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Abstrat. For the non-onforming Crouzeix-Raviart boundary elements from [Heuer, Sayas:

Crouzeix-Raviart boundary elements, Numer. Math. 112, 2009℄, we develop and analyze a

posteriori error estimators based on the h−h/2 methodology. We disuss the optimal rate of

onvergene for uniform mesh re�nement, and present a numerial experiment with singular

data where our adaptive algorithm reovers the optimal rate while uniform mesh re�nement

is sub-optimal. We also disuss the ase of redued regularity by standard geometri singu-

larities to onjeture that, in this situation, non-uniformly re�ned meshes are not superior

to quasi-uniform meshes for Crouzeix-Raviart boundary elements.

1. Introdution

This is the �rst paper on a posteriori error estimation and adaptivity for an element-

wise non-onforming boundary element method, namely Crouzeix-Raviart boundary elements

analyzed in [HS09℄. Previously, in [DH13℄, we presented an error estimate for a boundary

element method with non-onforming domain deomposition. There, ritial for the analysis

is that the nononformity of the method stems from approximations that are disontinuous

only aross the interfae of sub-domains, whih are assumed to be �xed. In that ase, the

underlying energy norm of order 1/2 of disrete funtions has to be loalized only with respet
to sub-domains. In this paper, where we onsider approximations whih are disontinuous

aross element edges, suh sub-domain oriented arguments do not apply. Instead, we have to

�nd loalization arguments that are uniform under salings with h, the diameter of elements,

whih is nontrivial in frational order Sobolev spaes of order ±1/2.
The Crouzeix-Raviart boundary element method is of partiular theoretial interest sine

it serves to set the mathematial foundation of (loally) non-onforming elements for the ap-

proximation of hypersingular integral equations. Our main theoretial result is the e�ieny

and reliability (based on a saturation assumption) of several a posteriori error estimators. Our

seond result is that, for problems with standard geometri singularities, Crouzeix-Raviart

boundary elements with seemingly appropriate mesh re�nement is as good as (and not better

than) Crouzeix-Raviart boundary elements on quasi-uniform meshes. We further disuss this

point below.

The a posteriori error estimators in this work are based on the h − h/2-strategy. This

strategy is well known from ordinary di�erential equations [HNW87℄ and �nite element

methods [AO00, Ban96℄. Reently, it was applied to onforming boundary element meth-

ods [FLP08, EFLFP09℄ as well: If the disrete spae Xℓ is used to approximate the funtion
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φ in the energy norm ||| · |||, we use the uniformly re�ned spae X̂ℓ and the orresponding

approximations Φℓ and Φ̂ℓ to estimate the error via the heuristis

ηℓ := |||Φ̂ℓ − Φℓ||| ∼ |||φ− Φℓ|||.(1)

In a onforming setting, the proof of e�ieny of ηℓ (i.e, it bounds the error from below)

follows readily from orthogonality properties, while its reliability (i.e., it is an upper bound

of the error) is additionally based on a saturation assumption. In non-onforming methods,

orthogonality is available only in a weaker form whih ontains additional terms, suh that

h− h/2-based estimators are more involved than in a onforming setting.

As mentioned before, additional di�ulties arise in boundary element methods due to the

fat that the underlying energy norm ||| · ||| is equivalent to a frational order Sobolev norm.

These norms typially annot be split into loal error indiators. We use ideas from [FLP08℄

to loalize via weighted integer order Sobolev norms.

We are partiularly interested in problems with singularities whih are inherent to problems

on polyhedral surfaes where orner and orner-edge singularities appear. In the extreme

ase of the hypersingular integral equation on a plane open surfae Γ (whih is our model

problem), its solution is not in H1(Γ) sine edge singularities behave like the square root

of the distane to the boundary urve [Ste87℄. The energy norm of this problem de�nes a

Sobolev spae of order 1/2, so that low-order onforming methods with quasi-uniform meshes

have approximation orders equal toO(h1/2) (h being the mesh size), f. [BH08℄. In [HS09℄ the

authors have shown that this is also true for Crouzeix-Raviart boundary elements. Now, for

an adaptive method or a method with appropriate mesh re�nement towards the singularities,

one expets to reover the optimal rateO(h) of a low-order method. Surprisingly, this appears

to be false in the ase of Crouzeix-Raviart boundary elements.

We onjeture that O(h1/2) (or O(N−1/4) with N being the number of unknowns) is the

optimal rate for our model problem even when using non-uniformly re�ned meshes. We base

our onjeture on two observations. Standard error estimation of non-onforming methods,

based on the seond Strang lemma, omprise a best-approximation term and a nononformity

term. The best-approximation term has indeed the optimal order of a onforming method but

we observe that the standard upper bound of the nononformity term is of the orderO(N−1/4)
and not better. This surprising result an be explained by the fat that the appearing

Lagrangian multipliers on the edges of the elements (needed for the jump ondition of the

Crouzeix-Raviart basis funtions) are approximated in a Sobolev spae of order only 1/2 less
than the unknown funtion. Taking into aount that the total relative measure of the edges

inreases with mesh re�nement and that the Lagrangian multipliers are approximated only

by onstants, this explains the limited onvergene order of the whole method.

The seond observation stems from numerial experiments with Crouzeix-Raviart bound-

ary elements using meshes whih are optimal for onforming methods:

• We onsider uniformmeshes for the non-onforming approximation of a solution whih

is an element of the oarsest onforming spae (i.e., a onforming method would

ompute the exat solution).

• We onsider algebraially graded meshes whih are optimal for onforming approxima-

tions in the sense that they guarantee an approximation order O(N−1/2) for inherent
singularities.

Both types of meshes show the redued order of onvergene O(N−1/4), and the same redued

order is observed for our adaptive proedure.
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Based on this onjeture, we onlude that, for Crouzeix-Raviart boundary elements, quasi-

uniform meshes are optimal to approximate standard geometri singularities where the so-

lution is almost in H1(Γ). There is no need for adaptive mesh re�nement. In this ase, the

only use of a posteriori error estimation is the very error estimation.

There are ases, however, where given data are singular so that solutions have singular

behavior whih is stronger than that due to geometri irregularities. In these ases an adap-

tive Crouzeix-Raviart boundary element method an be used to reover the optimal rate

O(N−1/4) whih annot be ahieved with quasi-uniform meshes in this situation. Our nu-

merial experiments report on suh a ase where the exat solution is stritly less regular

than H1(Γ).

