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Abstra
t. For the non-
onforming Crouzeix-Raviart boundary elements from [Heuer, Sayas:

Crouzeix-Raviart boundary elements, Numer. Math. 112, 2009℄, we develop and analyze a

posteriori error estimators based on the h−h/2 methodology. We dis
uss the optimal rate of


onvergen
e for uniform mesh re�nement, and present a numeri
al experiment with singular

data where our adaptive algorithm re
overs the optimal rate while uniform mesh re�nement

is sub-optimal. We also dis
uss the 
ase of redu
ed regularity by standard geometri
 singu-

larities to 
onje
ture that, in this situation, non-uniformly re�ned meshes are not superior

to quasi-uniform meshes for Crouzeix-Raviart boundary elements.

1. Introdu
tion

This is the �rst paper on a posteriori error estimation and adaptivity for an element-

wise non-
onforming boundary element method, namely Crouzeix-Raviart boundary elements

analyzed in [HS09℄. Previously, in [DH13℄, we presented an error estimate for a boundary

element method with non-
onforming domain de
omposition. There, 
riti
al for the analysis

is that the non
onformity of the method stems from approximations that are dis
ontinuous

only a
ross the interfa
e of sub-domains, whi
h are assumed to be �xed. In that 
ase, the

underlying energy norm of order 1/2 of dis
rete fun
tions has to be lo
alized only with respe
t
to sub-domains. In this paper, where we 
onsider approximations whi
h are dis
ontinuous

a
ross element edges, su
h sub-domain oriented arguments do not apply. Instead, we have to

�nd lo
alization arguments that are uniform under s
alings with h, the diameter of elements,

whi
h is nontrivial in fra
tional order Sobolev spa
es of order ±1/2.
The Crouzeix-Raviart boundary element method is of parti
ular theoreti
al interest sin
e

it serves to set the mathemati
al foundation of (lo
ally) non-
onforming elements for the ap-

proximation of hypersingular integral equations. Our main theoreti
al result is the e�
ien
y

and reliability (based on a saturation assumption) of several a posteriori error estimators. Our

se
ond result is that, for problems with standard geometri
 singularities, Crouzeix-Raviart

boundary elements with seemingly appropriate mesh re�nement is as good as (and not better

than) Crouzeix-Raviart boundary elements on quasi-uniform meshes. We further dis
uss this

point below.

The a posteriori error estimators in this work are based on the h − h/2-strategy. This

strategy is well known from ordinary di�erential equations [HNW87℄ and �nite element

methods [AO00, Ban96℄. Re
ently, it was applied to 
onforming boundary element meth-

ods [FLP08, EFLFP09℄ as well: If the dis
rete spa
e Xℓ is used to approximate the fun
tion
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φ in the energy norm ||| · |||, we use the uniformly re�ned spa
e X̂ℓ and the 
orresponding

approximations Φℓ and Φ̂ℓ to estimate the error via the heuristi
s

ηℓ := |||Φ̂ℓ − Φℓ||| ∼ |||φ− Φℓ|||.(1)

In a 
onforming setting, the proof of e�
ien
y of ηℓ (i.e, it bounds the error from below)

follows readily from orthogonality properties, while its reliability (i.e., it is an upper bound

of the error) is additionally based on a saturation assumption. In non-
onforming methods,

orthogonality is available only in a weaker form whi
h 
ontains additional terms, su
h that

h− h/2-based estimators are more involved than in a 
onforming setting.

As mentioned before, additional di�
ulties arise in boundary element methods due to the

fa
t that the underlying energy norm ||| · ||| is equivalent to a fra
tional order Sobolev norm.

These norms typi
ally 
annot be split into lo
al error indi
ators. We use ideas from [FLP08℄

to lo
alize via weighted integer order Sobolev norms.

We are parti
ularly interested in problems with singularities whi
h are inherent to problems

on polyhedral surfa
es where 
orner and 
orner-edge singularities appear. In the extreme


ase of the hypersingular integral equation on a plane open surfa
e Γ (whi
h is our model

problem), its solution is not in H1(Γ) sin
e edge singularities behave like the square root

of the distan
e to the boundary 
urve [Ste87℄. The energy norm of this problem de�nes a

Sobolev spa
e of order 1/2, so that low-order 
onforming methods with quasi-uniform meshes

have approximation orders equal toO(h1/2) (h being the mesh size), 
f. [BH08℄. In [HS09℄ the

authors have shown that this is also true for Crouzeix-Raviart boundary elements. Now, for

an adaptive method or a method with appropriate mesh re�nement towards the singularities,

one expe
ts to re
over the optimal rateO(h) of a low-order method. Surprisingly, this appears

to be false in the 
ase of Crouzeix-Raviart boundary elements.

We 
onje
ture that O(h1/2) (or O(N−1/4) with N being the number of unknowns) is the

optimal rate for our model problem even when using non-uniformly re�ned meshes. We base

our 
onje
ture on two observations. Standard error estimation of non-
onforming methods,

based on the se
ond Strang lemma, 
omprise a best-approximation term and a non
onformity

term. The best-approximation term has indeed the optimal order of a 
onforming method but

we observe that the standard upper bound of the non
onformity term is of the orderO(N−1/4)
and not better. This surprising result 
an be explained by the fa
t that the appearing

Lagrangian multipliers on the edges of the elements (needed for the jump 
ondition of the

Crouzeix-Raviart basis fun
tions) are approximated in a Sobolev spa
e of order only 1/2 less
than the unknown fun
tion. Taking into a

ount that the total relative measure of the edges

in
reases with mesh re�nement and that the Lagrangian multipliers are approximated only

by 
onstants, this explains the limited 
onvergen
e order of the whole method.

