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The computer simulation of the electrical activity of the heart has experienced tremendous
advances in the last decade. However, the acceptance of computational methods in the
medical community will largely depend on their reliability, efficiency and robustness. In
this work, we present a gradient-flow reformulation of the cardiac electrophysiology equa-
tions, and propose a minimax variational principle for the time-discretized electrophysiol-
ogy problem. Based on results from variational analysis, we derive bounds on the time-step
size that guarantee the existence and uniqueness of the saddle point, and in turn of the
weak solution of the electrophysiology incremental problem. We also show conditions
under which the minimax problem is equivalent to an effective minimization principle,
which is amenable to a Rayleigh–Ritz finite-element analysis. The derived time-step
bounds guarantee the strict convexity of the objective function resulting from spatial dis-
cretization, thus ensuring the convergence of gradient-descent methods. The proposed the-
ory is applied to the widely employed FitzHugh–Nagumo model, which is shown to
conform to the variational framework proposed in this work. The applicability of the
method and its implications on the robustness of time integration are demonstrated by
way of numerical simulations of the electrical behavior in a single-cell and 3D wedge
and biventricular geometries. We envision that the proposed framework will open the door
to the development of robust and efficient electrophysiology models and simulations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Computational cardiology has experienced important advances in the last decade with the advent of supercomputing
platforms. The computer simulation of the propagation of electrical impulses in the cardiac muscle has received a great deal
of attention from the computational science community [33]. Currently, detailed anatomical computational models of the
electrophysiology of heart are being used to study the physiology and pathology of the heart [45]. The majority of these mod-
els are multiscale in spirit, and therefore prove very useful in understanding the behavior of cellular- and tissue-level mech-
anisms from the study of organ-level behavior [23]. The translation of such computational models into the clinic is currently
being advocated by many research groups around the world [20]. However, the acceptance of computational methods in the
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medical community will largely depend on their efficiency, robustness and reliability, which are currently open avenues of
research.

Cardiac electrophysiology concerns the study of the propagation and interaction of electrical waves in biological tissue.
The roots of the mathematical formulation of electrophysiological models date back to the efforts of Hodgkin and Huxley
[22] on modeling the electrical propagation in squid giant axons. Following the seminal work of Hodgkin and Huxley, a large
number of cardiac electrophysiology models of the Purkinjee fibers, myocardial tissue and pacemaker cells have been pro-
posed in the literature, see [14] for a comprehensive survey. Today, we distinguish two main classes of electrophysiological
models: biophysical and phenomenological models [38]. Biophysical models [34,3,30,44] aim at describing the complex ex-
changes occurring at the sarcolemma, or cell membrane, and organelles by quantifying the sub-cellular fluxes of Calcium,
Potassium, Sodium and Chlorides ions through the several different mechanisms available, i.e., ion channels, pumps,
exchangers and gap junctions. Phenomenological models [16,32,1,15] aim at modeling a larger spatial and temporal scale
than biophysical models, and they consider a reduced set of state variables and parameters that do not necessarily have a
direct physical meaning but make these models more tractable from a mathematical analysis and computational implemen-
tation viewpoint.

Regardless of their nature, virtually all deterministic cardiac electrophysiology models fall in the category of non-linear
reaction–diffusion equations [27]. The numerical solution of cardiac electrophysiology equations has been predominantly
carried out using finite-difference [42,8,36], finite-volume [21,26] and finite-element [40,48] approximations for the spatial
discretization, whereas the time integration has been predominantly addressed by finite-difference schemes. The most tra-
ditional time-integration schemes used in cardiac electrophysiology are explicit Euler methods, which have proven partic-
ularly suitable for large-scale simulations where solving a large linear system of equations is generally avoided. However, it
is well known that time-step bounds that arise from stability considerations for explicit methods become more stringent as
the mesh size decreases, thus reducing the efficiency of those methods as a finer spatial discretization is considered.
Moreover, the determination of stability conditions can become cumbersome or even intractable when dealing with highly
non-linear systems. In the search of more stable algorithms, semi-implicit and fully-implicit [29] schemes have also been
employed, allowing for larger time steps at the expense of solving a nonlinear set of equations at each time step. Depending
on the electrophysiology model, the resulting set of equations can be highly nonlinear, and even contain discontinuous func-
tions. As a consequence, the convergence of classical solution methods can hardly be guaranteed, thus hindering the robust-
ness of implicit methods.

The mathematical analysis of electrophysiology models has been mainly developed during the last decade, following the
popularization of the numerical simulation of cardiac electrical activity by the scientific computing community. The proof of
existence and uniqueness of solutions to the phenomenological FitzHugh–Nagumo bidomain model was developed by Colli
Franzone and Savaré [6] based on classical results from the general theory of evolution variational inequalities. Using the
same abstract variational framework, Sanfelici [41] has shown the convergence of Galerkin finite-element approximations
of the FitzHugh–Nagumo model. More recently, a multiscale analysis based on the C-convergence theory has shown the ade-
quacy of the bidomain model to represent the microscopic behavior of cardiac tissue [37]. Recent advances showing the exis-
tence and uniqueness of solutions to more complex biophysical models have been addressed in [47].

Although it was observed in [6] that the FitzHugh–Nagumo equations have a variational structure, this fundamental
property and its implications have not been exploited to date, neither by the biophysical nor the computational communi-
ties. In this work, we present a gradient-flow reformulation of the cardiac electrophysiology equations that allows one to
understand these models in a new light, namely, in terms of variational principles such as minimization of free energy, max-
imization of entropy, and phase transitions, which are pervasive in the thermodynamics, mechanics, electromagnetism, and
the biophysics literature. From a mathematical viewpoint, variational principles offer a wealth of analysis results regarding
existence of solutions using the tools of the modern calculus of variations [9]. From a numerical point of view, variational
principles are the underlying framework for some of the most celebrated numerical methods, like the finite element method
[7]. Variational formulations for gradient-flow systems have been applied to a wide variety of physics and engineering prob-
lems, particularly by the computational mechanics community in the formulation and numerical solution of multiscale
material models [35,24,25] and soft-tissue biomechanics [49,12].

