
REGULARITY OF INVERSES OF SOBOLEV DEFORMATIONS WITH FINITE

SURFACE ENERGY

DUVAN HENAO AND CARLOS MORA-CORRAL

Abstract. Let u be a Sobolev W 1,p map from a bounded open set Ω ⊂ Rn to Rn. We assume u to satisfy

some invertibility properties that are natural in the context of nonlinear elasticity, namely, the topological

condition INV and the orientation-preserving constraint detDu > 0. These deformations may present
cavitation, which is the phenomenom of void formation. We also assume that the surface created by the

cavitation process has finite area. If p > n − 1, we show that a suitable defined inverse of u is a Sobolev

map. A partial result is also given for the critical case p = n − 1. The proof relies on the techniques used
in the study of cavitation.

1. Introduction

A classic question in analysis and topology is to find out the regularity of the inverse function u−1 in
terms of the regularity of the original function u. In particular, the issue of ascertaining the optimal Sobolev
or BV regularity of u−1 given that of u has experienced a recent interest in the last decade. Most of the
works in this question (see [17, 18, 23, 19, 8, 16, 26]) assume additionally that u is a homeomorphism. This
implies, in particular, that u(Ω) is open, so it makes sense to talk about a Sobolev or BV space over u(Ω).

In the context of nonlinear elasticity, one assumes that u is in the Sobolev space W 1,p for some p > 1,
but the assumption that u is a homeomorphism is not acceptable in general. Indeed, while Ball [2] proved
that if p > n and if other integrability conditions hold then deformations are homeomorphisms, in the case
when p < n there are interesting deformations in W 1,p that present singularities, and, in particular, are not
continuous. One such type of singularity is that of cavitation, which is the process of formation of voids in
solids (see [3]). In fact, determining the conditions on the stored-energy function under which cavitation
occurs was an important part of the motivation for the papers [24, 25, 22, 21] to study some regularity
properties of a suitable defined inverse of u; to be precise, the assumptions in [24, 25, 22] are incompatible
with cavitation, while [21] does allow for cavitation. In those works, the deformation u was assumed to enjoy
a certain property of invertibility much weaker than being a homeomorphism.

Following the steps of Müller & Spector [21], the authors [12, 13, 14, 15] carried out an existence theory
for deformations allowing for fracture and cavitation. As happened with [21] (and earlier with Šverák [24]),
that analysis lent itself to a study of the inverse of u. In particular, in [13] we proved an SBV regularity
property of the inverse of an approximately differentiable map that was needed in order to carry out a
geometric study of the surface created by the deformation. When the deformation u was assumed to be a
Sobolev homeomorphism, it was shown in [14], as a by-product of the analysis of cavitation, that the inverse
is actually Sobolev W 1,1. The same conclusion had been given by Csörnyei, Hencl & Malý [8], in fact, with
weaker assumptions, using techniques of mappings of finite distortion.

In this paper we remove the assumption of being a homeomorphism; in particular, the deformations
studied can present cavities. Specifically, we employ some techniques of [13, 14] to show that, under some
assumptions on u ∈W 1,p(Ω,Rn) that are natural in the context of cavitation (namely, detDu > 0 a.e., the
topological condition INV holds, p ≥ n − 1 and u has finite surface energy), an adequate definition ũ−1 of
the inverse of u is a Sobolev map. A key ingredient is the use of the topological image imT(u,Ω) of u as the
domain space for ũ−1. The topological image, which is defined as the set of points for which u has nonzero
degree, coincides a.e. with the union of the image of u and the cavities created. The map ũ−1 is essentially
the inverse of u outside the cavities, and it sends the whole cavity volume in the deformed configuration
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into the cavity point in the reference configuration. Thus, ũ−1 is not one-to-one a.e., but the amount of
non-injectivity is well controlled.

If p > n−1, the set imT(u,Ω) is open and, in this case, we prove that ũ−1 ∈W 1,1(imT(u,Ω),Rn). In the
critical case p = n − 1 the set imT(u,Ω) is not open in general. Nevertheless, we prove that the extension
of ũ−1 by zero to Rn is an SBV function whose jump set does not intersect imT(u,Ω); in particular, the
restriction of the distributional derivative Dũ−1 to imT(u,Ω) is an L1 function.

As an example of the potential applications of the regularity properties proved in this paper, we mention
that they can be used to improve the recent well-posedness results of Barchiesi & De Simone [4] in the theory
of liquid crystal elastomers by making it possible to work with more realistic hypotheses on the stored-energy
function and on the deformations. This will be shown in a future work.

2. Notation and preliminary results

In this section we set the notation and concepts of the paper, and state some preliminary results. Part of
those results are standard in the theory of weakly differentiable functions, and part are collected from the
works by [21, 7, 12, 13, 14, 15] on cavitation that are relevant for the regularity of inverses.

2.1. General notation. We will work in dimension n ≥ 2, and Ω is a bounded open set of Rn. Vector-
valued and matrix-valued quantities will be written in boldface. Coordinates in the reference configuration
will be denoted by x, and in the deformed configuration by y.

The closure of a set A is denoted by Ā, and its boundary by ∂A. Given two sets U, V of Rn, we will write
U ⊂⊂ V if U is bounded and Ū ⊂ V . The open ball of radius r > 0 centred at x ∈ Rn is denoted by B(x, r).
The function dist indicates the distance from a point to a set.

Given a square matrix A ∈ Rn×n, its determinant is denoted by det A. The matrix adj A is the matrix
that satisfies (det A)1 = A adj A, where 1 denotes the identity matrix. The transpose of adj A is denoted by
cof A. If A is invertible, its inverse is denoted by A−1. The inner (dot) product of vectors and of matrices
will be denoted by ·. The Euclidean norm of a vector x is denoted by |x|, and the associated matrix norm is
also denoted by | · |. Given a,b ∈ Rn, the tensor product a⊗ b is the n× n matrix whose component (i, j)
is ai bj . Note the elementary formula

a · (Fb) = (a⊗ b) · F, a,b ∈ Rn, F ∈ Rn×n. (2.1)

The Lebesgue measure in Rn is denoted by Ln, the (n− 1)-dimensional Hausdorff measure by Hn−1, and
the counting measure by H0. The Lebesgue Lp and Sobolev W 1,p spaces are defined in the usual way. So
are the functions of class Ck, for k ∈ N, and their versions Ckc of compact support. We will indicate the
domain and target space, as in, for example, Lp(Ω,Rn), except if the target space is R, in which case we will
simply write Lp(Ω). The identity function in Rn is denoted by id.