As model problem, we use the Laplaian exterior to a polyhedral domain or an open

polyhedral surfae. The Neumann problem for suh a problem an be written equivalently

with the hypersingular integral operator W,

Wφ(x) := −
1

4π
∂n(x)

∫

Γ

∂n(y)

(
1

|x− y|

)
φ(y) dΓ(y) = f(x),(2)

where Γ is the open or losed surfae and f is a given funtion. The link to the Neumann

problem for the exterior Laplaian is given by the speial hoie f = (1/2 − K ′)v, with v
the Neumann datum and K ′

the adjoint of the double-layer operator. Although the operator

W an at on disontinuous funtions, the hypersingular integral equation (2) is not well-

posed in suh a ase. However, ontinuity requirements an be relaxed by using the relation

W = curlΓVcurlΓ with single layer operator V and ertain surfae di�erential operators curlΓ
and curlΓ, see [Néd82, GHH09℄. This identity allows us to use the spae V of Crouzeix-

Raviart elements to approximate the exat solution φ of (2) in a non-onforming way. The

assoiated energy norm will then be ||| · ||| = ‖curl · ‖H−1/2(Γ), see Setion 2.3.

The reliability and e�ieny of h − h/2 error estimators for onforming methods follows

readily from the Galerkin orthogonality

|||φ− Φℓ|||
2 = |||φ− Φℓ|||

2 + |||Φ̂ℓ − Φℓ|||
2,(3)

where reliability additionally needs the saturation assumption

|||φ− Φ̂ℓ||| ≤ Csat|||φ− Φℓ|||, with 0 < Csat < 1 for all ℓ ∈ N.

In a non-onforming setting, the orthogonality (3) does not hold true any longer. However,

there is a substitute given by an estimate whih involves additional terms of the form |||Φℓ −
Φ0

ℓ |||, with Φ0
ℓ being a onforming approximation of φ, see Setion 3.1.

A term of the form |||Φℓ − Φ0
ℓ ||| will be alled nononformity error. Although it is om-

putable, it is evident that the omputation of Φ0
ℓ has to be avoided. Hene, we will show

that the nononformity error an be bounded by inter-element jumps of Φℓ, see Corollary 6.

To that end, we will analyze the properties of quasi-interpolation operators in the spae

H−1/2(Γ) in Setion 3.2.

In Setion 4, we show that the a posteriori error estimator ηℓ from (1) is reliable and

e�ient up to the nononformity error, whih an then be exhanged with the inter-element

jumps of Φℓ. As already mentioned, ηℓ is not loalized, and we will use ideas from [FLP08℄ to

introdue three additional error estimators for that purpose. Two of them are loalized, see

Setion 4.2, and an be used in a standard adaptive algorithm, see Algorithm 11 below. We
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show in Setion 4 that all error estimators are e�ient and, under the saturation assumption,

also reliable, up to inter-element jumps. Finally, Setion 5 presents numerial results.

2. Crouzeix-Raviart boundary elements

2.1. Notation and model problem. We onsider an open, plane, polygonal sreen Γ ⊂ R2
,

embedded in R3
, with normal n(y) at y ∈ Γ pointing upwards. Restriting ourselves to a

plane sreen simpli�es the presentation. However, assoiated solutions exhibit the strongest

possible edge singularities that, at least for onforming methods, require nonuniform meshes

in order to guarantee e�ieny of approximation. On Γ, we use the standard spaes L2(Γ)
and H1(Γ), and as usual, H1

0 (Γ) ⊂ H1(Γ) onsists of funtions that vanish on the boundary

∂Γ. The spae H1
0(Γ) is equipped with the H1(Γ) (semi-)norm | · |H1(Γ) := ‖∇Γ · ‖L2(Γ)

where ∇Γ denotes the surfae gradient. We de�ne intermediate spaes by the K-method of

interpolation (see, e.g., [Tri95℄), that is,

Hs(Γ) =
[
L2(Γ), H

1(Γ)
]
s

and H̃s(Γ) =
[
L2(Γ), H

1
0 (Γ)

]
s

for 0 < s < 1.

Sobolev spaes with negative index are de�ned via duality with respet to the extended L2(Γ)
inner produt 〈· , ·〉,

Hs(Γ) := H̃−s(Γ)′ and H̃s(Γ) := H−s(Γ)′ for − 1 ≤ s < 0.

Spae of vetor valued funtions will be denoted by bold-fae letters, i.e. L2(Γ) or H
1/2(Γ),

meaning that every omponent is an element of the respetive spae. We will use tangential

di�erential operators. For su�iently smooth funtions φ on Γ, we de�ne the tangential url
operator curl by

curlφ := (∂yφ,−∂xφ, 0) .

Drawing upon the results from [BCS02℄, it is shown in [GHH09, Lemma 2.2℄ that the operator

curl an be extended to a ontinuous operator, mapping H̃1/2(Γ) to

H̃−1/2(Γ) :=
{
ψ ∈

(
H̃−1/2(Γ)

)3
| ψ · n = 0

}
.

Now our model problem is as follows. For a given f ∈ H−1/2(Γ), �nd φ ∈ H̃1/2(Γ) suh that

〈Wφ, ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ).(4)

Here, W is the hypersingular integral operator from (2). It is well known that this problem

has a unique solution, f. [Ste87℄. Reall the relation W = curlΓVcurlΓ with single layer

operator V,

Vu(x) :=
1

4π

∫

Γ

1

|x− y|
u(y) dΓ(y).

Performing integration by parts one �nds that an equivalent formulation of (4) is given by

〈Vcurlφ, curlψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ),(5)

see [Néd82℄ and [GHH09, Lemma 2.3℄. Note that V in (5) is onsidered to transfer vetorial

densities into vetorial potentials, i.e., V ats omponent-wise.
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Figure 1. For eah triangle T ∈ Tℓ, there is one �xed referene edge, indiated

by the double line (left, top). Re�nement of T is done by biseting the referene

edge, where its midpoint beomes a new node. The referene edges of the son

triangles T ′ ∈ Tℓ+1 are opposite to this newest vertex (left, bottom). To avoid

hanging nodes, one proeeds as follows: We assume that ertain edges of T ,
but at least the referene edge, are marked for re�nement (top). Using iterated

newest vertex bisetion, the element is then split into 2, 3, or 4 son triangles

(bottom). If all elements are re�ned by three bisetions (right, bottom), we

obtain the so-alled uniform bise(3)-re�nement whih is denoted by T̂ℓ.