The paper is organized as follows. Section 2 is concerned with the theoretical aspects of the variational principle for car-
diac electrophysiology introduced in this work. We start by stating, in a general form, the initial boundary value problem
that governs the electrical behavior of cardiac tissue. Generalized potentials are then introduced, and a gradient-flow refor-
mulation of the electrophysiology problem based on such potentials is presented. Using a Backward-Euler time-discretiza-
tion scheme, an incremental minimax variational formulation equivalent to the time-discretized governing equations is
introduced, and conditions on the time-step size are stated in order to guarantee existence and uniqueness of saddle points.
Exploiting the local nature of the evolution equations for the state variables, an effective minimization problem amenable to
non-linear finite-element methods is derived. The phenomenological FitzHugh–Nagumo model is then analyzed in view of
the proposed theory, and bounds on the time-step size that only depend on the parameters of the model are derived to en-
sure strict convexity of the effective minimization problem. The time-step bound, in turn, guarantees existence and unique-
ness of the weak solution. In Section 3, we employ the proposed method to numerically solve three examples of increasing
geometrical complexity. The convergence of the solution to the non-linear problem for each example is studied and analyzed
based on the time-step bounds derived for the FitzHugh–Nagumo model. Section 4 ends with a discussion on the obtained
results and future perspectives.
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2. Variational principle for the electrophysiology problem

Let B � RN be the physical domain of interest where N is any positive integer, / : B � Rþ ! R the scaled transmembrane
potential, and r ¼ ðr1; . . . ; rMÞ : B � Rþ ! RM the internal-variable vector that controls the recovery of the cell. The general
electrophysiology problem can be written in terms of the nonlinear reaction–diffusion system of equations
C/
_/þ divq ¼ f /ð/; rÞ; ð1Þ

Cr _r ¼ f rð/; rÞ; ð2Þ
where ð _�Þ ¼ @�
@t denotes time differentiation, C/ 2 Rþ, and Cr 2 RM�M is symmetric and positive definite tensor. Here we have

considered the simplified mono-domain formulation which depends only on the transmembrane potential and internal vari-
ables, instead of the bi-domain formulation, where both intracellular and extracellular potentials need to be described inde-
pendently. The flux term q characterizes the propagating nature of excitation waves, which we assume to take the form
(Fick’s law)
q ¼ �Dr/: ð3Þ
where D 2 RN�N
þ is a symmetric and positive-definite conductivity tensor. Dirichlet and Neumann boundary conditions com-

plement the governing equations,
/ ¼ �/; x 2 @B/; ð4Þ
q � n ¼ �q; x 2 @Bq: ð5Þ
Initial conditions read
/jt¼0 ¼ /0ðxÞ; ð6Þ
rjt¼0 ¼ r0ðxÞ: ð7Þ
The choice of the recovery variable r and source terms f / and f r ¼ f r
1 ; . . . f r

M

� �
determines the particular electrophysiology

formulation, and there are a plethora of different formulations in the literature. For an extensive review of the most popular
electrophysiology models, the reader is referred to [14]. The existence and uniqueness of the mono-domain electrophysiol-
ogy problem has been addressed by ColliFranzone and Savaré [6].

We now consider the time integration of the electrophysiology Eqs. (1) and (2). Consider the generic time interval
½tn; tnþ1�; n 2 Z where all the information at t ¼ tn is assumed to be known. Using a Backward-Euler finite-difference scheme
in time, the semi-discrete electrophysiology equations read
C/
/nþ1 � /n

Dt
� divðDr/nþ1Þ ¼ f /ð/nþ1; rnþ1Þ ð8Þ

Cr
rnþ1 � rn

Dt
¼ f rð/nþ1; rnþ1Þ; ð9Þ
where Dt ¼ tnþ1 � tn. This time discretization scheme has been widely employed in the numerical solution of electrophysi-
ology equations [19,50,23] due to stability considerations, at the expense of solving a nonlinear problem for each time step.

2.1. Generalized potentials and gradient-flow reformulation

In the sequel, we seek to reformulate the electrophysiology problem into a gradient-flow system. Let E be the generalized
electrochemical potential, and W the rate potential. A system has a gradient-flow structure if the governing equations are
recovered from
0 2 @Wþ DE; ð10Þ
where D is the Fréchet derivative and @ signifies the subdifferential operator. The reader is referred to [2] to see more about
the application of subdifferentials in reaction–diffussion and gradient-flow problems. In (10), DE represents a driving force
that controls the evolution of the system. For the case of the general electrophysiology model, we define the generalized
electrochemical potential as
E½/; r� :¼
Z
B

Eð/;r/; rÞdxþ
Z
Bq

/�qdS ¼
Z
B

1
2
r/ � Dr/þ Fð/; rÞ

� �
dxþ

Z
@Bq

/�qdS; ð11Þ
where E : R� RN � R! R is the electrochemical potential density, and F : R� RM ! R is a function such that
@F
@/
¼ �f /ð/; rÞ ð12Þ

@F
@ri
¼ f r

i ð/; rÞ; i ¼ 1; . . . ;M: ð13Þ
We also define the rate potential as
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W½ _/; _r� :¼
Z
B

wð _/; _rÞdx;¼
Z
B

1
2

C/
_/2 � 1

2
_r � Cr _r2

� �
dx: ð14Þ
It follows that Eqs. (1) and (2) can be recovered from the potentials just defined, thus conferring the general electrophysi-
ology model a gradient-flow structure. We remark that while the rate potential is a strictly convex functional in _/, the elec-
trochemical potential need not be convex in /.

2.2. Time discretization: incremental variational formulation

In the following, we draw ideas from the solid mechanics community [17,35] and develop an incremental variational for-
mulation by partitioning the temporal space into a sequence of finite intervals. Before stating our result we introduce some
assumptions and notation. The incremental potential density is defined as
gnð/;r/; rÞ :¼ Dt w
/� /n

Dt
;
r � rn

Dt

� �
þ Eð/;r/; rÞ; ð15Þ
where Dt ¼ tnþ1 � tn, and the corresponding incremental potential is defined asZ Z

Gn½/; r� :¼

B
gnð/;r/; rÞdx�

@Bq

/�qdS: ð16Þ
It will be assumed henceforth that the potential Fð/; rÞ in (11) is of class C2ðR� RM ;RÞ and there exist exponents c; q > 1
such that
jFð/; rÞj 6 Aðj/jq þ jrjcÞ þ B; ð17Þ

jf /ð/; rÞj 6 A j/jq�1 þ jrj
cðNþ2Þ

2N

� 	
þ B; and ð18Þ

jf rð/; rÞj 6 A j/jq 1�1
cð Þ þ jrjc�1

� 	
þ B; ð19Þ
for all ð/; rÞ 2 R� RM and some constants A;B > 0. Further, in the case where N P 3 we assume that q 6 2� :¼ 2N
N�2. The trans-

membrane potential / and state variable r will be assumed to belong to the functional spacesn o

