by intersecting with all E_{i} 's and F_{i} 's, we get a linear system of equations on the ν_{i} 's and μ_{i} 's, which is uniquely solved by our numerical claims: $\operatorname{discr}\left(E_{i}\right)=1-\frac{\nu_{i}}{n_{1}}$ and $\operatorname{discr}\left(F_{i}\right)=1-\frac{\mu_{i}}{n_{2}}$. In this way, we have

$$
h^{*}\left(K_{X^{\prime}}\right) \equiv-\frac{1}{n_{1}} \sum_{i=1}^{s+1} \nu_{i} E_{i} \equiv-\frac{1}{n_{1}} \sigma^{*} C
$$

for the case (-1), and

$$
h^{*}\left(K_{X^{\prime}}\right) \equiv \frac{n_{1}-2}{2 n_{1}} \sum_{i=1}^{s+1} \nu_{i} E_{i}+\frac{n_{2}-2}{2 n_{2}} \sum_{i=1}^{r+1} \mu_{i} F_{i} \equiv\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}\right) \sigma^{*} C
$$

for cases (0) and (1). Then, in case (-1) we have that $-K_{X^{\prime}}$ is nef and not $\equiv 0$, and so X is a rational surface. We recall that in any case, $K_{X}^{2}=0, q(X)=p_{g}(X)=0$. For the case (0) we see that $K_{X^{\prime}} \equiv 0$ and so for K_{X}. It follows that X is an Enriques surface. For the last case (1), $K_{X^{\prime}}$ is nef and not trivial, and so X is a minimal surface with Kodaira dimension 1.

We recall that a Dolgachev surface of type $X_{n_{1}, n_{2}}$ is a simply connected elliptic fibration with exactly two multiple fibers of multiplicities n_{1} and n_{2}; cf. [BHPV04, p.383].

Corollary 6.2. If in case (1) we have $g d c\left(n_{1}, n_{2}\right)=1$, then a smooth fiber of any \mathbb{Q}-Gorenstein smoothing is a Dolgachev surface of type $X_{n_{1}, n_{2}}$.

Proof. First, we recall that given a Hirzebruch-Jung continued fraction $\frac{m}{q}=\left[e_{1}, \ldots, e_{s}\right]$ has associated sequences $\alpha_{i}, \beta_{i}, \gamma_{i}$ as in Section 2. The corresponding E_{i} divisor of the minimal resolution of $\frac{1}{m}(1, q)$ has discrepancy $-1+\frac{\beta_{i}+\alpha_{i}}{m}$. Also, the fundamental group of a neighborhood of the complement of the exceptional divisor is cyclic of order m and it is generated by a loop ξ around E_{1} (or E_{s}). The loops ξ_{i} around E_{i} are conjugate to $\xi^{\alpha_{i}}$ (or $\xi^{\beta_{i}}$). (Cf. [Mum61].) For $m=n^{2}$ and $q=n a-1$ with $\operatorname{gcd}(n, a)=1$, we have $\beta_{i}+\alpha_{i}=\nu_{i} n$ by Theorem 6.1, and so $\nu_{i}=a \alpha_{i}-n \gamma_{i}$.

We compute the fundamental group π_{1} of a smooth fiber of a \mathbb{Q} Gorenstein smoothing following the strategy of [LP07, p.493]. The computation is done on the minimal resolution $\widetilde{X^{\prime}}$ of the singular fiber X^{\prime}. It is enough to show that $\pi_{1}\left(\widetilde{X^{\prime}} \backslash E\right)$ is trivial, where E is the exceptional divisor. We consider two small loops ξ and ρ around the two components of E which intersect a section of the elliptic fibration. By above, we notice that for those component the $\nu_{j_{i}, i}=1(i=1,2)$, and so $\operatorname{gcd}\left(\beta_{j_{i}, i}, n_{i}\right)=1$ and these loops generate the fundamental groups of the nbhds of the complements of each exceptional component. This section, which is a \mathbb{P}^{1}, gives the relation $\xi \sim t \rho t^{-1}$ for some path t. We now use that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ to conclude that ξ and ρ become trivial in $\pi_{1}\left(\widetilde{X^{\prime}} \backslash E\right)$. This implies that $\pi_{1}\left(\widetilde{X^{\prime}} \backslash E\right)=1$.