The se
ond observation stems from numeri
al experiments with Crouzeix-Raviart bound-

ary elements using meshes whi
h are optimal for 
onforming methods:

• We 
onsider uniformmeshes for the non-
onforming approximation of a solution whi
h

is an element of the 
oarsest 
onforming spa
e (i.e., a 
onforming method would


ompute the exa
t solution).

• We 
onsider algebrai
ally graded meshes whi
h are optimal for 
onforming approxima-

tions in the sense that they guarantee an approximation order O(N−1/2) for inherent
singularities.

Both types of meshes show the redu
ed order of 
onvergen
e O(N−1/4), and the same redu
ed

order is observed for our adaptive pro
edure.
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Based on this 
onje
ture, we 
on
lude that, for Crouzeix-Raviart boundary elements, quasi-

uniform meshes are optimal to approximate standard geometri
 singularities where the so-

lution is almost in H1(Γ). There is no need for adaptive mesh re�nement. In this 
ase, the

only use of a posteriori error estimation is the very error estimation.

There are 
ases, however, where given data are singular so that solutions have singular

behavior whi
h is stronger than that due to geometri
 irregularities. In these 
ases an adap-

tive Crouzeix-Raviart boundary element method 
an be used to re
over the optimal rate

O(N−1/4) whi
h 
annot be a
hieved with quasi-uniform meshes in this situation. Our nu-

meri
al experiments report on su
h a 
ase where the exa
t solution is stri
tly less regular

than H1(Γ).

As model problem, we use the Lapla
ian exterior to a polyhedral domain or an open

polyhedral surfa
e. The Neumann problem for su
h a problem 
an be written equivalently

with the hypersingular integral operator W,

Wφ(x) := −
1

4π
∂n(x)

∫

Γ

∂n(y)

(
1

|x− y|

)
φ(y) dΓ(y) = f(x),(2)

where Γ is the open or 
losed surfa
e and f is a given fun
tion. The link to the Neumann

problem for the exterior Lapla
ian is given by the spe
ial 
hoi
e f = (1/2 − K ′)v, with v
the Neumann datum and K ′

the adjoint of the double-layer operator. Although the operator

W 
an a
t on dis
ontinuous fun
tions, the hypersingular integral equation (2) is not well-

posed in su
h a 
ase. However, 
ontinuity requirements 
an be relaxed by using the relation

W = curlΓVcurlΓ with single layer operator V and 
ertain surfa
e di�erential operators curlΓ
and curlΓ, see [Néd82, GHH09℄. This identity allows us to use the spa
e V of Crouzeix-

Raviart elements to approximate the exa
t solution φ of (2) in a non-
onforming way. The

asso
iated energy norm will then be ||| · ||| = ‖curl · ‖H−1/2(Γ), see Se
tion 2.3.

The reliability and e�
ien
y of h − h/2 error estimators for 
onforming methods follows

readily from the Galerkin orthogonality

|||φ− Φℓ|||
2 = |||φ− Φℓ|||

2 + |||Φ̂ℓ − Φℓ|||
2,(3)

where reliability additionally needs the saturation assumption

|||φ− Φ̂ℓ||| ≤ Csat|||φ− Φℓ|||, with 0 < Csat < 1 for all ℓ ∈ N.

In a non-
onforming setting, the orthogonality (3) does not hold true any longer. However,

there is a substitute given by an estimate whi
h involves additional terms of the form |||Φℓ −
Φ0

ℓ |||, with Φ0
ℓ being a 
onforming approximation of φ, see Se
tion 3.1.

A term of the form |||Φℓ − Φ0
ℓ ||| will be 
alled non
onformity error. Although it is 
om-

putable, it is evident that the 
omputation of Φ0
ℓ has to be avoided. Hen
e, we will show

that the non
onformity error 
an be bounded by inter-element jumps of Φℓ, see Corollary 6.

To that end, we will analyze the properties of quasi-interpolation operators in the spa
e

H−1/2(Γ) in Se
tion 3.2.

In Se
tion 4, we show that the a posteriori error estimator ηℓ from (1) is reliable and

e�
ient up to the non
onformity error, whi
h 
an then be ex
hanged with the inter-element

jumps of Φℓ. As already mentioned, ηℓ is not lo
alized, and we will use ideas from [FLP08℄ to

introdu
e three additional error estimators for that purpose. Two of them are lo
alized, see

Se
tion 4.2, and 
an be used in a standard adaptive algorithm, see Algorithm 11 below. We
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show in Se
tion 4 that all error estimators are e�
ient and, under the saturation assumption,

also reliable, up to inter-element jumps. Finally, Se
tion 5 presents numeri
al results.

2. Crouzeix-Raviart boundary elements

2.1. Notation and model problem. We 
onsider an open, plane, polygonal s
reen Γ ⊂ R2
,

embedded in R3
, with normal n(y) at y ∈ Γ pointing upwards. Restri
ting ourselves to a

plane s
reen simpli�es the presentation. However, asso
iated solutions exhibit the strongest

possible edge singularities that, at least for 
onforming methods, require nonuniform meshes

in order to guarantee e�
ien
y of approximation. On Γ, we use the standard spa
es L2(Γ)
and H1(Γ), and as usual, H1

0 (Γ) ⊂ H1(Γ) 
onsists of fun
tions that vanish on the boundary

∂Γ. The spa
e H1
0(Γ) is equipped with the H1(Γ) (semi-)norm | · |H1(Γ) := ‖∇Γ · ‖L2(Γ)

where ∇Γ denotes the surfa
e gradient. We de�ne intermediate spa
es by the K-method of

interpolation (see, e.g., [Tri95℄), that is,

Hs(Γ) =
[
L2(Γ), H

1(Γ)
]
s

and H̃s(Γ) =
[
L2(Γ), H

1
0 (Γ)

]
s

for 0 < s < 1.

