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Abstract

Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture
that was introduced by Henao and Mora-Corral (2010). The total energy to minimize is the sum of
the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity
problem, since the crack set and the set of new surface are unknowns of the problem. The expression
of the functional involves a volume integral and two surface integrals, and this fact makes the problem
numerically intractable. In this paper we propose an approximation (in the sense of Γ-convergence)
by functionals involving only volume integrals, which makes a numerical approximation by finite ele-
ments feasible. This approximation has some similarities to the Modica–Mortola approximation of the
perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the
added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one
and orientation-preserving.

1 Introduction

Free-discontinuity problems have attracted a great amount of attention in the mathematical community in
the last decades, because of their applications and of the mathematical challenges that they pose. We refer
to the monograph [7] for an in-depth study. A common feature of these problems is the presence of an
interaction between an n-dimensional volume energy and an (n− 1)-dimensional surface energy. The latter
involves a surface set, which is an unknown of the problem. A paradigmatic model is the Mumford & Shah
[50] functional for image segmentation, which was recasted as a variational free-discontinuity problem by De
Giorgi, Carriero and Leaci [29] as follows: for a given f ∈ L2(Ω), minimize∫

Ω

[
|∇u|2 + (u− f)2

]
dx +Hn−1(Ju) (1.1)

among u ∈ SBV (Ω). Here, Ω is a bounded open set of Rn and SBV is the space of functions of special
bounded variation. In this case, the free discontinuity set is Ju, the jump set of u.

In elasticity theory, the paradigmatic free-discontinuity problem is that of fracture, which can be seen as
a vectorial version of the Mumford–Shah functional. In its simplest form, the functional to minimize is∫

Ω

|∇u|2 dx +Hn−1(Ju) (1.2)

among u ∈ SBV (Ω,Rn). The first term of (1.2) is a handy substitute of the elastic energy, and the second
term penalizes the crack formation, as stipulated by Griffith’s [35] theory of fracture. It was Francfort &
Marigo [32] who proposed a variational formulation of brittle fracture in a quasi-static setting.

Another phenomenon in elasticity theory that can be regarded as a free-discontinuity problem is that of
cavitation, which is the process of formation and rapid expansion of voids in solids, typically under triaxial
tension. The seminal paper of Ball [11] described this process as a singular ordinary differential equation,
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but in his work and in others following it, the location of the cavity points was prescribed. It was shown by
Müller & Spector [48] that cavitation can be recasted as a free-discontinuity problem following the general
scheme described above. In this case, the energy to minimize is∫

Ω

W (Du) dx + Per u(Ω) (1.3)

among u ∈W 1,p(Ω,Rn) satisfying some invertibility conditions. The first term of (1.3) is the elastic energy
of the deformation, while the second term represents the energy produced by the creation of new surface,
and, hence, by the cavitation. The idea is that the image u(Ω), properly defined, may create a hole which
was not previously in Ω. The new surface created by the hole is detected by Per u(Ω), so in this case the
free discontinuity set is the measure-theoretic boundary of u(Ω), which lies in the deformed configuration.

Our free discontinuity problem to be approximated gathers the fracture functional with the cavitation
functional. To be precise, Henao & Mora-Corral [37, 38, 39] showed that when the functional setting allows
for cavitation and fracture, it was convenient to replace the term Per u(Ω) in (1.3) by the functional

E(u) := sup {E(u, f) : f ∈ C∞c (Ω× Rn,Rn), ‖f‖∞ ≤ 1} ,

where

E(u, f) :=

∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + det∇u(x) div f(x,u(x))] dx.

They proved that E(u) equals the Hn−1-measure of the new surface created by u, whether produced by
cavitation, fracture or any other process of surface creation. They also proved the existence of minimizers of∫

Ω

W (Du) dx +Hn−1(Ju) + E(u) (1.4)

among u ∈ SBV (Ω,Rn) satisfying some invertibility conditions. We remark that in (1.3) and (1.4), the
stored-energy function W is polyconvex and has the growth

W (F)→∞ as det F→ 0. (1.5)

In this paper, we define a slight variant of the functional E , namely

Ē(u) := sup
{
E(u, f) : f ∈ C∞c (Ω̄× Rn,Rn), ‖f‖∞ ≤ 1

}
.

The main difference of Ē with respect to E is that, while E measures the surface created, Ē also measures
the stretching of the boundary ∂Ω by the deformation. In fact, it can be proved that, loosely speaking, the
equality

Ē(u) = E(u) +Hn−1(u(∂Ω))

holds.
A direct approach to numerical minimization of free-discontinuity functionals, as those described above,

is unfeasible using standard methods. A fruitful procedure is the construction of an approximating sequence
of elliptic functionals Iε, possibly defined in a different functional space, that Γ-converge to the functional I
to be approximated.

One of the first results in this direction was the example of Modica & Mortola [45], which was recasted by
Modica [44] as an approximation of a model for phase transitions in liquids. They showed how the perimeter
functional can be approximated by elliptic functionals via Γ-convergence. As a particular case, they showed
the convergence of
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∫
Ω

[
ε|Dw|2 +

w2(1− w)2

ε

]
dx (1.6)

for functions w ∈W 1,2(Ω) with prescribed mass
∫

Ω
w dx, to the functional

Perw−1(0)
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in the space BV (Ω, {0, 1}).
A landmark study was the approximation by Ambrosio & Tortorelli [8, 9] of the Mumford–Shah functional

(1.1) by the functionals ∫
Ω

(v2 + ηε) |Du|2 dx +
1

2

∫
Ω

[
ε|Dv|2 +

(1− v)2

ε

]
dx

for u, v ∈W 1,2(Ω). Here v is an extra variable that converges a.e. to 1, and indicates healthy material when
v ' 1 and damaged material when v ' 0. The infinitesimal ηε goes to zero faster than ε.

The work of Ambrosio & Tortorelli [8] has given rise to many extensions (the reader is referred, in
particular, to the monograph [18]), as well as actual numerical studies and experiments [15, 14, 22]. We
ought to say that the numerical experiments of Bourdin, Francfort & Marigo [16] (see also the review paper
[17]) were in fact a strong motivation for our work, and so was the analysis by Burke [21] of the Ambrosio–
Tortorelli functional.

In our context of interest of fracture, we mention that Chambolle [23] was able to extend their result to
approximate, instead of (1.2), the more realistic energy∫

Ω

W (∇u) dx +Hn−1(Ju), (1.7)

when W equals the quadratic functional corresponding to linear elasticity. Later, Braides, Chambolle & Solci
[20] proved that the Γ-convergence still holds for a quasiconvex W with p-growth from above and below. As
a by-product of our analysis, we cover the case where W is polyconvex and has the growth (1.5), as required
in nonlinear elasticity. We believe that this is the first lower bound inequality proved for a stored energy
function satisfying that growth condition.

This paper deals with the approximation of∫
Ω

W (Du) dx +Hn−1(Ju) + Ē(u) (1.8)

which is, as mentioned above, a variant of (1.4), and, hence, a model for the energy of an elastic deformation
that also exhibits cavitation and fracture. We chose the functional (1.8) instead of (1.4), that is to say, Ē
instead of E , because the latter lends itself to an easier approximation. The study of a model that gathers
cavitation and fracture was partially motivated by the role of cavitation in the initiation of fracture in rubber
and ductile metals through void growth and coalescence (see [55, 52, 36, 34, 54, 33, 51]). In particular, the
numerical experiments carried out using the method described in this work (see the companion paper [40])
aim to contribute to the understanding of void coalescence as a precursor of fracture.

In broad lines, the term Hn−1(Ju) of (1.8) can be treated as an Ambrosio–Tortorelli term, while the
term Ē(u) resembles a Modica–Mortola term, but it is subtler. The general scheme of the approximation of
(1.8) proposed in this paper is as follows. We will use two phase-field functions: v for Hn−1(Ju) and w for
Ē(u). As in the Ambrosio–Tortorelli approximation, v lies in the reference configuration, and v ' 1 indicates
healthy material, while v ' 0 represents damaged material. For technical reasons in our argument, we need
v to be continuous, so instead of

1

2

∫
Ω

[
ε|Dv|2 +

(1− v)2

ε

]
dx,

we choose ∫
Ω

[
εq−1 |Dv|q

q
+

(1− v)q
′

q′ε

]
dx

as an approximation of Hn−1(Ju), where q > n, and q′ is the conjugate exponent of q. The Sobolev
embedding guarantees that v is continuous. Thus, the approximation of the term Hn−1(Ju) of (1.8) follows
the scheme of Braides, Chambolle & Solci [20].
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The approximation of the term Ē(u) is new and summarized as follows. As in the Modica–Mortola
approximation, the phase-field function w is defined in the deformed configuration, and w ' 1 when there
is matter, while w ' 0 when there is no matter. In other words, w ' χu(Ω). Naturally, there must be a
relation between the phase-field variables, which is that w follows v but in the deformed configuration, so
w ' v ◦ u. Imposing an exact equality w = v ◦ u would make the construction of the recovery sequence too
strict, and, in fact, is incompatible with the boundary condition for v and w. The exact way of expressing
w ' v ◦ u is that w ≤ v ◦ u and that w is close to v ◦ u in L1. Again for technical reasons, the function w is
required to be continuous, so instead of (1.6), we choose
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∫
Q

[
εq−1 |Dw|q

q
+
wq
′
(1− w)q

′

q′ε

]
dy

to approximate Ē(u). Here Q ⊂ Rn is a bounded open set containing a fixed compact set K, which in turn
is assumed to contain the image of u. A key result in this approximation is the representation formula

Ē(u) = Per u(Ω) + 2Hn−1(Ju−1), (1.9)

valid for deformations u that are one-to-one. Equality (1.9) is the analogue of the representation formula
for E proved in [38, Th. 3]. We observe that the term Per u(Ω), explained above, appears together with the
term Hn−1(Ju−1), which measures the set of jumps of the inverse and accounts for a possible pathological
phenomenom consisting in a sort of interpenetration of matter for deformations u that still are one-to-one.
We refer to [38] for a discussion of this phenomenom, and just mention here that deformations u with
Hn−1(Ju−1) > 0 are, in general, not physical.

Given λ1, λ2 > 0, the main result of the paper is an approximation result of the functional

Iε(u, v, w) :=

∫
Ω

(v2 + ηε)W (Du) dx + λ1

∫
Ω

[
εq−1 |Dv|q

q
+

(1− v)q
′

q′ε

]
dx

+ 6λ2

∫
Q

[
εq−1 |Dw|q

q
+
wq
′
(1− w)q

′

q′ε

]
dy

(1.10)

to

I(u) :=

∫
Ω

W (∇u) dx + λ1

[
Hn−1(Ju) +Hn−1 ({x ∈ ∂DΩ : u 6= u0}) +

1

2
Hn−1(∂NΩ)

]
+ λ2 Ē(u) (1.11)

as ε→ 0, where 0 < ηε � ε. We explain the two terms in I that have not appeared so far. We impose to u
a Dirichlet boundary condition u0 in the Dirichlet part ∂DΩ of the boundary ∂Ω, while the Neumann part
∂NΩ is left free. The phase-field functions v and w are assumed to satisfy

v|∂DΩ = 1, v|∂NΩ = 0, w|Q\u(Ω) = 0.

The fact that v has to decrease to 0 at ∂NΩ forces a transition from 1 to 0, whose energy is, approximately,
1
2H

n−1(∂NΩ). This term is a constant, and, hence, it does not affect the minimization problem. On the
other hand, the term

Hn−1 ({x ∈ ∂DΩ : u(x) 6= u0(x)}) (1.12)

accounts for a possible fracture at the boundary. Indeed, it is well-known that the traces are not continuous
with respect to the weak∗ convergence in BV (see, e.g., [7, Sect. 3.8]), so even though uε = u0 on ∂DΩ for
a sequence of deformations uε, it is possible that its weak∗ limit u in BV does not satisfy the boundary
condition. This phenomenon is, nevertheless, penalized energetically by the term (1.12).

The admissible space for Iε is the set of (u, v, w) such that u ∈W 1,p(Ω,Rn), v ∈W 1,q(Ω), w ∈W 1,q(Q)
satisfying the boundary conditions described above, and u is one-to-one a.e. Moreover, u is assumed to
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create no surface, which is expressed as E(u) = 0. The admissible space for I is the set of u ∈ SBV (Ω,Rn)
such that u is one-to-one a.e.

The limit passage from Iε to I is meant to be in the sense of Γ-convergence, but, unfortunately, in
this paper we do not provide a full Γ-convergence result. The existence of minimizers, compactness and
lower bound are indeed proved. To be precise, the functional Iε has a minimizer for each ε. Moreover, if
(uε, vε, wε) is a sequence of admissible maps with supε Iε(uε, vε, wε) < ∞ then, for a subsequence, there
exists a one-to-one a.e. map u ∈ SBV (Ω,Rn) such that uε → u, vε → 1 and wε → χu(Ω) a.e. In addition,

I(u) ≤ lim inf
ε→0

Iε(uε, vε, wε).

Proving the upper bound, however, is out of reach at the moment, since it seems that the construction of
the recovery sequence would require, in particular, a density result for invertible maps, whereas only partial
results are known in this direction (see [46, 13, 42, 28, 47]). This is so because the usual approach to prove
a limsup inequality consists in first proving it for a dense subset of smooth maps and then conclude by
density. As mentioned above, in the presence of the constraint that u is one-to-one a.e., there are no known
results of density of smooth functions that are useful for our analysis. There are, in fact, more difficulties
that appear, such as to identify the set of limit functions u. We only prove that this set is contained in the
set of u ∈ SBV (Ω,Rn) such that u is one-to-one a.e., Hn−1(Ju) < ∞ and Ē(u) < ∞. Once identified that
set, another density result would be needed, this time of the style that piecewise smooth maps (for example,
maps with finitely many smooth cavities and smooth cracks) are dense in this set to be identified; that result
would be in the spirit of that of Cortesani [25] (see also [26]) stating that functions that are smooth away
from a polyhedral crack are dense in SBV with respect to Mumford–Shah energy. Instead of a full upper
bound inequality, what we perform is a series of examples of deformations u in dimension 2 that can be
approximated by admissible maps (uε, vε, wε) satisfying

I(u) = lim
ε→0

Iε(uε, vε, wε).

We have chosen the deformations u so that one creates a cavity, one creates an interior crack, one presents
fracture at the boundary, and one exhibits coalescence, which is modelled as the creation of a crack joining
two preexisting cavities. Those examples, as well as the numerical experiments of [40], allow us to believe
that the stated functional I is indeed the Γ-limit of Iε.

We now present the outline of this paper. In Section 2 we present the general notation as well as some
results that will be used throughout the paper. In Section 3 we give a geometric meaning to Ē by proving
the equality

Ē(u) = Per u(Ω) + 2Hn−1(Ju−1). (1.13)

We also show a lower semicontinity property for this functional. In Section 4 we present the general assump-
tions for the stored energy functional W and for the deformations. We also define the admissible set for the
functional Iε. In Section 5 we prove the existence of minimizers for the functional Iε. Section 6 proves the
compactness and lower bound for the convergence Iε → I. Section 7 construct some examples for the upper
bound.

2 Notation and preliminary results

In this section we set the general notation and concepts of the paper, and state some preliminary results.

2.1 General notation

We will work in dimension n ≥ 2, and Ω is a bounded open set of Rn representing the body in its reference
configuration. Vector-valued and matrix-valued quantities will be written in boldface. Coordinates in the
reference configuration will generically be denoted by x, while coordinates in the deformed configuration by
y.
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The closure of a set A is denoted by Ā, and its boundary by ∂A. Given two sets U, V of Rn, we will write
U ⊂⊂ V if U is bounded and Ū ⊂ V . The open ball of radius r > 0 centred at x ∈ Rn is denoted by B(x, r),
the closed ball by B̄(x, r), while B̄(Ā, r) is the set of x′ ∈ Rn such that dist(x′, Ā) ≤ r. The function dist
indicates the distance from a point to a set. Unless otherwise stated, a ball will always be an open ball.

Given a square matrix A ∈ Rn×n, its transpose is denoted by AT , and its determinant by det A. The
cofactor matrix of A, denoted by cof A, is the matrix that satisfies (det A)1 = AT cof A, where 1 denotes
the identity matrix. If A is invertible, its inverse is denoted by A−1. The inner (dot) product of vectors and
of matrices will be denoted by ·. The Euclidean norm of a vector x is denoted by |x|, and the associated
matrix norm is also denoted by | · |. Given a,b ∈ Rn, the tensor product a ⊗ b is the n × n matrix whose
component (i, j) is ai bj .

Unless otherwise stated, expressions like measurable or a.e. (for almost everywhere or almost every) refer
to the Lebesgue measure in Rn, which is denoted by Ln. The (n − 1)-dimensional Hausdorff measure will
be indicated by Hn−1. The measure H0 is simply the counting measure.

The Lebesgue Lp and Sobolev W 1,p spaces are defined in the usual way. So are the sets of class Ck, for an
integer k ≥ 0 or infinity, and their versions Ckc of compact support. Note that we do not identify functions
that coincide a.e. We will always indicate the domain and target space, as in, for example, Lp(Ω,Rn), except
if the target space is R, in which case we will simply write Lp(Ω). If K ⊂ Rn, we indicate by Lp(Ω,K) the
set of u ∈ Lp(Ω,Rn) such that u(x) ∈ K for a.e. x ∈ Ω, and analogously for other function spaces. The
space Lploc(Ω) indicates the set of f : Ω → R such that f |A ∈ Lp(A) for all open A ⊂⊂ Ω, and analogously
for other function spaces.

Strong or a.e. convergence is denoted with →, while weak convergence is denoted with ⇀.
With 〈·, ·〉 we will indicate the duality product between a distribution and a smooth function. The

identity function in Rn is denoted by id.
We will use the divergence operator in the deformed configuration, which will be called div.
If µ is a measure on a set U , and V is a µ-measurable subset of U , then the restriction of µ to V is

the measure on U , denoted by µ V , that satisfies µ V (A) = µ(A ∩ V ) for all µ-measurable sets A. The
measure |µ| denotes the total variation of µ.

Given two sets A,B of Rn, we write A = B a.e. if Ln(A \B) = Ln(B \A) = 0, and analogously when we
write that A = B holds Hn−1-a.e. In particular, the expression A ⊂ B Hn−1-a.e. means Hn−1(A \B) = 0.

2.2 Boundary and perimeter

Given a measurable set A ⊂ Ω, its characteristic function will be denoted by χA. Its perimeter, written
PerA or Per(A), is defined as

PerA := sup

{∫
A

div g(y) dy : g ∈ C∞c (Rn,Rn), ‖g‖∞ ≤ 1

}
,

while its perimeter in Ω is defined as

Per(A,Ω) := sup

{∫
A

div g(y) dy : g ∈ C∞c (Ω,Rn), ‖g‖∞ ≤ 1

}
.

Half-spaces are denoted by

H+(a,ν) := {x ∈ Rn : (x− a) · ν ≥ 0}, H−(a,ν) := H+(a,−ν),

for a given a ∈ Rn and a nonzero vector ν ∈ Rn. The set of unit vectors in Rn is denoted by Sn−1.
Given a measurable set A ⊂ Rn and a point x ∈ Rn, the density of A at x is defined as

D(A,x) := lim
r↘0

Ln(B(x, r) ∩A)

Ln(B(x, r))
.
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Definition 2.1. Let A be a measurable set of Rn. We define the reduced boundary of A, and denote it by
∂∗A, as the set of points y ∈ Rn for which a unit vector νA(y) exists such that

D(A ∩H−(y,νA(y)),y) =
1

2
and D(A ∩H+(y,νA(y)),y) = 0.

This νA(y) is uniquely determined and is called the unit outward normal to A.

This definition of boundary may differ from other usual definitions, but thanks to Federer’s [31] theorem
(see also [7, Th. 3.61] or [56, Sect. 5.6]) they coincide Hn−1-a.e. with all other usual definitions of reduced
(or essential or measure-theoretic) boundary for sets of finite perimeter. In particular, if Per(A,Ω) < ∞
then Per(A,Ω) = Hn−1(∂∗A ∩ Ω).

2.3 Approximate differentiability and functions of bounded variation

We assume the reader some familiarity with the set BV of functions of bounded variation, and of special
bounded variation SBV ; see [7], if necessary, for the definitions. This section is meant primarily to set some
notation.

The total variation of u ∈ L1
loc(Ω,Rn) is defined as

V (u,Ω) := sup

{∫
Ω

u(x) ·Divϕ(x) dx : ϕ ∈ C1
c (Ω,Rn×n), |ϕ| ≤ 1

}
,

where Divϕ is the divergence of the rows of ϕ.
The following notions are essentially due to Federer [31].

Definition 2.2. Let A be a measurable set in Rn, and u : A → Rn a measurable function. Let x0 ∈ Rn
satisfy D(A,x0) = 1, and let y0 ∈ Rn.

(a) We will say that x0 is an approximate jump point of u if there exist a+,a− ∈ Rn and ν ∈ Sn−1 such
that a+ 6= a− and

D
({

x ∈ A ∩H±(x0,ν) :
∣∣u(x)− a±

∣∣ ≥ δ} ,x0

)
= 0

for all δ > 0. The unit vector ν is uniquely determined up to a sign. When a choice of ν has been done,
it is denoted by νu(x0). The points a+ and a− are called the lateral traces of u at x0 with respect to the
νu(x0), and are denoted by u+(x0) and u−(x0), respectively. The set of approximate jump points of u
is called the jump set of u, and is denoted by Ju.