S ¼ / 2 H1ðBÞ : / ¼ �/ in @B/ and V ¼ LcðB;RMÞ; ð20Þ
respectively, where c > 1 is the exponent in (17). The smallest eigenvalues of Cr and D will be denoted by Cmin
r and l, respec-

tively. The ellipticity constants d/ and dr are defined by
d/ :¼ sup
ð/;rÞ2R�RM

@f /

@/
ð/; rÞ and dr :¼ sup

ð/;rÞ2R�RM ;

n2RM ;jnj61

n � ðrrf rð/; rÞÞn: ð21Þ
Finally, CB ¼ CBðB; @B/Þ denotes the optimal constant in the Poincaré inequalityZ Z

B
gðxÞ2 dx 6 CB

B
jrgðxÞj2 dx 8 g 2 H1ðBÞ s:t: g ¼ 0 on @B/: ð22Þ
Theorem 1. Let F;Gn;S;V;Cmin
r ;l, d/; dr and CB be as above. Suppose, further, that
1
Dt

> max
d/

C/
� l

C/CB
;

dr

Cmin
r

( )
ð23Þ
and that �q 2 L2ð@BqÞ. Then, the weak form of the semi-discrete electrophysiology equations (4), (5), (8) and (9), given by
Z
B

C/
/nþ1 � /n

Dt
gþ Dr/ � rg� f /ð/; rÞg

� �
dx�

Z
@Bq

�qgdS ¼ 0; 8 g 2 H1
0ðBÞ ð24ÞZ

B
Cr

rnþ1 � rn

Dt
� f rð/nþ1; rnþ1Þ

n o
ndx ¼ 0; 8 n 2 LcðB;RMÞ; ð25Þ
admits a unique solution ð/nþ1; rnþ1Þ determined by the variational principle
Gn½/nþ1; rnþ1� ¼min
/2S

max
r2V

Gn½/; r�: ðMÞ
Remark 1. The theorem remains true, with the same proof, if Fð/; rÞ is only C1 but such that
Fð/; rÞ � Fð/0; rÞP �f /ð/0; rÞð/� /0Þ þ
d/

2
ð/� /0Þ

2 8 /;/0 2 R; r 2 RM ð26Þ

and Fð/; rÞ � Fð/; r0Þ 6 f rð/; r0Þ � ðr � r0Þ þ
dr

2
jr � r0j2 8 / 2 R; r; r0 2 RM ð27Þ
for some constants d/; dr 2 R.
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Remark 2. The reason for stating (23) as a condition on 1
Dt (and not directly on Dt) is that the expression on the right can be

negative. If Fð/; rÞ is convex in /, the condition on the time step reads drDt < Cmin
r . If Fð/; rÞ is concave in r, it reads

1
Dt >

d/

C/
� l

C/CB
. If it is both convex in / and concave in r, the conclusion holds for every Dt > 0.

Theorem 1 follows from several results of convex analysis and minimax theory (see, e.g. [11, Chapter VI, Propositions 1.5,
1.6 and 2.2]), which we briefly recall.

Definition 1. Let V and W be vector spaces and let G : S � V ! R, where £ – S � W is convex.

(i) A pair ð/0; r0Þ 2 S � V is a saddle point of G if
G½/0; r� 6 G½/0; r0� 6 G½/; r0� 8 ð/; rÞ 2 S � V:

(ii) The functional G is convex-concave if
G½ð1� kÞ/1 þ k/2; r� 6 ð1� kÞG½/1; r� þ kG½/2; r� 8 /1;/2 2 S; r 2 V; k 2 ½0;1�
and
G½/; ð1� kÞr1 þ kr2�P ð1� kÞG½/; r1� þ kG½/; r2� 8 / 2 S; r1; r2 2 V; k 2 ½0;1�:
If the above inequalities are strict for k 2 ð0;1Þ then G is strictly convex-concave.
(iii) The functional G is Gâteaux-differentiable at ð/0; r0Þ if W and V are normed spaces and the partial derivatives
hD/G½/0; r0�;/� /0i :¼ lim
k!0þ

G½/k; r0� � G½/0; r0�
k/k � /0k

; /k ¼ k/þ ð1� kÞ/0

hDrG½/0; r0�; r � r0i :¼ lim
k!0þ

G½/0; rk� � G½/0; r0�
krk � r0k

; rk ¼ kr þ ð1� kÞr0
exist for all ð/; rÞ 2 S � V and can be extended as linear functionals in W� and V�.
Proposition 1. LetW and V be reflexive Banach spaces. Suppose that £ – S � W is closed and convex and that G : S � V ! R is a
convex-concave functional. Also assume that

(i) for all / 2 S; r # G½/; r� is upper semicontinuous and lim r 2 V
krk ! 1

G½/; r� ¼ �1;

(ii) for all r 2 V;/ # G½/; r� is lower semicontinuous and lim / 2 S
k/k ! 1

G½/; r� ¼ þ1.

Then G has at least one saddle point ð/0; r0Þ and every saddle point is such that
G½/0; r0� ¼min
/2S

max
r2V

G½/; r� ¼max
r2V

min
/2S

G½/; r�:
If, moreover, G is Gâteaux-differentiable, then ð/0; r0Þ is a saddle-point of G if and only it satisfies the weak form of the Euler–La-
grange equations
hD/G;/� /0iP 0; hDrG; r � r0i 6 0 8/ 2 S; r 2 V:

If, further, G is strictly convex-concave, then the saddle point is unique.
Proof of Theorem 1. By the Sobolev embedding and the trace theorems (see, e.g. [13, Theorems 5.5.1 and 5.6.2]) and the
assumption on the growth of Fð/; rÞ, the map Gn½/; r� is well defined as a function from S � V to R (that is, the integrals
in (16) are finite). Again by Sobolev’s embedding theorem (combined with generalized dominated convergence), it follows
that Gn½/; r� is continuous in / and in r with respect to convergence in norm in H1ðBÞ and LcðBÞ, respectively.