Sobolev spa
es with negative index are de�ned via duality with respe
t to the extended L2(Γ)
inner produ
t 〈· , ·〉,

Hs(Γ) := H̃−s(Γ)′ and H̃s(Γ) := H−s(Γ)′ for − 1 ≤ s < 0.

Spa
e of ve
tor valued fun
tions will be denoted by bold-fa
e letters, i.e. L2(Γ) or H
1/2(Γ),

meaning that every 
omponent is an element of the respe
tive spa
e. We will use tangential

di�erential operators. For su�
iently smooth fun
tions φ on Γ, we de�ne the tangential 
url
operator curl by

curlφ := (∂yφ,−∂xφ, 0) .

Drawing upon the results from [BCS02℄, it is shown in [GHH09, Lemma 2.2℄ that the operator

curl 
an be extended to a 
ontinuous operator, mapping H̃1/2(Γ) to

H̃−1/2(Γ) :=
{
ψ ∈

(
H̃−1/2(Γ)

)3
| ψ · n = 0

}
.

Now our model problem is as follows. For a given f ∈ H−1/2(Γ), �nd φ ∈ H̃1/2(Γ) su
h that

〈Wφ, ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ).(4)

Here, W is the hypersingular integral operator from (2). It is well known that this problem

has a unique solution, 
f. [Ste87℄. Re
all the relation W = curlΓVcurlΓ with single layer

operator V,

Vu(x) :=
1

4π

∫

Γ

1

|x− y|
u(y) dΓ(y).

Performing integration by parts one �nds that an equivalent formulation of (4) is given by

〈Vcurlφ, curlψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ),(5)

see [Néd82℄ and [GHH09, Lemma 2.3℄. Note that V in (5) is 
onsidered to transfer ve
torial

densities into ve
torial potentials, i.e., V a
ts 
omponent-wise.
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Figure 1. For ea
h triangle T ∈ Tℓ, there is one �xed referen
e edge, indi
ated

by the double line (left, top). Re�nement of T is done by bise
ting the referen
e

edge, where its midpoint be
omes a new node. The referen
e edges of the son

triangles T ′ ∈ Tℓ+1 are opposite to this newest vertex (left, bottom). To avoid

hanging nodes, one pro
eeds as follows: We assume that 
ertain edges of T ,
but at least the referen
e edge, are marked for re�nement (top). Using iterated

newest vertex bise
tion, the element is then split into 2, 3, or 4 son triangles

(bottom). If all elements are re�ned by three bise
tions (right, bottom), we

obtain the so-
alled uniform bise
(3)-re�nement whi
h is denoted by T̂ℓ.

2.2. Meshes and lo
al mesh-re�nement. A triangulation T of Γ 
onsists of 
ompa
t

2-dimensional simpli
es (i.e., triangles) T su
h that

⋃
T∈T T = Γ. We do not allow hanging

nodes. The volume area |T | of every element de�nes the lo
al mesh-width hT ∈ L∞(Γ) by
hT |T := hT (T ) := |T |1/2. We de�ne ET to be the set of all edges e of the triangulation T ,
and NT as the set of all nodes z of the triangulation whi
h are not on the boundary ∂Γ. We

will need di�erent kinds of pat
hes. For a node z ∈ NT , we denote by ωz the node pat
h

as the set of all elements T ∈ T sharing z. Likewise, we de�ne an edge pat
h ωe. For an

element T ∈ T , the pat
h ωT is the set of all elements sharing a node with T .
Starting from an initial triangulation T0 of Γ, we will generate a sequen
e of meshes Tℓ for

ℓ ∈ N via so-
alled newest vertex bise
tion (NVB). For a brief overview, we refer to Figure 1,

and for a pre
ise de�nition, we refer the reader to [Ver96, KPP13℄. We denote by T a �xed

referen
e element, and by u the pull-ba
k of a fun
tion u de�ned on T , i.e., if FT : T → T is

the a�ne element map, u := u ◦FT . An important property of the NVB re�nement strategy

is that one 
an not only map elements T to �xed referen
e domains, but also pat
hes. This

means that there is a �nite set of �xed referen
e pat
hes and a�ne maps su
h that any node-,

element-, or edge pat
h is the a�ne image of su
h a referen
e pat
h. In parti
ular, there are

only �nitely many 
onstants involved in s
aling argument on pat
hes, and hen
e, one may

use pat
hes in s
aling arguments. For a mesh T , we denote by T̂ the uniformly re�ned mesh,

i.e., all edges in T are bise
ted.

For a triangle T ∈ T , we denote by nT the normal ve
tor on ∂T pointing outwards of T .
For an inner edge e ∈ ET , i.e., e ⊂ Γ, we denote by T+

e and T−
e the two elements of T sharing

e, and we de�ne n+ := nT+
e
and n− := nT−

e
. For smooth enough fun
tions φ : Γ → R and

v : Γ → R2
we de�ne the jumps J·K and averages {·} of the tra
es φ+

, φ−
, v+

, and v−
by

{φ}|e :=
1
2
(φ+ + φ−), {v}|e :=

1
2
(v+ + v−),

JφK|e := φ+n+ + φ−n−, JvK|e := v+n+ + v−n−.