2.2. Meshes and loal mesh-re�nement. A triangulation T of Γ onsists of ompat

2-dimensional simplies (i.e., triangles) T suh that

⋃
T∈T T = Γ. We do not allow hanging

nodes. The volume area |T | of every element de�nes the loal mesh-width hT ∈ L∞(Γ) by
hT |T := hT (T ) := |T |1/2. We de�ne ET to be the set of all edges e of the triangulation T ,
and NT as the set of all nodes z of the triangulation whih are not on the boundary ∂Γ. We

will need di�erent kinds of pathes. For a node z ∈ NT , we denote by ωz the node path

as the set of all elements T ∈ T sharing z. Likewise, we de�ne an edge path ωe. For an

element T ∈ T , the path ωT is the set of all elements sharing a node with T .
Starting from an initial triangulation T0 of Γ, we will generate a sequene of meshes Tℓ for

ℓ ∈ N via so-alled newest vertex bisetion (NVB). For a brief overview, we refer to Figure 1,

and for a preise de�nition, we refer the reader to [Ver96, KPP13℄. We denote by T a �xed

referene element, and by u the pull-bak of a funtion u de�ned on T , i.e., if FT : T → T is

the a�ne element map, u := u ◦FT . An important property of the NVB re�nement strategy

is that one an not only map elements T to �xed referene domains, but also pathes. This

means that there is a �nite set of �xed referene pathes and a�ne maps suh that any node-,

element-, or edge path is the a�ne image of suh a referene path. In partiular, there are

only �nitely many onstants involved in saling argument on pathes, and hene, one may

use pathes in saling arguments. For a mesh T , we denote by T̂ the uniformly re�ned mesh,

i.e., all edges in T are biseted.

For a triangle T ∈ T , we denote by nT the normal vetor on ∂T pointing outwards of T .
For an inner edge e ∈ ET , i.e., e ⊂ Γ, we denote by T+

e and T−
e the two elements of T sharing

e, and we de�ne n+ := nT+
e
and n− := nT−

e
. For smooth enough funtions φ : Γ → R and

v : Γ → R2
we de�ne the jumps J·K and averages {·} of the traes φ+

, φ−
, v+

, and v−
by

{φ}|e :=
1
2
(φ+ + φ−), {v}|e :=

1
2
(v+ + v−),

JφK|e := φ+n+ + φ−n−, JvK|e := v+n+ + v−n−.

If we equip a mesh with an index, e.g., Tℓ, then we will use the index (·)ℓ instead of (·)Tℓ , i.e.,
we write, e.g., hℓ instead of hTℓ , and the same abbreviation will be used for sets of edges or

nodes, e.g., Eℓ or Nℓ.
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2.3. Crouzeix-Raviart boundary elements. For a given mesh T , P1(T ) is the spae of
pieewise linear funtions. By V 0 = V 0

T , we denote the spae of lowest-order ontinuous

boundary elements, i.e.,

V 0 := P1(T ) ∩H1
0 (Γ),

and V = VT is the spae of Crouzeix-Raviart boundary elements, i.e.,

V :=

{
Φ ∈ P1(T )

Φ is ontinuous in me ∀e ∈ ET with e * ∂Γ,

Φ(me) = 0 ∀e ∈ ET with e ⊂ Γ

}
,

where me is the midpoint of e ∈ ET . For curlT : P1(T ) → L2(Γ) being the T -pieewise
tangential url operator, a norm in V is given by

||| · |||T := ‖curlT · ‖
H̃−1/2(Γ).

In the following we onsider the bilinear form

aT (Φ,Ψ) := 〈VcurlT Φ , curlT Ψ〉.

By the properties of the single-layer operator V, f. [ML00℄, aT is symmetri and there is a

onstant Cnorm > 1, independent of T and Φ ∈ V , suh that

C−2
norm|||Φ|||

2
T ≤ aT (Φ,Φ) ≤ C2

norm|||Φ|||
2
T .

This makes aT an inner produt in V , whih is therefore a Hilbert spae. Assuming additional

regularity f ∈ H−1/2+ε(Γ) with ε > 0, then

〈f ,Ψ〉 ≤ ‖f‖H−1/2+ε(Γ)‖Ψ‖H1/2−ε(Γ) ≤ CT |||Ψ|||T for all Ψ ∈ V.(6)

Here we used the equivalene of norms in the �nite-dimensional spae V , suh that the

number CT > 0 depends on T . By the Lax-Milgram lemma there exists a unique Galerkin

solution Φ ∈ V of

〈VcurlT Φ , curlT Ψ〉 = 〈f ,Ψ〉 for all Ψ ∈ V.(7)

The unique solvability of (7) was already addressed in [HS09℄ and studied via an equivalent

saddle-point problem. We emphasize that the onstant CT in (6) depends on V , but is not
used in our analysis. In the statements and arguments below, our notations will mostly omit

the expliit dependene on T by writing, e.g., ||| · |||, assuming that this is the norm related

to the �nest mesh whih ours in the norms' argument.

2.4. Uniform re�nement: onsisteny error and optimal onvergene. We brie�y

disuss existing results for the Crouzeix-Raviart BEM of Setion 2.3 based on a sequene of

uniformly re�ned meshes (Tℓ)ℓ∈N0 . Aording to [HS09, Theorem 2℄, it holds that

|||φ− Φℓ||| . h
1/2
ℓ ‖φ‖H1(Γ),(8)

if f ∈ L2(Γ) and (Tℓ)ℓ∈N0 is a uniform sequene of meshes with mesh width hℓ. The proof

of (8) uses, as is ustomary in the analysis of non-onforming methods, the Lemma of Berger,

Sott, and Strang, see, e.g., [BSS72℄. With a view to the well-known approximation results

of onforming method, it su�es to bound the so-alled onsisteny error. In [HS09, Prop.

5℄, it is shown that this an be done by

sup
Ψℓ∈Vℓ

a(φ− Φℓ,Ψℓ)

‖curlΓΨℓ‖H̃−1/2(Γ)

. inf
µℓ∈P0(Eℓ)

[
∑

e∈Eℓ

‖te · Vcurlφ− µℓ‖
2
L2(e)

]1/2
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Figure 2. Convergene rates for uniform mesh re�nement and smooth solu-

tion. Note that we plot squared quantities, so that O(N
−1/2
ℓ ) orresponds to

rate of O(h
1/2
ℓ ) for the original quantities.

and that the right-hand side onverges like O(h
1/2
ℓ ), see [HS09, Lemma 6℄. However, this

bound for the onvergene rate of the right-hand side is optimal. Indeed, for v ∈ P1(Γ)\P0(Γ)
it holds that

inf
µℓ∈P0(Eℓ)

[
∑

e∈Eℓ

‖v − µℓ‖
2
L2(e)

]1/2
≃ O(h

1/2
ℓ ),

whih an be seen by a diret alulation. Therefore, we are led to onjeture that the optimal

order of onvergene is O(h1/2). An easy numerial example supports this onjeture. We

hoose Γ = [0, 1]2 and divide it along the diagonals and the midpoints of its sides, suh that

we obtain a mesh T0 of 8 triangles. We hoose the exat solution φ ∈ V 0
0 that vanishes on

∂Γ and has the value 1 in the enter of Γ. In Figure 2, we visualize the outome of the

orresponding Crouzeix-Raviart BEM based on a uniform mesh re�nement. We have not

yet de�ned the shown quantities, but what is important here is that Φℓ ∈ Vℓ denotes the
Crouzeix-Raviart solution on the mesh Tℓ, whereas Φ

0
ℓ ∈ V 0

ℓ denotes the onforming solution.