Therefore, the smooth fiber X_{t} is a simply connected elliptic fibration with exactly two multiple fibers. If A_{t} and B_{t} are the reduced curves of the multiple fibers of the elliptic fibration $X_{t} \rightarrow \mathbb{P}^{1}$, and C_{t} is its general fiber, then C_{t} becomes the general fiber of the elliptic fibration $X^{\prime} \rightarrow$ \mathbb{P}^{1}, and M_{t}, N_{t} become multiples of the reduced curves of the multiple fibers of $X^{\prime} \rightarrow \mathbb{P}^{1}$. By means of the formula for the canonical class for the fibrations $X^{\prime} \rightarrow \mathbb{P}^{1}$ and $X_{t} \rightarrow \mathbb{P}^{1}$, and because the multiplicities for both fibrations are coprime, we conclude that the multiplicities must match.

References

BHPV04. W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., second edition, vol. 4, Springer-Verlag, Berlin, 2004.
CD12. S. Cantat, and I. Dolgachev. Rational surfaces with a large group of automorphisms, J. Amer. Math. Soc., vol 25 (2012), no. 3, 863-905.

H11. P. Hacking. Compact moduli spaces of surfaces of general type, Compact moduli spaces and vector bundles, 1-18, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012.
HTU13. P. Hacking, J. Tevelev and G. Urzúa. Flipping surfaces, arXiv:1310.1580 [math.AG], preprint 2013.
HP10. P. Hacking and Y. Prokhorov. Smoothable del Pezzo surfaces with quotient singularities, Compositio Math. 146(2010), 169-192.
K92. Y. Kawamata. Moderate degenerations of algebraic surfaces, Complex algebraic varieties (Bayreuth, 1990), 113132, Lecture Notes in Math., 1507, Springer, Berlin, 1992.
KSB88. J. Kollár and N. I. Shepherd-Barron. Threefolds and deformations of surface singularities, Invent. math. 91, 299-338 (1988).
KM92. J. Kollár and S. Mori. Classification of three-dimensional flips, J. Amer. Math. Soc. v.5, number 3, July 1992, 533-703.
KM98. J. Kollár and S. Mori. Birational geometry of algebraic varieties, CTM 134 (1998).

LP07. Y. Lee and J. Park. A simply connected surface of general type with $p_{g}=0$ and $K^{2}=2$, Invent. Math. 170, 483-505 (2007).
Mori88. S. Mori. Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1(1988), 117-253.
Mori02. S. Mori. On semistable extremal neighborhoods, Higher dimensional birational geometry (Kyoto 1997), Adv. Stud. Pure Math. 35, Math. Soc. Japan, Tokyo, 157-184 (2002).
Mum61. D. Mumford. The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 36, 229-246 (1961).

PPS09. H. Park, J. Park and D. Shin. A simply connected surface of general type with $p_{g}=0$ and $K^{2}=3$, Geom. Topol. 13 (2009), 743-767.
PPS09e. H. Park, J. Park and D. Shin. Erratum to the article A simply connected surface of general type with $p_{g}=0$ and $K^{2}=3$, Geom. Topol. 15 (2011), no. 1, 499-500.
Wahl76. J. Wahl, Equisingular deformations of normal surface singularities, Ann. Math, 104 (1976), 325-356.
Wahl81. J. Wahl. Smoothings of normal surface singularities, Topology 20(1981), no. 3, 219-246.

Facultad de Matemáticas,
Pontificia Universidad Católica de Chile,
Santiago, Chile.
E-mail address: urzua@mat.puc.cl

[^0]: ${ }^{1}$ Conjecturally we also have the Craighero-Gattazzo surfaces.

[^1]: ${ }^{2}$ We use same notation for continued fractions even when some entries are 1.