If we equip a mesh with an index, e.g., Tℓ, then we will use the index (·)ℓ instead of (·)Tℓ , i.e.,
we write, e.g., hℓ instead of hTℓ , and the same abbreviation will be used for sets of edges or

nodes, e.g., Eℓ or Nℓ.
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2.3. Crouzeix-Raviart boundary elements. For a given mesh T , P1(T ) is the spa
e of
pie
ewise linear fun
tions. By V 0 = V 0

T , we denote the spa
e of lowest-order 
ontinuous

boundary elements, i.e.,

V 0 := P1(T ) ∩H1
0 (Γ),

and V = VT is the spa
e of Crouzeix-Raviart boundary elements, i.e.,

V :=

{
Φ ∈ P1(T )

Φ is 
ontinuous in me ∀e ∈ ET with e * ∂Γ,

Φ(me) = 0 ∀e ∈ ET with e ⊂ Γ

}
,

where me is the midpoint of e ∈ ET . For curlT : P1(T ) → L2(Γ) being the T -pie
ewise
tangential 
url operator, a norm in V is given by

||| · |||T := ‖curlT · ‖
H̃−1/2(Γ).

In the following we 
onsider the bilinear form

aT (Φ,Ψ) := 〈VcurlT Φ , curlT Ψ〉.

By the properties of the single-layer operator V, 
f. [M
L00℄, aT is symmetri
 and there is a


onstant Cnorm > 1, independent of T and Φ ∈ V , su
h that

C−2
norm|||Φ|||

2
T ≤ aT (Φ,Φ) ≤ C2

norm|||Φ|||
2
T .

This makes aT an inner produ
t in V , whi
h is therefore a Hilbert spa
e. Assuming additional

regularity f ∈ H−1/2+ε(Γ) with ε > 0, then

〈f ,Ψ〉 ≤ ‖f‖H−1/2+ε(Γ)‖Ψ‖H1/2−ε(Γ) ≤ CT |||Ψ|||T for all Ψ ∈ V.(6)

Here we used the equivalen
e of norms in the �nite-dimensional spa
e V , su
h that the

number CT > 0 depends on T . By the Lax-Milgram lemma there exists a unique Galerkin

solution Φ ∈ V of

〈VcurlT Φ , curlT Ψ〉 = 〈f ,Ψ〉 for all Ψ ∈ V.(7)

The unique solvability of (7) was already addressed in [HS09℄ and studied via an equivalent

saddle-point problem. We emphasize that the 
onstant CT in (6) depends on V , but is not
used in our analysis. In the statements and arguments below, our notations will mostly omit

the expli
it dependen
e on T by writing, e.g., ||| · |||, assuming that this is the norm related

to the �nest mesh whi
h o

urs in the norms' argument.

2.4. Uniform re�nement: 
onsisten
y error and optimal 
onvergen
e. We brie�y

dis
uss existing results for the Crouzeix-Raviart BEM of Se
tion 2.3 based on a sequen
e of

uniformly re�ned meshes (Tℓ)ℓ∈N0 . A

ording to [HS09, Theorem 2℄, it holds that

|||φ− Φℓ||| . h
1/2
ℓ ‖φ‖H1(Γ),(8)

if f ∈ L2(Γ) and (Tℓ)ℓ∈N0 is a uniform sequen
e of meshes with mesh width hℓ. The proof

of (8) uses, as is 
ustomary in the analysis of non-
onforming methods, the Lemma of Berger,

S
ott, and Strang, see, e.g., [BSS72℄. With a view to the well-known approximation results

of 
onforming method, it su�
es to bound the so-
alled 
onsisten
y error. In [HS09, Prop.

5℄, it is shown that this 
an be done by

sup
Ψℓ∈Vℓ

a(φ− Φℓ,Ψℓ)

‖curlΓΨℓ‖H̃−1/2(Γ)

. inf
µℓ∈P0(Eℓ)

[
∑

e∈Eℓ

‖te · Vcurlφ− µℓ‖
2
L2(e)

]1/2
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Figure 2. Convergen
e rates for uniform mesh re�nement and smooth solu-

tion. Note that we plot squared quantities, so that O(N
−1/2
ℓ ) 
orresponds to

rate of O(h
1/2
ℓ ) for the original quantities.

and that the right-hand side 
onverges like O(h
1/2
ℓ ), see [HS09, Lemma 6℄. However, this

bound for the 
onvergen
e rate of the right-hand side is optimal. Indeed, for v ∈ P1(Γ)\P0(Γ)
it holds that

inf
µℓ∈P0(Eℓ)

[
∑

e∈Eℓ

‖v − µℓ‖
2
L2(e)

]1/2
≃ O(h

1/2
ℓ ),

whi
h 
an be seen by a dire
t 
al
ulation. Therefore, we are led to 
onje
ture that the optimal

order of 
onvergen
e is O(h1/2). An easy numeri
al example supports this 
onje
ture. We


hoose Γ = [0, 1]2 and divide it along the diagonals and the midpoints of its sides, su
h that

we obtain a mesh T0 of 8 triangles. We 
hoose the exa
t solution φ ∈ V 0
0 that vanishes on

∂Γ and has the value 1 in the 
enter of Γ. In Figure 2, we visualize the out
ome of the


orresponding Crouzeix-Raviart BEM based on a uniform mesh re�nement. We have not

yet de�ned the shown quantities, but what is important here is that Φℓ ∈ Vℓ denotes the
Crouzeix-Raviart solution on the mesh Tℓ, whereas Φ

0
ℓ ∈ V 0

ℓ denotes the 
onforming solution.

A

ording to the de�nition of φ, we have Φ0
ℓ = φ, and hen
e, a

ording to (8),

|||Φℓ − Φ0
ℓ ||| = |||φ− Φℓ||| = O(h

1/2
ℓ ).

One would expe
t an in
reased order of O(h1−ε
ℓ ) for every ε > 0, as φ ∈ H̃1/2(Γ)∩H3/2−ε(Γ).

However, as Figure 2 reveals, this in
reased rate is not a
hieved - we still observe O(h
1/2
ℓ ),

whi
h therefore seems to be the optimal rate that 
an be obtained.