In order to apply Proposition 1, it is necessary to prove that if the hypothesis on the time step is satisfied then Gn½/; r� is
strictly convex-concave. To this aim, fix first r 2 V and let /1;/2 2 S and k 2 ð0;1Þ. A direct calculation shows that
2
kð1� kÞ ððð1� kÞGn½/1; r� þ kGn½/2; r�Þ � Gn½ð1� kÞ/1 þ k/2; r�Þ ð28Þ

¼
Z
B

C/

h
ð/2 � /1Þ

2 þrð/2 � /1Þ � Drð/2 � /1Þ þ inf
R�RM

@2F

@/2

 !
ð/2 � /1Þ

2

( )
dx ð29Þ

P
C/

h
� d/

� �Z
B
ð/2 � /1Þ

2 dxþ l
Z
B
jrð/2 � /1Þj

2 dx ð30Þ

P
C/

h
þ l

CB
� d/

� �Z
B
ð/2 � /1Þ

2 dx; ð31Þ
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which implies that Gn½�; r� is strictly convex for every r 2 V. Analogously, Gn½/; r� is strictly concave in r since for every
r1; r2 2 V;/ 2 S, and k 2 ð0;1Þ
2
kð1� kÞ ððð1� kÞGn½/; r1� þ kGn½/; r2�Þ � Gn½/; ð1� kÞr1 þ kr2�Þ ð32Þ

6

Z
B
� ðr2 � r1Þ � Crðr2 � r1Þ

h
þ drjr2 � r1j2

� �
dx 6 �Cmin

r

h
þ dr

 !Z
B
jr2 � r1j2 dx: ð33Þ
The proof that Gn is Gâteaux-differentiable whenever Fð/; rÞ satisfies the growth conditions (17)–(19), and that its partial
derivatives are given by
hD/ Gn½/; r�;gi ¼
Z
B

C/
/� /n

h
gþ Dr/ � rg� f /ð/; rÞg

� �
dx�

Z
@Bq

�qgdS; 8 g 2 H1
0ðBÞ

hDrGn½/; r�; ni ¼
Z
B
�Cr

rnþ1 � rn

h
þ f rð/nþ1; rnþ1Þ

n o
ndx; 8 n 2 LcðB;RMÞ
is standard and can be found, e.g. in [9, Theorem 3.11 and Example 3.4.1] (Even though is not explicitly stated, the same
proof in Example 3.4.1 shows that the conclusion is valid for N = 1,2). The theorem then follows from Proposition 1, noting
that both /þ g and /� g and both r þ n and r � n belong to S and V, respectively, for every / 2 S; g 2 H1

0ðXÞ, and
r; n 2 LcðB;RMÞ. h
2.3. The effective minimization problem

In general, and for the purpose of finite element implementation, we will consider solving the maximization problem lo-
cally. It turns out that maximizing the incremental potential with respect to r is equivalent to maximizing the incremental
potential density (Lemma 1). Thus, the problem that governs the electrophysiology update reads
min
/2S

Fn½/�; ð34Þ
where
Fn½/� :¼
Z
B

max
r2RM

gnð/ðxÞ;r/ðxÞ; rÞdx�
Z
@Bq

/ðxÞ�qðxÞdS; ð35Þ
which, in view of (11) and (15), we write as
Fn½/� :¼
Z
B

1
2
r/ðxÞ � Dr/ðxÞ þ fnð/ðxÞ; xÞ

� �
dx�

Z
@Bq

/ðxÞ�qðxÞdS ð36Þ
with
fnð/; xÞ ¼max
r2RM

Dt � w /� /nðxÞ
Dt

;
r � rnðxÞ

Dt

� �
þ Fð/; rÞ

� �
; / 2 R; x 2 B: ð37Þ
Lemma 1. If for every / 2 S there exists r/ 2 V such that
Dt � w /ðxÞ � /nðxÞ
Dt

;
r/ðxÞ � rnðxÞ

Dt

� �
þ Fð/ðxÞ; r/ðxÞÞ ¼ fnð/ðxÞ; xÞ 8 x 2 B ð38Þ
(i.e. if for every x 2 B it is possible to choose an r/ðxÞ, at which the maximum in (37) is attained, in such a way that r/ : B ! RM, as
a function of x, belongs to V), then
Fn½/� ¼max
r2V

Gn½/; r� 8 / 2 S:
Proof. Let / 2 S and suppose that (38) is satisfied. Then, on the one hand,
max
r2V

Gn½/; r�P Gn½/; r/� ð39Þ

¼
Z
B

1
2
r/ � Dr/þ Dt w

/� /n

Dt
;
r/ � rn

Dt

� �
þ Fð/; r/Þdx�

Z
@Bq

/�qdS ð40Þ

¼
Z
B

1
2
r/ � Dr/þ fnð/; xÞdx�

Z
@Bq

/�qdS ¼ Fn½/�: ð41Þ
On the other hand, for every r 2 V
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Gn½/; r� ¼
Z
B

1
2
r/ � Dr/þ Dt w

/� /n

Dt
;
r � rn

Dt

� �
þ Fð/; rÞdx�

Z
@Bq

/�qdS ð42Þ

6

Z
B

1
2
r/ � Dr/þ fnð/ðxÞ; xÞdx�

Z
@Bq

/�qdS ¼ Fn½/�: ð43Þ
Consequently, maxr2V Gn½/; r� 6 Fn½/�, completing the proof. h

Typically, gradient-descent methods are employed in the numerical solution of (34). In particular, a Newton–Raphson
iteration guarantees convergence of the method if the objective function is strictly convex [4]. However, if the function
Fð/; rÞ defining the electrochemical potential density is non-convex, the convexity of the effective incremental potential can-
not be guaranteed for large values of the time step Dt, limiting therefore the robustness and efficiency in the minimization
procedure. This important limitation in the numerical solution of the electrophysiology update is overcome in Proposition 2,
where it is shown that as Dt ! 0 the incremental potential becomes strictly convex, implying that the minimization algo-
rithm will converge to the unique solution for sufficiently small Dt.