(b) We will say that u is approximately differentiable at x0 ∈ A if there exists L ∈ Rn×n such that

D

({
x ∈ A \ {x0} :

|u(x)− u(x0)− L(x− x0)|
|x− x0|

≥ δ
}
,x0

)
= 0

for all δ > 0. In this case, L (which is uniquely determined) is called the approximate differential of u
at x0, and will be denoted by ∇u(x0).

We will say that a map u : Ω → Rn is approximately differentiable a.e. when it is measurable and
approximately differentiable at almost each point of Ω.

If u : Ω → Rn is a function of locally bounded variation, Du denotes the distributional derivative of u,
which is a Radon measure in Ω. The Calderón–Zygmund theorem asserts that if u is locally of bounded
variation then it is approximately differentiable a.e. and ∇u coincides a.e. with the absolutely continuous
part of Du.

Lemma 2.3. Let u : Ω→ Rn be approximately differentiable a.e., and let E ⊂ Ω be measurable. Then χEu
is approximately differentiable a.e., and ∇(χEu) = χE∇u a.e.
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Proof. As E is measurable, by Lebesgue’s theorem, almost every point in E has density 1 in E, and almost
every point in Ω \ E has density 1 in Ω \ E. It is immediate to check that if x ∈ E satisfies D(E,x) = 1
and u is approximately differentiable at x then χEu is approximately differentiable at x with ∇(χEu)(x) =
∇u(x), while if x ∈ Ω \ E satisfies D(Ω \ E,x) = 1 then χEu is approximately differentiable at x with
∇(χEu)(x) = 0.

The following is a known result in the theory of BV functions; it is in fact a particular case of [7, Th.
3.84].

Lemma 2.4. Let u ∈ SBV (Ω,Rn)∩L∞(Ω,Rn) and let E be a measurable subset of Ω with Per(E,Ω) <∞.
Then χEu ∈ SBV (Ω,Rn) and JχEu ⊂ (Ju ∩ E) ∪ (∂∗E ∩ Ω) Hn−1-a.e.

2.4 Area formula and geometric image

We recall the area formula of Federer [31]. The formulation is taken from [48, Prop. 2.6].

Proposition 2.5. Let u : Ω → Rn be approximately differentiable a.e., and denote the set of approximate
differentiability points of u by Ωd. Then, for any measurable set A ⊂ Ω and any measurable function
ϕ : Rn → R, ∫

A

ϕ(u(x)) |det∇u(x)|dx =

∫
Rn
ϕ(y)H0({x ∈ Ωd ∩A : u(x) = y}) dy,

whenever either integral exists. Moreover, if ψ : A→ R is measurable and ψ̄ : u(Ωd ∩A)→ R is given by

ψ̄(y) :=
∑

x∈Ωd∩A
u(x)=y

ψ(x),

then ψ̄ is measurable and∫
A

ψ(x)ϕ(u(x)) |det∇u(x)|dx =

∫
u(Ωd∩A)

ψ̄(y)ϕ(y) dy, (2.1)

whenever the integral on the left-hand side of (2.1) exists.

An immediate consequence of Proposition 2.5 is that if u ∈ L∞(Ω,Rn) is one-to-one a.e. and approxi-
mately differentiable a.e. then det∇u ∈ L1(Ω).

The area formula of Proposition 2.5 has given rise to the notion of the geometric image (or measure-
theoretic image, using the expression in [48]) of a measurable set A ⊂ Ω under an approximately differentiable
map u : Ω → Rn. This was defined as u(A ∩ Ωd) by Müller and Spector [48]; for technical convenience,
however, we use the following definition, which is an adaptation of that of Conti and De Lellis [24].

Definition 2.6. Let u : Ω→ Rn be approximately differentiable a.e. and suppose that det∇u(x) 6= 0 for a.e.
x ∈ Ω. Define Ω0 as the set of x ∈ Ω such that u is approximately differentiable at x with det∇u(x) 6= 0,
and there exist w ∈ C1(Rn,Rn) and a compact set K ⊂ Ω of density 1 at x such that u|K = w|K and
∇u|K = Dw|K . For any measurable set A of Ω, we define the geometric image of A under u as u(A ∩Ω0),
and denote it by imG(u, A).

Standard arguments, essentially due to Federer [31, Thms. 3.1.8 and 3.1.16] (see also [48, Prop. 2.4] and
[24, Rk. 2.5]), show that the set Ω0 in Definition 2.6 is of full measure in Ω.

2.5 Notation about sequences

When computing the Γ-limit of Iε in (1.10), we will fix a sequence of positive numbers tending to zero,
and denote it by {ε}ε. The letter ε is reserved for a member of the fixed sequence, so expressions like “for
every ε” mean “for every member ε of the sequence”, and {uε}ε denotes the sequence of uε labelled by the
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sequence of ε. We will repeatedly take subsequences, which will not be relabelled. All convergences involving
ε are understood as the sequence {ε}ε goes to zero, abbreviated to ε → 0. For example, in the expression
uε → u it is understood that the convergence holds as ε→ 0.

Given two sequences {aε}ε and {bε}ε of positive numbers, we write

aε / bε when lim sup
ε→0

aε
bε

<∞,

aε � bε when lim
ε→0

aε
bε

= 0,

aε ' bε when lim
ε→0

aε
bε

= 1,

aε ≈ bε when aε / bε and bε / aε.

Sometimes, the sequences {aε}ε and {bε}ε will be positive functions. In this case, and when a domain A of
definition is clear from the context, the notation aε / bε means

lim sup
ε→0

sup
x∈A

aε(x)

bε(x)
<∞,

and analogously for the other notation.

2.6 Inverses of one-to-one a.e. maps

A function is one-to-one a.e. when its restriction to a set of full measure is one-to-one. The following result
was proved in [38, Lemma 3].

Lemma 2.7. Let u : Ω → Rn be approximately differentiable a.e., one-to-one a.e., and suppose that
det∇u(x) 6= 0 for a.e. x ∈ Ω. Let Ω0 be as in Definition 2.6. Then u|Ω0

is one-to-one.

Definition 2.8. Let u : Ω → Rn be approximately differentiable a.e., one-to-one a.e., and suppose that
det∇u(x) 6= 0 for a.e. x ∈ Ω. Let Ω0 be as in Definition 2.6. The inverse u−1 : imG(u,Ω) → Rn of u is
defined as the function that sends every y ∈ imG(u,Ω) to the only x ∈ Ω0 such that u(x) = y. Analogously,
given any measurable subset A of Ω, we define u−1

A : Rn → Rn as

u−1
A (y) :=

{
u−1(y) if y ∈ imG(u, A),

0 if y ∈ Rn \ imG(u, A).

By Proposition 2.5, the maps u−1 and u−1
A are measurable. The following result was proved in [38, Th.

2].

Lemma 2.9. Let u : Ω→ Rn be approximately differentiable a.e., one-to-one a.e. and satisfy det∇u(x) 6= 0
for a.e. x ∈ Ω. Then u−1 is approximately differentiable in imG(u,Ω) and ∇u−1(u(x)) = (∇u(x))−1 for all
x ∈ Ω0.

Putting together Lemmas 2.3 and 2.9, we arrive at the following result.

Lemma 2.10. Let u : Ω→ Rn be approximately differentiable a.e., one-to-one a.e. and satisfy det∇u(x) 6= 0
for a.e. x ∈ Ω. Let A be a measurable subset of Ω. Then u−1

A is approximately differentiable a.e. and

∇u−1
A (y) =

{
∇u−1(y) for a.e. y ∈ imG(u, A),

0 for a.e. y ∈ Rn \ imG(u, A).
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2.7 Weak convergence of products and minors

We will frequently use the following convergence result, whose proof can be found, e.g., in [53, Lemma 6.7].

Lemma 2.11. For each j ∈ N, let fj , f ∈ L∞(Ω) and gj , g ∈ L1(Ω) satisfy

fj → f a.e. and gj ⇀ g in L1(Ω) as j →∞.

Assume that supj∈N ‖fj‖L∞(Ω) <∞. Then

fj gj ⇀ f g in L1(Ω) as j →∞.

We denote by Rn×n+ the set of F ∈ Rn×n such that det F > 0. Let τ = τ(n) be the number of minors
(subdeterminants) of a matrix in Rn×n. Given F ∈ Rn×n, let µ0(F) ∈ Rτ−1 be the vector composed by all
minors of F except the determinant, and µ(F) ∈ Rτ is defined as µ(F) := (µ0(F),det F). We denote by Rτ+
the set of vectors in Rτ whose last component is positive.

The following result on the weak continuity of minors is well known and can be proved as in Ambrosio
[5, Cor. 4.9] (see also [7, Cor. 5.31]).

Lemma 2.12. For each j ∈ N, let uj ,u ∈ SBV (Ω,Rn) satisfy that the sequences {‖∇uj‖Ln−1(Ω,Rn×n)}j∈N
and {Hn−1(Juj )}j∈N are bounded. Assume that uj → u in L1(Ω,Rn) as j → ∞, and the sequence
{cof∇uj}j∈N is equiintegrable. Then

µ0(∇uj) ⇀ µ0(∇u) in L1(Ω,Rτ−1) as j →∞.

2.8 Slicing

We will use the following slicing notation.

Definition 2.13. For every ξ ∈ Sn−1 let Πξ be the linear subspace of Rn orthogonal to ξ. For B ⊂ Rn, let

Bξ be the orthogonal projection of B on Πξ. For every x′ ∈ Πξ define Bξ,x′ := {t ∈ R : x′ + tξ ∈ B}. If

f : B → R and x′ ∈ Bξ, let fξ,x
′

: Bξ,x′ → R be defined by fξ,x
′
(t) := f(x′ + tξ).

Proposition 2.14. Suppose that u ∈ L∞(Ω) satisfies that for all ξ ∈ Sn−1,

i) uξ,x
′ ∈ SBV (Ωξ,x′) for a.e. x′ ∈ Ωξ, and

ii)

∫
Ωξ

[∫
Ωξ,x′

|∇uξ,x
′
|dt+H0(Juξ,x′ )

]
dHn−1(x′) <∞.

Then u ∈ SBV (Ω), Hn−1(Ju) <∞, and for all ξ ∈ Sn−1, the following assertions hold:

a) ∇u(x′ + tξ) · ξ = ∇uξ,x′(t), for Hn−1-a.e. x′ ∈ Ωξ and a.e. t ∈ Ωξ,x′ .

b) The normal νu : Ju → Sn−1 satisfies∫
Ju

|νu · ξ|dHn−1 =

∫
Ωξ

H0(Juξ,x′ ) dHn−1(x′).

c) For any Hn−1-rectifiable subset A of ∂Ω,∫
A

|ν · ξ|dHn−1 =

∫
Aξ

H0(Aξ,x′) dHn−1(x′).

d) For any p ≥ 1, any v ∈ C(Ω̄) with v ≥ 0 and any measurable set A ⊂ Ω,∫
Ωξ

∫
Aξ,x′

vξ,x
′
|∇uξ,x

′
|p dtdHn−1(x′) ≤

∫
A

v |∇u|p dx and

∫
Ωξ

∫
Aξ,x′

vξ,x
′
dtdHn−1(x′) =

∫
A

v dx.
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e) For any set E ⊂ Ω with Per(E,Ω) <∞,∫
Ωξ

H0(∂∗Eξ,x′ ∩ Ωξ,x′) dHn−1(x′) ≤ Hn−1(∂∗E ∩ Ω).

Proof. Part c) is proved in [31, Th. 3.2.22]. Part d) is a consequence of a) and Fubini’s theorem, and part
e) is a consequence of c). The remaining parts are proved, e.g., in [3, Th. 3.3] or in [4, Sect. 3] or in [7,
Sect. 3.11] (in particular Remark 3.104 and Thm. 3.108).

2.9 Coarea formula

We will use the coarea formula in the following two versions. They are known to experts, but we have not
found an exact reference.

Proposition 2.15. a) Let u : Ω→ R be Lipschitz and let f ∈ L∞(R) be Borel measurable. Then∫
Ω

f(u(x)) |Du(x)|dx =

∫ ∞
−∞

f(t)Hn−1({x ∈ Ω : u(x) = t}) dt. (2.2)

b) Let u ∈W 1,1(Ω) be continuous and let f ∈ L∞(R) be Borel measurable. Then∫
Ω

f(u(x)) |Du(x)|dx =

∫ ∞
−∞

f(t) Per({x ∈ Ω : u(x) < t},Ω) dt. (2.3)

and ∫
Ω

f(u(x)) |Du(x)|dx =

∫ ∞
−∞

f(t) Per({x ∈ Ω : u(x) > t},Ω) dt. (2.4)

Proof. In this proof, we will use the notation {u < t} as a shorthand for {x ∈ Ω : u(x) < t}, and similarly
for other sets.

A standard approximation procedure shows that it is enough to prove formulas (2.2), (2.3) and (2.4) for
the case when f is the characteristic function of an open interval (a, b). We will assume so throughout the
proof.

Under the assumptions of a), we have that, thanks to the usual coarea formula for Lipschitz functions
(see, e.g., [7, Th. 2.93]), ∫

Ω

f(u(x)) |Du(x)|dx =

∫
{a<u<b}

|Du(x)|dx

=

∫ ∞
−∞
Hn−1 ({a < u < b, u = t}) dt

=

∫ b

a

Hn−1 ({u = t}) dt

=

∫ ∞
−∞

f(t)Hn−1({u = t}) dt,

which proves (2.2).
Under the assumptions of b), we have instead, thanks to the usual coarea formula for BV functions (see,

e.g., [7, Th. 2.93]) and the continuity of u, that∫
Ω

f(u(x)) |Du(x)|dx =

∫
{a<u<b}

|Du(x)|dx =

∫ ∞
−∞

Per ({u < t}, {a < u < b}) dt. (2.5)

Let t ∈ R. One always has

Per ({u < t}, {a < u < b}) ≤ Per ({u < t},Ω) . (2.6)
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Moreover, if g ∈ C1
c ({a < u < b},Rn) and t < a then obviously∫

{u>t}
div g dx = 0, (2.7)

whereas if t > b then ∫
{u<t}

div g dx =

∫
{a<u<b}

div g dx = 0, (2.8)

because of the divergence theorem. Thanks to (2.6), (2.7) and (2.8) we conclude that∫ ∞
−∞

Per ({u < t}, {a < u < b}) dt ≤
∫ b

a

Per ({u < t},Ω) dt =

∫ ∞
−∞

f(t) Per ({u < t},Ω) dt. (2.9)

Equations (2.5) and (2.9) show that∫
Ω

f(u(x)) |Du(x)|dx ≤
∫ ∞
−∞

f(t) Per ({u < t},Ω) dt. (2.10)

As f ◦ u ∈ L∞(Ω), we can apply the coarea formula for Sobolev maps (see [43, (1.1)]) to show that∫
Ω

f(u(x)) |Du(x)|dx =

∫ ∞
−∞

∫
{u=t}

f(u(x)) dHn−1(x) dt =

∫ ∞
−∞

f(t)Hn−1({u = t}) dt. (2.11)

For a.e. t ∈ R, the set {u < t} has finite perimeter in Ω, hence

Per ({u < t},Ω) = Hn−1 (∂∗{u < t} ∩ Ω) . (2.12)

The continuity of u shows that

∂∗{u < t} ∩ Ω ⊂ ∂{u < t} ∩ Ω ⊂ {u = t}. (2.13)

Equations (2.12) and (2.13) show that

Per ({u < t},Ω) ≤ Hn−1 ({u = t}) , (2.14)

whereas equations (2.11) and (2.14) show that∫
Ω

f(u(x)) |Du(x)|dx ≥
∫ ∞
−∞

f(t) Per ({u < t},Ω) dt. (2.15)

Inequalities (2.10) and (2.15) conclude (2.3). The proof of formula (2.4) is analogous.

3 Representation of the surface energy functional

In this section we prove the representation formula (1.13) and a lower semicontinuity result for Ē . We start
with the definitions of E and Ē .

Definition 3.1. Let u : Ω → Rn be approximately differentiable a.e. Suppose that det∇u ∈ L1(Ω) and
cof∇u ∈ L1(Ω,Rn×n). For every f ∈ C∞c (Ω̄× Rn,Rn), define

E(u, f) :=

∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + det∇u(x) div f(x,u(x))] dx (3.1)

and

E(u) := sup {E(u, f) : f ∈ C∞c (Ω× Rn,Rn), ‖f‖∞ ≤ 1} ,
Ē(u) := sup

{
E(u, f) : f ∈ C∞c (Ω̄× Rn,Rn), ‖f‖∞ ≤ 1

}
.
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In equation (3.1), Dxf(x,y) denotes the derivative of f(·,y) evaluated at x, while div always denotes the
divergence operator in the deformed configuration, so div f(x,y) is the divergence of f(x, ·) evaluated at y.

The functional E was introduced in [37] to measure the creation of new surface of a deformation. The
functional Ē is new, and its difference with respect to E is that Ē also takes into account what happens on
∂Ω, and, in particular, it also measures the stretching of ∂Ω by u.

It was shown in [38, Th. 2] that the inequality E(u) < ∞ implies that suitable truncations of u−1 (see
Definition 2.8) are in SBV . The adaptation of that result is as follows.

Proposition 3.2. Let u ∈ L∞(Ω,Rn) be approximately differentiable a.e., one-to-one a.e., and such that
det∇u > 0 a.e., cof∇u ∈ L1(Ω,Rn×n) and Ē(u) <∞. Then u−1

Ω ∈ SBV (Rn,Rn).

Proof. As a consequence of Proposition 2.5, we have that det∇u ∈ L1(Ω).
In order to calculate the total variation of u−1

Ω , fix α ∈ {1, . . . , n}, denote by vα the α-th component
of u−1

Ω , and notice that vα ∈ L∞(Rn). For each ϕ ∈ C∞c (Rn,Rn) with ‖ϕ‖∞ ≤ 1 we have, thanks to
Proposition 2.5, ∫

Rn
vα(y) divϕ(y) dy =

∫
Ω

xα divϕ(u(x)) det∇u(x) dx. (3.2)

Let eα denote the α-th vector of the canonical basis of Rn. When we define fα ∈ C∞c (Ω̄× Rn,Rn) as

fα(x,y) := xαϕ(y),

we have that

E(u, fα) =

∫
Ω

[cof∇u(x) · (ϕ(u(x))⊗ eα) + xα divϕ(u(x)) det∇u(x)] dx,

hence, by (3.2) we find that∣∣∣∣∫
Rn
vα(y) divϕ(y) dy

∣∣∣∣ ≤ Ē(u) ‖id‖L∞(Ω,Rn) + ‖cof∇u‖L1(Ω,Rn×n) .

This shows that vα has finite total variation, and, hence u−1
Ω ∈ BV (Rn,Rn).

Fix a bounded open set Q such that imG(u,Ω) ⊂⊂ Q. Let g ∈ C∞c (Rn) have support in Q and satisfy
‖g‖∞ ≤ 1, consider ψ ∈ C1(R) ∩W 1,∞(R) and fix α ∈ {1, . . . , n}.

When we define f ∈ C∞c (Ω̄× Rn,Rn) as

f(x,y) := (ψ(xα)− ψ(0)) g(y),

we have that, thanks to Lemma 2.9, for a.e. x ∈ Ω and all y ∈ Rn,

Dxf(x,y) · cof∇u(x) = (g(y)⊗ ψ′(xα) eα) · cof∇u(x) = ψ′(xα) (cof∇u(x) eα) · g(y)

= det∇u(x)ψ′(xα)
(
(∇u−1(u(x)))Teα

)
· g(y) = det∇u(x)ψ′(xα)∇vα(u(x)) · g(y)

and
div f(x,y) = (ψ(xα)− ψ(0)) div g(y),

so, thanks to Proposition 2.5,

E(u, f) =

∫
Ω

det∇u(x) [ψ′(xα)∇vα(u(x)) · g(u(x)) + (ψ(xα)− ψ(0)) div g(u(x))] dx

=

∫
imG(u,Ω)

[ψ′(vα(y))∇vα(y) · g(y) + ψ(vα(y)) div g(y)] dy − ψ(0)

∫
imG(u,Ω)

div g(y) dy.
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On the other hand, using Lemma 2.3,

〈D(ψ ◦ vα|Q)− ψ′ ◦ vα∇vα Ln Q,g|Q〉 = −
∫
Q

[ψ(vα(y)) div g(y) + ψ′(vα(y))∇vα(y) · g(y)] dy

=−
∫

imG(u,Ω)

[ψ(vα(y)) div g(y) + ψ′(vα(y))∇vα(y) · g(y)] dy − ψ(0)

∫
Q\imG(u,Ω)

div g(y) dy.

Summing the last two expressions and using the divergence theorem, we obtain that

E(u, f) + 〈D(ψ ◦ vα|Q)− ψ′ ◦ vα∇vα Ln Q,g|Q〉 = −ψ(0)

∫
Q

div g(y) dy = 0.

Therefore,

|〈D(ψ ◦ vα|Q)− ψ′ ◦ vα∇vα Ln Q,g|Q〉| ≤ Ē(u) ‖f‖L∞(Ω̄×Rn,Rn)

≤ Ē(u) sup
x∈Ω̄

|ψ(xα)− ψ(0)| ≤ Ē(u) sup
t,s∈R

|ψ(t)− ψ(s)| .

By the characterization of SBV given in [7, Prop. 4.12], this implies that vα|Q ∈ SBV (Q). As vα is zero
outside Q and in a neigbourhood of ∂Q, we have that vα ∈ SBV (Rn), and, hence u−1

Ω ∈ SBV (Rn,Rn).

The following is a representation result for Ē . We follow the proof of [38, Th. 3], which showed an
analogous statement for the surface energy E .