If µ is a measure on a set U , and V is a µ-measurable subset of U , then the restriction of µ to V is denoted
by µ V . The measure |µ| denotes the total variation of µ.

Given two sets A,B of Rn, we write A ⊂ B a.e. if Ln(A \ B) = 0, while A = B a.e. means A ⊂ B a.e.
and B ⊂ A a.e. Analogously, A ∼⊂ B means Hn−1(A \B) = 0, while A ∼= B means A ∼⊂ B and B ∼⊂ A.

2.2. Density, boundary and perimeter. Given a measurable set A ⊂ Rn, its characteristic function will
be denoted by χA. Its perimeter is defined as

PerA := sup

{∫
A

div g(y) dy : g ∈ C1
c (Rn,Rn), ‖g‖∞ ≤ 1

}
.

The density of A at an x ∈ Rn is defined as

D(A,x) := lim
r↘0

Ln(A ∩B(x, r))

Ln(B(x, r))
.

Half-spaces are denoted by

H+(a,ν) := {x ∈ Rn : (x− a) · ν ≥ 0}, H−(a,ν) := H+(a,−ν),

for a given a ∈ Rn and a nonzero vector ν ∈ Rn. The set of unit vectors in Rn is denoted by Sn−1.
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The reduced boundary ∂∗A of A is the set of y ∈ Rn for which there exists νA(y) ∈ Sn−1 (necessarily
unique) such that

D(A ∩H−(y,νA(y)),y) =
1

2
and D(A ∩H+(y,νA(y)),y) = 0.

This definition may differ from other notions of reduced or essential or measure-theoretic boundary used in
the literature, but, thanks to Federer’s [10] theorem (see also [1, Th. 3.61] or [27, Sect. 5.6]), they all coincide
Hn−1-a.e. for sets of finite perimeter. In particular, if PerA < ∞ then PerA = Hn−1(∂∗A), and if A is an
open set with a C1 boundary then ∂A = ∂∗A.

2.3. Approximate differentiability and functions of bounded variation. We assume that the reader
has some familiarity with the set BV of functions of bounded variation, and of special bounded variation
SBV ; see [10, 27, 1], if necessary, for the definitions. This subsection is meant primarily to set some notation.

Definition 2.1. Let A be a measurable set in Rn, and u : A → Rn a measurable function. Let x0 ∈ Rn
satisfy D(A,x0) = 1.

a) We say that x0 is an approximate continuity point of u if there exists y0 ∈ Rn such that

D ({x ∈ A : |u(x)− y0| ≥ δ} ,x0) = 0

for all δ > 0. In this case, y0 is uniquely determined and called the approximate limit of u at x0. The
complement in A of the sets of approximate continuity points of u is denoted by Su.

b) We say that x0 is an approximate jump point of u if there exist u+(x0),u−(x0) ∈ Rn and νu(x0) ∈ Sn−1

such that u+(x0) 6= u−(x0) and

D
({

x ∈ A ∩H±(x0,νu(x0)) :
∣∣u(x)− u±(x0)

∣∣ ≥ δ} ,x0

)
= 0

for all δ > 0. The set of approximate jump points of u is denoted by Ju.
c) We say that u is approximately differentiable at x0 ∈ A if there exist y0 ∈ Rn and L ∈ Rn×n such that

D

({
x ∈ A \ {x0} :

|u(x)− y0 − L(x− x0)|
|x− x0|

≥ δ
}
,x0

)
= 0

for all δ > 0. In this case, y0 is the approximate limit of u at x0, and L, which is also uniquely determined,
is called the approximate differential of u at x0, and is denoted by ∇u(x0).

If u ∈ BV (Ω,Rn), we denote by Du the distributional derivative of u, which is a Radon measure in Ω.
Standard results in the theory of BV functions show that u is approximately differentiable a.e. and there
exist Borel maps u± : Ju → Rn and νu : Ju → Sn−1 satisfying the conditions of Definition 2.1 b). Note that
νu(x) is uniquely determined up to a sign, for each x ∈ Ju; we will always assume that a Borel choice of νu

has been done, in which case u±(x) are uniquely determined. Moreover, if u ∈ SBV (Ω,Rn), we have that
Ju ∼= Su and the following decomposition holds (see, e.g., [1, Sect. 4.1]):

Du = ∇uLn Ω + (u+ − u−)⊗ νuHn−1 Ju. (2.2)

2.4. Area formulas and geometric image. We will use the following version of Federer’s [10] area formula.

Proposition 2.2. Let u : Ω → Rn be measurable, approximately differentiable a.e., and denote the set of
approximate differentiability points of u by Ωd. Then, for any measurable set A ⊂ Ω and any measurable
function ϕ : Rn → R,∫

A

ϕ(u(x)) |detDu(x)|dx =

∫
imG(u,A)

ϕ(y)H0 ({x ∈ Ωd ∩A : u(x) = y}) dy,

whenever either integral exists. Moreover, if ψ : A→ R is measurable ψ̄ : u(Ωd ∩A)→ R is given by

ψ̄(y) :=
∑

x∈Ωd∩A
u(x)=y

ψ(x),

then ψ̄ is measurable and∫
A

ψ(x)ϕ(u(x)) |detDu(x)|dx =

∫
u(Ωd∩A)

ψ̄(y)ϕ(y) dy,
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whenever the integral of the left-hand side exists.

We present the notion of the geometric image of a set (see [21, 7, 14]).

Definition 2.3. Let u ∈ W 1,1(Ω,Rn) and suppose that detDu > 0 a.e. Define Ω0 as the set of x ∈ Ω for
which the following are satisfied:

i) the approximate differential of u at x exists and equals Du(x),
ii) there exist w ∈ C1(Rn,Rn) and a compact set K ⊂ Ω of density 1 at x such that u|K = w|K and

Du|K = Dw|K , and
iii) detDu(x) > 0.