3. Preliminaries
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3.1. Conforming approximations and partial orthogonality. For the development and

analysis of the adaptive Crouzeix-Raviart boundary elements, it will be 
onvenient to use

a de
omposition of the spa
e VT into 
onforming and non-
onforming 
omponents. Su
h a

de
omposition is given by the identity

VT = V 0
T ⊕ V ⊥

T ,

where V ⊥
T is the orthogonal 
omplement of V 0

T with respe
t to the inner produ
t aT (·, ·). For
a fun
tion Φ ∈ VT , we write Φ = Φ0 + Φ⊥

with Φ0 ∈ V 0
T and Φ⊥ ∈ V ⊥

T . We emphasize that

there is a partial orthogonality, i.e., if T⋆ is a re�nement of T , then

a⋆(φ− Φ⋆,Ψ) = 0 for all Ψ ∈ V 0
T ,

where φ is the exa
t solution and Φ⋆ ∈ VT⋆ is its non-
onforming Galerkin approximation.

In 
ontrast to 
onforming methods, this orthogonality property 
annot be extended to all

Ψ ∈ VT . However, it 
an be extended to a partial orthogonality as follows, 
f. [BN10,

Corollary 4.3℄.

Lemma 1. Let T⋆ be a re�nement of T and Φ⋆ ∈ VT⋆ the Galerkin solution (7) on T⋆. Then,

for all ε > 0, and all Φ ∈ VT , we have

a⋆(φ− Φ⋆, φ− Φ⋆) ≤ (1 + ε)a(φ− Φ, φ− Φ)

−
C−2

norm

2
|||Φ− Φ⋆|||

2
⋆ +

(
C2

norm(1 +
1

ε
) + C−2

norm

)
|||(Φ− Φ0)− (Φ⋆ − Φ0

⋆)|||
2
⋆

Proof. As φ− Φ⋆ is orthogonal to V
0
T and V 0(T⋆), we have

a⋆(φ− Φ⋆, φ− Φ⋆) = a⋆(φ− Φ⋆ − Φ0 + Φ0
⋆, φ− Φ⋆ − Φ0 + Φ0

⋆)− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0)

= a⋆(φ− Φ + Φ⊥ − Φ⊥
⋆ , φ− Φ + Φ⊥ − Φ⊥

⋆ )− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0)

= a⋆(φ− Φ, φ− Φ) + 2a⋆(Φ
⊥ − Φ⊥

⋆ , φ− Φ)

+ a⋆(Φ
⊥ − Φ⊥

⋆ ,Φ
⊥ − Φ⊥

⋆ )− a⋆(Φ
0
⋆ − Φ0,Φ0

⋆ − Φ0),

where we used the identity Φ⋆ + Φ0 − Φ0
⋆ = Φ − Φ⊥ + Φ⊥

⋆ in the se
ond step. Using the

stability, ellipti
ity, and Young's inequality ab ≤ a2/(4ε) + εb2, we obtain

2a⋆(φ− Φ,Φ⊥ − Φ⊥
⋆ ) ≤ 2a(φ− Φ, φ− Φ)1/2a⋆(Φ

⊥ − Φ⊥
⋆ ,Φ

⊥ − Φ⊥
⋆ )

1/2

≤ εa(φ− Φ, φ− Φ) + ε−1C2
norm|||Φ

⊥ − Φ⊥
⋆ |||

2
⋆,

as well as

C−2
norm

2
|||Φ⋆ − Φ|||2⋆ − C−2

norm|||Φ
⊥
⋆ − Φ⊥|||2⋆ ≤ C−2

norm|||Φ
0
⋆ − Φ0|||2⋆ ≤ a⋆(Φ

0
⋆ − Φ0,Φ0

⋆ − Φ0).

Finally, the estimate

a⋆(Φ
⊥ − Φ⊥

⋆ ,Φ
⊥ − Φ⊥

⋆ ) ≤ C2
norm|||Φ

⊥ − Φ⊥
⋆ |||

2
⋆


on
ludes the proof. �
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3.2. Quasi-interpolation operators in H̃−1/2(Γ). Lemma 1 will be the basis for the anal-

ysis of the a posteriori error estimators in Se
tion 4, su
h that terms of the form |||Φ− Φ0|||
will emerge. Those terms are (in prin
iple) 
omputable. However, they involve 
onforming

approximations Φ0
, whi
h we don't want to 
ompute, and hen
e we need to �nd a substitute

involving only Φ. This will be done in Corollary 6, where we will estimate the non
onformity

of a fun
tion Φ by its jumps over edges. The proof of this 
orollary will be based on results of

the present se
tion, the aim of whi
h is to provide an interpolation operator to approximate

the 
onforming part Φ0
of a given fun
tion Φ. We will use the well-known interpolation oper-

ator IT by Clément [Clé75, SZ90℄, and provide approximation results in the spa
e H̃−1/2(Γ).
For a fun
tion v ∈ L2(Γ), this operator is de�ned as

IT v :=
∑

z∈NT

ψ(z)ϕz ,(9)

where ϕz is the nodal basis fun
tion of V 0
T asso
iated with the node z ∈ NT . The fun
tion

ψ ∈ V 0
T |ωz is su
h that

∫

ωz

(v − ψ)ϕ = 0 for all ϕ ∈ V 0
T |ωz

see also [BN10, Lemma 6.6℄. In addition, we denote by ΠT the L2(Γ) orthogonal proje
tion
onto the spa
e of pie
ewise 
onstants [P0(T )]2. The well-known properties of the operator

IT are 
olle
ted in the following lemma. We again refer to [BN10, Lemma 6.6℄ for a proof.