Theorem 3.3. Let Ω be a bounded Lipschitz domain satisfying 0 /∈ Ω̄. Let u ∈ L∞(Ω,Rn) be approximately
differentiable a.e. with cof∇u ∈ L1(Ω,Rn×n). Suppose that there exists a measurable subset A of Ω such
that

a) u|Ω\A = 0.

b) u|A is one-to-one a.e.

c) det∇u > 0 a.e. in A.

d) u−1
A ∈ SBV (Rn,Rn).

Then imG(u, A) has finite perimeter, for any f ∈ C∞c (Ω̄× Rn,Rn) we have that

E(u, f) =

∫
J(u|A)−1

[
f
(
((u|A)−1)−(y),y

)
− f
(
((u|A)−1)+(y),y

)]
· ν(u|A)−1(y) dHn−1(y)

+

∫
∂∗ imG(u,A)

f
(
((u|A)−1)−(y),y

)
· ν imG(u,A)(y) dHn−1(y),

(3.3)

and
Ē(u) = Per imG(u, A) + 2Hn−1(J(u|A)−1). (3.4)

Proof. As in Proposition 3.2, the assumptions imply that det∇u ∈ L1(Ω).
Assumption d) and the chain rule in BV (see [6, Prop. 1.2] or [7, Th. 3.96]) show that |u−1

A | ∈ BV (Rn),
so, as a particular case of the coarea formula for BV functions (see, e.g., [7, Th. 3.40]), almost all superlevel
sets of |u−1

A | have finite perimeter. Since for each 0 ≤ t < infx∈Ω |x| we have{
y ∈ Rn : |u−1

A (y)| > t
}

= imG(u, A),

we conclude that
Per imG(u, A) <∞. (3.5)

14



In this proof, given B ⊂ Rn and a function h : B → Rn, we define the function

h ./ id : B × Rn → Rn × Rn, (h ./ id)(y1,y2) := (h(y1),y2).

Let f ∈ C∞c ((Ω̄∪{0})×Rn,Rn). As the image of u−1
A is contained in Ω∪{0}, the function f ◦ (u−1

A ./ id)
is well defined; moreover, thanks to assumption d) and the chain rule in BV , it belongs to SBV (Rn,Rn),
and

∇
(
f ◦ (u−1

A ./ id)
)

= Dxf ◦
(
u−1
A ./ id

)
∇u−1

A +Dyf ◦
(
u−1
A ./ id

)
,

Dj
(
f ◦ (u−1

A ./ id)
)

=
[
f ◦
(
(u−1
A )+ ./ id

)
− f ◦

(
(u−1
A )− ./ id

)]
⊗ νu−1

A
Hn−1 Ju−1

A
,

(3.6)

where we have used the trivial identities

Ju−1
A ./id = Ju−1

A
, νu−1

A ./id = νu−1
A
,

(
u−1
A ./ id

)±
=
(
u−1
A

)±
./ id

and the notation Dj represents the jump part of the derivative (see, e.g., [7, Def. 3.91]). It is easy to check
through the definitions and property (3.5) that the following equalities hold up to Hn−1-null sets:

Ju−1
A

= J(u|A)−1 ∪ ∂∗ imG(u, A), J(u|A)−1 ∩ ∂∗ imG(u, A) = ∅,

νu−1
A

=

{
νu−1

A
in J(u|A)−1 ,

ν imG(u,A) in ∂∗ imG(u, A),
(u−1
A )+ =

{
((u|A)−1)+ in J(u|A)−1 ,

0 in ∂∗ imG(u, A),

(u−1
A )− = ((u|A)−1)−.

(3.7)

Let η ∈ C∞c (Rn). On the one hand, we have that

〈D
(
f ◦ (u−1

A ./ id)
)
, η 1〉 = −

∫
Rn

(
f ◦ (u−1

A ./ id)
)
· div(η1) dy = −

∫
Rn

f(u−1
A (y),y) ·Dη(y) dy, (3.8)

whereas using (3.6) we find that

〈D
(
f ◦ (u−1

A ./ id)
)
, η 1〉 =

∫
Rn

[
∇u−1

A (y)T ·Dxf(u−1
A (y),y) + div f(u−1

A (y),y)
]
η(y) dy

+

∫
J
u
−1
A

[
f
(
(u−1
A )+(y),y

)
− f
(
(u−1
A )−(y),y

)]
· νu−1

A
(y) η(y) dHn−1(y).

(3.9)

Recall that div denotes the divergence operator in the deformed configuration, that is, with respect to the
y variables. If η is chosen so that η = 1 in a neigbourhood of imG(u, A), equalities (3.8) and (3.9) read,
respectively, as

〈D
(
f ◦ (u−1

A ./ id)
)
, η 1〉 = −

∫
Rn\imG(u,A)

f(0,y) ·Dη(y) dy, (3.10)

and

〈D
(
f ◦ (u−1

A ./ id)
)
, η 1〉 =

∫
Rn\imG(u,A)

div f(0,y) η(y) dy

+

∫
imG(u,A)

[
∇u−1

A (y)T ·Dxf(u−1
A (y),y) + div f(u−1

A (y),y)
]

dy

+

∫
J
u
−1
A

[
f
(
(u−1
A )+(y),y

)
− f
(
(u−1
A )−(y),y

)]
· νu−1

A
(y) dHn−1(y),

(3.11)

where we have used that Ju−1
A
⊂ imG(u, A) as well as Lemma 2.10. Now, the divergence theorem for sets of

finite perimeter shows that∫
Rn\imG(u,A)

[f(0,y) ·Dη(y) + div f(0,y) η(y)] dy = −
∫
∂∗ imG(u,A)

f(0,y) · ν imG(u,A)(y) dHn−1(y). (3.12)
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Comparing (3.10), (3.11) and (3.12), we find that∫
∂∗ imG(u,A)

f(0,y) · ν imG(u,A)(y) dHn−1(y)

=

∫
imG(u,A)

[
∇u−1

A (y)T ·Dxf(u−1
A (y),y) + div f(u−1

A (y),y)
]

dy

+

∫
J
u
−1
A

[
f
(
(u−1
A )+(y),y

)
− f
(
(u−1
A )−(y),y

)]
· νu−1

A
(y) dHn−1(y),

(3.13)

Using identities (3.7) we obtain that, in fact,∫
J
u
−1
A

[
f
(
(u−1
A )−(y),y

)
− f
(
(u−1
A )+(y),y

)]
· νu−1

A
(y) dHn−1(y)

=

∫
J(u|A)−1

[
f
(
((u|A)−1)−(y),y

)
− f
(
((u|A)−1)+(y),y

)]
· ν(u|A)−1(y) dHn−1(y)

+

∫
∂∗ imG(u,A)

[
f
(
((u|A)−1)−(y),y

)
− f
(
0,y

)]
· ν imG(u,A)(y) dHn−1(y).

(3.14)

Equalities (3.13) and (3.14), together with Lemmas 2.3 and 2.10, thus yield∫
imG(u,A)

[
∇(u|A)−1(y)T ·Dxf((u|A)−1(y),y) + div f((u|A)−1(y),y)

]
dy

=

∫
J(u|A)−1

[
f
(
((u|A)−1)−(y),y

)
− f
(
((u|A)−1)+(y),y

)]
· ν(u|A)−1(y) dHn−1(y)

+

∫
∂∗ imG(u,A)

f
(
((u|A)−1)−(y),y

)
· ν imG(u,A)(y) dHn−1(y).

(3.15)

Now we use assumption a), Proposition 2.5 and equality (3.15) to find that∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + det∇u(x) div f(x,u(x))] dx

=

∫
A

[cof∇u(x) ·Dxf(x,u(x)) + det∇u(x) div f(x,u(x))] dx

=

∫
imG(u,A)

[
∇(u|A)−1(y)T ·Dxf((u|A)−1(y),y) + div f((u|A)−1(y),y)

]
dy

=

∫
J(u|A)−1

[
f
(
((u|A)−1)−(y),y

)
− f
(
((u|A)−1)+(y),y

)]
· ν(u|A)−1(y) dHn−1(y)

+

∫
∂∗ imG(u,A)

f
(
((u|A)−1)−(y),y

)
· ν imG(u,A)(y) dHn−1(y).

(3.16)

Expression (3.16) is independent of the value of f at 0. Therefore, for any f ∈ C∞c (Ω̄ × Rn,Rn), equality
(3.3) holds. Consequently,

Ē(u) ≤ Per imG(u, A) + 2Hn−1(J(u|A)−1). (3.17)

In particular, equation (3.4) holds if Ē(u) = ∞. Suppose, then, that Ē(u) < ∞. By Riesz’ representation
theorem, there exists an Rn-valued Borel measure Λ in Ω̄× Rn such that

|Λ|(Ω̄× Rn) = E(u) (3.18)
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and

E(u, f) =

∫
Ω̄×Rn

f(x,y) · dΛ(x,y), f ∈ C∞c (Ω̄× Rn,Rn). (3.19)

Assumption d) implies that the set Ju−1
A

is σ-finite with respect to Hn−1. Let F ⊂ Ju−1
A

be a Borel set

such that Hn−1(F ) <∞, and consider the Rn-valued measure

λF :=
(
((u|A)−1)− ./ id

)
]

(
ν imG(u,A)Hn−1 (∂∗ imG(u, A) ∩ F )

)
+
[(

((u|A)−1)− ./ id
)
]
−
(
((u|A)−1)+ ./ id

)
]

] (
ν(u|A)−1Hn−1 (J(u|A)−1 ∩ F )

)
.

(3.20)

Here, the operator ] denotes the push-forward of a measure (see, e.g., [7, Def. 1.70]). By definition of lateral
traces, (

((u|A)−1)− ./ id
)

(imG(u, A)) ∩
(
((u|A)−1)+ ./ id

)
(imG(u, A)) = ∅, (3.21)

whereas the definition of jump set yields that any point in J(u|A)−1 has density one in imG(u, A), hence

Hn−1
(
J(u|A)−1 ∩ ∂∗ imG(u, A)

)
= 0. (3.22)

Using (3.21) and (3.22), it is easy to check, by the definition of total variation of a measure (see, e.g., [7,
Def. 1.4]), that

|λF | =
∣∣∣(((u|A)−1)− ./ id

)
]

(
ν imG(u,A)Hn−1 (∂∗ imG(u, A) ∩ F )

)∣∣∣
+
∣∣∣(((u|A)−1)− ./ id

)
]

(
ν(u|A)−1Hn−1 (J(u|A)−1 ∩ F )

)∣∣∣
+
∣∣∣(((u|A)−1)+ ./ id

)
]

(
ν(u|A)−1Hn−1 (J(u|A)−1 ∩ F )

)∣∣∣ .
In fact, by [6, Lemma 1.3] and [7, Prop. 1.23],

|λF | =
(
((u|A)−1)− ./ id

)
]

(
Hn−1 (∂∗ imG(u, A) ∩ F )

)
+
(
((u|A)−1)− ./ id

)
]

(
Hn−1 (J(u|A)−1 ∩ F )

)
+
(
((u|A)−1)+ ./ id

)
]

(
Hn−1 (J(u|A)−1 ∩ F )

)
.

Thus, on the one hand,

|λF |
(
Ω̄× Rn

)
= Hn−1

({
y ∈ ∂∗ imG(u, A) ∩ F : ((u|A)−1)−(y) ∈ Ω̄

})
+Hn−1

({
y ∈ J(u|A)−1 ∩ F : ((u|A)−1)−(y) ∈ Ω̄

})
+Hn−1

({
y ∈ J(u|A)−1 ∩ F : ((u|A)−1)+(y) ∈ Ω̄

})
= Hn−1

(
∂∗ imG(u, A) ∩ F

)
+ 2Hn−1

(
J(u|A)−1 ∩ F

)
.

(3.23)

On the other hand, equalities (3.3) and (3.19) together with a standard approximation argument based on
Lusin’s theorem, show that the equality∫

Ω̄×Rn
φ(x) g(y) · dΛ(x,y) =

∫
∂∗ imG(u,A)

φ(((u|A)−1)−(y)) g(y) · ν imG(u,A)(y) dHn−1(y)

+

∫
J(u|A)−1

[
φ(((u|A)−1)−(y))− φ(((u|A)−1)+(y))

]
g(y) · ν(u|A)−1(y) dHn−1(y)

(3.24)

is valid for any φ ∈ C∞(Ω̄) and any bounded Borel function g : Rn → Rn. Let now φ ∈ C∞(Ω̄) and
g ∈ Cc(Rn), and apply (3.24) to φ and gχF so as to obtain∫

Ω̄×F
φ(x) g(y) · dΛ(x,y) =

∫
∂∗ imG(u,A)∩F

φ(((u|A)−1)−(y)) g(y) · ν imG(u,A)(y) dHn−1(y)

+

∫
J(u|A)−1∩F

[
φ(((u|A)−1)−(y))− φ(((u|A)−1)+(y))

]
g(y) · ν(u|A)−1(y) dHn−1(y),
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which, together with (3.20), yields∫
Ω̄×F

φ(x) g(y) · dΛ(x,y) =

∫
Ω̄×Rn

φ(x) g(y) · dλF (x,y). (3.25)

Using that the set of sums of functions the form

φ(x) g(y) with φ ∈ C∞(Ω̄) and g ∈ Cc(Rn)

is dense in Cc(Ω̄× Rn,Rn), we conclude from (3.25) that∫
Ω̄×F

f(x,y) · dΛ(x,y) =

∫
Ω̄×Rn

f(x,y) · dλF (x,y)

holds true for all f ∈ Cc(Ω̄×Rn,Rn). By Riesz’ representation theorem, this shows that Λ (Ω̄×F ) = λF .
By virtue of (3.23), we obtain that

|Λ| (Ω̄× F ) = Hn−1
(
∂∗ imG(u, A) ∩ F

)
+ 2Hn−1

(
J(u|A)−1 ∩ F

)
,

so, in particular,

|Λ| (Ω̄× Rn) ≥ Hn−1
(
∂∗ imG(u, A) ∩ F

)
+ 2Hn−1

(
J(u|A)−1 ∩ F

)
.

As Ju−1
A

is σ-finite with respect to Hn−1, we conclude that

|Λ| (Ω̄× Rn) ≥ Hn−1
(
∂∗ imG(u, A)

)
+ 2Hn−1

(
J(u|A)−1

)
,

but equations (3.17) and (3.18) show that, in fact, equality (3.4) holds.

The following is a lower semicontinuity result for Ē and will represent a key step in the proof of the
compactness and lower bound result for the Γ-convergence of Iε (see (1.10)) to be proved in Section 6. Its
proof is an adaptation of those of [37, Thms. 2 and 3].

Theorem 3.4. Let Ω be a bounded Lipschitz domain satisfying 0 /∈ Ω̄. For each ε, let uε : Ω → Rn be
approximately differentiable a.e., and let Aε be a measurable subset of Ω such that

a) cof∇uε ∈ L1(Aε,Rn×n) and det∇uε ∈ L1(Aε).

b) Ln(Aε)→ Ln(Ω).

c) uε|Aε is one-to-one a.e.

d) det∇uε > 0 a.e. in Aε.

e) u−1
ε,Aε
∈ SBV (Rn,Rn).

f) supε
[
Per imG(uε, Aε) +Hn−1(J(uε|Aε )−1)

]
<∞.

g) There exists θ ∈ L1(Ω) with θ > 0 a.e. such that χAε det∇uε ⇀ θ in L1(Ω).

h) {uε}ε is equiintegrable.

i) There exists a map u : Ω→ Rn approximately differentiable a.e. such that uε → u a.e.

j) χAε cof∇uε ⇀ cof∇u in L1(Ω,Rn×n).

Then

i) θ = det∇u a.e.
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ii) u is one-to-one a.e.

iii) χimG(uε,Aε) → χimG(u,Ω) in L1(Rn).

iv) Per imG(u,Ω) + 2Hn−1(Ju−1) ≤ lim inf
ε→0

[
Per imG(uε, Aε) + 2Hn−1(J(uε|Aε )−1)

]
.

Proof. As supε Per imG(uε, Aε) < ∞, there exists a measurable set V ⊂ Rn such that, for a subsequence,
imG(uε, Aε)→ V in L1

loc(Rn). We will see that, in fact, there is no need of taking a subsequence.
Let ϕ ∈ Cc(Rn). By Proposition 2.5, for all ε,∫

imG(uε,Aε)

ϕ(y) dy =

∫
Aε

ϕ(uε(x)) det∇uε(x) dx.

Letting ε→ 0 and using assumption g) and Lemma 2.11, we obtain∫
Rn
ϕ(y)χV (y) dy =

∫
Ω

ϕ(u(x)) θ(x) dx. (3.26)

A standard approximation procedure using Lusin’s theorem shows that (3.26) holds true for any bounded
Borel function ϕ : Rn → R.

Now we show that det∇u(x) 6= 0 for a.e. x ∈ Ω. Let Ωd be the set of approximate differentiability points
of u, and let Z be the set of x ∈ Ωd such that det∇u(x) = 0. As a consequence of Proposition 2.5, we find
that Ln(u(Z)) = 0. Thus, there exists a Borel set U containing u(Z) such that Ln(U) = 0. Applying (3.26)
with ϕ = χU , we obtain that

0 ≤
∫
Z

θ dx ≤
∫

Ω

χU (u(x)) θ(x) dx = Ln(U ∩ V ) ≤ Ln(U) = 0,

and, since θ > 0 a.e., we conclude that Ln(Z) = 0.
Define Ω1 as the set of x ∈ Ωd such that det∇u(x) 6= 0 and θ(x) > 0. We have just shown that Ω1 has

full measure in Ω. The function ψ̃ : Rn → R defined by

ψ̃(y) :=
∑
x∈Ω1

u(x)=y

θ(x)

|det∇u(x)|
, y ∈ Rn

satisfies that ψ̃ > 0 in u(Ω1), ψ̃ = 0 in Rn \ u(Ω1) and, thanks to Proposition 2.5, for any bounded Borel
function ϕ : Rn → R, ∫

Ω

ϕ(u(x)) θ(x) dx =

∫
Rn
ϕ(y) ψ̃(y)χimG(u,Ω)(y) dy. (3.27)

Equalities (3.26) and (3.27) show that χV = ψ̃χimG(u,Ω) a.e. Since ψ̃ > 0 in u(Ω1), necessarily V = imG(u,Ω)

a.e. and ψ̃ = χimG(u,Ω) a.e. Moreover, imG(uε, Aε)→ imG(u,Ω) in L1
loc(Rn) for the whole sequence ε.

Define ũε := χAεuε. Assumptions b) and h) show that ũε − uε → 0 in L1(Ω,Rn), and, hence, for
a subsequence, the convergence also holds a.e., so, thanks to assumption i), ũε → u a.e. For each f ∈
C∞c (Ω̄× Rn,Rn), thanks to assumptions g) and j), and Lemma 2.11, one has

lim
ε→0
E(ũε, f) =

∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + θ(x) div f(x,u(x))] dx.

Since E(ũε, f) ≤ Ē(ũε)‖f‖∞ for each ε, thanks to Theorem 3.3 and assumption f), the linear functional
Λ : C∞c (Ω̄× Rn,Rn)→ R given by

Λ(f) :=

∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + θ(x) div f(x,u(x))] dx
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Ω1

Ω

∂NΩ

∂DΩ

Figure 1: Ω is coloured in grey, and Ω1 is the union of the grey and light-grey parts.

satisfies
|Λ(f)| ≤ lim inf

ε→0
Ē(ũε) ‖f‖∞ , f ∈ C∞c (Ω̄× Rn,Rn).

By Riesz’ representation theorem, we obtain that Λ can be identified with an Rn-valued measure in Ω̄×Rn.
At this point, one can repeat the proof of [37, Th. 3] and conclude that θ = det∇u a.e. In particular,
for each f ∈ C∞c (Ω̄ × Rn,Rn), we have that E(ũε, f) → E(u, f), so taking suprema we obtain that Ē(u) ≤
lim infε→0 Ē(ũε), and we conclude assertion iv) thanks to Theorem 3.3 and Proposition 3.2.

The fact that θ = det∇u a.e. shows that ψ̃(y) = H0({x ∈ Ω1 : u(x) = y}) for a.e. y ∈ Rn. Using now
that ψ̃ = χimG(u,Ω) a.e., we infer that u is one-to-one a.e.

The list of assumptions of Theorem 3.4 may look artificial, but we will see in Section 6 that they are
naturally satisfied for a truncation of the maps uε generating a minimizing sequence for the functional Iε of
(1.10).

4 General assumptions for the approximated energy

In this section we present the admissible set for the functional Iε of (1.10). We also list the general assump-
tions for the stored energy function W .

The reference configuration of the body is represented by a bounded domain Ω of Rn. We distinguish
the Dirichlet part ∂DΩ of the boundary ∂Ω, where the deformation is prescribed, and the Neumann part
∂NΩ := ∂Ω \ ∂DΩ. We impose that both ∂DΩ and ∂NΩ are closed. We assume that ∂DΩ is non-empty and
Lipschitz; in particular, Hn−1(∂DΩ) > 0. Moreover, we suppose that there exists an open set Ω1 ⊂ Rn such
that Ω ∪ ∂DΩ ⊂ Ω1 and ∂NΩ ⊂ ∂Ω1. A typical configuration is shown in Figure 1. We will also need sets
K ⊂ Q ⊂ Rn in the deformed configuration such that Q is open and K is compact.