For any measurable set A of Ω, we define the geometric image of A under u as u(A ∩Ω0), and denote it by
imG(u, A).

Standard arguments, essentially due to Federer [10, Thms. 3.1.8 and 3.1.16] (see also [21, Prop. 2.4] and
[7, Rk. 2.5]), show that the set Ω0 in the Definition 2.3 is of full measure in Ω.

Before stating the change of variables formula in (n− 1)-dimensional surfaces for approximately differen-
tiable maps, we present the notion of tangential approximate differentiability (cf. [10, Def. 3.2.16]).

Definition 2.4. Let S ⊂ Rn be a C1 differentiable manifold of dimension n−1, and let x0 ∈ S. Let Tx0S be
the linear tangent space of S at x0. A map u : S → Rn is said to be Hn−1 S-approximately differentiable
at x0 if there exist y0 ∈ Rn and L ∈ Rn×n such that for all δ > 0,

lim
r↘0

1

rn−1
Hn−1

({
x ∈ S ∩B(x0, r) :

|u(x)− y0 − L(x− x0)|
|x− x0|

≥ δ
})

= 0.

In this case, y0 is the approximate limit of u at x0, and the linear map L|Tx0
S : Tx0

S → Rn is uniquely

determined and called the tangential approximate derivative of u at x0. We denote it by ∇u(x0).

Starting from Federer’s [10, Cor. 3.2.20] change of variables formula in surfaces and applying the standard
technique of approximating nonnegative functions by a simple functions, we obtain the following result. Its
formulation is taken from [14, Prop. 2.9].

Proposition 2.5. Let S ⊂ Ω be an orientable C1 differentiable manifold of dimension n − 1 oriented by
the unit vector field ν, and let u ∈ W 1,1(Ω,Rn) satisfy detDu > 0 a.e. Let Ω0 be the set of Definition
2.3. Suppose that a set Sd ⊂ Ω0 ∩ S exists such that Hn−1(S \ Sd) = 0, and such that for every x ∈ Sd
the restriction u|S is Hn−1 S-approximately differentiable at x, and ∇(u|S)(x) = Du(x)|TxS. Assume
that cof Du ∈ L1(S,Rn×n). Then, for every bounded and Hn−1-measurable g : Rn → Rn, and any Hn−1-
measurable subset A ⊂ S,∫

A

g(u(x)) · (cof Du(x)ν(x)) dHn−1(x) =

∫
u(Sd∩A)

g(y) · ν̃(y) dHn−1(y), (2.3)

provided that the integral on the left-hand side of (2.3) exists, and where

ν̃(y) :=
∑

x∈Sd∩A
u(x)=y

(cof Du(x))ν(x)

|(cof Du(x))ν(x)|
, y ∈ u(Sd ∩A).

We will see in Subsection 2.6 that the equality ∇(u|S)(x) = Du(x)|TxS holds for most points x if u is a
Sobolev map.

2.5. Topological image and condition INV. Even though in this paper we do not make an explicit use
of degree theory, we ought to say that behind this theory there is the underlying concept of degree for W 1,p

maps with p > n − 1, or for W 1,n−1 ∩ L∞ maps, which in fact is a particular case of the Brezis–Nirenberg
[6] degree. We refer to [21, Prop. 2.1], [7, Def. 3.1] or [14, Prop. 2.10], but, just for completeness, we state
an axiomatic definition.
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Proposition 2.6. Let U ⊂⊂ Rn be a nonempty open set with a C1 boundary. Let p > n − 1 and suppose
that u ∈ W 1,p(∂U,Rn) or u ∈ W 1,n−1(∂U,Rn) ∩ L∞(∂U,Rn). Then there exists a unique integer-valued
BV (Rn) function, denoted by deg(u, ∂U, ·), such that∫

∂U

g(u(x)) · (Λn−1(Du(x))ν(x)) dHn−1(x) =

∫
Rn

deg(u, ∂U,y) div g(y) dy

for all g ∈ C1(Rn,Rn), where ν denotes the unit exterior normal to U .

In Proposition 2.6, Du(x) denotes the distributional derivative of u at x, which is a linear map from the
tangent space Tx∂U to Rn. The linear map Λn−1(Du(x)) : Λn−1(Tx∂U)→ Rn is defined by

Λn−1(Du(x)) (a1 ∧ · · · ∧ an−1) = Du(x)a1 ∧ · · · ∧Du(x)an−1, a1, . . . ,an−1 ∈ Tx∂U.
Here ∧ denotes the exterior product between vectors in Rn, and Λn−1(Tx∂U) is the space of all alternating
(n−1) tensors in Tx∂U . In practice, one identifies the one-dimensional subspace Λn−1(Tx∂U) with {λν(x) :

λ ∈ R} and finds that if L̃ : Rn → Rn is a linear map extending Du(x), then

Λn−1(Du(x))ν(x) = (cof L̃)ν(x).

The concept of topological image was introduced by Šverák [24] (see also [21] and [7]).

Definition 2.7. Let U ⊂⊂ Rn be a nonempty open set with a C1 boundary.

a) If u ∈W 1,p(∂U,Rn) for some p > n− 1, we define imT(u, U), the topological image of U under u, as the
set of y ∈ Rn such that deg(u, ∂U,y) 6= 0.

b) If u ∈ W 1,n−1(∂U,Rn) ∩ L∞(∂U,Rn), we define imT(u, U), the topological image of U under u, as the
set of y ∈ Rn such that D(Au,U ,y) = 1, where Au,U := {y ∈ Rn : deg(u, ∂U,y) 6= 0}.

In case a), due to the continuity of the degree for W 1,p maps when p > n − 1, the set imT(u, U) is
open, while in case b), thanks to the following lemma, a point y ∈ Rn belongs to imT(u, U) if and only if
D(imT(u, U),y) = 1.