Aording to the de�nition of φ, we have Φ0
ℓ = φ, and hene, aording to (8),

|||Φℓ − Φ0
ℓ ||| = |||φ− Φℓ||| = O(h

1/2
ℓ ).

One would expet an inreased order of O(h1−ε
ℓ ) for every ε > 0, as φ ∈ H̃1/2(Γ)∩H3/2−ε(Γ).

However, as Figure 2 reveals, this inreased rate is not ahieved - we still observe O(h
1/2
ℓ ),

whih therefore seems to be the optimal rate that an be obtained.

3. Preliminaries
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3.1. Conforming approximations and partial orthogonality. For the development and

analysis of the adaptive Crouzeix-Raviart boundary elements, it will be onvenient to use

a deomposition of the spae VT into onforming and non-onforming omponents. Suh a

deomposition is given by the identity

VT = V 0
T ⊕ V ⊥

T ,

where V ⊥
T is the orthogonal omplement of V 0

T with respet to the inner produt aT (·, ·). For
a funtion Φ ∈ VT , we write Φ = Φ0 + Φ⊥

with Φ0 ∈ V 0
T and Φ⊥ ∈ V ⊥

T . We emphasize that

there is a partial orthogonality, i.e., if T⋆ is a re�nement of T , then

a⋆(φ− Φ⋆,Ψ) = 0 for all Ψ ∈ V 0
T ,

where φ is the exat solution and Φ⋆ ∈ VT⋆ is its non-onforming Galerkin approximation.

In ontrast to onforming methods, this orthogonality property annot be extended to all

Ψ ∈ VT . However, it an be extended to a partial orthogonality as follows, f. [BN10,

Corollary 4.3℄.

Lemma 1. Let T⋆ be a re�nement of T and Φ⋆ ∈ VT⋆ the Galerkin solution (7) on T⋆. Then,

for all ε > 0, and all Φ ∈ VT , we have

a⋆(φ− Φ⋆, φ− Φ⋆) ≤ (1 + ε)a(φ− Φ, φ− Φ)

−
C−2

norm

2
|||Φ− Φ⋆|||

2
⋆ +

(
C2

norm(1 +
1

ε
) + C−2

norm

)
|||(Φ− Φ0)− (Φ⋆ − Φ0

⋆)|||
2
⋆

Proof. As φ− Φ⋆ is orthogonal to V
0
T and V 0(T⋆), we have

a⋆(φ− Φ⋆, φ− Φ⋆) = a⋆(φ− Φ⋆ − Φ0 + Φ0
⋆, φ− Φ⋆ − Φ0 + Φ0

⋆)− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0)

= a⋆(φ− Φ + Φ⊥ − Φ⊥
⋆ , φ− Φ + Φ⊥ − Φ⊥

⋆ )− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0)

= a⋆(φ− Φ, φ− Φ) + 2a⋆(Φ
⊥ − Φ⊥

⋆ , φ− Φ)

+ a⋆(Φ
⊥ − Φ⊥

⋆ ,Φ
⊥ − Φ⊥

⋆ )− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0),

where we used the identity Φ⋆ + Φ0 − Φ0
⋆ = Φ − Φ⊥ + Φ⊥

⋆ in the seond step. Using the

stability, elliptiity, and Young's inequality ab ≤ a2/(4ε) + εb2, we obtain

2a⋆(φ− Φ,Φ⊥ − Φ⊥
⋆ ) ≤ 2a(φ− Φ, φ− Φ)1/2a⋆(Φ

⊥ − Φ⊥
⋆ ,Φ

⊥ − Φ⊥
⋆ )

1/2

≤ εa(φ− Φ, φ− Φ) + ε−1C2
norm|||Φ

⊥ − Φ⊥
⋆ |||

2
⋆,

as well as

C−2
norm

2
|||Φ⋆ − Φ|||2⋆ − C−2

norm|||Φ
⊥
⋆ − Φ⊥|||2⋆ ≤ C−2

norm|||Φ
0
⋆ − Φ0|||2⋆ ≤ a⋆(Φ

0
⋆ − Φ0,Φ0

⋆ − Φ0).

Finally, the estimate

a⋆(Φ
⊥ − Φ⊥

⋆ ,Φ
⊥ − Φ⊥

⋆ ) ≤ C2
norm|||Φ

⊥ − Φ⊥
⋆ |||

2
⋆

onludes the proof. �
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3.2. Quasi-interpolation operators in H̃−1/2(Γ). Lemma 1 will be the basis for the anal-

ysis of the a posteriori error estimators in Setion 4, suh that terms of the form |||Φ− Φ0|||
will emerge. Those terms are (in priniple) omputable. However, they involve onforming

approximations Φ0
, whih we don't want to ompute, and hene we need to �nd a substitute

involving only Φ. This will be done in Corollary 6, where we will estimate the nononformity

of a funtion Φ by its jumps over edges. The proof of this orollary will be based on results of

the present setion, the aim of whih is to provide an interpolation operator to approximate

the onforming part Φ0
of a given funtion Φ. We will use the well-known interpolation oper-

ator IT by Clément [Clé75, SZ90℄, and provide approximation results in the spae H̃−1/2(Γ).
For a funtion v ∈ L2(Γ), this operator is de�ned as

IT v :=
∑

z∈NT

ψ(z)ϕz ,(9)

where ϕz is the nodal basis funtion of V 0
T assoiated with the node z ∈ NT . The funtion

ψ ∈ V 0
T |ωz is suh that

∫

ωz

(v − ψ)ϕ = 0 for all ϕ ∈ V 0
T |ωz

see also [BN10, Lemma 6.6℄. In addition, we denote by ΠT the L2(Γ) orthogonal projetion
onto the spae of pieewise onstants [P0(T )]2. The well-known properties of the operator

IT are olleted in the following lemma. We again refer to [BN10, Lemma 6.6℄ for a proof.