Recall the notation for minors from Section 2.7. The assumptions for the function W : Ω×K×Rn×n+ → R
are the following:

(W1) There exists W̃ : Ω×K × Rτ+ → R such that the function W̃ (·,y, ξ) is measurable for every (y, ξ) ∈
K × Rτ+, the function W̃ (x, ·, ·) is continuous for a.e. x ∈ Ω, the function W̃ (x,y, ·) is convex for a.e.
x ∈ Ω and every y ∈ K, and

W (x,y,F) = W̃ (x,y,µ(F)) for a.e. x ∈ Ω and all (y,F) ∈ K × Rn×n+ .

(W2) There exist a constant c > 0, an exponent p ≥ n− 1, an increasing function h1 : (0,∞)→ [0,∞) and
a convex function h2 : (0,∞)→ [0,∞) such that

lim
t→∞

h1(t)

t
= lim
t→∞

h2(t)

t
= lim
t→0+

h2(t) =∞

and
W (x,y,F) ≥ c |F|p + h1(| cof F|) + h2(det F)

for a.e. x ∈ Ω, all y ∈ K and all F ∈ Rn×n+ .
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Assumptions (W1)–(W2) are the usual ones in nonlinear elasticity (see, e.g., [10, 49]), in which W is
assumed to be polyconvex and blows up when the determinant of the deformation gradients goes to zero.
However, the growth conditions are slow enough to allow for cavitation (see, e.g., [48, 53, 37, 39]): this is
why p is only required to be greater than or equal to n − 1, and h1 is only required to be superlinear at
infinity. We also remark that the dependence of W on y is not physical, but we have included it for the sake
of generality, since it does not affect the mathematical analysis.

Given parameters λ1, λ2, ε, η, b > 0, an exponent q > n and functions u ∈W 1,p(Ω,K), v ∈W 1,q(Ω, [0, 1]),
w ∈W 1,q(Q, [0, 1]), we define the approximated energy as

I(u, v, w) :=

∫
Ω

(v(x)2 + η)W (x,u(x), Du(x)) dx + λ1

∫
Ω

[
εq−1 |Dv(x)|q

q
+

(1− v(x))q
′

q′ε

]
dx

+ 6λ2

∫
Q

[
εq−1 |Dw(y)|q

q
+
w(y)q

′
(1− w(y))q

′

q′ε

]
dy.

(4.1)

We assume the existence of a bi-Lipschitz homeomorphism u0 : Ω1 → K such that detDu0 > 0 a.e. and∫
Ω

W (x,u0(x), Du0(x)) dx <∞. (4.2)

Note that imG(u0,Ω) is open, as it coincides with u0(Ω). Moreover, E(u0) = 0 (see, e.g., [37, Sect. 4]).
We define AE as the set of u ∈W 1,p(Ω,K) such that

u = u0 on ∂DΩ, (4.3)

in the sense of traces, and that, defining

ū :=

{
u in Ω,

u0 in Ω1 \ Ω,
(4.4)

we have that ū is one-to-one a.e., detDū > 0 a.e. and

E(ū) = 0. (4.5)

Note that the following properties are automatically satisfied: ū ∈W 1,p(Ω1,K),

imG(u,Ω) ⊂ K a.e. (4.6)

and
Ln (imG(ū,Ω1 \ Ω) ∩ imG(u,Ω)) = 0. (4.7)

Moreover, u0 ∈ AE .
It was shown in [39, Th. 4.6] that condition (4.5) prevents the creation of cavities of ū in Ω1. In particular,

it prevents the creation of cavities in Ω and at ∂DΩ (as in [53]). Moreover, (4.5) is automatically satisfied if
p ≥ n (see [37, Sect. 4]), or if ū satisfies condition INV and DetDū = detDū (see [39, Lemma 5.3] and also
[48] for the definition of condition INV and of the distributional determinant Det).

We define A as the set of triples (u, v, w) such that u ∈ AE , v ∈W 1,q(Ω, [0, 1]), w ∈W 1,q(Q, [0, 1]) and

v = 1 on ∂DΩ, (4.8)

v = 0 on ∂NΩ, (4.9)

w = 0 in Q \ imG(u,Ω), (4.10)

v(x) ≥ w(u(x)) a.e. x ∈ Ω, (4.11)∫
Ω

[v(x)− w(u(x))] dx ≤ b. (4.12)
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The functional I of (4.1) will be defined on the set A. We explain the choice of conditions (4.8)–(4.12).
The functions v and w are phase-field variables: v in the reference configuration, and w in the deformed
configuration. A value of v close to 1 indicates healthy material, while if it is close to zero, it indicates a
region with a crack. The function w indicates where there is matter, so w ' χimG(u,Ω). Except close to
the boundary, the function w follows v in the deformed configuration, so w ' v ◦ u: this is expressed by
inequalities (4.11)–(4.12). The fact that w ' χimG(u,Ω) agrees with the boundary condition (4.10). Condition
(4.8) is also natural since the trace equality (4.3) and the existence (4.4) of an extension ū in W 1,p(Ω1,Rn)
prevent a fracture at ∂DΩ. Condition (4.9) is somewhat artificial and comes from a technical part of the
proof. As ∂NΩ is the free part of the boundary, there is no information about whether u presents fracture at
∂NΩ. Condition (4.9) allows for it but it does not impose it. At some point of the proof of the lower bound
inequality (see Proposition 6.8, and, in particular, relation (6.59)), we need to distinguish ∂NΩ from ∂DΩ
with the mere information of v, and we are only able to do it with (4.9). Naturally, condition (4.9) has an
effect on the limit energy, since it forces a transition from 1 to 0 close to ∂NΩ, whose cost is approximately
1
2H

n−1(∂NΩ). This term is a constant, hence it does not affect the minimization problem, and explains its
appearance in the limit energy (1.11).

5 Existence for the approximated functional

In this section we prove that the functional (4.1) has a minimizer in A, so the approximated problem is well
posed.

Theorem 5.1. Let λ1, λ2, ε, η, b > 0, p ≥ n − 1 and q > n. Let I be as in (4.1). Then there exists a
minimizer of I in A.

Proof. We show first that the set A is not empty and that I is not identically infinity in A. As ∂DΩ and
∂NΩ are disjoint compact sets, there exists a Lipschitz function v0 : Ω̄→ [0, 1] such that v0 = 1 on ∂DΩ and
v0 = 0 on ∂NΩ.

Let u0 be as in Section 4. By the regularity of the Lebesgue measure, there exists a compact E ⊂ u0(Ω)
such that

Ln(u0(Ω) \ E) ≤ b

Ln
, (5.1)

where L is the Lipschitz constant of u−1
0 in u0(Ω). As u0(Ω) is open, there exists a Lipschitz function

w1 : Q→ [0, 1] such that w1 = 1 in a neighbourhood of E, and w1 = 0 in Q \ u0(Ω). Define w0 : Q→ [0, 1]
as

w0 :=


v0 ◦ u−1

0 in E,

min{w1, v0 ◦ u−1
0 } in u0(Ω) \ E,

0 in Q \ u0(Ω).

It is easy to check that w0 is Lipschitz, and that v0 ≥ w0 ◦ u0 a.e. in Ω. Moreover, thanks to (5.1) we find
that ∫

Ω

[v0 − w0 ◦ u0] dx =

∫
Ω\u−1

0 (E)

[v0 − w0 ◦ u0] dx ≤ Ln
(
Ω \ u−1

0 (E)
)
≤ b.

Thus, conditions (4.8)–(4.12) hold for the triple (u, v, w) = (u0, v0, w0). Consequently, (u0, v0, w0) ∈ A. In
addition, ∫

Ω

[
|Dv0|q + (1− v0)q

′
]

dx <∞ and

∫
Q

[
|Dw0|q + wq

′

0 (1− w0)q
′
]

dy <∞. (5.2)

Using (4.2) and (5.2), we find that I(u0, v0, w0) < ∞. Furthermore, assumption (W2) shows that I ≥ 0.
Therefore, there exists a minimizing sequence {(uj , vj , wj)}j∈N of I in A. Again assumption (W2) implies
the bound

sup
j∈N

[
‖Duj‖Lp(Ω,Rn×n) + ‖h1(| cof Duj |)‖L1(Ω) + ‖h2(detDuj)‖L1(Ω)

]
<∞.
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Moreover, calling ūj the extension of uj as in (4.4), and using De la Vallée–Poussin criterion, we find that
the sequence {Dūj}j∈N is bounded in Lp(Ω1,Rn×n), while the sequences {cof Dūj}j∈N and {detDūj}j∈N
are equiintegrable. As, in addition, detDūj > 0 a.e., ūj is one-to-one a.e. and E(ūj) = 0 for all j ∈ N, the
same proof of [37, Th. 4] shows that there exists ū ∈W 1,p(Ω1,K) such that ū is one-to-one a.e., detDū > 0
a.e., E(ū) = 0 and that, for a subsequence,

ūj → ū a.e. in Ω1, ūj ⇀ ū in W 1,p(Ω1,Rn), detDūj ⇀ detDū in L1(Ω1) (5.3)

as j →∞. Moreover, a standard result on the continuity of minors (see, e.g., [27, Th. 8.20], which is fact is
a particular case of Lemma 2.12) shows that µ0(Duj) ⇀ µ0(Du) in L1(Ω,Rτ−1) as j → ∞, where we are
using the notation for minors explained in Section 2.7. With (5.3) we obtain

µ(Duj) ⇀ µ(Du) in L1(Ω,Rτ ) as j →∞. (5.4)

In addition, ū = u0 in Ω1 \ Ω, so, calling u := ū|Ω we have that condition (4.3) is satisfied and, hence,
u ∈ AE .

Using that q > n, the Sobolev embedding theorem, the estimate

sup
j∈N

[
‖Dvj‖Lq(Ω,Rn) + ‖Dwj‖Lq(Q,Rn)

]
<∞,

and the inclusions vj(Ω), wj(Q) ⊂ [0, 1] for all j ∈ N, we find that there exist v ∈ W 1,q(Ω, [0, 1]) and
w ∈W 1,q(Q, [0, 1]) such that, for a subsequence,

vj → v in C0,α(Ω̄), vj ⇀ v in W 1,q(Ω), wj → w in C0,α(Q̄), wj ⇀ w in W 1,q(Q), (5.5)

for some α > 0. Now, for all j ∈ N and a.e. x ∈ Ω,

|wj(uj(x))− w(u(x))| ≤ |wj(uj(x))− wj(u(x))|+ |wj(u(x))− w(u(x))|
≤ ‖wj‖C0,α(Q̄) |uj(x)− u(x)|α + ‖wj − w‖L∞(Q) ,

so, thanks to the convergences (5.3) and (5.5), we infer that

wj ◦ uj → w ◦ u a.e. as j →∞. (5.6)

Thanks to (5.5), (5.6) and dominated convergence, we have that inequalities (4.11)–(4.12) are satisfied, as
well as the boundary conditions (4.8)–(4.9). We show next that condition (4.10) is also satisfied. For this,
we first prove that

χimG(uj ,Ω) → χimG(u,Ω) as j →∞ (5.7)

in L1(Rn). Thanks to [37, Th. 2], there exists an increasing sequence {Vk}k∈N of open sets such that
Ω =

⋃
k∈N Vk and, for each k ∈ N,

χimG(uj ,Vk) → χimG(u,Vk) as j →∞ (5.8)

in L1
loc(Rn), up to a subsequence. In fact, as χimG(uj ,Ω) ≤ χK a.e. for all j ∈ N, we have that the convergence

(5.8) is in L1(Rn). For all j, k ∈ N we have that∥∥χimG(uj ,Ω) − χimG(u,Ω)

∥∥
L1(Rn)

≤
∥∥χimG(uj ,Ω) − χimG(uj ,Vk)

∥∥
L1(Rn)

+
∥∥χimG(uj ,Vk) − χimG(u,Vk)

∥∥
L1(Rn)

+
∥∥χimG(u,Vk) − χimG(u,Ω)

∥∥
L1(Rn)

.
(5.9)

Thanks to Proposition 2.5,∥∥χimG(uj ,Ω) − χimG(uj ,Vk)

∥∥
L1(Rn)

=
∥∥χimG(uj ,Ω\Vk)

∥∥
L1(Rn)

=

∫
Ω\Vk

detDuj(x) dx (5.10)
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and ∥∥χimG(u,Vk) − χimG(u,Ω)

∥∥
L1(Rn)

=

∫
Ω\Vk

detDu(x) dx. (5.11)

Let ε̄ > 0. By the equiintegrability of the sequence {detDuj}j∈N given by (5.3), there exists k ∈ N such
that for all j ∈ N, ∫

Ω\Vk
detDuj(x) dx +

∫
Ω\Vk

detDu(x) dx ≤ ε̄. (5.12)

Using the L1(Rn) convergence of (5.8), for such k ∈ N there exists j0 ∈ N such that for all j ≥ j0,∥∥χimG(uj ,Vk) − χimG(u,Vk)

∥∥
L1(Rn)

≤ ε̄. (5.13)

Thus, the L1(Rn) convergence (5.7) follows from (5.9)–(5.13). For a subsequence, it also holds a.e. To
conclude the argument, we let y ∈ Q \ imG(u,Ω). By the a.e. convergence of (5.7), there exists j0 ∈ N such
that y /∈ imG(uj ,Ω) for all j ≥ j0, and, by (4.10), wj(y) = 0. Passing to the limit using (5.5) shows that
w(y) = 0. Therefore, condition (4.10) holds and we conclude that (u, v, w) ∈ A.

On the other hand, convergences (5.5) show that∫
Ω

(1− v)q
′
dx = lim

j→∞

∫
Ω

(1− vj)q
′
dx,

∫
Ω

|Dv|q dx ≤ lim inf
j→∞

∫
Ω

|Dvj |q dx (5.14)

and ∫
Q

wq
′
(1− w)q

′
dy = lim

j→∞

∫
Q

wq
′

j (1− wj)q
′
dy,

∫
Q

|Dw|q dy ≤ lim inf
j→∞

∫
Q

|Dwj |q dy. (5.15)

In addition, we can apply the lower semicontinuity result of [12, Th. 5.4], according to which, thanks to the
polyconvexity of W given by (W1) and to convergences (5.3), (5.4) and (5.5), we have that∫

Ω

(v(x)2 + η)W (x,u(x), Du(x)) dx ≤ lim inf
j→∞

∫
Ω

(vj(x)2 + η)W (x,uj(x), Duj(x)) dx. (5.16)

Inequalities (5.14), (5.15) and (5.16) show that (u, v, w) is a minimizer of I in A.

6 Compactness and lower bound

For the rest of the paper, we fix a sequence {ε}ε of positive numbers going to zero. As in Section 4, we fix
parameters λ1, λ2 > 0, exponents p ≥ n − 1 and q > n and sequences {ηε}ε and {bε}ε of positive numbers
such that

sup
ε
ηε <∞ (6.1)

and
bε → 0. (6.2)

The functional I of (4.1) corresponding to the parameters λ1, λ2, ε, ηε, p, q will be called Iε, and the admissible
set A of Section 4 corresponding to b = bε in the restriction (4.12) will be called Aε.

Given ε, measurable sets A ⊂ Ω and B ⊂ Q, and (u, v, w) ∈ Aε, define

IEε (u, v;A) :=

∫
A

(v(x)2 + ηε)W (x,u(x), Du(x)) dx, IVε (v;A) :=

∫
A

[
εq−1 |Dv(x)|q

q
+

(1− v(x))q
′

q′ε

]
dx

IWε (w;B) :=

∫
B

[
εq−1 |Dw(y)|q

q
+
w(y)q

′
(1− w(y))q

′

q′ε

]
dy.

(6.3)
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Define also
IEε (u, v) := IEε (u, v; Ω), IVε (v) := IVε (v; Ω) and IWε (w) := IWε (w;Q),

so that
Iε(u, v, w) = IEε (u, v) + λ1 I

V
ε (v) + 6λ2 I

W
ε (w).

This section is devoted to the proof of the following theorem.

Theorem 6.1. For each ε, let (uε, vε, wε) ∈ Aε satisfy

sup
ε
Iε(uε, vε, wε) <∞. (6.4)

Then there exists u ∈ SBV (Ω,K) such that u is one-to-one a.e., detDu > 0 a.e. and, for a subsequence,

uε → u a.e., vε → 1 a.e. and wε → χimG(u,Ω) a.e. (6.5)

Moreover, for any such u, we have that∫
Ω

W (x,u(x),∇u(x)) dx + λ1

[
Hn−1(Ju) +Hn−1 ({x ∈ ∂DΩ : u(x) 6= u0(x)}) +

1

2
Hn−1(∂NΩ)

]
+ λ2

[
Per imG(u,Ω) + 2Hn−1(Ju−1)

]
≤ lim inf

ε→0
Iε(uε, vε, wε).

In the inequality above, the value of u on ∂Ω is understood in the sense of traces (see, e.g., [7, Th. 3.87]).
Theorem 6.1 constitutes the usual compactness and lower bound parts of a Γ-convergence result. Its proof
spans the next subsections, and will be divided into partial results.

6.1 A first compactness result

For the sake of brevity, for each ε we define Wε : Ω→ [0,∞] through

Wε(x) := W (x,uε(x), Duε(x)). (6.6)

The following is a preliminary compactness result for the sequence {(uε, vε)}ε.

Proposition 6.2. For each ε, let (uε, vε) ∈ AE ×W 1,q(Ω, [0, 1]) satisfy

sup
ε

[
IEε (uε, vε) + IVε (vε)

]
<∞. (6.7)

Then, for a subsequence,
vε → 1 in L1(Ω), a.e. and in measure, (6.8)

and there exists u ∈ BV (Ω,K) such that

uε → u a.e. and in L1(Ω,Rn). (6.9)

Proof. For each ε, we use the equality

D
((

3v2
ε − 2v3

ε

)
uε
)

= 6vε(1− vε)uε ⊗Dvε + v2
ε (3− 2vε)Duε,

the bound 0 ≤ vε ≤ 1 and the L∞ a priori bound for uε given by K to find that∣∣D ((3v2
ε − 2v3

ε

)
uε
)∣∣ / (1− vε) |uε ⊗Dvε|+ v2

ε |Duε| / (1− vε) |Dvε|+ v
2
p
ε |Duε| ,
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so by Hölder’s inequality, Young’s inequality and assumption (W2) we obtain that∫
Ω

∣∣D ((3v2
ε − 2v3

ε

)
uε
)∣∣dx /

∫
Ω

(1− vε) |Dvε|dx +

(∫
Ω

v2
ε |Duε|p dx

) 1
p

/ IVε (vε) +

(∫
Ω

v2
εWε dx

) 1
p

≤ IVε (vε) + IEε (uε, vε)
1
p / 1.

Therefore, there exists u ∈ BV (Ω,K) such that, for a subsequence, (3v2
ε − 2v3

ε)uε → u a.e.
On the other hand, ∫

Ω

(1− vε)q
′
dx ≤ q′ε IVε (vε) / ε,

so, taking a subsequence, the convergences (6.8) hold and, hence,

uε =

(
3v2
ε − 2v3

ε

)
uε

(3v2
ε − 2v3

ε)
→ u a.e.

By dominated convergence, uε → u in L1(Ω,Rn) as well.

6.2 Fracture energy term

In this section we study the term IVε . Its analysis is essentially due to Ambrosio & Tortorelli [8, 9], who
proved it in the scalar case when W is the Dirichlet energy. In this section, we take many ideas from
the exposition of [19, Sect. 10.2] and [20, Sect. 5.2], who extended the result to the vectorial case for a
quasiconvex W . Some adaptations are to be made, though, because of the boundary conditions (4.3), (4.8)
and (4.9), so that inequality (6.11) of Proposition 6.5 below is stronger than the usual lower bound inequality
for IVε . In addition, our W is polyconvex, is allowed to have a slow growth at infinity and blows up when
the determinant of the deformation gradient goes to zero, all of which add further difficulties in the analysis.

We first present a version of the intermediate value theorem for measurable functions, which will be used
several times in the sequel. Although the result is well known for experts, we have not found a precise
reference.

Lemma 6.3. Let I ⊂ R be a measurable set with L1(I) > 0. Let f, g : I → [0,∞] be two measurable
functions such that f ∈ L1(I). Then the set of s0 ∈ I such that∫

I

f(s) g(s) ds ≥
∫
I

f(s) ds g(s0)

has positive measure.

Proof. Let J be the set of s ∈ I such that f(s) > 0. The result is immediate if L1(J) = 0, so assume that
L1(J) > 0. The result is also trivial if g is constant a.e. in J , so assume that this is not the case. Then∫

J
f(s) g(s) ds∫
J
f(s) ds

> ess inf
J

g.

By definition of essential infimum, we have that

L1

(
{s0 ∈ J : g(s0) ≤

∫
J
f(s) g(s) ds∫
J
f(s) ds

}
)
> 0. (6.10)

Assume the conclusion of the lemma to be false. Then, together with (6.10) we would infer that there exists
s0 ∈ J such that ∫

J

f(s) g(s) ds <

∫
J

f(s) ds g(s0) and g(s0) ≤
∫
J
f(s) g(s) ds∫
J
f(s) ds

,

which is a contradiction.
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The following lemma is a restatement of the well-known fact that Lipschitz domains satisfy both the
interior and exterior cone conditions (see, e.g., [2, Prop. 3.7]).

Lemma 6.4. Let Ω be a Lipschitz domain. Then there exist δ > 0 and γ0 ∈ (0, 1) such that for Hn−1-a.e.
x ∈ ∂Ω and every ξ ∈ Sn−1 such that ξ · νΩ(x) > γ0,

{t ∈ (−δ, δ) : x + tξ ∈ Ω} = (−δ, 0).