Lemma 2.8. Let A be a measurable set of Rn, and let B the set of x ∈ Rn such that D(A,x) = 1. Then B
coincides with the set of x ∈ Rn such that D(B,x) = 1.

Proof. By Lebesgue’s density theorem, A = B a.e. Therefore, for each x ∈ Rn and r > 0,

Ln(B ∩B(x, r))

Ln(B(x, r))
=
Ln(A ∩B(x, r))

Ln(B(x, r))
.

Taking limits when r ↘ 0 in the above expression, we find that D(A,x) = 1 if and only if D(B,x) = 1, and,
hence, the conclusion of the statement follows. �

Condition INV (see [21, 7]) is defined as follows.

Definition 2.9. Let u ∈ W 1,p(Ω,Rn) with p > n − 1 or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). We say that u
satisfies condition INV provided that for every x0 ∈ Ω and a.e. r ∈ (0,dist(x0, ∂Ω)), the following conditions
hold:

i) u(x) ∈ imT(u, B(x0, r)) for a.e. x ∈ B(x0, r).
ii) u(x) /∈ imT(u, B(x0, r)) for a.e. x ∈ Ω \B(x0, r).

2.6. A class of good open sets. In the following definition, given a nonempty open set U ⊂⊂ Ω with a
C2 boundary, we call d : Ω→ R the function given by

d(x) :=


dist(x, ∂U) if x ∈ U
0 if x ∈ ∂U
−dist(x, ∂U) if x ∈ Ω \ Ū

and Ut := {x ∈ Ω : d(x) > t}, for each t ∈ R. We note that there exists δ > 0 such that for all t ∈ (−δ, δ),
the set Ut is open, compactly contained in Ω and has a C2 boundary.

Definition 2.10. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn) be such that
detDu > 0 a.e. We define U as the family of nonempty open sets U ⊂⊂ Ω with a C2 boundary that satisfy
the following conditions:
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(1) u|∂U ∈ W 1,p(∂U,Rn) or u|∂U ∈ W 1,n−1(∂U,Rn) ∩ L∞(∂U,Rn) (according to whether u ∈ W 1,p(Ω,Rn)
or u ∈W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn)), and (cof Du)|∂U ∈ L1(∂U,Rn×n).

(2) ∂U ∼⊂ Ω0, where Ω0 is the set of Definition 2.3, and D(u|∂U )(x) coincides with the orthogonal projection
of Du(x) onto Tx∂U for Hn−1-a.e. x ∈ ∂U .

(3) lim
ε↘0

1

ε

∫ ε

0

∣∣∣∣∫
∂Ut

| cof Du|dHn−1 −
∫
∂U

| cof Du|dHn−1

∣∣∣∣dt = 0.

(4) For every g ∈ C1
c (Rn,Rn),

lim
ε↘0

1

ε

∫ ε

0

∣∣∣∣∫
∂Ut

g(u(x)) · (cof Du(x)νt(x)) dHn−1(x)−
∫
∂U

g(u(x)) · (cof Du(x)ν(x)) dHn−1(x)

∣∣∣∣dt = 0,

where νt denotes the unit outward normal to Ut for each t ∈ (0, ε), and ν the unit outward normal to
U .

The family U depends on u, but since u will be fixed throughout the paper, we do not emphasize this
dependence. The following result guarantees that there are enough sets in U (see [13, Lemma 2 and Def. 11]
or [14, Lemma 2.16]).

Lemma 2.11. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn) be such that
detDu > 0 a.e. Let U ⊂⊂ Ω be a nonempty open set with a C2 boundary. Then, Ut ∈ U for a.e. t ∈ (−δ, δ).
Moreover, for each compact K ⊂ Ω there exists U ∈ U such that K ⊂ U .

A consequence of Lemma 2.11 is that there exists an increasing family {Uk}k∈N in U such that Ω =⋃
k∈N Uk. For the rest of the paper, we fix that family and call it U0. For future reference, we note that

Ω =
⋃
U∈U0

U, imG(u,Ω) =
⋃
U∈U0

imG(u, U). (2.4)

2.7. Surface energy. The following concepts were defined in [12, 15].

Definition 2.12. Let u : Ω→ Rn be measurable and approximately differentiable a.e. Suppose that det∇u ∈
L1(Ω) and cof∇u ∈ L1(Ω,Rn×n). For every f ∈ C1

c (Ω̄× Rn,Rn), define

E(u, f) :=

∫
Ω

[cof∇u(x) ·Df(x,u(x)) + det∇u(x) div f(x,u(x))] dx (2.5)

and

E(u) := sup
{
E(u, f) : f ∈ C1

c (Ω× Rn,Rn), ‖f‖∞ ≤ 1
}
,

Ē(u) := sup
{
E(u, f) : f ∈ C1

c (Ω̄× Rn,Rn), ‖f‖∞ ≤ 1
}
.

In equation (2.5) and elsewhere in the paper, Df(x,y) denotes the derivative of f(·,y) evaluated at x, while
div always denotes the divergence operator in the deformed configuration, so div f(x,y) is the divergence of
f(x, ·) evaluated at y.

The functional E was introduced in [12] to measure the creation of new surface of a deformation. The
functional Ē was introduced in [15], and its difference with respect to E is that Ē also takes into account the
stretching of ∂Ω by u.

2.8. Properties of the topological image. We recall the notion of topological image of a point (see [24,
p. 115], [21, p. 33] or [7, Def. 3.13]).

Definition 2.13. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Suppose that
detDu > 0 a.e., and let x ∈ Ω. The topological image of x under u is defined as

imT(u,x) :=
⋂
U∈U
x∈U

imT(u, U).

We define C(u) as the set of x ∈ Ω such that Ln(imT(u,x)) > 0.

It can be shown that the set C(u) can be characterized as the atoms of the distributional determinant
DetDu, but in this work we make no explicit use of DetDu.