Lemma 2. Let T be a re�nement of T0. Then, there exists a onstant CI whih depends only

on T0 suh that

‖IT ϕ‖L2(Γ) ≤ CI‖ϕ‖L2(Γ) and ‖IT ϕ‖H1(Γ) ≤ CI‖ϕ‖H1(Γ),(10)

and suh that for all T ∈ T , for all ϕ ∈ H1
0 (Γ), and for all Φ ∈ VT , it holds that

‖ϕ− IT ϕ‖L2(T ) ≤ CI‖hT ∇ϕ‖L2(ωT ),(11a)

‖Φ− IT Φ‖L2(T ) ≤ CI‖h
1/2
T JΦK‖L2(EωT

),(11b)

‖∇T (Φ− IT Φ)‖L2(T ) ≤ CI‖h
−1/2
T JΦK‖L2(EωT

).(11)

�

For our purposes, we need to analyze the properties of IT in the spae H̃−1/2(Γ). To do

so, we will use integration by parts pieewise. The resulting integrals over the skeleton ET
will be bounded with the aid of the following auxiliary result.

Lemma 3. Let T be a re�nement of T0 with the set of edges ET . Then, there is a onstant

Cedge whih depends only on T0 suh that for any hoie of funtions Φ ∈ VT and V ∈ [V 0
T ]

2
,

it holds that ∫

ET

JΦK{V} ≤ Cedge‖JΦK‖L2(ET )‖V‖H1/2(Γ).(12)

Furthermore, if T̂ is the uniform re�nement of T and Φ̂ ∈ V 0
T̂
, it holds that

∫

E
T̂

JΦ̂K{V} ≤ Cedge‖h
1/2
T (1−ΠT )∇T̂ Φ̂‖L2(Γ)‖V‖H1/2(Γ).(13)
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Proof. For every edge e ∈ ET , we use an a�ne map to transfer the edge path ωe to a

referene on�guration ωe. As we emphasized in Setion 2.2, the number of this referene

on�gurations is bounded uniformly, whih permits us to use saling arguments. Now we

hoose ce ∈ R2
suh that

‖V − ce‖L2(e) . |V|
H

1/2
slo (ωe)

,

whih is possible sine V is an element of a �nite dimensional spae. Here, the index slo
indiates that the norm is de�ned aording to Sobolev-Slobodekij. Mapping both sides

bak to the physial domain yields

‖V − ce‖L2(e) . |V|
H

1/2
slo (ωe)

≤ ‖V‖
H

1/2
slo (ωe)

.(14)

As Φ is a Crouzeix-Raviart funtion, its jump JΦK has vanishing integral mean on every edge

e ∈ ET , and hene, using the Cauhy-Shwarz inequality, we obtain with (14)

∫

ET

JΦK{V} =
∑

e∈ET

∫

e

JΦK{V − ce} ≤

(
∑

e∈ET

‖JΦK‖2L2(e)

)1/2(∑

e∈ET

‖V − ce‖
2
L2(e)

)1/2

≤

(
∑

e∈ET

‖JΦK‖2L2(e)

)1/2(∑

e∈ET

‖V‖2
H

1/2
slo (ωe)

)1/2

.

Loally, only three pathes ωe overlap, and the fat that the norms H
1/2
slo (Γ) and H1/2(Γ) are

equivalent �nally onludes the proof of (12). Now we prove (13). We start at (12), this time

with T̂ instead of T , to obtain

∫

E
T̂

JΦ̂K{V} .


∑

e∈E
T̂

‖JΦ̂K‖2L2(e)




1/2

‖V‖H1/2(Γ).

Now we split the L2 norm of the jump JΦ̂K over the skeleton ET̂ into the ontributions on the

skeleton ET and the rest, whih we write sloppy as ET̂ \ ET . Then,
∑

e∈E
T̂

‖JΦ̂K‖2L2(e)
=
∑

e∈ET

‖JΦ̂K‖2L2(e)
+

∑

e∈E
T̂
\ET

‖JΦ̂K‖2L2(e)
.(15)

We laim that there is a onstant C > 0, independent of ET̂ and Φ̂ suh that

‖JΦ̂K‖L2(e) ≤ Ch1/2e ‖(1−ΠT )∇T̂ Φ̂‖L2(ωe) if e ∈ ET ,

‖JΦ̂K‖L2(e) ≤ Ch1/2e ‖(1−ΠT )∇T̂ Φ̂‖L2(T ) if e ∈ ET̂ \ ET with e ⊂ T ∈ T .

Both sides de�ne seminorms, and the left one vanishes when the right one does. Hene, the

bounded dimension of the underlying spae and a saling argument prove the laim. Using

the last two estimates in (15) shows (13). �

Lemma 4. In addition to Lemma 2, we have the following estimates, where T̂ denotes the

uniform re�nement of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that

‖∇T (1− IT )Φ‖H̃−1/2(Γ) ≤ CI‖hT JΦK′‖L2(ET ),(16a)

‖∇T̂ (1− IT )Φ̂‖H̃−1/2(Γ) ≤ CI‖h
1/2
T (1−ΠT )∇T̂ Φ̂‖L2(Γ).(16b)
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Proof. We will use estimates (10) and (11) to prove this lemma. First, if we denote by IT v
the omponent-wise ation of IT to v ∈ H1/2(Γ), we integrate by parts pieewise to obtain

〈∇T (1− IT )Φ , IT v〉 = −〈(1− IT )Φ , divIT v〉+
∑

T∈T

∫

ET

(Φ− IT Φ)IT v · nT .

As JIT ΦK vanishes due to the ontinuity of IT Φ, the seond term on the right-hand side an

be written as

∑

T∈T

∫

ET

(Φ− IT Φ)IT v · nT =

∫

ET

JΦ− IT ΦK{IT v}+

∫

ET \∂Γ

{Φ− IT Φ}JIT vK

=

∫

ET

JΦK{IT v}.

We onlude that, for any v ∈ H1/2(Γ),

〈∇T (1− IT )Φ ,v〉 = 〈∇T (1− IT )Φ ,v− IT v〉 − 〈(1− IT )Φ , divIT v〉

+

∫

ET

JΦK{IT v}.
(17)

We bound the terms on the right-hand side separately. Taking into aount (11), the �rst

term on the right-hand side of (17) an be estimated by

〈∇T (1− IT )Φ ,v− IT v〉 ≤
∑

T∈T

‖∇T (1− IT )Φ‖L2(T )‖v− IT v‖L2(T )

.
∑

T∈T

hT |
−1/2
T ‖JΦK‖L2(EωT

)‖v − IT v‖L2(T )

≤ ‖JΦK‖L2(ET )‖h
−1/2
T (v− IT v)‖L2(Γ).