Lemma 2. Let T be a re�nement of T0. Then, there exists a 
onstant CI whi
h depends only

on T0 su
h that

‖IT ϕ‖L2(Γ) ≤ CI‖ϕ‖L2(Γ) and ‖IT ϕ‖H1(Γ) ≤ CI‖ϕ‖H1(Γ),(10)

and su
h that for all T ∈ T , for all ϕ ∈ H1
0 (Γ), and for all Φ ∈ VT , it holds that

‖ϕ− IT ϕ‖L2(T ) ≤ CI‖hT ∇ϕ‖L2(ωT ),(11a)

‖Φ− IT Φ‖L2(T ) ≤ CI‖h
1/2
T JΦK‖L2(EωT

),(11b)

‖∇T (Φ− IT Φ)‖L2(T ) ≤ CI‖h
−1/2
T JΦK‖L2(EωT

).(11
)

�

For our purposes, we need to analyze the properties of IT in the spa
e H̃−1/2(Γ). To do

so, we will use integration by parts pie
ewise. The resulting integrals over the skeleton ET
will be bounded with the aid of the following auxiliary result.

Lemma 3. Let T be a re�nement of T0 with the set of edges ET . Then, there is a 
onstant

Cedge whi
h depends only on T0 su
h that for any 
hoi
e of fun
tions Φ ∈ VT and V ∈ [V 0
T ]

2
,

it holds that ∫

ET

JΦK{V} ≤ Cedge‖JΦK‖L2(ET )‖V‖H1/2(Γ).(12)

Furthermore, if T̂ is the uniform re�nement of T and Φ̂ ∈ V 0
T̂
, it holds that

∫

E
T̂

JΦ̂K{V} ≤ Cedge‖h
1/2
T (1−ΠT )∇T̂ Φ̂‖L2(Γ)‖V‖H1/2(Γ).(13)
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Proof. For every edge e ∈ ET , we use an a�ne map to transfer the edge pat
h ωe to a

referen
e 
on�guration ωe. As we emphasized in Se
tion 2.2, the number of this referen
e


on�gurations is bounded uniformly, whi
h permits us to use s
aling arguments. Now we


hoose ce ∈ R2
su
h that

‖V − ce‖L2(e) . |V|
H

1/2
slo (ωe)

,

whi
h is possible sin
e V is an element of a �nite dimensional spa
e. Here, the index slo
indi
ates that the norm is de�ned a

ording to Sobolev-Slobode
kij. Mapping both sides

ba
k to the physi
al domain yields

‖V − ce‖L2(e) . |V|
H

1/2
slo (ωe)

≤ ‖V‖
H

1/2
slo (ωe)

.(14)

As Φ is a Crouzeix-Raviart fun
tion, its jump JΦK has vanishing integral mean on every edge

e ∈ ET , and hen
e, using the Cau
hy-S
hwarz inequality, we obtain with (14)

∫

ET

JΦK{V} =
∑

e∈ET

∫

e

JΦK{V − ce} ≤

(
∑

e∈ET

‖JΦK‖2L2(e)

)1/2(∑

e∈ET

‖V − ce‖
2
L2(e)

)1/2

≤

(
∑

e∈ET

‖JΦK‖2L2(e)

)1/2(∑

e∈ET

‖V‖2
H

1/2
slo (ωe)

)1/2

.

Lo
ally, only three pat
hes ωe overlap, and the fa
t that the norms H
1/2
slo (Γ) and H1/2(Γ) are

equivalent �nally 
on
ludes the proof of (12). Now we prove (13). We start at (12), this time

with T̂ instead of T , to obtain

∫

E
T̂

JΦ̂K{V} .


∑

e∈E
T̂

‖JΦ̂K‖2L2(e)




1/2

‖V‖H1/2(Γ).

Now we split the L2 norm of the jump JΦ̂K over the skeleton ET̂ into the 
ontributions on the

skeleton ET and the rest, whi
h we write sloppy as ET̂ \ ET . Then,
∑

e∈E
T̂

‖JΦ̂K‖2L2(e)
=
∑

e∈ET

‖JΦ̂K‖2L2(e)
+

∑

e∈E
T̂
\ET

‖JΦ̂K‖2L2(e)
.(15)

We 
laim that there is a 
onstant C > 0, independent of ET̂ and Φ̂ su
h that

‖JΦ̂K‖L2(e) ≤ Ch1/2e ‖(1−ΠT )∇T̂ Φ̂‖L2(ωe) if e ∈ ET ,

‖JΦ̂K‖L2(e) ≤ Ch1/2e ‖(1−ΠT )∇T̂ Φ̂‖L2(T ) if e ∈ ET̂ \ ET with e ⊂ T ∈ T .

Both sides de�ne seminorms, and the left one vanishes when the right one does. Hen
e, the

bounded dimension of the underlying spa
e and a s
aling argument prove the 
laim. Using

the last two estimates in (15) shows (13). �

Lemma 4. In addition to Lemma 2, we have the following estimates, where T̂ denotes the

uniform re�nement of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that

‖∇T (1− IT )Φ‖H̃−1/2(Γ) ≤ CI‖hT JΦK′‖L2(ET ),(16a)

‖∇T̂ (1− IT )Φ̂‖H̃−1/2(Γ) ≤ CI‖h
1/2
T (1−ΠT )∇T̂ Φ̂‖L2(Γ).(16b)
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Proof. We will use estimates (10) and (11) to prove this lemma. First, if we denote by IT v
the 
omponent-wise a
tion of IT to v ∈ H1/2(Γ), we integrate by parts pie
ewise to obtain

〈∇T (1− IT )Φ , IT v〉 = −〈(1− IT )Φ , divIT v〉+
∑

T∈T

∫

ET

(Φ− IT Φ)IT v · nT .