The following was proved in [14, Prop. 2.17, Th. 3.2, Th. 4.2, Lemma 4.10].
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Proposition 2.14. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Assume u
satisfies condition INV, detDu > 0 a.e. and E(u) <∞. Then

i) C(u) is countable, imT(u,a) is of finite perimeter for each a ∈ C(u) and

E(u) =
∑

a∈C(u)

Per imT(u,a).

ii) imT(u,a) ∩ imT(u,b) = ∅ and ∂∗ imT(u,a) ∩ ∂∗ imT(u,b) ∼= ∅ for any a,b ∈ C(u) with a 6= b.
iii) imT(u, U) ⊂ imT(u, V ) if U, V ∈ U satisfy U ⊂ V .
iv) For each U ∈ U , the set imT(u, U) is of finite perimeter, ∂∗ imT(u, U) ∼= imG(u, ∂U) and

imT(u, U) = imG(u, U) ∪
⋃

a∈C(u)∩U

imT(u,a) a.e.

v) imG(u,Ω) ∩ imT(u,a) = imG(u, {a}) for each a ∈ C(u).

Define

imT(u,Ω) :=
⋃
U∈U

imT(u, U), (2.6)

which, thanks to the definition of U0, also satisfies

imT(u,Ω) =
⋃
U∈U0

imT(u, U). (2.7)

Equalities (2.4), (2.7) and Proposition 2.14 imply that

imT(u,Ω) = imG(u,Ω) ∪
⋃

a∈C(u)

imT(u,a) a.e. (2.8)

with disjoint union up to a countable set.

2.9. Inverses of one-to-one a.e. maps. The following result comprises results of [21, Lemma 3.4], [7,
Lemma 3.9], [13, Lemma 3] and [14, Th. 2].

Lemma 2.15. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Let u satisfy
condition INV and detDu > 0 a.e. Let Ω0 be as in Definition 2.3. Then u|Ω0 is one-to-one. Moreover, for
each y ∈ imG(u,Ω),

∇u−1(y) = ∇u(u−1(y))−1.

Under the assumptions of Lemma 2.15, the inverse u−1 is defined on imG(u,Ω). Moreover, for any U ∈ U
or U = Ω define ũ−1

U : Rn → Rn as

ũ−1
U (y) :=


u−1(y) if y ∈ imG(u, U),

a if y ∈ imT(u,a) for some a ∈ C(u) ∩ U,
0 otherwise.

(2.9)

Thanks to Proposition 2.14 and (2.8), the function ũ−1
U is well defined a.e.

In [15, Prop. 3.2], the following regularity result is proved.

Proposition 2.16. Let u ∈ L∞(Ω,Rn) be measurable, approximately differentiable a.e., one-to-one a.e.,
and such that det∇u > 0 a.e., cof∇u ∈ L1(Ω,Rn×n) and Ē(u) < ∞. Then the function u−1

Ω : Rn → Rn
defined as

u−1
Ω (y) :=

{
u−1(y) if y ∈ imG(u,Ω),

0 if y ∈ Rn \ imG(u,Ω)

is in SBV (Rn,Rn).
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3. Regularity of inverses

In this section we prove the main results of the paper. We start with an identity that was somewhat
implicit in the proof of [14, Prop. 5.1]. Below and in the rest of the section, the divergence of an Rn×n-
valued function is defined as the Rn-valued function whose components are the divergences of the rows.

Lemma 3.1. Let p > n− 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Assume u satisfies
condition INV, detDu > 0 a.e. and E(u) <∞. Let U ∈ U and G ∈ C1

c (Rn,Rn×n). Then

−
∫
∂U

x · (G(u(x)) cof Du(x)νU (x)) dHn−1(x) +

∫
U

adjDu(x) ·G(u(x)) dx

+

∫
U

x · div G(u(x)) detDu(x) dx = −
∑

a∈C(u)∩U

a ·
∫
∂∗ imT(u,a)

G(y)ν imT(u,a)(y) dHn−1(y).
(3.1)

Proof. Let ϕ ∈ C1(R) satisfy ϕ(t) = 0 for t ≤ 0, ϕ(t) = 1 for t ≥ 1, and ϕ′ ≥ 0. For each j ∈ N, define
ηj : Ω→ R as ηj(x) := ϕ(j dist(x, ∂U)) and φj : Ω→ Rn as φj(x) := ηj(x) x. It is easy to show that there

exists j0 ∈ N such that the functions ηj and φj are of class C1
c for all j ≥ j0. For each 1 ≤ α ≤ n, call gα

the α-th row of G, and φαj the α-th component of φj . A direct computation from (2.5) using (2.1) yields

E(u, φαj gα) =

∫
Ω

xα gα(u(x)) · (cof Du(x)Dηj(x)) dx

+

∫
Ω

[ηj(x) (cof Du(x) eα) · gα(u(x)) + xα ηj(x) div gα(u(x)) detDu(x)] dx,

for each j ≥ j0 and 1 ≤ α ≤ n. Here eα ∈ Rn is the α-th vector of the canonical basis, and xα := x · eα. It
was shown in the proof of [13, Th. 2] that

lim
j→∞

E(u, φαj gα) =−
∫
∂U

xα gα(u(x)) · (cof Du(x)νU (x)) dHn−1(x)

+

∫
U

[(cof Du(x) eα) · gα(u(x)) + xα div gα(u(x)) detDu(x)] dx.

(3.2)

On the other hand, it was shown in the proof of [14, Prop. 5.1] that

lim
j→∞

E(u, φαj gα) = −
∑

a∈C(u)∩U

aα
∫
∂∗ imT(u,a)

gα(y) · ν imT(u,a)(y) dHn−1(y). (3.3)

Comparing (3.2) and (3.3), and taking sums in α, we obtain equality (3.1). �

We now calculate the distributional derivative of the function ũ−1
U of (2.9).

Proposition 3.2. Let p > n − 1. Let u ∈ W 1,p(Ω,Rn) or u ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Assume u
satisfies condition INV, detDu > 0 a.e. and E(u) < ∞. Let U ∈ U . Then ũ−1

U ∈ SBV (Rn,Rn) with
Jũ−1

U

∼= imG(u, ∂U) and∫
Rn

ũ−1
U · div G dy =

∫
imG(u,∂U)

u−1 · (G ν̃) dHn−1(y)−
∫

imG(u,U)

(
Du ◦ u−1

)−1 ·G dy (3.4)

for all G ∈ C1
c (Rn,Rn×n), where

ν̃(y) :=
cof Du(x)νU (x)

|cof Du(x)νU (x)|
, y = u(x), x ∈ ∂U ∩ Ω0. (3.5)
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Proof. Let G ∈ C1
c (Rn,Rn×n). By Propositions 2.14, 2.2 and 2.5, the Gauss–Green theorem (e.g., [9, Th.