Proposition 2. A sufficient condition for Fn to be strictly convex is that
1
Dt

>
d/

C/
� l

C/CB
; ð44Þ
where d/;l and CB are as in Theorem 1.
Proof. For every / and ~/ 2 R
ð1� kÞfnð/Þ þ kfnð~/Þ ð45Þ

P max
r2RM

ð1� kÞ Dt w
/� /n

Dt
;
r � rn

Dt

� �
þ Fð/; rÞ

� �
þ k hw

~/� /n

Dt
;
r � rn

Dt

 !
þ Fð~/; rÞ

 !( )
; ð46Þ
while for every r 2 RM
ð1� kÞDt w
/� /n

Dt
;
r � rn

Dt

� �
þ kDt w

~/� /n

Dt
;
r � rn

Dt

 !
� Dt w

ð1� kÞ/þ k~/� /n

Dt
;
r � rn

Dt

 !
P

kð1� kÞ
2

C/

Dt
ð/� ~/Þ2
and
ð1� kÞFð/; rÞ þ kFð~/; rÞ � Fðð1� kÞ/þ k~/; rÞP kð1� kÞ
2

inf
R�RM

@2F

@/2

 !
ð/� ~/Þ2:
Therefore,
ð1� kÞ Dt w
/� /n

Dt
;
r � rn

Dt

� �
þ Fð/; rÞ

� �
þ k Dt w

~/� /n

Dt
;
r � rn

Dt

 !
þ Fð~/; rÞ

 !

P Dt w
ð1� kÞ/þ k~/� /n

Dt
;
r � rn

Dt

 !
þ Fðð1� kÞ/þ k~/; rÞ

 !
þ kð1� kÞ

2
C/

Dt
� d/

� �
ð/� ~/Þ2
for every r 2 RM and
ð1� kÞfnð/Þ þ kfnð~/ÞP fnðð1� kÞ/þ k~/Þ þ kð1� kÞ
2

C/

Dt
� d/

� �
ð/� ~/Þ2:
All in all,
ð1� kÞFn½/� þ kFn½~/� � F½ð1� kÞ/þ k~/�P kð1� kÞ
2

Z
B
rð/� ~/Þ � Drð/� ~/Þ þ C/

Dt
� d/

� �
ð/� ~/Þ2

� �
dx

P
kð1� kÞ

2
C/

Dt
þ l

CB
� d/

� �Z
B
ð/� ~/Þ2 dx: �
2.4. Spatial discretization: finite-element approximation

In the following, we shall be concerned with finding an approximate solution to problem (34). To this end, we pursue a
finite-element formulation based on the Ritz method. For the sake of clarity, we omit the time-related sub-indices in the fol-
lowing. We perform the spatial approximation by considering a finite-dimensional approximating space Sh � S. The basis
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fN1;N2; . . . ;Nmg 2 Sh is systematically constructed upon a finite-element partition Bh of the domain B, where the superindex
h indicates the dependence on the mesh size. Thus, any element /h 2 Sh can be uniquely expanded as
/h ¼
Xm

a¼1

Naua; ð47Þ
where ua 2 R; a ¼ 1; . . . ;m. We consider finite-element basis such that the Kronecker-delta property is satisfied, that is,
NaðxbÞ ¼
1 a ¼ b

0 a – b

�
:

We then look for a solution to the approximate problem
min
/2Sh

Fn½/� ¼min
u2Rm

Fh
nðuÞ; ð48Þ
where u ¼ ½u1; . . . ;um� and
Fh
nðuÞ ¼

Z
Bh

Xm

a¼1

Xm

b¼1

1
2
rNa � DrNbuaub þ fn

Xm

a¼1

Naua

 !( )
dx�

Z
@Bh

q

Xm

a¼1

Na�qua dS; ð49Þ
where we have omitted the dependence on the position x of the terms in the integrand, for simplicity.

Proposition 3. Under condition (44), the minimization problem (48) is a convex problem and has a unique solution U� 2 Rm.
Moreover, if u # f nð

Pm
a NaðxÞua; xÞ 2 C1ðRmÞ 8 x 2 B, then the optimal point U� is characterized by the optimality condition
DFh
nðU

�Þ ¼ 0; ð50Þ
where
DFh
nðuÞ

h i
a
¼
Z
Bh

Xm

b¼1

rNa � DrNbub þ
@

@/
fn

Xm

a¼1

Naua

 !
Na

( )
dx�

Z
@Bh

q

Na�qdS: ð51Þ
Proof. Let u; ~u 2 Rm; / ¼
Pm

a¼1Naua; ~/ ¼
Pm

a¼1Na~ua and k 2 ð0;1Þ. We note that
Fh
nðð1� kÞuþ k~uÞ ¼ Fn½ð1� kÞ/þ k~/� < ð1� kÞFn½/� þ kFn½~/� ¼ ð1� kÞFh

nðuÞ þ kFh
nð~uÞ ð52Þ
and therefore Fh
n is a strictly convex function in Rm. Standard results for unconstrained optimization of strictly convex objec-

tive functions (see, e.g., [4]) guarantee the existence and uniqueness of the optimal point U� 2 Rm. The smoothness condition
on fn implies the existence of the first tangent DFh

n : Rm ! Rm described in (51), and therefore the optimality condition (50)
follows from standard results of convex optimization. h
Remark 3. Tipically, the minimization problem (48) is solved using gradient-descent methods where the first, and possibly
the second tangent of (49) are required. Assuming u # f nð

Pm
a NaðxÞua; xÞ 2 C2ðRmÞ 8 x 2 B, it follows that the components of

the second tangent take the form
D2Fh
nðuÞ

h i
ab
¼
Z
Bh
rNa � DrNb þ

@2

@/2 fn

Xm

a¼1

Naua

 !
NaNb

( )
dx;
which is always symmetric since it derives from a potential.
We shall not prove in this work the convergence of the finite-element approximation scheme as the mesh size h! 0.

However, we note that the convergence of finite-element approximations for variational formulations of non-linear
problems of the type here presented, including convergence of numerical quadrature, has been recently addressed using
C�convergence [10] in the context of quantum mechanics [18,43,28]. We remark that for the particular case of the Fitz-
Hugh–Nagumo model, error estimates for the Galerkin finite-element approximation have been derived by Sanfelici [41].

Remark 4 (Poincaré constant). The Poincaré constant can be numerically approximated using a finite-element scheme, as
we show next. Let S ¼ g 2 H1ðBÞ s:t: g ¼ 0 on @B/ be the space of admissible solutions and Sh � S be the corresponding
finite-element approximating space. From (22) we can express the optimal Poincaré constant CB in terms of the
minimization problem
1
CB
¼ inf

g2S

Z
B
jrgðxÞj2 dxZ
B
gðxÞ2 dx

; ð53Þ
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where we recognize the objective function as the Rayleigh quotient. Therefore, the problem (53) is an eigenvalue problem,
with kmin ¼ 1

CB
P 0 being the minimum eigenvalue. Using a finite-element approximation of the kind (47), we arrive at the

classical finite-dimensional Rayleigh–Ritz problem
kh
min ¼min

u2Rm

uT Ku
uT Mu

ð54Þ
where K;M 2 Rm�m are the stiffness and mass matrices, respectively, with components
Kab ¼
Z
B
rNa � rNb dx;

Mab ¼
Z
B

NaNb dx:
Due to the approximating property of the finite-element space Sh � S, it follows that kh
min P kmin, and consequently 1

kh
min
6 CB .