(18)

Now, it holds that ‖h−1/2
T (v − IT v)‖L2(Γ) . ‖v‖H1/2(Γ), whih follows from interpolation of

the estimates

‖v − IT v‖L2(Γ) . ‖v‖L2(Γ) and ‖h−1
T (v − IT v)‖L2(Γ) . ‖v‖H1(Γ),

whih themselves an be derived summing (10) and (11a) over the elements of the mesh. We

onlude that

〈∇T (1− IT )Φ ,v − IT v〉 . ‖JΦK‖L2(ET )‖v‖H1/2(Γ).(19)

The seond ontribution on the right-hand side of (17) an be bounded by using (11b) via

〈Φ− IT Φ , divIT v〉 ≤
∑

T∈T

‖Φ− IT Φ‖L2(T )‖divIT v‖L2(T )

. ‖JΦK‖L2(ET )‖h
1/2
T divIT v‖L2(Γ)

. ‖JΦK‖L2(ET )‖v‖H1/2(Γ).

(20)

In the last step we used an inverse estimate, f. [CP07, Proposition 3.1℄ and the reent

extension [AFF

+
13b, Proposition 5℄, and the fat that IT is bounded in H1/2(Γ), whih

again follows by interpolation, this time using the estimates (10). The third part on the

right-hand side of (17) an be bounded by Lemma 3 and the H1/2(Γ)-boundedness of IT via∫

ET

JΦK{IT v} . ‖JΦK‖L2(ET )‖v‖H1/2(Γ).(21)
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From the identity (17) we onlude, using (19), (20), and (21), that

‖∇T (1− IT )Φ‖H̃−1/2(Γ) = sup
‖v‖

H
1/2(Γ)

=1

〈∇T (1− IT )Φ ,v〉 . ‖JΦK‖L2(ET ).

From this, (16a) follows from a Poinaré inequality, whih may be used sine Φ ∈ VT implies

that the jump JΦK vanishes at the midpoint of every element.

To prove (16b), we again use integration by parts pieewise and onlude as before

〈∇T̂ (1− IT )Φ̂ ,v〉 = 〈∇T̂ (1− IT )Φ̂ ,v − IT v〉 − 〈(1− IT )Φ̂ , divIT v〉,

+

∫

E
T̂

JΦ̂K{IT v}.
(22)

The �rst and seond term an be bounded as in (18) and (20), this time using the loal

estimates

‖∇T̂ (1− IT )Φ̂‖L2(T ) ≤ C‖(1−ΠT )∇T̂ Φ̂‖L2(ωT )

‖(1− IT )Φ̂‖L2(T ) ≤ ChT |T‖(1−ΠT )∇T̂ Φ̂‖L2(ωT ),

whih follow from a saling argument and norm equivalene in �nite dimensional spaes. The

last term in (22) an be bounded by (13) of Lemma 3. �

We will also need the following boundedness result for IT .

Lemma 5. In addition to Lemma 2, we have the following estimate, where T̂ denotes the

uniform re�nement of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that

(23) ‖∇T IT Φ̂‖H̃−1/2(Γ) ≤ CI‖∇T̂ Φ̂‖H̃−1/2(Γ).

Proof. To prove (23), we �rst observe that due to the loal L2 boundedness of (1−ΠT ) and
the inverse estimate [GHS05, Thm. 3.6℄, we have

‖h1/2T (1− ΠT )∇T̂ Φ̂‖L2(Γ) ≤ ‖h1/2T ∇T̂ Φ̂‖L2(Γ) . ‖∇T̂ Φ̂‖H̃−1/2(Γ).

Hene, the triangle inequality and (16b) show

‖∇T̂ IT Φ̂‖H̃−1/2(Γ) ≤ ‖∇T̂ Φ̂‖H̃−1/2(Γ) + ‖∇T̂ (1− IT )Φ̂‖H̃−1/2(Γ) . ‖∇T̂ Φ̂‖H̃−1/2(Γ).

�

4. A posteriori error estimation and adaptive algorithm

In this setion, we introdue di�erent error estimators, and show their reliability and

e�ieny. In Setion 4.1, we introdue global error estimators, that is, the employed (non-

integer) norm is nonloal and therefore does not provide information for loal mesh-re�nement.

In Setion 4.2, we pass over to weighted (integer) norms, whih are loal and an therefore

be employed in an adaptive algorithm, whih will be introdued in Setion 4.3. In order

to estimate the nononformity of a funtion in terms of the funtion itself, we will use the

results of Setions 3.1 and 3.2.

Corollary 6. Denote by T a re�nement of T0. Let Φ ∈ VT be the Galerkin solution (7).

Then, there is a onstant C4 > 0 whih depends only on T0 suh that

|||Φ⊥|||T = |||Φ− Φ0|||T ≤ C4‖hT JΦK′‖L2(ET ).
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Proof. This follows easily by using the fat that Φ−Φ0
is aT -orthogonal to V

0
T and employ-

ing (16a). �

4.1. Global error estimators. Let Φ ∈ VT and Φ̂ ∈ VT̂ be Galerkin solutions (7), where

T̂ is a uniform re�nement of T . We introdue estimators on the mesh T by

ηT := |||Φ̂− Φ|||T̂ = ‖curlT̂ (Φ̂− Φ)‖
H̃−1/2(Γ),

η̃T := |||Φ̂− IT Φ̂|||T̂ = ‖curlT̂ (Φ̂− IT Φ̂)‖H̃−1/2(Γ).

The existing derivations of h − h/2 error estimators, e.g. [EFLFP09, FLP08℄, fous on on-

forming methods and rely mostly on the Galerkin orthogonality (3). Contrary, we have the

weaker partial orthogonality of Lemma 1, where additional terms arise (what we alled non-

onformity error) whih aount for the nononformity. In Corollary 6, we showed that these

terms an be bounded by the inter-element jumps of Φ, i.e., by

ρT := ‖hT JΦK′‖L2(ET ).

Consequently, we have that ηT and η̃T are equivalent up to ρT .

Lemma 7. Let T be a re�nement of T0. Then, there is a onstant C5 > 0 whih depends

only on T0 suh that

C−1
5 |||Φ̂− Φ|||T̂ ≤ |||Φ̂− IT Φ̂|||T̂ + ρT and C−1

5 |||Φ̂− IT Φ̂|||T̂ ≤ |||Φ̂− Φ|||T̂ + ρT .