5.8.1]) and Lemma 3.1, we have that∫
Rn

ũ−1
U (y) · div G(y) dy

=

∫
imG(u,U)

u−1(y) · div G(y) dy +
∑

a∈C(u)∩U

a ·
∫

imT(u,a)

div G(y) dy

=

∫
U

x · div G(u(x)) detDu(x) dx +
∑

a∈C(u)∩U

a ·
∫
∂∗ imT(u,a)

G(y)ν imT(u,a)(y) dHn−1(y)

=

∫
∂U

x · (G(u(x)) cof Du(x)νU (x)) dHn−1(x)−
∫
U

adjDu(x) ·G(u(x)) dx

=

∫
imG(u,∂U)

u−1(y) · (G(y) ν̃(y)) dHn−1(y)−
∫

imG(u,U)

(
Du(u−1(y))

)−1 ·G(y) dy,

where we used the notation (3.5). This shows (3.4), which can be rewritten as

Dũ−1
U =

(
Du ◦ u−1

)−1 Ln imG(u, U)− u−1 ⊗ ν̃Hn−1 imG(u, ∂U). (3.6)

Now, by Proposition 2.2,∫
imG(u,U)

∣∣∣(Du(u−1(y))
)−1
∣∣∣dy =

∫
U

∣∣Du(x)−1 detDu(x)
∣∣dx =

∫
U

|adjDu(x)|dx <∞, (3.7)

while, thanks to Propositions 2.5 and 2.14,∫
imG(u,∂U)

∣∣u−1 ⊗ ν̃
∣∣dHn−1(y) ≤ ‖id‖L∞(Ω,Rn)H

n−1(imG(u, ∂U)) = ‖id‖L∞(Ω,Rn) Per imT(u, U) <∞.

(3.8)
From (3.6), (3.7) and (3.8), we conclude that ũ−1

U ∈ SBV (Rn,Rn). Therefore, a comparison between
expressions (3.6) and (2.2) reveals that(

(ũ−1
U )+ − (ũ−1

U )−
)
⊗ νũ−1

U
Hn−1 Jũ−1

U
= −u−1 ⊗ ν̃Hn−1 imG(u, ∂U). (3.9)

As u−1 : imG(u,Ω)→ Rn is one-to-one, it takes the value 0 in at most one point. In particular, u−1(y) 6= 0
for Hn−1-a.e. y ∈ imG(u, ∂U). We conclude from (3.9) that Jũ−1

U

∼= imG(u, ∂U). �

In Proposition 3.2, the introduction of the open set U is somewhat artificial. The difficulty is that Ω /∈ U
and, in particular, there is no guarantee that any of conditions of Definition 2.10 is satisfied for U = Ω. The
way to overcome this obstacle is different for the cases p > n − 1 and p = n − 1. The following theorem
presents the regularity result when p > n−1. In this case, thanks to the definition (2.6) and the continuity of
the degree (see Subsection 2.5), the set imT(u,Ω) is open and the support of any function in C1

c (imT(u,Ω))
is contained in imT(u, U) for a certain U ∈ U .

Theorem 3.3. Let p > n− 1. Let u ∈ W 1,p(Ω,R) satisfy condition INV and be such that detDu > 0 a.e.
and E(u) <∞. Define ũ−1 : imT(u,Ω)→ Rn as

ũ−1(y) :=

{
u−1(y) if y ∈ imG(u,Ω),

a if y ∈ imT(u,a) for some a ∈ C(u).
(3.10)

Then ũ−1 ∈W 1,1(imT(u,Ω),Rn) and

Dũ−1(y) =

{
Du(u−1(y))−1 if y = imG(u,Ω),

0 otherwise.
(3.11)

Proof. Note that, in the notation of (2.9), we have ũ−1 = ũ−1
Ω |imT(u,Ω), and, in particular, ũ−1 is well defined

a.e. thanks to equality (2.8).
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Let G ∈ C1
c (imT(u,Ω),Rn×n), and let Ḡ ∈ C1

c (Rn,Rn×n) be the extension of G by zero. Thanks to
Lemma 2.11, there exists U ∈ U such that the support of G is contained in imT(u, U). By Proposition 3.2,
and, in particular, equality (3.4),∫

Rn

ũ−1
U · div Ḡ dy =

∫
imG(u,∂U)

u−1 ·
(
Ḡ ν̃

)
dHn−1(y)−

∫
imG(u,U)

(
Du ◦ u−1

)−1 · Ḡ dy, (3.12)

where ν̃ is as in (3.5). Now, the definitions of Ḡ and ũ−1 yield∫
Rn

ũ−1
U · div Ḡ dy =

∫
imT(u,U)

ũ−1
U · div G dy =

∫
imT(u,U)

ũ−1 · div G dy =

∫
imT(u,Ω)

ũ−1 · div G dy (3.13)

and∫
imG(u,U)

(
Du ◦ u−1

)−1 · Ḡ dy =

∫
imG(u,U)

(
Du ◦ u−1

)−1 ·G dy =

∫
imG(u,Ω)

(
Du ◦ u−1

)−1 ·G dy. (3.14)

Moreover, since Ḡ vanishes in Rn \ imT(u, U), and, hence, in ∂∗ imT(u, U), we apply Proposition 2.14 to
obtain that ∫

imG(u,∂U)

u−1 ·
(
Ḡ ν̃

)
dHn−1(y) =

∫
∂∗ imT(u,U)

u−1 ·
(
Ḡ ν̃

)
dHn−1(y) = 0. (3.15)

Equalities (3.12), (3.13), (3.14) and (3.15) yield∫
imT(u,Ω)

ũ−1 · div G dy = −
∫

imG(u,Ω)

(
Du ◦ u−1

)−1 ·G dy. (3.16)

This shows that Dũ−1 =
(
Du ◦ u−1

)−1 Ln imG(u,Ω). As in (3.7), we obtain that∫
imG(u,Ω)

∣∣∣(Du(u−1(y))
)−1
∣∣∣dy <∞.