Classical finite-element error estimates show that kh
min ! kmin as h! 0, and therefore 1

kh
min

can be used as an approximation to

CB for sufficiently fine meshes.
2.5. Application to the FitzHugh–Nagumo model

As an example of the application of the proposed variational formulation, we consider the FitzHugh–Nagumo equations of
electrophysiology, in the form presented in [40,38]. The FitzHugh–Nagumo model and variants of it have been widely em-
ployed in modeling the cardiac activity in mammalian hearts. They consider one recovery variable (M ¼ 1), and the source
terms and the rate potential take the form
f /ð/; rÞ ¼ c1/f/� agf1� /g � c2r; ð55Þ
f rð/; rÞ ¼ c2f/� drg ð56Þ
and
W½ _/; _r� :¼
Z
B

wð _/; _rÞdx ¼
Z
B

1
2

_/2 � c2

2b
_r2

� �
dx; ð57Þ
respectively, where a 2 R is a threshold parameter for electrical activation, c1 2 Rþ and c2 2 Rþ are excitation rate and exci-
tation decay positive constants, respectively, and b 2 Rþ and d 2 Rþ are recovery rate and recovery decay positive constants,
respectively. The generalized electrochemical potential takes the form
E½/; r� :¼
Z
B

Eð/;r/; rÞdxþ
Z
Bq

/�qdS

¼
Z
B

1
2
r/ � Dr/þ c1

1
4

/4 � ð1þ aÞ
3

/3 þ a
2

/2

 �

þ c2 /r � d
2

r2


 �� �
dxþ

Z
Bq

/�qdS; ð58Þ
where E : R� RN � R! R is the electrochemical potential density. Fig. 1(a) depicts the electrochemical potential density
landscape for values typically employed in cardiac simulations. As anticipated, the electrochemical potential density may
be non-convex, as shown in the plane cut r ¼ 0:5 in Fig. 1(b).

Proposition 4. Suppose that N 6 4 and that either c1CBða2 � aþ 1Þ < 3l or
Dt <
1

c1
3 ð1� aþ a2Þ � l

CB

; ð59Þ
where l is the smallest eigenvalue of the conductivity tensor D and CB is the Poincaré constant in (22). Then, the FitzHugh–Nagumo
semi-discrete electrophysiology equations
/nþ1 � /n

Dt
� divðDr/nþ1Þ ¼ f /ð/nþ1; rnþ1Þ; ð60Þ

rnþ1 � rn

Dt
¼ b

c2
f rð/nþ1; rnþ1Þ; ð61Þ
admit a unique weak solution ð/nþ1; rnþ1Þ determined by the relations
Fn½/nþ1� ¼ min
/2H1 ðBÞ

/¼�/ on @B/

Fn½/� and rnþ1 ¼
rn þ bDt/nþ1

1þ bd Dt
; ð62Þ
where Fn½/�, which is given by (36), is strictly convex.



(a) Electrochemical energy landscape (b) Energy landscape non-convex slice (r = 0.5)

Fig. 1. Energy landscape for the electrochemical potential density using a ¼ 0:12; c1 ¼ 0:175; c2 ¼ 0:03; b ¼ 0:011 and d ¼ 0:55.
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Proof. The proposition follows from Theorem 1, Lemma 1 and Proposition 2, once we check that
Fð/; rÞ ¼ c1
1
4

/4 � ð1þ aÞ
3

/3 þ a
2

/2
� �

þ c2 /r � d
2

r2
� �

ð63Þ
satisfies the hypotheses (17)–(19) with c ¼ 2, that
sup
R�R

@f /

@/
ð/; rÞ ¼ c1

3
ð1� aþ a2Þ > 0 ð64Þ
and that
ð/� /nÞ
2

2Dt
� c2ðr � rnÞ2

2bDt
þ Fð/; rÞ ¼ fnð/; xÞ () r ¼ rn þ bDt/

1þ bdDt
ð65Þ
(the condition in (38) holds automatically since rn þ bDt/ 2 L2 whenever rn 2 L2 and / 2 H1). In order to prove (17) it suffices
to observe that
jFð/; rÞj 6 c1

4
j/j4 þ c1ð1þ aÞ

3
ðj/j4 þ 1Þ þ c1a

2
ðj/j4 þ 1Þ

� �
þ c2

/2 þ r2

2
� d

2
r2

 !
ð66Þ

6
c1

4
þ c1ð1þ aÞ

3
þ c1a

4
þ c2

2

� �
j/j4 þ c2 þ d

2
r2 þ c1

1þ a
3
þ a

4

� �
: ð67Þ
Conditions (F18) and (F19) are proved analogously. The value of sup @f /

@/ is obtained from
@f /

@/
¼ �3c1 /� 1þ a

3

� �2

þ c1

3
ð1� aþ a2Þ
and (65) holds because the expression on the left is quadratic in r. h

From (59) we see that knowing l and CB improves the time-step upper bound, and indeed it can be numerically verified
that the finite element method remains robust and stable for larger time steps as the ellipticity of the system (measured by
l) increases, as we show in the next section. Nevertheless, the dependence of the Poincaré constant CB on B and @B/ is, in
general, very hard to make explicit (see, e.g. [46]).

When dealing with a pure Dirichlet problem (i.e. when @B/ ¼ @B), CB is the reciprocal of the first Dirichlet eigenvalue of
the Laplacian and can be bounded above, for example, by the thickness of B (this can be seen by a careful inspection of the
proof of the Gagliardo–Nirenberg inequality [13], the monotonicity of the Dirichlet eigenvalues with respect to the domain
and a standard domain decomposition argument). At the opposite end, in the case of a pure Neumann problem (when
@B/ ¼£), the constant CB depends on the diameter of the domain and on the curvature of its boundary in a very subtle man-
ner (CB blows up as the domain becomes less and less connected, as when a rectangle is pinched in the middle, in a way that
is difficult to quantify, see, e.g. [5, Theorem 1.1]). As already mentioned in Remark 4, for arbitrary geometries the constant CB
can be approximated by the minimum eigenvalue of the finite-element discretization of the Rayleigh–Ritz problem.