The compactness result of Proposition 6.2 is complemented by the following one, in which we also prove
the lower bound inequality for the term IVε .

Proposition 6.5. For each ε, let (uε, vε) ∈ AE ×W 1,q(Ω, [0, 1]) satisfy (6.7). Let u ∈ BV (Ω,K) satisfy
(6.9). Then u ∈ SBV (Ω,K) and

Hn−1(Ju) +Hn−1 ({x ∈ ∂DΩ : u(x) 6= u0(x)}) +
1

2
Hn−1(∂NΩ) ≤ lim inf

ε→0
IVε (vε). (6.11)

Proof. Fix 0 < δ < 1
2 . We perform a slicing argument, for which we will use the notation of Definition 2.13.

By Fatou’s lemma, Proposition 2.14 and (W2), we have that for every ξ ∈ Sn−1,∫
Ωξ

lim inf
ε→0

∫
Ωξ,x′

(vξ,x
′

ε )2 |Duξ,x′

ε |p dtdHn−1(x′) ≤ lim inf
ε→0

∫
Ωξ

∫
Ωξ,x′

(vξ,x
′

ε )2 |Duξ,x′

ε |p dtdHn−1(x′)

≤ lim inf
ε→0

∫
Ω

v2
ε |Duε|p dx / lim inf

ε→0
IEε (uε, vε)

(6.12)

and∫
Ωξ

lim inf
ε→0

∫
Ωξ,x′

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dtdHn−1(x′)

≤ lim inf
ε→0

∫
Ωξ

∫
Ωξ,x′

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dtdHn−1(x′) ≤ lim inf

ε→0
IVε (vε).

(6.13)

Inequalities (6.12)–(6.13) and the energy bound (6.7) imply that for Hn−1-a.e. x′ ∈ Ωξ,

lim inf
ε→0

∫
Ωξ,x′

(vξ,x
′

ε )2 |Duξ,x′

ε |p dt <∞ and lim inf
ε→0

∫
Ωξ,x′

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dt <∞. (6.14)

By (6.8)–(6.9), using slicing theory and passing to a subsequence (which may depend on x′), we also have
that, for Hn−1-a.e. x′ ∈ Ωξ,

L1
(
{t ∈ Ωξ,x′ : vξ,x

′

ε (t) < 1− δ}
)
→ 0 and uξ,x′

ε → uξ,x′ in L1(Ωξ,x′ ,Rn). (6.15)

Fix any x′ ∈ Ωξ for which equations (6.14)–(6.15) hold, and let U be a non-empty open subset of Ω.
Then Uξ,x′ is also open, hence it is the union of a disjoint countable family {Ik}k∈N of open intervals. Note
that each Ik depends also on U , x′ and ξ, but this dependence will not be emphasized in the notation. Also
for simplicity, we use the notation {Ik}k∈N, even though the family of intervals may be finite.

By Young’s inequality, the coarea formula (2.3) and Lemma 6.3, for each k ∈ N and each ε there exists
sε,k ∈ (δ, 1− δ) such that, when we define

aδ :=

∫ 1−δ

δ

(1− s) ds, Eε,k := {t ∈ Ik : vξ,x
′

ε (t) < sε,k}, (6.16)
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we have∫
Ik

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dt ≥

∫
Ik

(1− vξ,x
′

ε ) |Dvξ,x
′

ε |dt

≥
∫ 1−δ

δ

(1− s)H0
(
∂∗{t ∈ Ik : vξ,x

′

ε (t) < s} ∩ Ik
)

ds ≥ aδH0(∂∗Eε,k ∩ Ik).

(6.17)

The function vξ,x
′

ε is absolutely continuous, hence differentiable a.e. In addition, by a version of Sard’s
theorem for Sobolev maps (see, e.g., [30, Sect. 5]), we have that

L1
(
vξ,x

′

ε

(
{t ∈ Ωξ,x′ : vξ,x

′

ε is differentiable at t and (vξ,x
′

ε )′(t) = 0}
))

= 0.

On the other hand, it is easy to see that for any s0 ∈ R with the property that

all t0 ∈ (vξ,x
′

ε )−1(s0) is such that vξ,x
′

ε is differentiable at t0 and (vξ,x
′

ε )′(t0) 6= 0,

one has
∂∗{t ∈ Ωξ,x′ : vξ,x

′

ε (t) < s0} = ∂{t ∈ Ωξ,x′ : vξ,x
′

ε (t) < s0}.

Moreover, since vξ,x
′

ε is continuous, Eε,k is an open set. These facts together with Lemma 6.3 allow us to
assume that the number sε,k in (6.16) was chosen so that not only (6.17) holds, but also ∂∗Eε,k = ∂Eε,k.
Thus,

1

δ2
lim inf
ε→0

∫
Uξ,x′

(vξ,x
′

ε )2 |Duξ,x′

ε |p dt ≥
∑
k∈N

lim inf
ε→0

∫
Ik\Eε,k

|Duξ,x′

ε |p dt,

lim inf
ε→0

∫
Uξ,x′

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dt ≥ aδ lim inf

ε→0
H0(∂Eε,k ∩ Ik).

(6.18)

Fix k ∈ N. From (6.14) and (6.18), we infer that lim infε→0H0(∂Eε,k ∩ Ik) < ∞, and, hence, for a
subsequence, Eε,k has a uniformly bounded number of connected components. Let Fk be the Hausdorff limit
of a subsequence of {Eε,k}ε, i.e., Fk is characterized by the facts that it is compact, contained in Ik and for
each η > 0 there exists εη such that if ε < εη then

Eε,k ⊂ B̄(Fk, η) and Fk ⊂ B̄
(
Eε,k, η

)
. (6.19)

Moreover, Fk can be found by taking the limit of the sequences of endpoints of the connected components
of Eε,k. Call

Gk,0 := {t ∈ Fk ∩ ∂Ik : lim
ε→0

vξ,x
′

ε (t) = 0}, Gk,1 := {t ∈ Fk ∩ ∂Ik : lim
ε→0

vξ,x
′

ε (t) = 1},

where the value of vξ,x
′

ε in ∂Ik is understood in the sense of traces, and it always exists because vξ,x
′

ε is
uniformly continuous. By (6.15) and (6.16) we have that L1(Eε,k) → 0, hence Fk necessarily consists of a
finite number of points. Using this and that each Eε,k is a union of a uniformly bounded number of open
intervals, the following argument allows us to conclude that

H0(Fk ∩ Ik) +H0(Gk,1) +
1

2
H0(Gk,0) ≤ lim inf

ε→0

1

2
H0(∂Eε,k ∩ Ik). (6.20)

Indeed, we first observe that for each t ∈ Fk there exist sequences {τε}ε and {τε}ε tending to t such that

τε < τε, τε, τε ∈ ∂Eε,k and (τε, τε) ⊂ Eε,k for all ε.

Consider the following two cases.
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a) If t ∈ Ik, then τε, τε ∈ Ik for every ε sufficiently small. Therefore, to t there correspond two points in
∂Eε,k ∩ Ik: τε and τε.

b) If t ∈ ∂Ik, assume, for definiteness, that t = inf Ik. Then t ≤ τε for all ε sufficiently small. If
limε→0 v

ξ,x′

ε (t) = 1, then, by (6.16) we have that t 6= τε, and, hence τε, τε ∈ Ik. Therefore, to t
there correspond two points in ∂Eε,k ∩ Ik: τε and τε. If, instead, limε→0 v

ξ,x′

ε (t) = 0 then still τε ∈ Ik,
but it may happen that τε = t for all ε sufficiently small, so we cannot guarantee that τε ∈ Ik. Hence we
only conclude that to t there corresponds at least one point in ∂Eεk ∩ Ik: τε.

This discussion completes the proof of (6.20).
Now, for each η > 0 there exists εη such that if ε < εη, the inclusions (6.19) hold. Thus, by (6.14) and

(6.18),

∞ > lim inf
ε→0

∫
Ik\Eε,k

|Duξ,x′

ε |p dt ≥ lim inf
ε→0

∫
Ik\B̄(Fk,η)

|Duξ,x′

ε |p dt. (6.21)

From (6.15) and (6.21) we obtain that uξ,x′ ∈W 1,p(Ik \ B̄(Fk, η),Rn) and∫
Ik\B̄(Fk,η)

|Duξ,x′ |p dt ≤ lim inf
ε→0

∫
Ik\Eε,k

|Duξ,x′

ε |p dt. (6.22)

Since the right-hand side of (6.22) is independent of η, we conclude that uξ,x′ ∈W 1,p(Ik \ Fk,Rn) and∫
Ik

|∇uξ,x′ |p dt ≤ lim inf
ε→0

∫
Ik\Eε,k

|Duξ,x′

ε |p dt. (6.23)

A standard result in the theory of SBV functions (see, e.g., [7, Prop. 4.4]) shows then that uξ,x′ ∈
SBV (Ik,Rn) and

Juξ,x′ ∩ Ik ⊂ Fk ∩ Ik. (6.24)

In particular, uξ,x′ ∈ SBVloc(Uξ,x′ ,Rn) and, by (6.24), (6.20) and (6.18),

H0(Juξ,x′ ∩ Uξ,x′) +
∑
k∈N

[
H0(Gk,1) +

1

2
H0(Gk,0)

]
≤ 1

2aδ
lim inf
ε→0

∫
Uξ,x′

[
εq−1 |Dvξ,x

′

ε |q

q
+

(1− vξ,x′ε )q
′

q′ε

]
dt.

(6.25)
The analysis above is true for any non-empty open U ⊂ Ω. In the rest of the paragraph, we take U to

be Ω. We have

V
(
uξ,x′ ,Ωξ,x′

)
=
∑
k∈N

V
(
uξ,x′ , Ik

)
=
∑
k∈N

∫
Ik

∣∣∣∇uξ,x′
∣∣∣dt+

∑
t∈J

uξ,x′∩Ik

∣∣∣uξ,x′(t+)− uξ,x′(t−)
∣∣∣
 . (6.26)

Both equalities of (6.26) are standard: see, e.g., [56, Rk. 5.1.2] for the first and [7, Cor. 3.33] for the second
In (6.26), uξ,x′(t+) denotes the limit at t of the precise representative of uξ,x′ from the right, and uξ,x′(t−)
from the left. On the one hand, we have, due to (6.25) and (6.14),∑

k∈N

∑
t∈J

uξ,x′∩Ik

∣∣∣uξ,x′(t+)− uξ,x′(t−)
∣∣∣ ≤ 2 sup

y∈K
|y|H0(Juξ,x′ ) <∞ (6.27)

and, on the other hand, using (6.23), (6.18), (6.14) and Fatou’s lemma,∑
k∈N

∫
Ik

|∇uξ,x′ |p dt ≤ lim inf
ε→0

∑
k∈N

∫
Ik\Eε,k

|Duξ,x′

ε |p dt ≤ 1

δ2
lim inf
ε→0

∫
Ωξ,x′

(vξ,x
′

ε )2 |Duξ,x′

ε |p dt <∞. (6.28)
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Thus, equations (6.26), (6.27) and (6.28) show that uξ,x′ ∈ SBV (Ωξ,x′ ,Rn). In addition, by (6.25) and
(6.13), ∫

Ωξ

H0(Juξ,x′ ) dHn−1(x′) ≤ 1

2aδ
lim inf
ε→0

IVε (vε), (6.29)

whereas, by (6.28) and (6.12),∫
Ωξ

∫
Ωξ,x′

|∇uξ,x′ |p dtdHn−1(x′) =

∫
Ωξ

∑
k∈N

∫
Ik

|∇uξ,x′ |p dtdHn−1(x′) / lim inf
ε→0

IEε (uε, vε). (6.30)

Proposition 2.14 and equations (6.29), (6.30), and (6.7) conclude that u ∈ SBV (Ω,Rn) and Hn−1(Ju) <∞.
We pass to prove (6.11). Fix a dense countable set {ξj}j∈N in Sn−1 and γ ∈ [γ0, 1), where γ0 is the

number appearing in Lemma 6.4. Define the sets

S := {x ∈ ∂DΩ : u(x) 6= u0(x)},
Sj := {x ∈ ∂Ω : there exists σ > 0 such that x− (0, σ)ξj ⊂ Ω and x + (0, σ)ξj ⊂ Rn \ Ω},
Aj := {x ∈ Ju ∪ S ∪ ∂NΩ : ν(x) · ξj > γ and ν(x) · ξi ≤ γ for all i < j},

where ν(x) in the definition of Aj denotes either νu(x) if x ∈ Ju, or νΩ(x) if x ∈ S ∪∂NΩ. For convenience,
the Borel maps νu : Ju → Sn−1 and νΩ : ∂Ω→ Sn−1 are defined everywhere, even at those points where Ju
or ∂Ω do not admit an approximate tangent space; for those points x (which form an Hn−1-null set), νu(x)
and νΩ(x) are defined arbitrarily so that the resulting maps νu and νΩ are Borel. Note that {Aj}j∈N is a
disjoint family whose union is Ju ∪ S ∪ ∂NΩ. Indeed, for each x ∈ Ju ∪ S ∪ ∂NΩ there exists j ∈ N such
that |ν(x) · ξj | > γ, since {ξj}j∈N is dense in Sn−1. If j0 ∈ N is the first such j, then x ∈ Aj0 . Notice, in
addition, that

S
ξj
j ⊂ Ωξj . (6.31)

Indeed, let πξj be the linear projection onto Πξj (see Definition 2.13). If x0 ∈ S
ξj
j then there exists x ∈ Sj

such that x0 = πξj (x). By definition of Sj , there exists t > 0 such that x− tξj ∈ Ω, so πξj (x− tξj) ∈ Ωξj ,
but πξj (x− tξj) = πξj (x) = x0. This shows (6.31). Now, Lemma 6.4 implies that if γ ≥ γ0 then

Aj ∩ ∂Ω ∩ Sj = Aj ∩ ∂Ω Hn−1-a.e. (6.32)

From now on, take such a γ.
Use the regularity of the finite Radon measure Hn−1 (Ju ∪ S ∪ ∂NΩ) to find, for each j ∈ N, an open

set Uj such that Aj ⊂ Uj and

Hn−1 ((Ju ∪ S ∪ ∂NΩ) ∩ Uj \Aj) ≤ 2−j(1− γ). (6.33)

For each x ∈ Ju∪S ∪∂NΩ, let j ∈ N satisfy x ∈ Aj , and define Fx as the family of all closed balls B centred
at x such that B ⊂ Uj and

Hn−1 ((Ju ∪ S ∪ ∂NΩ) ∩ ∂B) = 0. (6.34)

Then the family
F := {B : B ∈ Fx for some x ∈ Ju ∪ S ∪ ∂NΩ}

forms a fine cover of Ju ∪S ∪ ∂NΩ. Apply Besicovitch’s theorem (see, e.g., [7, Th. 2.19]) to obtain a disjoint
subfamily G of F such that Hn−1((Ju ∪ S ∪ ∂NΩ) \

⋃
G) = 0. For each j ∈ N, call Vj the union of the

interiors of all the balls in G that are centred at a point in Aj . Each Vj is open and contained in Uj , the
family {Vj}j∈N is disjoint, and

Hn−1

(
(Ju ∪ S ∪ ∂NΩ) \

⋃
j∈N

Vj

)
= 0, (6.35)

because of condition (6.34).
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Fix j ∈ N and x′ ∈ Ωξj such that equations (6.14)–(6.15) hold for ξ = ξj . As each Vj is open, we can
apply (6.25) to U = Ω ∩ Vj so as to obtain

H0(J
uξj ,x

′ ∩ (Ω ∩ Vj)ξj ,x
′
) +

∑
k∈N

[
H0(Gj,x

′

k,1 ) +
1

2
H0(Gj,x

′

k,0 )

]

≤ 1

2aδ
lim inf
ε→0

∫
(Ω∩Vj)ξj ,x

′

[
εq−1 |Dv

ξj ,x
′

ε |q

q
+

(1− vξj ,x
′

ε )q
′

q′ε

]
dt,

(6.36)

where the family {Ik}k∈N of intervals this time corresponds to (Ω∩Vj)ξj ,x
′
, and the dependence of Gk,0 and

Gk,1 on Vj , ξj , and x′ has been made explicit in the notation. Now we analyze the last two terms of the
left-hand side of (6.36). We discuss the following two cases.

a) Let t0 ∈ (∂NΩ∩ Sj ∩ Vj)ξj ,x
′
. Thus, there exist x ∈ ∂NΩ∩ Sj ∩ Vj and x′ ∈ (∂NΩ∩ Sj ∩ Vj)ξj such that

x = x′ + t0ξj . Then t0 ∈ ∂Ik for some k ∈ N, by definition of Sj . By (4.9) we have that v
ξj ,x

′

ε (t0) = 0

for all ε, so by the continuity of v
ξj ,x

′

ε , we infer that t ∈ Eε,k for all t ∈ Ωξj ,x
′

with t ' t0. Since x ∈ Sj ,
this implies that t0 ∈ Eε,k. From the definition of Fk we conclude that t0 ∈ Fk. This shows that

(∂NΩ ∩ Sj ∩ Vj)ξj ,x
′
⊂
⋃
k∈N

Gj,x
′

k,0 . (6.37)

b) Note now that Hn−1-a.e. x ∈ ∂DΩ satisfies uε(x) = u0(x), thanks to (4.3). Take such an x that in

addition belongs to S∩Sj ∩Vj . As in the previous case, let x′ ∈ (S∩Sj ∩Vj)ξj and t0 ∈ (S∩Sj ∩Vj)ξj ,x
′

be such that x = x′+ t0ξj , so t0 = sup Ik for some k ∈ N. By (4.8), v
ξj ,x

′

ε (t0) = 1 for all ε, while we have
just seen that

u
ξj ,x

′

ε (t0) = u0(x). (6.38)

On the other hand, t0 must belong to Fk, since otherwise, having in mind equation (6.19) and the fact
that Fk is compact, there would exist η > 0 such that (t0 − η, t0) ⊂ Ik \ Eε,k for all ε sufficiently
small. By (6.14), (6.15), (6.38) and trace theory for maps in W 1,p((t0 − η, t0),Rn), we would conclude

that uξj ,x
′
(t0) = u0(x), which contradicts the fact that x ∈ S. This shows that for Hn−1-a.e. x′ ∈

(S ∩ Sj ∩ Vj)ξj ,
(S ∩ Sj ∩ Vj)ξj ,x

′
⊂
⋃
k∈N

Gj,x
′

k,1 . (6.39)

Inclusions (6.37) and (6.39) imply that∫
(∂NΩ∩Sj∩Vj)ξj

H0
(

(∂NΩ ∩ Sj ∩ Vj)ξj ,x
′
)

dHn−1(x′) ≤
∑
k∈N

∫
(∂NΩ∩Sj∩Vj)ξj

H0(Gj,x
′

k,0 ) dHn−1(x′),∫
(S∩Sj∩Vj)ξj

H0
(

(S ∩ Sj ∩ Vj)ξj ,x
′
)

dHn−1(x′) ≤
∑
k∈N

∫
(S∩Sj∩Vj)ξj

H0(Gj,x
′

k,1 ) dHn−1(x′).

(6.40)

Now recall from (6.31) that

(∂NΩ ∩ Sj ∩ Vj)ξj ⊂ (Ω ∩ Vj)ξj and (S ∩ Sj ∩ Vj)ξj ⊂ (Ω ∩ Vj)ξj . (6.41)

Thus, combining (6.40), (6.41), (6.36), Fatou’s lemma and Proposition 2.14, we find that∫
(Ω∩Vj)ξj

H0
(
J
uξj ,x

′ ∩ (Ω ∩ Vj)ξj ,x
′
)

dHn−1(x′) +

∫
(S∩Sj∩Vj)ξj

H0
(

(S ∩ Sj ∩ Vj)ξj ,x
′
)

dHn−1(x′)

+
1

2

∫
(∂NΩ∩Sj∩Vj)ξj

H0
(

(∂NΩ ∩ Sj ∩ Vj)ξj ,x
′
)

dHn−1(x′) ≤ 1

2aδ
lim inf
ε→0

IVε (vε; Ω ∩ Vj).
(6.42)
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By Proposition 2.14,∫
(Ω∩Vj)ξj

H0(J
uξj ,x

′ ∩ (Ω ∩ Vj)ξj ,x
′
) dHn−1(x′) =

∫
Vj∩Ju

∣∣νu · ξj
∣∣ dHn−1,∫

(S∩Sj∩Vj)ξj
H0((S ∩ Sj ∩ Vj)ξj ,x

′
) dHn−1(x′) =

∫
S∩Sj∩Vj

∣∣νΩ · ξj
∣∣dHn−1,∫

(∂NΩ∩Sj∩Vj)ξj
H0((∂NΩ ∩ Sj ∩ Vj)ξj ,x

′
) dHn−1(x′) =

∫
∂NΩ∩Sj∩Vj

∣∣νΩ · ξj
∣∣dHn−1.

(6.43)

Using the definition of Aj , we find that∫
Vj∩Ju∩Aj

∣∣νu · ξj
∣∣dHn−1 +

∫
Vj∩S∩Aj

∣∣νΩ · ξj
∣∣dHn−1 +

1

2

∫
Vj∩∂NΩ∩Aj

∣∣νΩ · ξj
∣∣dHn−1

≥ γ
[
Hn−1(Vj ∩ Ju ∩Aj) +Hn−1(Vj ∩ S ∩Aj) +

1

2
Hn−1(Vj ∩ ∂NΩ ∩Aj)

]
.