As JIT ΦK vanishes due to the 
ontinuity of IT Φ, the se
ond term on the right-hand side 
an

be written as

∑

T∈T

∫

ET

(Φ− IT Φ)IT v · nT =

∫

ET

JΦ− IT ΦK{IT v}+

∫

ET \∂Γ

{Φ− IT Φ}JIT vK

=

∫

ET

JΦK{IT v}.

We 
on
lude that, for any v ∈ H1/2(Γ),

〈∇T (1− IT )Φ ,v〉 = 〈∇T (1− IT )Φ ,v− IT v〉 − 〈(1− IT )Φ , divIT v〉

+

∫

ET

JΦK{IT v}.
(17)

We bound the terms on the right-hand side separately. Taking into a

ount (11
), the �rst

term on the right-hand side of (17) 
an be estimated by

〈∇T (1− IT )Φ ,v− IT v〉 ≤
∑

T∈T

‖∇T (1− IT )Φ‖L2(T )‖v− IT v‖L2(T )

.
∑

T∈T

hT |
−1/2
T ‖JΦK‖L2(EωT

)‖v − IT v‖L2(T )

≤ ‖JΦK‖L2(ET )‖h
−1/2
T (v− IT v)‖L2(Γ).

(18)

Now, it holds that ‖h−1/2
T (v − IT v)‖L2(Γ) . ‖v‖H1/2(Γ), whi
h follows from interpolation of

the estimates

‖v − IT v‖L2(Γ) . ‖v‖L2(Γ) and ‖h−1
T (v − IT v)‖L2(Γ) . ‖v‖H1(Γ),

whi
h themselves 
an be derived summing (10) and (11a) over the elements of the mesh. We


on
lude that

〈∇T (1− IT )Φ ,v − IT v〉 . ‖JΦK‖L2(ET )‖v‖H1/2(Γ).(19)

The se
ond 
ontribution on the right-hand side of (17) 
an be bounded by using (11b) via

〈Φ− IT Φ , divIT v〉 ≤
∑

T∈T

‖Φ− IT Φ‖L2(T )‖divIT v‖L2(T )

. ‖JΦK‖L2(ET )‖h
1/2
T divIT v‖L2(Γ)

. ‖JΦK‖L2(ET )‖v‖H1/2(Γ).

(20)

In the last step we used an inverse estimate, 
f. [CP07, Proposition 3.1℄ and the re
ent

extension [AFF

+
13b, Proposition 5℄, and the fa
t that IT is bounded in H1/2(Γ), whi
h

again follows by interpolation, this time using the estimates (10). The third part on the

right-hand side of (17) 
an be bounded by Lemma 3 and the H1/2(Γ)-boundedness of IT via∫

ET

JΦK{IT v} . ‖JΦK‖L2(ET )‖v‖H1/2(Γ).(21)
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From the identity (17) we 
on
lude, using (19), (20), and (21), that

‖∇T (1− IT )Φ‖H̃−1/2(Γ) = sup
‖v‖

H
1/2(Γ)

=1

〈∇T (1− IT )Φ ,v〉 . ‖JΦK‖L2(ET ).

From this, (16a) follows from a Poin
aré inequality, whi
h may be used sin
e Φ ∈ VT implies

that the jump JΦK vanishes at the midpoint of every element.

To prove (16b), we again use integration by parts pie
ewise and 
on
lude as before

〈∇T̂ (1− IT )Φ̂ ,v〉 = 〈∇T̂ (1− IT )Φ̂ ,v − IT v〉 − 〈(1− IT )Φ̂ , divIT v〉,

+

∫

E
T̂

JΦ̂K{IT v}.
(22)

The �rst and se
ond term 
an be bounded as in (18) and (20), this time using the lo
al

estimates

‖∇T̂ (1− IT )Φ̂‖L2(T ) ≤ C‖(1−ΠT )∇T̂ Φ̂‖L2(ωT )

‖(1− IT )Φ̂‖L2(T ) ≤ ChT |T‖(1−ΠT )∇T̂ Φ̂‖L2(ωT ),

whi
h follow from a s
aling argument and norm equivalen
e in �nite dimensional spa
es. The

last term in (22) 
an be bounded by (13) of Lemma 3. �

We will also need the following boundedness result for IT .

Lemma 5. In addition to Lemma 2, we have the following estimate, where T̂ denotes the

uniform re�nement of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that

(23) ‖∇T IT Φ̂‖H̃−1/2(Γ) ≤ CI‖∇T̂ Φ̂‖H̃−1/2(Γ).

Proof. To prove (23), we �rst observe that due to the lo
al L2 boundedness of (1−ΠT ) and
the inverse estimate [GHS05, Thm. 3.6℄, we have

‖h1/2T (1− ΠT )∇T̂ Φ̂‖L2(Γ) ≤ ‖h1/2T ∇T̂ Φ̂‖L2(Γ) . ‖∇T̂ Φ̂‖H̃−1/2(Γ).

Hen
e, the triangle inequality and (16b) show

‖∇T̂ IT Φ̂‖H̃−1/2(Γ) ≤ ‖∇T̂ Φ̂‖H̃−1/2(Γ) + ‖∇T̂ (1− IT )Φ̂‖H̃−1/2(Γ) . ‖∇T̂ Φ̂‖H̃−1/2(Γ).

�

4. A posteriori error estimation and adaptive algorithm

In this se
tion, we introdu
e di�erent error estimators, and show their reliability and

e�
ien
y. In Se
tion 4.1, we introdu
e global error estimators, that is, the employed (non-

integer) norm is nonlo
al and therefore does not provide information for lo
al mesh-re�nement.