Remark 5. Due to the above considerations, a weaker upper bound for the time-step size, which, by virtue of Proposition 4,
still guarantees the strict convexity of Fn and the well-posedness of the minimax problem for arbitrary domains is:
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Dt <
3

c1ð1� aþ a2Þ : ð68Þ
3. Numerical examples

To demonstrate the applicability of the proposed variational update in the time integration of electrophysiological sys-
tems, we start by considering the simulation of a single-cell, where a spatially-uniform response is assumed and spatial
dependence is usually neglected. This is equivalent to setting the conductivity tensor to zero, and the effective minimization
problem (34) reduces to the unconstrained minimization of the effective density fnð/Þ. Typical parameter values for the
FitzHugh–Nagumo model used in cardiac-tissue simulations are given in Table 1. For initial conditions, we have set
/jt¼0 ¼ 0:2; rjt¼0 ¼ 0. These values ensure the activation of the cell, given that the initial potential is greater than the thresh-
old potential a for a cell in resting condition ðr ¼ 0Þ. Using a Newton–Raphson solver and setting the time-step size to
Dt ¼ 10 ms, we have determined the time evolution of the transmembrane potential and recovery variable for the time
interval ½0;800� ms, see Fig. 2. For all practical matters, in single-cell simulations N 6 3, and we note that the smallest eigen-
value of the conductivity tensor is l ¼ 0. Let
Dtsc
convex :¼ 3

c1ð1� aþ a2Þ ¼ 18:5 ms: ð69Þ
Thus, from Proposition 4 we have that
Dt < Dtsc
convex ¼ 18:5 ms
is the condition that guarantees strict convexity in the effective minimization problem. To see the applicability of the time-
step upper bound Dtsc

convex, we have performed time-history calculations for several values of Dt > Dtsc
convex and Dt < Dtsc

convex.
From these calculations, we have obtained the error in each iteration from the evaluation of the residual norm, which in this
case corresponds to the absolute value of the first derivative of the effective energy density. Fig. 3 shows the error versus the
number of iterations for those time steps in which the number of iterations required to achieve an error below 10�10 was the
largest. We see that for Dt < Dtsc

convex, the error tolerance is quickly achieved in at most 3 iterations and quadratic conver-
gence is observed in all cases. In contrast, cases where Dt > Dtsc

convex show lower order of convergence for a considerable num-
ber of iterations before they achieve quadratic convergence (case Dt ¼ 25 ms), or no convergence at all in other cases
(Dt ¼ f33:3;50:0g ms), for a maximum number of iterations set to 20.

We now consider the case of electrical propagation in a rectangular block with spatial domain B ¼ ½0;100� � ½0;100�
�½0;20� � R3, where the length units are in millimeters. We have assumed a surface source of fixed transmembrane voltage
in the yz-plane at x ¼ 0 with domain ½0;20� � ½4:8;5:2� where the transmembrane potential is set to / ¼ 1. In the remaining
boundary, a zero-flux condition has been imposed. We consider the general case of a transversely isotropic conductivity ten-
sor of the form
D ¼ disoI þ dortn� n
where diso 2 Rþ corresponds to the isotropic conductivity, I is the unit tensor and dort 2 Rþ corresponds to the increase of
conductivity in the n direction, and we note that isotropic conductivity is recovered by setting dort ¼ 0. All the remaining
parameters have been set to the values indicated in Table 1. All simulations have been performed using a finite-element
mesh with 1200 tetrahedral linear elements otherwise indicated, and a standard Newton–Raphson solver was employed
for all the minimization problems involved. We have considered two cases: an isotropic block with diso ¼ 1 mm2=ms and
a transversely isotropic block with diso ¼ 0:1 mm2=ms; dort ¼ 0:9 mm2=ms and n ¼ ½1;0;0�T . The time evolution of the trans-
membrane potential field for the transversely isotropic block is shown in Fig. 4, where the time step has been set to
Dt ¼ 12 ms. We observe that the method is able to capture the preferential direction n of electrical propagation dictated
by the conductivity tensor, as expected.

To study the robustness of the Newton–Raphson solver, we have analyzed the convergence of the method for several val-
ues of the time-step interval. As noted in Remark 5, the sub-optimal upper bound Dtsc

convex ¼ 18:5 ms defined in (69) applies in
this case. We have carried out numerical simulations considering time steps smaller and greater than Dtsc

convex and have
Table 1
Parameter values for a single-cell example.

Parameter Value Units Description

a 0.08 – Normalized threshold potential
c1 0.175 1=ms Excitation rate constant
c2 0.03 1=ms Excitation decay constant
b 0.011 1=ms Recovery rate constant
d 0.55 – Recovery decay constant



Fig. 2. Time evolution for a single-cell transmembrane potential and recovery variable.

Fig. 3. Error plot for different time steps, Dtconvex: ¼ 18:5 ms.
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computed the residual error as a function of the number of iterations for the case with most iterations for the isotropic block
and the transversely-isotropic block, which are shown in Fig. 5(a) and (b), respectively. We see that in both cases, simula-
tions with Dt < Dtsc

convex quickly achieve the quadratically-convergent stage, as expected. To understand the influence of
the conductivity tensor, we approximate the Poincaré constant by solving the minimum eigenvalue problem associated to
the block geometry and boundary conditions, as explained in Remark 4, to obtain that 1

CB
	 9:683� 10�3. We further note

that in the isotropic block, the minimum conductivity eigenvalue is l ¼ 1 mm2=ms, whereas in the transversely-isotropic
block l ¼ 0:1 mm2=ms. Thus, evaluating the time-step bound (59) we obtain that Dt < 22:55 ms and Dt < 18:54 ms for
the isotropic and transversely-isotropic blocks, respectively. Fig. (5(a)) shows that cases converging quadratically are in fact
those where Dt < 22:55 ms, including the case Dt ¼ 20 ms > tsc

convex. In contrast, in Fig. (5(b)) the case Dt ¼ 20 ms does not
converge quadratically from the initial guess and takes many more iterations to converge, while cases with greater time-step
size do not converge for a maximum number of iterations set equal to 20.

As a final example, and to demonstrate the applicability of the method in clinical applications, we consider a human
biventricular domain determined from magnetic-resonance images of a healthy volunteer. The finite-element mesh is com-
posed by 37,127 linear tetrahedral elements and 8,612 nodes, and is shown in Fig. 6. To obtain values of the transmembrane
potential within the physiological range, the potential / is rescaled as
U ¼ 110/� 80 ½mV�:



Fig. 4. Transmembrane potential field for a rectangular block with transversely-isotropic conductivity tensor.