(6.44)

On the other hand, using the inclusion Vj ⊂ Uj and (6.33), we find that

Hn−1(Vj ∩ Ju) +Hn−1(Vj ∩ S) +
1

2
Hn−1(Vj ∩ ∂NΩ)

≤Hn−1(Vj ∩ Ju ∩Aj) +Hn−1(Vj ∩ S ∩Aj) +
1

2
Hn−1(Vj ∩ ∂NΩ ∩Aj) + 2−j(1− γ).

(6.45)

Applying (6.32), we obtain that∫
Vj∩Ju

∣∣νu · ξj
∣∣dHn−1 +

∫
Sj∩S∩Vj

∣∣νΩ · ξj
∣∣ dHn−1 +

1

2

∫
Vj∩∂NΩ∩Sj

∣∣νΩ · ξj
∣∣ dHn−1

≥
∫
Vj∩Ju∩Aj

∣∣νu · ξj
∣∣ dHn−1 +

∫
Aj∩S∩Vj

∣∣νΩ · ξj
∣∣dHn−1 +

1

2

∫
Aj∩∂NΩ∩Vj

∣∣νΩ · ξj
∣∣dHn−1.

(6.46)

By (6.35) and (6.45), we have that

Hn−1(Ju) +Hn−1(S) +
1

2
Hn−1(∂NΩ)

≤
∑
j∈N

[
Hn−1(Ju ∩ Vj ∩Aj) +Hn−1(Aj ∩ S ∩ Vj) +

1

2
Hn−1(Aj ∩ ∂NΩ ∩ Vj)

]
+ 1− γ.

(6.47)

Putting together succesively inequalities (6.47), (6.44), (6.46), (6.43), (6.42), we obtain

Hn−1(Ju) +Hn−1(S) +
1

2
Hn−1(∂NΩ) ≤ 1

2aδγ
lim inf
ε→0

Iε(vε) + 1− γ.

Letting γ → 1 and δ → 0, we conclude (6.11).

6.3 Surface and elastic energy terms

In this section we study the terms IEε (uε, vε) and IWε (wε). The analysis of IEε (uε, vε) is initially based
on Braides, Chambolle and Solci [20, Sect. 3], who proved a Γ-convergence result for a quasiconvex stored
energy function W with p-growth. The term IWε (wε) resembles a Modica–Mortola [45] functional, but for
its analysis we also need the convergence result of Theorem 3.4. In fact, in order to deal with a polyconvex
W that grows as in (W2) and with the invertibility constraint for the deformation, we need to apply the
techniques of [37].

The following auxiliary results will be used several times. Recall from Section 2.7 the notation for minors.
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Lemma 6.6. For each ε, let (uε, vε) ∈ AE ×W 1,q(Ω, [0, 1]) satisfy (6.7). Let {Aε}ε be a sequence of mea-
surable subsets of Ω such that infε infAε vε > 0. Then, the sequence {∇(χAεuε)}ε is bounded in Lp(Ω,Rn×n),
and the sequence {µ(∇(χAεuε))}ε is equiintegrable.

Proof. Call δ := infε infAε vε. Using Lemma 2.3 and (W2), we find that∫
Ω

|∇(χAεuε)|
p

dx ≤ 1

δ2

∫
Aε

v2
ε |Duε|p dx /

∫
Aε

v2
εWε dx ≤ IEε (uε, vε) / 1.

Let h1 and h2 be the functions of (W2). For i ∈ {1, 2}, define h̄i : [0,∞)→ [0,∞) as h̄i(t) := hi(max{1, t}).
Then

lim
t→∞

h̄i(t)

t
=∞, i ∈ {1, 2}

and ∫
Ω

h̄1(| cof∇(χAεuε)|) dx ≤ Ln(Ω)h1(1) +

∫
Aε

Wε dx ≤ Ln(Ω)h1(1) +
1

δ2
IEε (uε, vε) / 1;

similarly, ∫
Ω

h̄2(det∇(χAεuε)) dx ≤ Ln(Ω)h2(1) +
1

δ2
IEε (uε, vε) / 1.

By De la Vallée–Poussin’s criterion for equiintegrability, the sequences {cof∇(χAεuε)}ε and {det∇(χAεuε)}ε
are equiintegrable. The rest of the components of {µ(∇(χAεuε))}ε are equiintegrable because p ≥ n−1 and,
due to Hölder’s inequality, minors of order k ∈ N with k < p are equiintegrable, as {∇(χAεuε)}ε is bounded
in Lp(Ω,Rn×n).

Lemma 6.7. For each ε, let (uε, vε) ∈ AE ×W 1,q(Ω, [0, 1]) satisfy (6.7). Let u ∈ SBV (Ω,K) satisfy (6.9).
Let {Aε}ε be a sequence of measurable subsets of Ω such that Ln(Aε)→ Ln(Ω). Assume that

inf
ε

inf
Aε
vε > 0 and sup

ε
Per(Aε,Ω) <∞.

Then
µ0(∇(χAεuε)) ⇀ µ0(∇u) in L1(Ω,Rτ−1).

Proof. We check that the sequence {χAεuε}ε satisfies the assumptions of Lemma 2.12.
Lemma 2.4 shows that χAεuε ∈ SBV (Ω,Rn) and Hn−1(JχAεuε) ≤ Per(Aε,Ω) for each ε. In addition,

thanks to (6.9) and Ln(Aε)→ Ln(Ω), we have that χAεuε → u in L1(Ω,Rn). Therefore, using Lemma 6.6,
we find that the sequence {∇(χAεuε)}ε is bounded in Lp(Ω,Rn×n), and the sequence {cof∇(χAεuε)}ε is
equiintegrable. The conclusion is achieved thanks to Lemma 2.12.

Proposition 6.8. For each ε, let (uε, vε, wε) ∈ Aε satisfy (6.4). Let u ∈ SBV (Ω,K) satisfy (6.9). Then u
is one-to-one a.e., detDu > 0 a.e.,

Per imG(u,Ω) + 2Hn−1(Ju−1) ≤ 6 lim inf
ε→0

IWε (wε), (6.48)∫
Ω

W (x,u(x),∇u(x)) dx ≤ lim inf
ε→0

IEε (uε, vε) (6.49)

and, for a subsequence,
wε → χimG(u,Ω) in L1(Q). (6.50)

Proof. Fix 0 < δ1 < δ2 < 1. As in (6.17), using the coarea formula (2.4), we obtain that for each ε there
exists sε ∈ (δ1, δ2) such that the set Aε := {x ∈ Ω : vε(x) > sε} satisfies supε Per(Aε,Ω) < ∞ and, due to
(6.8),

Ln(Aε)→ Ln(Ω). (6.51)

33



Thanks to Lemma 6.7,
µ0(∇(χAεuε)) ⇀ µ0(∇u) in L1(Ω,Rτ−1). (6.52)

Again as in (6.17), for each ε there exists tε ∈ (δ1, δ2) such that, defining

bδ1,δ2 :=

∫ δ2

δ1

s(1− s) ds, Eε := {y ∈ Q : wε(y) > tε} , Fε := {x ∈ Ω : wε(uε(x)) > tε}

we have that

IWε (wε) ≥
∫
Q

wε(1− wε) |Dwε|dy ≥ bδ1,δ2 PerEε. (6.53)

We have also used the equality PerEε = Per(Eε, Q), which is true because conditions (4.10), (4.6) and the
continuity of wε imply that Eε ⊂⊂ Q. In particular, (6.53) shows that

sup
ε

PerEε <∞. (6.54)

Thanks to (4.11), (4.12) and (6.2), we have that wε ◦ uε − vε → 0 in L1(Ω). With the convergence (6.8), we
conclude that, for a subsequence, wε ◦ uε → 1 in measure, hence

Ln(Fε)→ Ln(Ω). (6.55)

Denoting by ∆ the operator of symmetric difference of sets, we have, thanks to (4.11), that vε|Aε∆Fε ≥ δ1
for all ε, so Lemma 6.6 yields the equiintegrability of the sequence {µ0(χAε∆FεDuε)}ε. Therefore, using
also (6.51) and (6.55),

‖µ0(∇(χAεuε))− µ0(∇(χFεuε))‖L1(Ω,Rτ−1) =

∫
Aε∆Fε

|µ0(Duε)|dx→ 0,

which, together with (6.52), shows that

µ0(∇(χFεuε)) ⇀ µ0(∇u) in L1(Ω,Rτ−1). (6.56)

Now we verify the assumptions of Theorem 3.4 for the sequence {uε}ε of maps and the sequence {Fε}ε
of sets. Using (4.10), it is easy to check that

imG(uε, Fε) = Eε a.e., (6.57)

so
Per imG(uε, Fε) = PerEε (6.58)

and, recalling (6.54), we obtain that supε Per imG(uε, Fε) <∞.
Now we show that u−1

ε,Fε
∈ SBV (Rn,Rn). Any x ∈ Fε satisfies vε(x) > tε, thanks to (4.11). As vε is

continuous, any x ∈ F̄ε satisfies vε(x) ≥ tε, so x /∈ ∂NΩ, because of (4.9). Thus,

F̄ε ∩ ∂NΩ = ∅. (6.59)

Let now ūε ∈ W 1,p(Ω1,Rn) be the extension of uε given by (4.4). Thanks to the relations Ω ∪ ∂DΩ ⊂ Ω1

and (6.59), as well as to the fact that ∂DΩ and ∂NΩ are closed disjoint sets, we can apply [38, Th. 2] to infer
that, thanks to (4.5), there exists an open set Uε ⊂⊂ Ω such that Fε ⊂ Uε and ū−1

ε,Uε
∈ SBV (Rn,Rn). Using

(6.57) and the inclusions
Eε ⊂ imG(uε,Ω) ⊂ imG(ūε, Uε),

we obtain that imG(uε, Fε) = imG(ūε, Uε) ∩ Eε a.e.; consequently, u−1
ε,Fε

= χEε ū
−1
ε,Uε

a.e. Thus, by Lemma

2.4, we conclude that u−1
ε,Fε
∈ SBV (Rn,Rn).
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As E(ūε) = 0, we can apply now [38, Th. 3] to obtain that Hn−1(ΓI(ūε)) = 0. Here ΓI denotes the
invisible surface, as defined in [38, Def. 9]. For the purposes of the proof, here it suffices to know that ΓI(ūε)
is the set of y ∈ Jū−1

ε
such that both lateral traces (ūε)

±(y) belong to Ω1. Now, any y ∈ J(uε|Fε )−1 satisfies

that the lateral traces ((uε|Fε)−1)±(y) exist, are distinct and belong to F̄ε, and, hence, to Ω1, due to (6.59).
Thus, y ∈ ΓI(ūε). Therefore, J(uε|Fε )−1 ⊂ ΓI(ūε) and, consequently,

Hn−1(J(uε|Fε )−1) = 0. (6.60)

Due to (4.11) and Lemma 6.6, there exists θ ∈ L1(Ω) such that, for a subsequence, χFε detDuε ⇀ θ in
L1(Ω). Moreover, θ ≥ 0 a.e. If θ were zero in a set A ⊂ Ω of positive measure, using (6.51) and (6.55), we
would have (for a subsequence) detDuε → 0 a.e. in A and χAε → 1 a.e. in Ω; hence by assumption (W2),
we would obtain χAεh2(detDuε)→∞ a.e. in A, and, by Fatou’s lemma,

lim
ε→0

∫
Aε∩A

h2(detDuε) dx =∞,

but for each ε, recalling the notation (6.6),

IEε (uε, vε) ≥
∫
Aε

v2
εWε dx ≥ δ2

1

∫
Aε

Wε dx ≥ δ2
1

∫
Aε

h2(detDuε) dx ≥ δ2
1

∫
Aε∩A

h2(detDuε) dx,

which is a contradiction with (6.4). Thus, θ > 0 a.e. We can therefore apply Theorem 3.4 and (6.60) in
order to conclude that θ = det∇u a.e., u is one-to-one a.e.,

χimG(uε,Fε) → χimG(u,Ω) a.e. and in L1(Rn), (6.61)

up to a subsequence, and

Per imG(u,Ω) + 2Hn−1(Ju−1) ≤ lim inf
ε→0

Per imG(uε, Fε). (6.62)

In particular,
det(χFεDuε) ⇀ det∇u in L1(Ω). (6.63)

Having in mind (6.53) and (6.58), we obtain

Per imG(uε, Fε) ≤
1

bδ1,δ2
IWε (wε). (6.64)

Putting together (6.62) and (6.64), and letting δ1 → 0 and δ2 → 1, we obtain inequality (6.48).
We prove now (6.49). Convergences (6.55), (6.56) and (6.63) show that

µ(χFεDuε) ⇀ µ(∇u) in L1(Ω,Rτ ) and χFεuε → u a.e. (6.65)

Let {F̃ε}ε be the increasing sequence of sets obtained from {Fε}ε, i.e., F̃ε :=
⋃
ε′≥ε Fε′ . Naturally, (6.55)

and (6.65) yield

Ln(F̃ε)→ Ln(Ω), µ(χF̃εDuε) ⇀ µ(∇u) in L1(Ω,Rτ ) and χF̃εuε → u a.e. (6.66)

Now fix an element ε1 of the sequence {ε}ε. Convergences (6.66) and assumption (W1) allow us to use the
lower semicontinuity theorem of [12, Th. 5.4] applied to the function W̃ε1 : Ω × K × Rτ+ → R defined as

W̃ε1(x,y,µ) := χF̃ε1
(x)W̃ (x,y,µ), so as to obtain that∫

F̃ε1

W (x,u(x),∇u(x)) dx ≤ lim inf
ε→0

∫
F̃ε1

W (x, (χF̃εuε)(x), (χF̃ε∇uε)(x)) dx. (6.67)
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Moreover, for each ε ≤ ε1 we have F̃ε1 ⊂ F̃ε, so using assumption (4.11), we find that∫
F̃ε1

W (x, (χF̃εuε)(x), (χF̃ε∇uε)(x)) dx =

∫
F̃ε1

Wε dx ≤
∫
F̃ε

Wε dx ≤ 1

δ2
1

∫
F̃ε

v2
εWε dx ≤ 1

δ2
1

IEε (uε, vε).

(6.68)
On the other hand, by (6.66) and the monotone convergence theorem,

lim
ε1→0

∫
F̃ε1

W (x,u(x),∇u(x)) dx =

∫
Ω

W (x,u(x),∇u(x)) dx. (6.69)

Equations (6.67), (6.68) and (6.69) show that∫
Ω

W (x,u(x),∇u(x)) dx ≤ 1

δ2
1

lim inf
ε→0

IEε (uε, vε).

Letting δ1 → 1 and δ2 → 1 we conclude (6.49).
We pass to prove (6.50). As supε I

W
ε (wε) < ∞, a well-known argument going back to Modica [44, Th.

I and Prop. 3] (see also [1, Sect. 4.5]) shows that there exists a measurable set V ⊂ Q such that, for a
subsequence,

wε → χV a.e. and in L1(Q). (6.70)

Take a y ∈ Q for which convergences (6.61) and (6.70) hold at y. If y ∈ imG(u,Ω), applying (6.61), for all
sufficiently small ε we have that y ∈ imG(uε, Fε). The definition of Fε shows that wε(y) ≥ δ1, and, due to
(6.70) we must have wε(y) → 1 and y ∈ V . Let now y /∈ imG(u,Ω). Applying (6.61), for all sufficiently
small ε we have that y /∈ imG(uε, Fε). If y /∈ imG(uε,Ω) then wε(y) = 0 because of (4.10), whereas if
y ∈ imG(uε,Ω \ Fε) then wε(y) ≤ δ2. In either case, due to (6.70), necessarily wε(y)→ 0 and y /∈ V . This
shows that χimG(u,Ω) = χV a.e. in Q and concludes the proof.

It is clear that Propositions 6.2, 6.5 and 6.8 complete the proof of Theorem 6.1.

7 Upper bound

In this section we prove the upper bound inequality for some particular but illustrating cases. For simplicity,
and to underline the main ideas of the constructions, we assume the space dimension n to be 2. This is
mainly a simplification for the notation, since the deformations considered enjoy many symmetries that
lend themselves to natural n-dimensional versions. Moreover, we assume that the stored-energy function
W : R2×2

+ → [0,∞] depends only on the deformation gradient, and there exist c1 > 0, p1, p2 ≥ 1, and a
continuous function h : (0,∞)→ [0,∞) satisfying

(W̄1) W (F) ≤ c1|F|p1 + h(det F) for all F ∈ R2×2
+ ,

(W̄2) lim sup
t→∞

h(t)

tp2
<∞, and

(W̄3) for every α0 > 1 there exists C(α0) > 0 such that h(αt) ≤ C(α0)(h(t) + 1) for all α ∈ (α−1
0 , α0) and

all t ∈ (0,∞).

Assumptions (W̄1)–(W̄2) are somehow the upper bound counterpart of assumption (W2) of Section 4.
Assumption (W̄3) does not have an analogue in the lower bound inequality, and it is used here to conclude
that if the determinant of the gradient of two deformations are similar, then their energies are also similar.
It allows, for example, a polynomial or a logarithmic growth of W in det F.
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Since our main motivation is the study of cavitation and fracture, the deformations u chosen for the
analysis present cavitation and fracture of various types. For those deformations, we prove that for each ε
there exists (uε, vε, wε) ∈ Aε such that (6.5) holds and∫

Ω

W (∇u(x)) dx + λ1

[
H1(Ju) +H1 ({x ∈ ∂DΩ : u(x) 6= u0(x)}) +

1

2
H1(∂NΩ)

]
+ λ2

[
Per imG(u,Ω) + 2H1(Ju−1)

]
= lim
ε→0

Iε(uε, vε, wε).
(7.1)

The calculations leading to (7.1) are lengthy, and will only be sketched. It is also cumbersome to check that
each element (uε, vε, wε) of the recovery sequence actually belongs to Aε, so the proof of this is left to the
reader. Moreover, in the constructions of this section, the container sets K and Q (see Section 4) do not
play an essential role, so we will not specify them.

For convenience, the notation of (6.3) will be further simplified. Since the functionals IEε , IVε and IWε
will always be evaluated at (uε, vε), vε and wε, respectively, for any measurable sets A ⊂ Ω and B ⊂ Q,
the quantities IEε (uε, vε;A), IVε (vε;A) and IWε (wε;B) will be simply denoted by IEε (A), IVε (A) and IWε (B),
respectively.

This section has the following parts. In Subsection 7.1 we construct the optimal profile for the phase-field
functions vε and wε to vary from 0 to 1. Subsection 7.2 reviews some well-known concepts and formulas
related to curves in the plane. In Subsections 7.3–7.6 we construct the recovery sequence for four particular
deformations, each of them with a specific kind of singularity: a cavity, a crack on the boundary, an interior
crack and a crack joining two cavities. All constructions follow the same general lines, which are explained
in Subsection 7.3 and then adapted in Subsections 7.4–7.6.

7.1 Optimal profile of the transition layer

We introduce the functions that will give the optimal profile for vε and wε to go from 0 to 1. The construction
is purely one-dimensional, so that vε and wε will only depend on the distance to the singular set through a
function called, respectively, σε,V and σε,W . These functions solve an ordinary differential equation, which
is presented in this subsection, and determine the optimal transition, in terms of energy, of going from 0
to 1. The construction is standard and goes back to Modica & Mortola [45] for the approximation of the
perimeter; it was then used by Ambrosio & Tortorelli [8] for the approximation of the fracture term.

We start using the fundamental theorem of Calculus: as 1 < q′ < 2 the function

s 7→
∫ s

0

1

(1− ξ)q′−1
dξ

is a homeomorphism from [0, 1] onto [0,
∫ 1

0
dξ

(1−ξ)q′−1 ]. Its inverse σV is of class C1 and, by definition,

σ−1
V (s) =

∫ s

0

1

(1− ξ)q′−1
dξ, s ∈ [0, 1].

Analogously, there exists a homeomorphism σW from [0,
∫ 1

0
dξ

ξq′−1(1−ξ)q′−1 ] onto [0, 1] of class C1 such that

σ−1
W (s) =

∫ s

0

1

ξq′−1(1− ξ)q′−1
dξ, s ∈ [0, 1].

We note that σV and σ−1
V can be given a closed-form expression, but not σW or σ−1

W . Notice that

σV (0) = 0, σ′V = (1− σV )q
′−1, σW (0) = 0, σ′W = σq

′−1
W (1− σW )q

′−1. (7.2)

As an aside, we mention that the initial value problem satisfied by σW (the last two equations of (7.2)) does
not enjoy uniqueness, since the nonlinearity is not Lipschitz. In fact, the function σW thus constructed is
the maximal solution of those satisfying the initial value problem.
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For each ε, define σε,V : [0, εσ−1
V (1)]→ [0, 1] and σε,W : [0, εσ−1

W (1)]→ [0, 1] as

σε,V (t) := σV

(
t

ε

)
, σε,W (t) := σW

(
t

ε

)
.

Both σε,V and σε,W are homeomorphisms of class C1 such that

σ−1
ε,V (s) = εσ−1

V (s), σ−1
ε,W (s) = εσ−1

W (s), 0 ≤ s ≤ 1.

In particular,
σ−1
ε,V (1) ≈ σ−1

ε,W (1) ≈ ε. (7.3)

Moreover, by (7.2),

σε,V (0) = 0, σ′ε,V =
(1− σε,V )q

′−1

ε
, σε,W (0) = 0, σ′ε,W =

σq
′−1
ε,W (1− σε,W )q

′−1

ε
. (7.4)

7.2 Some notation about curves

We recall some definitions and facts about plane curves. Given a,b ∈ R2, we define a∧b as the determinant
of the matrix (a,b) whose columns are a and b. The matrix

(
a
b

)
has rows a and b. We define a⊥ := (−a2, a1)

whenever a = (a1, a2). Note that

a ∧ b = a⊥ · b = −a · b⊥ = a⊥ ∧ b⊥ and (a,b)
−1

=
1

a ∧ b

(
−b⊥

a⊥

)
.