Proof. As Φ̂− Φ is orthogonal to V 0
T in aT̂ , we onlude

|||Φ̂− Φ|||T̂ . |||Φ̂− Φ+ Φ0 − IT Φ̂||| ≤ |||Φ̂− IT Φ̂|||T̂ + |||Φ− Φ0|||T ,

and the last term an be bounded by ρT by Corollary 6. To see the seond estimate, we use

the projetion property and boundedness (23) of IT to see that

|||Φ̂− IT Φ̂|||T̂ . |||Φ̂− Φ0|||T̂ ≤ |||Φ̂− Φ|||T̂ + |||Φ− Φ0|||T ,

whih shows the desired estimate. �

In a next step, we show the e�ieny and reliability of ηT . For the reliability, we assume

that a saturation assumption for the onforming approximations holds true.

Theorem 8. Let T be a re�nement of T0. Then, there is a onstant Ceff > 0 suh that

ηT = |||Φ̂− Φ|||T̂ is e�ient up to the nononformity error, i.e.,

C−1
eff |||Φ̂− Φ|||T̂ ≤ |||φ− Φ|||T + ρT + ρT̂ .(24)

Furthermore, assume that there is a onstant Csat ∈ (0, 1) suh that the saturation assumption

for the onforming approximations

aT̂ (φ− Φ̂0, φ− Φ̂0) ≤ CsataT (φ− Φ0, φ− Φ0)(25)

holds true. Then, there is a onstant Crel > 0 suh that ηT = |||Φ̂ − Φ|||T̂ is reliable up to

ρT + ρT̂ , i.e.,

C−1
rel |||φ− Φ|||T ≤ |||Φ̂− Φ|||T̂ + ρT + ρT̂(26)

holds true.
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Proof. E�ieny (24) follows immediately from Lemma 1 by setting T⋆ := T̂ and Corollary 6.

To show reliability (26), we �rst note that the triangle inequality and elliptiity give

|||φ− Φ||| . a(φ− Φ0, φ− Φ0) + ρT .

Now, due to the onforming orthogonality and the saturation assumption (25),

(1− Csat)a(φ− Φ0, φ− Φ0) ≤ a(Φ0 − Φ̂0,Φ0 − Φ̂0) . |||Φ0 − Φ̂0|||T̂

≤ |||Φ̂− Φ|||T̂ + |||Φ− Φ0|||+ |||Φ̂− Φ̂0|||

. |||Φ̂− Φ|||T̂ + ρT + ρT̂ ,

where we used the triangle inequality and Corollary 6. �

Remark 9. In �nite element methods, the saturation assumption (25) is veri�ed for the

Poisson problem −∆u = f . In fat, in [DN02℄ it is shown that

|||φ− Φ̂0
ℓ ||| ≤ Csat|||φ− Φ0

ℓ |||+ oscℓ,

where oscℓ is a measure for the resolution of f on the mesh Tℓ. Hene, small data osillation

implies the saturation assumption. However, the saturation assumption (25) is not proven

for BEM. To the best of the our knowledge, the only ontributions are [AFF

+
13a, EH06℄.

In [AFF

+
13a℄, it is shown that for 2D-BEM for the weakly singular integral equation, there

is a k ∈ N and Csat < 1 whih depend only on T0 and Γ, suh that with k uniform re�nements

of Tℓ, whih we denote by Tℓ(k), there holds

|||φ− Φℓ||| ≤ Csat|||φ− Φℓ(k)|||+ oscℓ

with oscℓ being a term of higher order than the others. In [EH06℄, the saturation assumption

is analyzed for an edge singularity on a plane square-shaped domain, and uniform as well as

graded meshes are onsidered.

4.2. Loalized error estimators. The a posteriori estimators of Setion 4.1 use the H̃−1/2(Γ)-
norm, whih is hard to ompute and nonloal. In order to provide a posteriori error estimators

whih an be split into element-wise indiators, we will use a weighted L2-norm. We introdue

the loalized estimators

µT := ‖h1/2T curlT̂ (Φ̂− Φ)‖L2(Γ),

µ̃T := ‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ).

Then we have the following result.

Lemma 10. There holds

‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ) ≤ ‖h1/2T curlT̂ (Φ̂− Φ)‖L2(Γ) . |||Φ̂− Φ|||T̂(27a)

and

|||Φ̂− IT Φ̂|||T̂ . ‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ).(27b)

In partiular, all estimators are equivalent up to ρT + ρT̂ , and for τ ∈ {ηT , η̃T , µT , µ̃T }, the
estimator τ is reliable and e�ient up to ρT + ρT̂ , i.e.,

|||φ− Φ||| . τ + ρT + ρT̂ ,

τ . |||φ− Φ|||+ ρT + ρT̂ .
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Proof. As in [FLP08℄, the �rst estimate in (27a) follows from the best approximation property

of ΠT , while the seond one follows from the inverse inequality [GHS05, Theorem 3.6℄. The

�rst estimate in (27b) is estimate (16b) from Lemma 4. Now, sine

ηT = |||Φ̂− Φ|||T̂ and η̃T = |||Φ̂− IT Φ̂|||T̂

are equivalent up to ρT + ρT̂ aording to Lemma 7, all estimators are equivalent up to

ρT + ρT̂ as well. As ηT is e�ient and reliable up to ρT + ρT̂ aording to Theorem 8, this

is also true for the three other estimators. �

4.3. Statement of the adaptive algorithm. We now introdue the adaptive algorithm.

As error indiators on a mesh Tℓ, we use the element-wise quantities

̺ℓ(T )
2 := ‖h1/2ℓ (1− Πℓ)curlT̂ℓΦ̂ℓ‖

2
L2(T ) + ‖hℓJΦℓK‖

2
H1(Eℓ(T )) + ‖ĥℓJΦ̂ℓK‖

2
H1(Êℓ(T ))

.

For a subset Mℓ ⊂ Tℓ, we write ̺ℓ(Mℓ)
2 =

∑
T∈Mℓ

̺ℓ(T )
2
, and we use the abbreviation

̺ℓ := ̺ℓ(Tℓ). Hene,

̺2ℓ = µ̃2
ℓ + ρ2ℓ + ρ̂2ℓ

is a reliable error estimator aording to Lemma 10. The adaptive algorithm now reads as

follows.

Algorithm 11. Input: Initial mesh T0, parameter θ ∈ (0, 1), ounter ℓ := 0.