Consequently, ũ−1 ∈W 1,1(imT(u,Ω),Rn) and (3.11) is true. �

When p = n − 1, the sets imT(u,Ω) and imT(u, U) for U ∈ U need not be open. Instead of showing
Sobolev regularity for ũ−1, we show an analogue of Proposition 3.2 for U = Ω. Even though Ω /∈ U , we have
some control of u on ∂Ω thanks to the stronger assumption Ē(u) <∞ (see Subsection 2.7). Since the choice
of 0 as the value of ũ−1

Ω outside imT(u,Ω) is arbitrary (see (2.9)), we have added the assumption 0 /∈ Ω̄, so
that 0 does not interfere with the actual values of ũ−1 (see (3.10)).

Theorem 3.4. Assume 0 /∈ Ω̄. Let u ∈W 1,n−1(Ω,Rn)∩L∞(Ω,Rn) satisfy condition INV and be such that
detDu > 0 a.e. and Ē(u) <∞. Then imG(u,Ω) and imT(u,Ω) have finite perimeter, ũ−1

Ω ∈ SBV (Rn,Rn)
with

∂∗ imT(u,Ω) ∼⊂ Jũ−1
Ω

∼⊂ {y ∈ Rn \ imT(u,Ω) : D(imT(u,Ω),y) = 1} ∪ ∂∗ imT(u,Ω) (3.17)

and

Dũ−1
Ω imT(u,Ω) =

(
Du ◦ u−1

)−1 Ln imG(u,Ω). (3.18)

Proof. By Proposition 2.16, the function u−1
Ω defined therein belongs to SBV (Rn,Rn). By the chain rule

(see, e.g., [1, Sect. 3.10]), |u−1
Ω | ∈ BV (Rn), so, as a consequence of the coarea formula (see, e.g., [1, Th.

3.40]), almost all superlevel sets of |u−1
Ω | have finite perimeter. As 0 /∈ Ω̄, for all t > 0 sufficiently small we

have that {
y ∈ Rn :

∣∣u−1
Ω (y)

∣∣ > t
}

= imG(u,Ω).

Consequently, imG(u,Ω) has finite perimeter.
Using (2.8) and Proposition 2.14, we find that

Per imT(u,Ω) ≤ Per imG(u,Ω) +
∑

a∈C(u)

Per imT(u,a) = Per imG(u,Ω) + E(u) <∞,

so imT(u,Ω) has finite perimeter as well.
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Now, the function v : Rn → Rn defined as v :=
∑

a∈C(u) aχimT(u,a) is in SBV (Rn,Rn). Indeed, by

Proposition 2.14, for each finite set F ⊂ C(u), the function vF :=
∑

a∈F aχimT(u,a) is in SBV (Rn,Rn) with

DvF = −
∑
a∈F

a⊗ ν imT(u,a)Hn−1 ∂∗ imT(u,a)

(see, e.g., [1, Sect. 3.5]) and, hence,

|DvF | (Rn) ≤
∑
a∈F
|a|Hn−1(∂∗ imT(u,a)) ≤ ‖id‖L∞(Ω,Rn) E(u).

As C(u) is countable, by the closure theorem in SBV (see, e.g., [1, Th. 4.7]), we obtain that v ∈ SBV (Rn,Rn).
As both u−1

Ω and v are in SBV (Rn,Rn), by [1, Th. 3.84], ũ−1
Ω is in SBV (Rn,Rn), too. Using the represen-

tation (2.2), we find that

Dũ−1
Ω = ∇ũ−1

Ω L
n +

(
(ũ−1

Ω )+ − (ũ−1
Ω )−

)
⊗ νũ−1

Ω
Hn−1 Jũ−1

Ω
. (3.19)

We pass to calculate∇ũ−1
Ω . By Lebesgue’s density theorem, a.e. y0 ∈ Rn\imT(u,Ω) satisfiesD(imT(u,Ω),y0) =

0. For such a y0 we have that

D
({

y ∈ Rn : ũ−1
Ω (y) = 0

}
,y0

)
= 1. (3.20)

Consequently, ∇ũ−1
Ω (y0) = 0. Similarly, consider U ∈ U0 and note that, thanks to Proposition 3.2, a.e.

y0 ∈ imT(u, U) is a point of approximate differentiability of ũ−1
U . Take such a y0. By Lemma 2.8,

D(imT(u, U),y0) = 1 and, hence,

D
({

y ∈ Rn : ũ−1
Ω (y) = ũ−1

U (y)
}
,y0

)
= 1.

Consequently, ∇ũ−1
Ω (y0) = ∇ũ−1

U (y0). Using (2.4) and Proposition 3.2 (in particular, (3.6)), we conclude

that ∇ũ−1
Ω = (Du ◦ u−1)−1 χimG(u,Ω) a.e. in imT(u,Ω). In total,

∇ũ−1
Ω (y) =

{
Du(u−1(y))−1, a.e. y ∈ imG(u,Ω),

0, a.e. y ∈ Rn \ imG(u,Ω).
(3.21)

Now we show that ⋃
U∈U0

(
imT(u, U) \ Jũ−1

U

)
∼⊂ imT(u,Ω) \ Jũ−1

Ω
. (3.22)

Indeed, let U ∈ U0 and y0 ∈ imT(u, U) \ Sũ−1
U

(recall Definition 2.1). Then y0 ∈ imT(u,Ω) and there exists

x0 ∈ Rn such that for all δ > 0,

D
({

y ∈ Rn :
∣∣ũ−1
U (y)− x0

∣∣ ≥ δ} ,y0

)
= 0.

Since ũ−1
U and ũ−1

Ω coincide in imT(u, U), and D (imT(u, U),y0) = 1 (thanks to Lemma 2.8), we conclude
that

D
({

y ∈ Rn :
∣∣ũ−1

Ω (y)− x0

∣∣ ≥ δ} ,y0

)
= 0.