Let Θ be a C2 differentiable manifold of dimension 1, and let ū ∈ C1,1(Θ,R2) satisfy ū′(θ) 6= 0 for all
θ ∈ Θ. The normal ν ∈ C0,1(Θ,S1) to ū and the signed curvature κ : Θ→ R of ū are defined as

ν := − (ū′)⊥

|ū′|
, κ :=

ū′ ∧ ū′′

|ū′|3
. (7.5)

The following identities hold a.e.:

ν · ν′ = 0, ν ∧ ū′ = |ū′|, ν′ = − 1

|ū′|
(ū′′)⊥ − ū′ · ū′′

|ū′|2
ν,

ū′ · ν′

|ū′|2
=
ν ∧ ν′

|ū′|
= κ, |ν′| = |ū′| |κ|. (7.6)

Given an interval I and a differentiable function g : I → R, we consider the function

Y : I ×Θ→ R2, Y(t, θ) := ū(θ) + g(t)ν(θ),

and find the gradient of its inverse y 7→ (t, θ) by writing Dt and Dθ as a linear combination of ū′

|ū′| and ν

and solving the linear system {
Dt · ∂Y∂t = 1, Dt · ∂Y∂θ = 0,

Dθ · ∂Y∂t = 0, Dθ · ∂Y∂θ = 1,

which yields

Dt =
1

g′(t)
ν, Dθ =

1

|ū′| (1 + g(t)κ)

ū′

|ū′|
. (7.7)

We also have that

∂Y

∂t
= g′(t)ν(θ),

∂Y

∂θ
= ū′(θ) + g(t)ν′(θ),

∂Y

∂t
∧ ∂Y

∂θ
= g′(t) |ū′(θ)| (1 + g(t)κ(θ)) . (7.8)
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7.3 Cavitation

We consider a typical deformation creating a cavity. Let Θ be the differentiable manifold defined as the
topological quotient space obtained from [−π, π] with the identification −π ∼ π, and note that Θ is diffeo-
morphic to S1. Functions defined on Θ will be identified with 2π-periodic functions defined on R, in the
obvious way. We assume the existence of a homeomorphism u0 as in Section 4. Moreover, Ω is a Lipschitz
domain containing γ := {0}, we take ∂DΩ = ∂Ω and p1 < 2. Suppose, further, that:

(D1) u ∈ C1,1(Ω̄ \ γ,R2) is one-to-one in Ω̄ \ γ, satisfies det∇u > 0 a.e. in Ω, and∫
Ω

[|Du|p1 + h (detDu)] dx <∞. (7.9)

(D2) There exist ρ ∈ C1,1(Θ, (0,∞)) and ϕ ∈ C1,1(R) with ϕ′ > 0 and ϕ(· + 2π) − ϕ(·) = 2π such that,
when we define ū : Θ→ R2 as ū(θ) := ρ(θ)eiϕ(θ), we have that

lim
t→0+

sup
θ∈Θ

∣∣u(teiθ)− ū(θ)
∣∣ = 0.

(D3) ū is a Jordan curve, and u(Ω̄ \ γ) lies on the unbounded component of R2 \ ū(Θ).

(D4) lim sup
t→0+

sup
θ∈Θ

(∣∣∣∣ d

dt
u(teiθ)

∣∣∣∣+

∣∣∣∣ d

dθ
u(teiθ)

∣∣∣∣) <∞.

(D5) The inverse of u has a continuous extension v : u(Ω \ γ)→ Ω̄.

The reader can check that a typical deformation creating a cavity at γ satisfies indeed assumptions (D1)–
(D5), the only artificial assumption may be (D2), which implies that the cavity is star-shaped. Note, in
particular, that the assumptions imply that u ∈W 1,p1(Ω,R2), H1(Ju−1) = 0 and imG(u,Ω) = u(Ω \ γ) a.e.

For the approximated functional Iε and the admissible setAε, the sequences {ηε}ε and {bε}ε of (6.1)–(6.2)
are chosen to satisfy

ηε � εp2−1 and ε� bε. (7.10)

Under these assumptions, the following result holds. We remark that the notation of the proof is chosen
so that some of its parts can be used for the constructions of Subsections 7.4–7.6.

Proposition 7.1. For each ε there exists (uε, vε, wε) ∈ Aε satisfying (6.5) and (7.1).

Sketch of proof. The construction requires five steps, which will correspond to five independent zones Zε1–Zε5
in the domain Ω. These zones follow one another in order of increasing distance t = |x| to the singular set γ.

Let {aε}ε be any sequence such that

ηε � a2p2−2
ε , aε � ε

1
2 , (7.11)

which is possible thanks to (7.10). Introduce the auxiliary function

fε : [aε,∞)→ [0,∞), fε(t) := t2 − a2
ε. (7.12)

The values of t at which one zone ends and the other begins are

aε, aε,V := aε + σ−1
ε,V (1), aε,W := f−1

ε

(
fε(aε,V ) + σ−1

ε,W (1)
)
, 2aε,W . (7.13)

More precisely,

Zε1 := {x ∈ Ω : dist(x, γ) < aε}, Zε2 := {x : aε ≤ dist(x, γ) < aε,V },

Zε3 := {x : aε,V ≤ dist(x, γ) < aε,W }, Zε4 := {x : aε,W ≤ dist(x, γ) < 2aε,W }, Zε5 := Ω \
4⋃
i=1

Zεi .
(7.14)
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Thanks to (7.3) and (7.11), we have that aε,V ≈ max{aε, ε} and aε,W ≈ ε
1
2 .

Step 1: regularization of u. It is in Zε1 where the singularity of u at γ is smoothed out, so that uε fills
the hole created by u. More precisely, we set

X(t, θ) := t eiθ, uε(X(t, θ)) :=
t

aε
ū(θ), vε(X(t, θ)) := 0, wε(uε(X(t, θ))) := 0, (t, θ) ∈ [0, aε)×Θ.

(7.15)
The reason why vε = 0 in Zε1 is that detDuε is roughly the area of the cavity (of order 1) divided by the
area of Zε1 (of order a−2

ε ), so detDuε ≈ a−2
ε , and W (F) normally grows superlinearly in det F; it is thus

necessary that vε = 0 so as to make IEε (Zε1) small. The precise calculations are

Duε(X(t, θ)) =
duε
dt
⊗Dt+

duε
dθ
⊗Dθ,

(
Dt

Dθ

)
=

(
∂X

∂t
,
∂X

∂θ

)−1

=
1

∂X
∂t ∧

∂X
∂θ

(−∂X∂θ ⊥
∂X
∂t

⊥

)
. (7.16)

From (7.15), we find that

∂X

∂t
= eiθ,

∂X

∂θ
= t ieiθ,

∂X

∂t
∧ ∂X

∂θ
= t,

duε
dt

=
1

aε
ū,

duε
dθ

=
t

aε
ū′,

duε
dt
∧ duε

dθ
=

t

a2
ε

ū∧ ū′, (7.17)

so Dt = eiθ and Dθ = t−1ieiθ. Consequently, using (7.16)–(7.17) as well,∣∣Duε(te
iθ)
∣∣ / a−1

ε + ta−1
ε t−1 ≈ a−1

ε . (7.18)

On the other hand, considering that

duε
dt
∧ duε

dθ
=

(
(Duε)

∂X

∂t

)
∧
(

(Duε)
∂X

∂θ

)
= detDuε

(
∂X

∂t
∧ ∂X

∂θ

)
, (7.19)

we find from (7.17) and (D2) that detDuε = a−2
ε ū ∧ ū′ = a−2

ε ρ2ϕ′, so

detDuε ≈ a−2
ε . (7.20)

Using (W̄1)–(W̄2), (7.18) and (7.20) we find that

W (Duε) / |Duε|p1 + (detDuε)
p2 / a−p1

ε + a−2p2
ε / a−2p2

ε .

Therefore, thanks to (7.11) we conclude that

IEε (Zε1) / ηε a
−2p2
ε L2(Zε1) ≈ ηε a2−2p2

ε � 1, IVε (Zε1) ≈ ε−1 L2(Zε1) ≈ ε−1 a2
ε � 1, IWε (uε(Z

ε
1)) = 0.

Step 2: transition of vε from 0 to 1. It is very expensive for v to be equal to zero, hence we set

vε(x) :=

{
σε,V (t(x)− aε), if aε ≤ t(x) < aε,V ,

1, if t(x) ≥ aε,V ,
(7.21)

which satisfies
|Dvε(x)| = σ′ε,V (t(x)− aε), if aε ≤ t(x) < aε,V .

Since

ab =
aq

q
+
bq
′

q′
whenever a, b ≥ 0 with aq = bq

′
(7.22)

and (7.4) holds, we have that(
ε1− 1

q |Dvε|
)q

q
+

(
ε
− 1
q′ (1− vε)

)q′
q′

= |Dvε| (1− vε) . (7.23)
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Consequently, thanks to the coarea formula (2.2),

IVε (Ω \ Zε1) =

∫ 1

0

(1− s)H1({x ∈ Zε2 : vε(x) = s}) ds =

∫ 1

0

(1− s) 2π (aε + σ−1
ε,V (s)) ds� 1. (7.24)

Step 3: transition of wε from 0 to 1. In Zε2 ∪Zε3 we are not able to construct uε as a close approximation
of u. Instead, we define

uε(X(t, θ)) := Y(fε(t), θ), (t, θ) ∈ [aε, aε,W )×Θ; Y(τ, θ) := ū(θ) + τν(θ), τ ≥ 0, (7.25)

with fε and ν as in (7.12) and (7.5). This definition is partly motivated be the explicit construction of
incompressible angle-preserving maps in [41, Sect. 4]. In this way, the deformation uε follows the geometry of
the cavity, while detDuε remains controlled. Note that there exists δū > 0 such that Y is a homeomorphism
from [0, δū]×Θ onto its image.

As for wε, we recall that vε(x) was constructed as a function of the distance t = |x| from x to γ, and
notice that IWε is minimized when wε(y) is a function of the distance from y to the cavity surface ū(Θ).
Since we want wε ◦ uε to coincide with vε in a subset of Ω with almost full measure, it is convenient that
the level sets of the function x 7→ dist(x, γ) are mapped by uε to level sets of y 7→ dist(y, ū(Θ)). This is
precisely the main virtue of the definition (7.25) of uε.

The radial function fε was defined as (7.12) so as to maintain detDuε bounded and far away from zero.
Indeed, by (7.8), (7.17), (7.19) and (7.25) it can be seen that

detDuε =
f ′ε(t)

t
|ū′|(1 + fε(t)κ(θ)) ≈ 1.

At the same time, (7.7), (7.8), (7.16), (7.17) and (7.25) yield |Duε(te
iθ)| / t−1. Therefore, recalling (W̄1)–

(W̄2) and (7.17), and changing variables, we find that

IEε (Zε2 ∪ Zε3) /
∫ aε,W

aε

t1−p1 dt ≈ a2−p1

ε,W ≈ ε1− p1
2 .

Due to the choice of fε in (7.12), the image of Zε2 by uε is an annular region of width a2
ε,V − a2

ε ≈
max{a2

ε, ε
2}, where wε does not have enough room to do an optimal transition. This is why we let the

transition of vε and wε occur independently: first vε in Zε2 , and then wε in uε(Z
ε
3). So we set wε = 0 in

uε(Z
ε
2) and

wε(ū(θ) + τν(θ)) := σε,W (τ − fε(aε,V )), fε(aε,V ) ≤ τ < fε(aε,W ). (7.26)

In order to calculate IWε , first we fix s ∈ (0, 1) and observe that the level set {y ∈ uε(Z
ε
3) : wε(y) = s}

can be parametrized by y = ū(θ) + τε(s)ν(θ), for θ ∈ Θ and τε(s) := fε(aε,V ) + σ−1
ε,W (s) / ε. Thus,

lim
ε→0
H1({y ∈ uε(Z

ε
3) : wε(y) = s}) = lim

ε→0

∫
Θ

|ū′(θ) + τε(s)ν
′(θ)|dθ =

∫
Θ

|ū′(θ)|dθ = H1(ū(Θ)).

Inverting the map (τ, θ) 7→ y = ū(θ) + τν(θ) we obtain that τ(y) is the distance from y to the cavity surface
ū(Θ) and that Dτ(y) = ν(θ(y)) (see also (7.7)), hence |Dwε| = σ′ε,W (τ). Using (7.22) and the differential
equation (7.4) for σε,W , we find, in an analogous calculation to that of (7.23)–(7.24), that

lim
ε→0

IWε (u(Z3
ε )) =

(∫ 1

0

s(1− s) ds

)
H1(ū(Θ)) =

1

6
H1(ū(Θ)). (7.27)

Step 4: back to the original deformation. In the fourth zone, uε must find a way to attain all the material
points in u(Zε1 ∪Zε2 ∪Zε3 ∪Zε4) using only those points in Zε4 . The resulting map uε needs to be continuous
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at the interface between Zε3 and Zε4 , and the regions uε(Z
ε
2 ∪Zε3) and uε(Z

ε
4) must not overlap. To this end,

we introduce the auxiliary functions

Gε(ū(θ) + τν(θ)) :=

{
ū(θ) + (fε(aε,W ) + τ/2)ν(θ), 0 ≤ τ ≤ 2fε(aε,W ),

ū(θ) + τν(θ), τ ≥ 2fε(aε,W ),
(7.28)

and

Fε(X(t, θ)) := X(r(t), θ), r(t) :=

{
2√
3

√
t2 − a2

ε,W , aε,W < t < 2aε,W ,

t, t ≥ 2aε,W .
(7.29)

For any a > 2fε(aε,W ), the function Gε retracts Y([0, a]×Θ) onto Y([fε(aε,W ), a]×Θ), while Fε expands
{x : dist(x, γ) > aε,W } onto {x : dist(x, γ) > 0}. Moreover, Gε = id in Y([2fε(aε,W ),∞)×Θ) and Fε = id
in Zε5 . Define uε := Gε ◦ u ◦ Fε in Zε4 ∪ Zε5 . Note that uε = u in Zε5 , and that, thanks to (D2), uε is
continuous on Z̄ε3 ∩ Z̄ε4 .

As in (7.16), writing du
dr :=

(
Du

(
r(t)eiθ

))
eiθ, in region Zε4 we have that

Du(r(t)eiθ) =
du

dr
⊗ eiθ + r−1 du

dθ
⊗ ieiθ, DFε(te

iθ) = r′eiθ ⊗ eiθ +
r

t
ieiθ ⊗ ieiθ.

Hence detDFε = r′ rt = 4
3 and, thanks to (D4), we conclude that∣∣D(u ◦ Fε)(te

iθ)
∣∣ ≤ r′ ∣∣∣∣du

dr

∣∣∣∣+
1

t

∣∣∣∣du

dθ

∣∣∣∣ / max{r′, 1

t
} = r′ / a

1
2

ε,W (t− aε,W )−
1
2 .

Analogously, the gradient of Gε can be calculated as in (7.7) (with g(τ) = τ , which corresponds to the
definition of Y(τ, θ) of (7.25)) and (7.16):

DGε(Y(τ, θ)) =
dGε

dτ
⊗ ν +

1

|ū′| (1 + τκ)

dGε

dθ
⊗ ū′

|ū′|
,

hence

|DGε(Y(τ, θ))| ≤
∣∣∣∣dGε

dτ

∣∣∣∣+
1

|ū′| (1 + τκ)

∣∣∣∣dGε

dθ

∣∣∣∣ / 1. (7.30)

Moreover, the analogue of (7.19) and (7.8) (applied to g(τ) = τ in the denominator and g(τ) = fε(aε,W )+τ/2
in the numerator) yields

detDGε =
dGε

dτ ∧
dGε

dθ

|ū′| (1 + τκ)
' ū ∧ ū′

|ū′|
+

1

2
≈ 1. (7.31)

The above calculations imply that

|Duε| / a
1
2

ε,W (t− aε,W )−
1
2 , detDuε(X(t, θ)) = (detDGε)(detDu)(detDFε) ≈ det∇u(X(r(t), θ)).

Hence, thanks to (W̄1)–(W̄3),

W (Duε(X(t, θ)) / a
p1
2

ε,W (t− aε,W )−
p1
2 + h (detDu(X(r(t), θ))) .

Therefore, by the last assumption in (D1), considering that L2(
⋃4
i=1 Z

ε
i ) ≈ a2

ε,W ≈ ε,

IEε (Zε4) /
∫ 2aε,W

aε,W

a
p1
2

ε,W (t− aε,W )−
p1
2 tdt+

3

4

∫
⋃4
i=1 Z

ε
i

h(det∇u(z)) dz� a2
ε,W + 1 ≈ 1.

Step 5: transition of wε from 1 to 0 close to the outer boundary. A further transition is needed in order
for wε to satisfy the boundary condition (4.10). Let νQ(y) denote the unit normal to y ∈ u0(∂Ω) pointing
towards R2 \ u(Ω \ γ). Call also

Yε := {y − τνQ(y) : y ∈ u0(∂Ω), 0 ≤ τ ≤ σ−1
ε,W (1)} (7.32)
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Set wε = 1 in uε(Z
ε
4 ∪ Zε5) \ Yε and

wε(y − τνQ(y)) := σε,W (τ), 0 ≤ τ ≤ σ−1
ε,W (1). (7.33)

Proceeding as in the argument leading to (7.27), one can show that

lim
ε→0

IWε (Yε) =
1

6
H1(u(∂Ω)). (7.34)

Concluding remarks. Based on the results obtained, it can be seen that (uε, vε, wε) fulfils the conclusion
of the proposition. Here we will show only that ∂ imG(u,Ω) = ū(Θ)∪u0(∂Ω). First note that for all θ ∈ Θ,

v(ū(θ)) = v
(

lim
r→0

u(reiθ)
)

= lim
r→0

v(u(reiθ)) = lim
r→0

reiθ = 0.

It follows from (D2) that ū(Θ) ⊂ u(Ω \ γ). Moreover, ū(Θ) ∩ u(Ω \ γ) = ∅, since otherwise there would
exist y ∈ ū(Θ) and x ∈ Ω \ {0} such that y = u(x); as seen before, v(y) = 0, but on the other hand,
v(y) = v(u(x)) = x, which is a contradiction. Therefore,

ū(Θ) ⊂ u(Ω \ γ) \ u(Ω \ γ) = ∂u(Ω \ γ),

the latter equality being due to the invariance of domain theorem. It is easy to see that u0(∂Ω) is also
contained in ∂u(Ω \ γ), since every x ∈ ∂Ω is the limit of a sequence {xj}j∈N ⊂ Ω, u0(x) = u(x), and
u : Ω̄ \ γ → R2 is continuous and injective.

Conversely, let y ∈ ∂u(Ω \ γ). Then there exist a sequence {xj}j∈N in Ω \ γ converging to some x ∈ Ω
such that y = limj→∞ u(xj). Since ∂u(Ω \ γ) ∩ u(Ω \ γ) = ∅, necessarily x ∈ {0} ∪ ∂Ω. If x ∈ ∂Ω, then
y ∈ u0(∂Ω) since u : Ω̄ \ γ → R2 is continuous. If x = 0 then rj := |xj | → 0 as j →∞. For each j ∈ N let
θj ∈ Θ be such that xj = rje

iθj . Using (D2) and the inequality

|y − ū(θj)| ≤ |y − u(xj)|+ |u(rje
iθj )− ū(θj)|

we find that y = limj→∞ ū(θj), so y ∈ ū(Θ) = ū(Θ). This completes our sketch of proof.

7.4 Fracture at the boundary

We illustrate the role of the term Hn−1({x ∈ ∂DΩ : u 6= u0}) in (7.1) by means of a simple example in which
the Dirichlet condition is not satisfied. Let Ω = B(0, 1), ∂DΩ = ∂Ω, ρ > 0, and consider the functions

r̄(t) :=
√
t2 + ρ2, u(teiθ) := r̄(t)eiθ, u0(x) := λ0x,

and a number λ0 > r̄(1). Call ū(θ) := ρeiθ for θ ∈ Θ, and Θ as in Subsection 7.3. This choice of u satisfies
hypotheses (D1)–(D5) of Subsection 7.3. Call p := max{p1, p2} and assume that

ηε � εp−1, ε� bε. (7.35)

Take sequences {aε}ε and {cε}ε of positive numbers satisfying aε � ε
1
2 , cε � ε and ηε � cp−1

ε . The numbers
aε,V and aε,W , and the transition levels are defined as in (7.13), the zones Zε1–Zε5 as in (7.14), the functions
fε as in (7.12), X as in (7.15) and Gε, Fε, r as in (7.28)–(7.29). Finally, set

d+
ε := 1− σ−1

ε,V (1), d−ε := d+
ε − cε.

In zones Zε1–Zε4 , define uε, vε, and wε as in Subsection 7.3. The definition of (uε, vε, wε) in Zε5 needs to
be modified, due to the following considerations. On the one hand, uε has to satisfy the Dirichlet condition
violated by u: uε(x) = λ0x if |x| = 1; on the other hand, most of the time uε should coincide with
u. Since uε must be continuous, we will define it in such a way that it stretches the material contained
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in {d−ε ≤ |x| ≤ d+
ε } in order to fill the gap between u(Ω) = B(0, r̄(1)) and u0(∂Ω) = ∂B(0, λ0). This

stretching of material comes with large gradients that are prohibitively expensive in terms of elastic energy,
unless vε = 0 in that annular region. Because of restriction (4.11), we need to produce first a transition for
wε from 1 to 0 before the transition of vε from 1 to 0. After the stretching takes place, vε must go back from
0 to 1 due to condition (4.8).