(i) Obtain T̂ℓ by uniform bise(3)-re�nement of Tℓ, see Figure 1.

(ii) Compute solutions Φℓ and Φ̂ℓ of (7) with respet to Tℓ and T̂ℓ.

(iii) Compute re�nement indiators ̺ℓ(T ) for all T ∈ Tℓ.

(iv) Choose a set Mℓ ⊆ Tℓ with minimal ardinality suh that

∑

T∈Mℓ

̺ℓ(T )
2 ≥ θ

∑

T∈Tℓ

̺ℓ(T )
2.(28)

(v) Re�ne mesh Tℓ aording to Algorithm NVB and obtain Tℓ+1.

(vi) Update ounter ℓ := ℓ+ 1 and goto (i).

5. Numerial experiments

In this setion we present numerial experiments for two di�erent problems. The exat

solution φ of the �rst experiment will be smooth in the sense that uniform and adaptive mesh

re�nement yield the same rate of onvergene. Still, φ exhibits singularities whih stem from

the geometri setting (i.e., polygonal boundary). As we emphasized in the introdution, it

is a peuliarity of Crouzeix-Raviart BEM that uniform mesh re�nement is optimal for these

kind of singularities.

The seond example reports on a ase where the right-hand side of our model problem is

hosen to be singular, suh that, due to the mapping properties of W, the exat solution φ
su�ers from low regularity as well. In this ase, it will turn out that uniform mesh-re�nement

is suboptimal while adaptive re�nement reovers the optimal rate.
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PSfrag replaements

Figure 3. Initial mesh T0 used in the numerial experiments.

5.1. Experiment with smooth solution. We onsider the sreen Γ := [0, 1]2. The initial
mesh T0 onsists of 8 ongruent triangles, f. Fig. 3, suh that Γ is halved along the diagonals

and the midpoints of its sides. The referene edges are hosen on the two diagonals. The

right-hand side is given by

f(x, y) = 1,

and it is well known that the exat solution φ has square root edge singularities [Ste87℄ so

that φ ∈ H̃1−ε(Γ) for all ε > 0. We use the following �ve di�erent sequenes of meshes.

Uniform sequene, Figure 4. The sequene Tℓ, ℓ ∈ N0, is generated by uniform re�ne-

ment, i.e., the initial mesh T0 is hosen as in Figure 3, and the mesh Tℓ, ℓ ≥ 1 is generated

from Tℓ−1 by a bise(3)-re�nement (as desribed in Figure 1) of every triangle T ∈ Tℓ. Due to

the results in [HS09℄, we expet a onvergene rate of O(h
1/2−ε
ℓ ) = O(N

−1/4+ε
ℓ ) for all ε > 0,

f. (8). This is exatly what we observe in the onvergene history in Fig. 4.

Adaptive sequene, Figure 5. The sequene of meshes Tℓ, ℓ ∈ N0, is generated by

Algorithm 11 with θ = 0.5, where T0 is hosen as in Figure 3. As we onjetured in Setion 2.4,

the rate O(N
−1/4
ℓ ) annot be improved in general, and this is what we see in the onvergene

history in Fig. 5. In Fig. 8 we plot the intermediate mesh T11 and the �nal mesh T22 that

are onstruted by the adaptive algorithm. What we observe qualitatively is that the meshes

are re�ned towards the boundary ∂Γ, whih meets the expetation as φ exhibits singularities

there. Nevertheless, the omputed meshes are not optimal for a onforming method. This is

visualized in Fig. 5, where we also plot the onforming energy error |||φ− Φ0
ℓ |||

2
. Clearly, we

use the number of the degrees of freedom of the onforming method for the x-axis.

Graded sequene, Figs. 6 and 7. We use a sequene of meshes Tℓ, ℓ ∈ N0 that is

graded towards ∂Γ, i.e., for all elements T ∈ Tℓ there holds

hℓ(T ) ≃ dist(T,Γ)β.

We selet the parameters β ∈ {2, 3}. The numerial results show that both gradings maintain

the optimal rate for the Crouzeix-Raviart BEM, see Figs. 6 and 7.

5.2. Experiment with singular solution. The right-hand side is given by

f(x, y) := x−6/10,
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Figure 4. Convergene history for uniform mesh re�nement and smooth so-

lution. We see that the squared quantities exhibit the optimal rate O(N
−1/2
ℓ ).

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000  10000

PSfrag replaements

µ̃2
ℓ

η2ℓ

ρ2ℓ + ρ̂2ℓ

|||Φℓ −Φ0
ℓ |||

2

|||φ−Φ0
ℓ |||

2

N
−1/2
ℓ

Degrees of freedom

Figure 5. Convergene history for adaptive algorithm and smooth solution.

We see that the squared quantities exhibit the optimal rate O(N
−1/2
ℓ ).

and beause of f /∈ L2(Γ) we onlude from the mapping properties of W that the exat

solution ful�lls φ /∈ H1(Γ). The missing regularity will lead to a suboptimal onvergene

rate for uniform re�nement, whih will be reovered by the adaptive algorithm. Let us
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Figure 6. Convergene history for graded meshes with β = 2 and smooth

solution. We see that the squared quantities exhibit the optimal rateO(N
−1/2
ℓ ).
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Figure 7. Convergene history for graded meshes with β = 3 and smooth

solution. We see that the squared quantities exhibit the optimal rateO(N
−1/2
ℓ ).

brie�y disuss what to expet in the uniform ase: for the funtion g(x) = xα there holds

g ∈ Hα+1/2−ε(0, 1) \Hα+1/2(0, 1) for all ε > 0. We onlude that, f ∈ H−0.1−ε(Γ) \H−0.1(Γ),
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Figure 8. Meshes T11 and T22 of the adaptive algorithm for smooth solution.

and due to the mapping properties of W we onlude that φ /∈ H̃9/10(Γ). Hene, we expet

a onvergene rate whih is worse than O(h
4/10
ℓ ) = O(N

−1/5
ℓ ) for uniform re�nement. We

already stated the hoie of the initial mesh T0. Uniform and adaptive meshes are omputed

exatly as desribed in Setion 5.1. The onvergene history for the uniform sequene of

meshes is depited in Fig. 9. We see that the uniform sheme is suboptimal, and the the

onvergene rate is indeed worse than O(N
−1/5
ℓ ) (note that we plot squared quantities). How-

ever, the adaptive sequene of meshes, depited in Fig. 10, reovers the optimal onvergene

rate. In Fig. 11, we plot the two adaptive meshes T11 and T23 whih are generated by the

adaptive algorithm.
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