Therefore, y0 /∈ Sũ−1
Ω

. This shows that

imT(u, U) \ Sũ−1
U
⊂ imT(u,Ω) \ Sũ−1

Ω

and, consequently,

imT(u, U) \ Jũ−1
U

∼⊂ imT(u,Ω) \ Jũ−1
Ω
,

which implies (3.22).
Now we show that

imT(u,Ω) ∼⊂
⋃
U∈U0

(
imT(u, U) \ Jũ−1

U

)
. (3.23)

Indeed, let U0 ∈ U0 and choose U ∈ U0 such that U0 ⊂⊂ U . From Proposition 3.2 we find that Jũ−1
U

∼=
imG(u, ∂U), from Proposition 2.14 we obtain that imT(u, U0) ⊂ imT(u, U) and imG(u, ∂U) ∼= ∂∗ imT(u, U),
whereas Lemma 2.8 implies that imT(u, U) ∩ ∂∗ imT(u, U) = ∅. In total,

imT(u, U0) ∩ Jũ−1
U

∼= imT(u, U0) ∩ ∂∗ imT(u, U) ⊂ imT(u, U) ∩ ∂∗ imT(u, U) = ∅,
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and, hence, imT(u, U0) ∼⊂ imT(u, U) \ Jũ−1
U

. Therefore,

imT(u, U0) ∼⊂
⋃
U∈U0

(
imT(u, U) \ Jũ−1

U

)
,

which, thanks to (2.7), implies (3.23).
A combination of (3.22) and (3.23) yields imT(u,Ω) ∼⊂ imT(u,Ω) \ Jũ−1

Ω
, so

imT(u,Ω) ∩ Jũ−1
Ω

∼= ∅. (3.24)

Now, if D(imT(u,Ω),y0) = 0, then, (3.20) also holds, so for all δ > 0,

D
({

y ∈ Rn :
∣∣ũ−1

Ω (y)
∣∣ ≥ δ} ,y0

)
= 0.

We have therefore proved that

if D(imT(u,Ω),y0) = 0 then y0 /∈ Jũ−1
Ω
. (3.25)

As imT(u,Ω) has finite perimeter, Hn−1-a.e. point of Rn has density 1 in imT(u,Ω) or density 0 in
imT(u,Ω) or belongs to ∂∗ imT(u,Ω). Likewise, as ũ−1

Ω is of special bounded variation, Hn−1-a.e. point of

Rn is an approximate continuity point of ũ−1
Ω or a jump point of ũ−1

Ω . In either case, both
(
ũ−1

Ω

)+
and(

ũ−1
Ω

)−
exist at those points: they coincide for approximate continuity points, and differ for jump points.

Take such a point y0. If y0 ∈ ∂∗ imT(u,Ω) then it is clear that
(
ũ−1

Ω

)+
(y0) = 0, while,

(
ũ−1

Ω

)−
(y0), which

we are assuming to exist, must belong to Ω̄. Since 0 /∈ Ω̄, we have that y0 ∈ Jũ−1
Ω

. Thus,

∂∗ imT(u,Ω) ∼⊂ Jũ−1
Ω
. (3.26)

The discussion above, and, in particular, equations (3.24), (3.25) and (3.26) show the validity of inclusions
(3.17). When we restrict equality (3.19) to imT(u,Ω) and use (3.21) and (3.24), we conclude that equality
(3.18) is satisfied. �

It is tempting to think that, in the setting of Theorem 3.4, one can conclude that Jũ−1
Ω

∼= ∂∗ imT(u,Ω).

However, this is not the case as the following simple example shows. In R2, let Ω := (1, 2) × (0, 2π), and
u : Ω→ R2 be the diffeomorphism given by u(x1, x2) := (x1 cosx2, x1 sinx2). It is easy to check that

u(Ω) = imG(u,Ω) = imT(u,Ω) = B(0, 2) \
(
B̄(0, 1) ∪ ((1, 2)× {0})

)
,

and that the set of points of density 1 in imT(u,Ω) is B(0, 2) \ B̄(0, 1). As a consequence,

∂∗ imT(u,Ω) = ∂B(0, 2) ∪ ∂B(0, 1),

but a direct calculation shows that the jump set of ũ−1
Ω is

∂B(0, 2) ∪ ∂B(0, 1) ∪ ((1, 2)× {0}) .
This example was used in [13] to show thatD(imG(u,Ω),y) = 1 for all y ∈ (1, 2)×{0}, butD(imG(u, U),y) =
0 for every U ∈ U .

Without the assumption 0 /∈ Ω̄, the inclusion ∂∗ imT(u,Ω) ∼⊂ Jũ−1
Ω

in (3.17) does not hold in general. For

example, consider an open halfspace H such that 0 ∈ ∂H, take Ω = H ∩ B(0, 1) and let u : Ω → Rn be
defined as u(x) := x + x

|x| . A simple calculation shows that

imT(u,Ω) = H ∩B(0, 2) \ B̄(0, 1) but ∂∗ imT(u,Ω) = Jũ−1
Ω
∪ (H ∩ ∂B(0, 1)) ,

with disjoint union. Nevertheless, the rest of the conclusions of Theorem 3.4 remain true. Indeed, the only
other step of the proof where the assumption 0 /∈ Ω̄ is used was to show that imG(u,Ω) has finite perimeter,
and this can be achieved by choosing any a ∈ Rn such that 0 /∈ Ω̄ + a and arguing with the translated
function w : Ω + a→ Rn defined as w(x) := u(x− a).

Theorem 3.4 is close to saying that ũ−1
Ω is Sobolev in imT(u,Ω), since the distributional derivative of

ũ−1
Ω restricted to imT(u,Ω) is an L1 function. The problem is that imT(u,Ω) is not, in general, an open

set. Although there are several definitions of Sobolev spaces over non-open sets (see, in particular, the
monographs [20, 11, 5] and the references therein), we have decided to leave the conclusion of Theorem 3.4
without a mention to Sobolev spaces, since we believe that the current statement is more transparent.
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