In the region {2aε,W ≤ |x| ≤ d−ε } we set uε := Gε ◦ u ◦ Fε, as in Step 4 of the proof of Proposition 7.1.
It is easy to see that uε(te

iθ) = u(teiθ) if r̄(t) − ρ ≥ 2fε(aε,W ). Since r̄(d−ε ) → r̄(1) and fε(aε,W ) � 1, it
is clear that uε(te

iθ) = u(teiθ) long before t reaches the value d−ε . In {d−ε ≤ |x| ≤ d+
ε }, define uε(te

iθ) as
rε(t)e

iθ, where rε is the linear interpolation such that r̄ε(d
−
ε ) = r̄(d−ε ) and r̄ε(d

+
ε ) = r̄(d+

ε ) + λ0 − r̄(1). In
the remaining annulus {d+

ε ≤ |x| ≤ 1}, set rε(t) = r̄(t) + λ0 − r̄(1). To sum up, uε(te
iθ) = rε(t)e

iθ in Zε5 ,
with

rε(t) :=


r̄(t)+ρ

2 + fε(aε,W ), if r̄(t)− ρ ≤ 2fε(aε,W ),

r̄(t), if r̄(t)− ρ ≥ 2fε(aε,W ) and t ≤ d−ε ,
d+
ε −t

d+
ε −d−ε

r̄(d−ε ) +
t−d−ε
d+
ε −d−ε

(r̄(d+
ε ) + λ0 − r̄(1)), d−ε ≤ t ≤ d+

ε ,

r̄(t) + λ0 − r̄(1), d+
ε ≤ t ≤ 1.

The definition for vε is as in (7.15) and (7.21) in zones Zε1 ∪ Zε2 and

vε(te
iθ) :=


1, aε,V ≤ t ≤ d−ε − σ−1

ε,V (1),

σε,V (d−ε − t), d−ε − σ−1
ε,V (1) ≤ t ≤ d−ε ,

0, d−ε ≤ t ≤ d+
ε ,

σε,V (t− d+
ε ), d+

ε ≤ t ≤ 1.

The assumption on {cε}ε is such that

IEε ({d−ε ≤ |x| ≤ d+
ε }) + IVε ({d−ε ≤ |x| ≤ d+

ε }) / ηεcε
(
c−p1
ε + c−p2

ε

)
+ cεε

−1 � 1.

The definition of wε is 0 in uε(Z
1
ε ∪ Z2

ε ), as in (7.26) in uε(Z
3
ε ), 1 in uε(Z

4
ε ), and in uε(Z

5
ε ) it is

wε(τe
iθ) :=


1, r̄(2aε,W ) ≤ τ ≤ r̄(d−ε − σ−1

ε,V (1))− σ−1
ε,W (1),

σε,W (r̄(d−ε − σ−1
ε,V (1))− τ), r̄(d−ε − σ−1

ε,V (1))− σ−1
ε,W (1) ≤ τ ≤ r̄(d−ε − σ−1

ε,V (1)),

0, r̄(d−ε − σ−1
ε,V (1)) ≤ τ ≤ r̄(1).

With respect to the analysis of Subsection 7.3, the only extra term appearing in the energy estimates is

IVε

(
{d−ε − σ−1

ε,V (1) ≤ |x| ≤ d−ε } ∪ {d+
ε ≤ |x| ≤ 1}

)
= 2π

(
d−ε + d+

ε

) ∫ 1

0

(1− s) ds→ H1(∂Ω).

This completes the sketch of proof of (7.1) in this example of fracture at the boundary.

7.5 Fracture in the interior

In this subsection we consider a deformation creating a crack in the interior of the body. To be precise,
the reference configuration is Ω = B(0, 2) with ∂DΩ = ∂Ω. We fix λ > 1 and declare u0 = λid. We set
γ = [−1, 1] × {0}. Let Θ be the topological quotient space obtained from [−2, 2] with the identification
−2 ∼ 2. Define X : [0,∞)×Θ→ R2, first for θ ∈ [0, 1] by

X(t, θ) :=

{
(1, 0) + teiβ(t,θ), θ ∈ Θ0(t) := [0, πt

2+πt ],(
(1− θ)(1 + π

2 t), t
)
, θ ∈ Θ1(t) := [ πt

2+πt , 1],
β(t, θ) := (t−1 +

π

2
)θ, (7.36)

and then extended to all [0,∞)×Θ by symmetry:

X(t, θ) :=

{
(−x1(t, 2− θ), x2(t, 2− θ)) , θ ∈ [1, 2],

(x1(t,−θ),−x2(t,−θ)) , θ ∈ [−2, 0],
(7.37)
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γ

(0, t) (1, t)

(1 + t, t)

(a) Representation of X(t, ·).

γ

Ω

u

(b) Representation of u.

Figure 2: Representation of X and u corresponding to Section 7.5.

where we have called x1, x2 the components of X. A representation of X is shown in Figure 2(a). Note that
X(t, ·) is a parametrization of the level curve {x ∈ Ω : dist(x, γ) = t}, which is close to being of arc-length.
The assumptions for the deformation are the following:

(F1) u ∈ C1,1(Ω̄ \ γ,R2) is one-to-one in Ω̄ \ γ, satisfies det∇u > 0 a.e. in Ω, and (7.9) holds.

(F2) There exist t0 ∈ (0,dist(γ, ∂Ω)), ρ ∈ C2([0, t0]×Θ, (0,∞)) and ϕ ∈ C2([0, t0]× R) such that

∂ϕ

∂θ
(t, θ) > 0, ϕ(t, θ + 4) = ϕ(t, θ) + 2π, (t, θ) ∈ [0, t0]× R

and
u(X(t, θ)) = ρ(t, θ) eiϕ(t,θ), (t, θ) ∈ (0, t0]×Θ.

(F3) For all t ∈ (0, t0), the curvature κt of u(X(t, ·)) (as defined in (7.5)) satisfies κt > 0 a.e.

(F4) The inverse of u has a continuous extension v : u(Ω \ γ)→ Ω.

(F5) For each a ∈ [−1, 1], the limits

u+(a, 0) := lim
(x1,x2)→(a,0)

x2>0

u(x1, x2), u−(a, 0) := lim
(x1,x2)→(a,0)

x2<0

u(x1, x2)

exist.

A representation of u is shown in Figure 2(b). Thanks to (F1) and (F5) one can easily show that u ∈
SBV (Ω,R2) and Ju = γ H1-a.e. Furthermore, using also (F4) and reasoning as in the last part of the proof
Proposition 7.1, we can check the equalities

Per imG(u,Ω) = Per u(Ω \ γ) = H1(u−(γ)) +H1(u+(γ)) +H1(u0(∂Ω)) and H1(Ju−1) = 0. (7.38)

Call p := max{p1, p2} and assume that (7.35).

Proposition 7.2. For each ε there exists (uε, vε, wε) ∈ Aε satisfying (6.5) and (7.1).

Sketch of proof. The construction of (uε, vε, wε) follows the same scheme of Proposition 7.1. Let {aε}ε be
any sequence such that

η
1
p−1
ε � aε � ε, (7.39)

Instead of (7.12), define fε(t) := t − aε. Define aε,V and aε,W as in (7.13), and Zε1–Zε5 as in (7.14). Note
that aε,V ≈ aε,W ≈ ε.

Step 1. Define uε in Zε1 by

uε(`X(aε, θ)) := `ū(θ), ū(θ) := u(X(aε, θ)), (`, θ) ∈ [0, 1]×Θ.
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Let vε = 0 in Zε1 and wε = 0 in uε(Z
ε
1). As in (7.16), we have that Duε = ū⊗D`+ `ū′ ⊗Dθ, with

(
D`

Dθ

)
=

1

X(aε, θ) ∧ `∂X∂θ

(
−(`∂X∂θ )⊥

X(aε, θ)⊥

)
=


1

aε+cos β

(
cosβ sinβ
−aε sin β
`(1+π

2 aε)
1+aε cos β
`(1+π

2 aε)

)
, θ ∈ Θ0(aε),

1
aε

(
0 1
−aε

`(1+π
2 aε)

1−θ
`

)
, θ ∈ Θ1(aε),

the result in the rest of Θ being analogous. Taking (F2) into account we obtain that |Duε| / a−1
ε . From

the analogue of (7.19) it follows that

detDuε =
ū ∧ `ū′

X(aε, θ) ∧ `∂X∂θ
=


ρ2 ∂ϕ

∂θ (aε,θ)

(1+π
2 aε)

1
aε+cos β , θ ∈ Θ0(aε),

ρ2 ∂ϕ
∂θ (aε,θ)

aε(1+π
2 aε)

, θ ∈ Θ1(aε).

Hence, by (F2),
1

2
(inf ρ)2 inf

∂ϕ

∂θ
≤ detDuε / a−1

ε .

In addition, the geometry of γ shows that L2(Zε1) ≈ aε. Therefore, thanks to (7.39),

IEε (Zε1) + IVε (Zε1) + IWε (uε(Z
ε
1)) / ηε

(
a−p1
ε + a−p2

ε

)
aε + ε−1aε � 1.

Step 2. Define vε in Zε2 as in (7.21). The analysis is the same as in Proposition 7.1, save that now we
have that for all t ∈ (aε, aε,V ),

H1({x ∈ Ω : dist(x, γ) = t}) = 2
(
H1(γ) + πt

)
,

hence

lim
ε→0

IVε (Zε2) = lim
ε→0

∫ 1

0

(1− s)H1({x ∈ Ω : dist(x, γ) = aε + σ−1
ε,V (s)}) ds = H1(γ).

Step 3. Define uε in Z2
ε ∪ Z3

ε and Y(τ, θ) as in (7.25), recalling that now fε(t) = t− aε, and X is given
by (7.36)–(7.37). The function vε is defined as 1 in Zε3 ∪ Zε4 ∪ Zε5 , and wε as in (7.26) in uε(Z

ε
3). By (7.6)

and (F3) we have that |ν′| = κaε |ū′|. Observe from (F2) that |ū′| is bounded from below by inf(ρ∂ϕ∂θ ) > 0.
Therefore,

sup
ε

supκaε ≤ sup
t∈(0,t0]

supκt <∞.

On the other hand,
∣∣∂X
∂t

∣∣ ≤ 1 + θ/t ≤ 1 + π
2 in Θ0(t). Therefore,

∂X

∂t
∧ ∂X

∂θ
= 1 +

π

2
t,

∣∣∣∣∂X

∂t

∣∣∣∣ ≤ 1 +
π

2
and

∣∣∣∣∂X

∂θ

∣∣∣∣ = 1 +
π

2
t in [0,∞)×Θ. (7.40)

Using now (7.16) and (F2) we find that

|Duε(X(t, θ))| ≤ 1
∂X
∂t ∧

∂X
∂θ

(∣∣∣∣∂X

∂θ

∣∣∣∣+ |ū′| (1 + (t− aε)κaε)
∣∣∣∣∂X

∂t

∣∣∣∣) / 1 + sup

(∣∣∣∣∂ρ∂θ
∣∣∣∣+ ρ

∂ϕ

∂θ

)
/ 1.

On the other hand, (7.19), (7.8), (F2), and (F3) imply that

detDuε =
|ū′|(1 + (t− aε)κaε)

1 + π
2 t

≈ 1.

Hence
IEε (Zε2 ∪ Zε3) / L2(Zε2 ∪ Zε3) / ε.
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The analysis for IWε is the same as in (7.26)–(7.27), except that we need (F2) in order to conclude that

lim
ε→0
H1({y ∈ uε(Z

ε
3) : wε(y) = s}) = lim

ε→0

∫
Θ

∣∣∣∣∂(u ◦X)

∂θ
(aε, θ)

∣∣∣∣dθ = lim
ε→0
H1 ((u ◦X)(aε, ·)(Θ))

= H1(u−(γ)) +H1(u+(γ)).

Step 4. Define uε := Gε ◦ u ◦ Fε in Zε4 ∪ Zε5 , with Fε and Gε as in (7.28)–(7.29), but changing r(t) to

r(t) :=

{
2(t− aε,W ) + aε(2− t

aε,W
), aε,W < t < 2aε,W ,

t, t ≥ 2aε,W .
(7.41)

By (7.16) (applied to Fε), (7.41), and (7.40),

|DFε(X(t, θ))| ≤ 1
∂X
∂t ∧

∂X
∂θ

(∣∣∣∣∂X

∂t
(r(t), θ)

∣∣∣∣ |r′(t)| ∣∣∣∣∂X

∂θ

∣∣∣∣+

∣∣∣∣∂X

∂θ
(r(t), θ)

∣∣∣∣ ∣∣∣∣∂X

∂t

∣∣∣∣) / 1.

Using now (7.19) we find that

detDFε =
(1 + π

2 r(t))(2−
aε
aε,W

)

1 + π
2 t

≈ 1.

Having also in mind the estimates (7.30) and (7.31), we find that

|Duε| / |Du| and detDuε ≈ detDu.

On the other hand, the definition of Gε and Fε are so that uε(x) = u(x) whenever x = X(t, θ) with
t ≥ 2aε,W and u(x) = ū(θ) + τν(θ) with τ ≥ 2(aε,W − aε). Therefore, the set Nε of x ∈ Zε4 ∪ Zε5 such that
uε(x) 6= u(x) satisfies L2(Nε)� 1. Using (W̄1) and (F1), we conclude that

IEε (Nε) /
∫
Nε\γ

[|Du|p1 + h (detDu)] dx� 1.

Step 5. This is exactly the same as in the proof of Proposition 7.1. The function wε is defined as 1 in
uε(Z

ε
4 ∪Zε5) \Yε, and as (7.33) in Yε, where the region Yε is defined as (7.32). We thus arrive at (7.34). This

concludes our sketch of proof.

7.6 Coalescence

Coalescence is the process by which two or more cavities are joined to form a bigger cavity or else a crack.
In this subsection we present a simple example of a deformation that forms a crack joining two preexisting
cavities.

Let r > 0, µ > 0 and h > 0. Let Ω be a Lipschitz domain such that

(−1, 1)× {0} ⊂ Ω, Ω ∩
(
B̄((−1− r, 0), r) ∪ B̄((1 + r, 0), r)

)
= ∅

and
∂B((−1− r, 0), r) ∪ ∂B((1 + r, 0), r) ⊂ Ω̄.

Set
∂NΩ = ∂B((−1− r, 0), r) ∪ ∂B((1 + r, 0), r), ∂ΩD = ∂Ω \ ∂NΩ, γ := [−1, 1]× {0}.

We assume

(L1) u ∈ C1,1(Ω̄ \ γ,R2) is one-to-one in Ω̄ \ γ, satisfies det∇u > 0 a.e. in Ω, and (7.9) holds.

(L2) The inverse of u has a continuous extension v : u(Ω \ γ)→ Ω.
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Ω

B(−1 − r, 0) B(1 + r, 0)
Ju

u

(−µ, h)

(−µ,−h) (µ,−h)

(µ, h)

(1, 0)(−1, 0)

Figure 3: Representation of u in the construction of Subsection 7.6.

A2

A4

A3 A1

(a) Representation of Θ.

rt

(x̄1(t), t) t

(1 + r, 0)

θ̄(t)

(b) Construction of x̄1 and θ̄.

Figure 4: Representations of Θ, x̄1 and θ̄, corresponding to Subsection 7.6

(L3) When we define u± : γ → R2 as

u±(x1, 0) = (µx1,±h), x1 ∈ (−1, 1),

we have that for all x1 ∈ (−1, 1),
lim

x→(x1,0)
±x2≥0

u(x) = u±(x1, 0).

(L4) The deformation u can be continuously extended to ∂NΩ \ {(−1, 0), (1, 0)} by
u
(

(−1− r, 0) + re(2θ−π)i
)

:= (−µ, 0) + heiθ, θ ∈ (
π

2
,

3π

2
),

u
(

(1 + r, 0) + re2θi
)

:= (µ, 0) + heiθ, θ ∈ (−π
2
,
π

2
).

A representation of u is shown in Figure 3. As in Subsection 7.5, it is easy to check that u ∈ SBV (Ω,R2),
Ju = γ H1-a.e. and (7.38) holds.

Assume (7.35). The following result holds.

Proposition 7.3. For each ε there exists (uε, vε, wε) ∈ Aε satisfying (6.5) and (7.1).

Sketch of proof. We define first a parametrization X(t, θ) of the domain in which the parameter t represents
the distance from X(t, θ) to γ ∪ ∂NΩ. To this aim, define Θ as the quotient space obtained by taking the
union A1 ∪A2 ∪A3 ∪A4, where

A1 := [−π
2
,
π

2
]× {1}, A2 := [−1, 1]× {2}, A3 := [

π

2
,

3π

2
]× {3}, A4 := [−1, 1]× {4},

and identifying the points

(
π

2
, 1) ∼ (−1, 2), (1, 2) ∼ (

π

2
, 3), (

3π

2
, 3) ∼ (−1, 4), (1, 4) ∼ (−π

2
, 1).

A representation of Θ is shown in Figure 4(a). Note that Θ is diffeomorphic to S1.
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Define x̄1 : [0,∞)→ [0,∞) and θ̄ : [0,∞)→ S1 as

x̄1(t) := 1 + r −
√
r2 + 2rt, θ̄(t) := π − arctan

t√
r2 + 2rt

. (7.42)

The point (x̄1(t), t) lies on the circle of centre (1+r, 0) and radius r+ t, whereas θ̄(t) is the angle of (x̄1(t), t)
with respect to (1+r, 0); see Figure 4(b). The parabola (x̄1(t), t) represents, therefore, the interface between
the set of points that are closer to γ and those that are closer to ∂B((1 + r, 0), r).

Define X : [0,∞)×Θ→ R2 and Y : [−h,∞)×Θ→ R2 as

X(t, θ) :=


(1 + r, 0) + (r + t)ei

2θ̄(t)
π θ if θ ∈ A1,

(−x̄1(t)θ, t) if θ ∈ A2,

by symmetry if θ ∈ A3 ∪A4,

Y(τ, θ) :=


(µ, 0) + (h+ τ)eiθ if θ ∈ A1,

(−µθ, h+ τ) if θ ∈ A2,

by symmetry if θ ∈ A3 ∪A4.

In both definitions, we have identified A1 with [−π2 ,
π
2 ], A2 with [−1, 1] and so on. Let {aε}ε be any sequence

such that (7.39). As in Subsection 7.5, write aε,V := aε + σ−1
ε,V (1) and aε,W := aε,V + σ−1

ε,W (1). Let

ū(θ) := Y(0, θ) =


u(X(0, θ)), θ ∈ IntA1 ∪ IntA3,

u+(X(0, θ)), θ ∈ A2,

u−(X(0, θ)), θ ∈ A4,

ν(θ) :=


eiθ, θ ∈ A1 ∪A3,

(0, 1), θ ∈ A2,

(0,−1), θ ∈ A4,

where IntA1 stands for (−π2 ,
π
2 )× {1}, which is further identified with (−π2 ,

π
2 ), and analogously for IntA3.

Let Gε be as in (7.28), where fε is given by fε(t) := t− aε. The recovery sequence is defined as

uε(X(t, θ)) :=


Y(h( t

aε
− 1), θ), (t, θ) ∈ (0, aε]×Θ,

Y(t− aε, θ), (t, θ) ∈ (aε, aε,W ]×Θ,

Gε ◦ u (X (2(t− aε,W ), θ)) , (t, θ) ∈ (aε,W , 2aε,W ]×Θ,

Gε ◦ u (X(t, θ)) , (t, θ) ∈ (2aε,W ,∞)×Θ ∩X−1(Ω),

vε(x) :=


0, if dist(x, γ ∪ ∂NΩ) < aε,

σε,V (dist(x, γ ∪ ∂NΩ)− aε), if aε ≤ dist(x, γ ∪ ∂NΩ) ≤ aε,V ,
1, if dist(x, γ ∪ ∂NΩ) > aε,V ,

and

wε(y) :=


0, in Y([0, aε,V − aε]×Θ),

σε,W (dist (y, ū(Θ))− (aε,V − aε)) , in Y([aε,V − aε, aε,W − aε]×Θ),

σε,W (dist (y,u(∂DΩ))) , if y ∈ u(Ω \ γ) and dist (y,u(∂DΩ)) ≤ σ−1
ε,W (1),

1, in any other case in u(Ω \ γ).

From (7.42) we obtain

x̄′1(t) = − r√
r2 + 2rt

, θ̄′(t) = − r

(r + t)
√
r2 + 2rt

.

Standard calculations show that∣∣∣∣∂X

∂t

∣∣∣∣ / 1,

∣∣∣∣∂X

∂θ

∣∣∣∣ / 1,
∂X

∂t
∧ ∂X

∂θ
≈ 1

in compact subsets of (t, θ) ∈ [0,∞)×Θ, and∣∣∣∣∂Y

∂τ

∣∣∣∣ / 1,

∣∣∣∣∂Y

∂θ

∣∣∣∣ / 1,
∂Y

∂τ
∧ ∂Y

∂θ
≈ 1.

in compact subsets of (τ, θ) ∈ [−h,∞)×Θ. Using this, the result can be established exactly as in Subsection
7.5.

49



References

[1] G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of variations
and partial differential equations (Pisa, 1996), Springer, Berlin, 2000, pp. 95–114.

[2] R. Alvarado, D. Brigham, V. Maz’ya, M. Mitrea, and E. Ziadé, On the regularity of domains satisfying
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