(a) Isotropic block (b) Transversely-isotropic block

Fig. 5. Residual error versus number of iterations for the rectangular block example.

Fig. 6. Human biventricular finite-element mesh.
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Fig. 7. Evolution of the transmembrane potential in a human biventricular model.
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We have considered the model constants described in Table 1. The transversely-isotropic conductivity tensor constants were
set to diso ¼ 1 mm2=ms and dort ¼ 14 mm2=ms with n being the apico-basal direction, to approximately reflect the highly-
conducting nature of the Purkinjee fibers found in cardiac tissue. The boundary of the biventricular mesh has been prescribed
with no-flux condition everywhere but in a small region where the atrio-ventricular node is located, where the rescaled
transmembrane potential is set to U ¼ 20 mV for the whole duration of the simulation. Setting the time-step size to
Dt ¼ 20 ms, we have computed the transmembrane potential map for a number of points within the time interval
½0;500�ms, which are shown in Fig. 7. We clearly observe how the electrical wave originated at the atrio-ventricular node
propagates down through the septum wall, to reach the outer ventricular walls, eventually activating the whole biventricular
domain at around t ¼ 320 ms, to continue with the repolarization phase of cardiac activity and going back to the resting state
at approximately t ¼ 500 ms.

The convergence error of the Newton–Raphson iterations for several time-step values has been recorded for a number of
simulations, see Fig. 8. For the particular biventricular geometry and boundary conditions, the minimum eigenvalue problem
(54) yields 1

CB
	 1:21� 10�4, and we note that for the chosen conductivity tensor l ¼ 1 mm2=ms. Consequently, from (59) we



Fig. 8. Residual error versus number of iterations for the human biventricular example.
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obtain that Dt < 18:54 ms, which represents only a slight improvement from Dtsc
convex ¼ 18:5 ms. We do, however, observe

reasonable convergence for cases up to Dt ¼ 24 ms, whereas the case Dt ¼ 30 ms does not converge for a maximum number
of iterations of 20.
4. Discussion

In this work, we have reformulated the general problem of electrical conduction in cardiac tissue as a gradient flow, and
its temporal discretization as an equivalent variational principle. As anticipated, there are both, theoretical and numerical
consequences that stem from this reformulation. From the theoretical point of view, the proposed variational principle lends
itself to rigorous mathematical analysis addressing the existence of weak solutions of the time-discretized governing equa-
tions. It is worth remarking that the gradient flow and variational principle introduced in this work require the postulation of
electrochemical and rate potentials, which are not necessarily available, or may be difficult to find for all electrophysiology
models reported to date. An interesting avenue of research is the determination of what models can be expressed in terms of
generalized potentials, and therefore conform to the proposed variational framework, for which the results reported in this
work can be applied. Also, new models can be derived from the present gradient-flow formulation and the direct postulation
of electrochemical potentials, which can be physically motivated based on smaller-scales mechanisms, potentially allowing
for multiscale modeling.

From a numerical analysis standpoint, the existence and uniqueness of the solution of the saddle-point variational prob-
lem pose conditions on the time-step size that only depend on the model potentials and parameters. When analyzing the
effective minimization problem, the conditions on the time-step size also guarantee the strict convexity of the incremental
problem. In particular, we have shown that a finite-element spatial discretization yields to a convex problem with strictly
convex objective function, for which convergence of gradient-descent methods is assured. Therefore, the time-step bounds
presented in this work represent an important step toward improving the robustness of cardiac electrophysiology simula-
tions. It is important to remark that the time-step bound given by Eq. (68), which is used extensively in the analysis of
the results in Section 3 can be improved by the bound (59) if the optimal Poincaré constant and the conductivity-tensor
smallest eigenvalue can be estimated via the finite-dimensional Rayleigh–Ritz problem. It follows from the definition of
the conductivity tensor (3) that the smallest eigenvalue of the conductivity tensor is l ¼ diso. Therefore, in the example of
rectangular blocks, Proposition 4 yields a greater upper bound in the case of the isotropic block, since its conductivity-tensor
smallest eigenvalue liso ¼ 1:0 is greater than the smallest eigenvalue of the transversely-isotropic block ltra ¼ 0:1, while the
Poincaré constant is the same in both cases. This observation has important implications in the application of numerical
methods in computational cardiology, where transversely-isotropic conductivity tensors that account for the fiber-rein-
forced microstructure seen in cardiac-muscle tissue are the gold standard. We therefore conclude that the conductivity of
the cardiac tissue matrix, and not that of the fibers, controls the time-step bound that guarantees the convergence of the
non-linear solve. This observation is particularly relevant in the simulation of pathological cases in diseased hearts like bun-
dle branch block or myocardial infarction, where the electrical conduction is severely decreased in localized regions of the
Bundle of His or in the myocardium, respectively.

In all the numerical simulations carried out in this work we have employed a Newton–Raphson scheme to solve the
resulting nonlinear discrete weak form given by (50). At each iteration, a tangent matrix and residual vector are computed,
and the linear system of equations corresponding to the linearization of (50) must be solved in order to update the solution.
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We remark here that any electrophysiological model that can be recast in the variational framework proposed here will al-
ways result in symmetric tangent matrices, which will in addition be positive-definite as long as the time-step bound (44) is
met, as indicated in Remark 3. We note that, in general, this is not the case for most finite-element formulations of cardiac
electrophysiological models, where non-symmetric tangent matrices usually arise. A linear system of equations with a po-
sitive-definite symmetric matrix has several computational and theoretical advantages over non-symmetric systems, like
being amenable to efficient iterative methods of numerical linear algebra which result in computing times that can be sev-
eral times smaller than those needed for non-symmetric linear systems. This consideration become very relevant when deal-
ing with large-scale problems that are solved using parallel-computing platforms, highlighting the superior efficiency
guaranteed by the proposed scheme over traditional finite-element formulations of the cardiac electrophysiology problem.

We close by noting that many of the techniques from computational solid mechanics and plasticity based on variational
principles can find applications on the proposed variational principle for electrophysiology. For example, re-meshing tech-
niques [39] and arbitrary Lagrangian–Eulerian methods [31] based on variational principles can be extended to the frame-
work proposed in this work.
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