In Se
tion 4.2, we pass over to weighted (integer) norms, whi
h are lo
al and 
an therefore

be employed in an adaptive algorithm, whi
h will be introdu
ed in Se
tion 4.3. In order

to estimate the non
onformity of a fun
tion in terms of the fun
tion itself, we will use the

results of Se
tions 3.1 and 3.2.

Corollary 6. Denote by T a re�nement of T0. Let Φ ∈ VT be the Galerkin solution (7).

Then, there is a 
onstant C4 > 0 whi
h depends only on T0 su
h that

|||Φ⊥|||T = |||Φ− Φ0|||T ≤ C4‖hT JΦK′‖L2(ET ).
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Proof. This follows easily by using the fa
t that Φ−Φ0
is aT -orthogonal to V

0
T and employ-

ing (16a). �

4.1. Global error estimators. Let Φ ∈ VT and Φ̂ ∈ VT̂ be Galerkin solutions (7), where

T̂ is a uniform re�nement of T . We introdu
e estimators on the mesh T by

ηT := |||Φ̂− Φ|||T̂ = ‖curlT̂ (Φ̂− Φ)‖
H̃−1/2(Γ),

η̃T := |||Φ̂− IT Φ̂|||T̂ = ‖curlT̂ (Φ̂− IT Φ̂)‖H̃−1/2(Γ).

The existing derivations of h − h/2 error estimators, e.g. [EFLFP09, FLP08℄, fo
us on 
on-

forming methods and rely mostly on the Galerkin orthogonality (3). Contrary, we have the

weaker partial orthogonality of Lemma 1, where additional terms arise (what we 
alled non-


onformity error) whi
h a

ount for the non
onformity. In Corollary 6, we showed that these

terms 
an be bounded by the inter-element jumps of Φ, i.e., by

ρT := ‖hT JΦK′‖L2(ET ).

Consequently, we have that ηT and η̃T are equivalent up to ρT .

Lemma 7. Let T be a re�nement of T0. Then, there is a 
onstant C5 > 0 whi
h depends

only on T0 su
h that

C−1
5 |||Φ̂− Φ|||T̂ ≤ |||Φ̂− IT Φ̂|||T̂ + ρT and C−1

5 |||Φ̂− IT Φ̂|||T̂ ≤ |||Φ̂− Φ|||T̂ + ρT .

Proof. As Φ̂− Φ is orthogonal to V 0
T in aT̂ , we 
on
lude

|||Φ̂− Φ|||T̂ . |||Φ̂− Φ+ Φ0 − IT Φ̂||| ≤ |||Φ̂− IT Φ̂|||T̂ + |||Φ− Φ0|||T ,

and the last term 
an be bounded by ρT by Corollary 6. To see the se
ond estimate, we use

the proje
tion property and boundedness (23) of IT to see that

|||Φ̂− IT Φ̂|||T̂ . |||Φ̂− Φ0|||T̂ ≤ |||Φ̂− Φ|||T̂ + |||Φ− Φ0|||T ,

whi
h shows the desired estimate. �

In a next step, we show the e�
ien
y and reliability of ηT . For the reliability, we assume

that a saturation assumption for the 
onforming approximations holds true.

Theorem 8. Let T be a re�nement of T0. Then, there is a 
onstant Ceff > 0 su
h that

ηT = |||Φ̂− Φ|||T̂ is e�
ient up to the non
onformity error, i.e.,

C−1
eff |||Φ̂− Φ|||T̂ ≤ |||φ− Φ|||T + ρT + ρT̂ .(24)

Furthermore, assume that there is a 
onstant Csat ∈ (0, 1) su
h that the saturation assumption

for the 
onforming approximations

aT̂ (φ− Φ̂0, φ− Φ̂0) ≤ CsataT (φ− Φ0, φ− Φ0)(25)

holds true. Then, there is a 
onstant Crel > 0 su
h that ηT = |||Φ̂ − Φ|||T̂ is reliable up to

ρT + ρT̂ , i.e.,

C−1
rel |||φ− Φ|||T ≤ |||Φ̂− Φ|||T̂ + ρT + ρT̂(26)

holds true.
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Proof. E�
ien
y (24) follows immediately from Lemma 1 by setting T⋆ := T̂ and Corollary 6.

To show reliability (26), we �rst note that the triangle inequality and ellipti
ity give

|||φ− Φ||| . a(φ− Φ0, φ− Φ0) + ρT .

Now, due to the 
onforming orthogonality and the saturation assumption (25),

(1− Csat)a(φ− Φ0, φ− Φ0) ≤ a(Φ0 − Φ̂0,Φ0 − Φ̂0) . |||Φ0 − Φ̂0|||T̂

≤ |||Φ̂− Φ|||T̂ + |||Φ− Φ0|||+ |||Φ̂− Φ̂0|||

. |||Φ̂− Φ|||T̂ + ρT + ρT̂ ,

where we used the triangle inequality and Corollary 6. �

Remark 9. In �nite element methods, the saturation assumption (25) is veri�ed for the

Poisson problem −∆u = f . In fa
t, in [DN02℄ it is shown that

|||φ− Φ̂0
ℓ ||| ≤ Csat|||φ− Φ0

ℓ |||+ oscℓ,

where oscℓ is a measure for the resolution of f on the mesh Tℓ. Hen
e, small data os
illation

implies the saturation assumption. However, the saturation assumption (25) is not proven

for BEM. To the best of the our knowledge, the only 
ontributions are [AFF

+
13a, EH06℄.

In [AFF

+
13a℄, it is shown that for 2D-BEM for the weakly singular integral equation, there

is a k ∈ N and Csat < 1 whi
h depend only on T0 and Γ, su
h that with k uniform re�nements

of Tℓ, whi
h we denote by Tℓ(k), there holds

|||φ− Φℓ||| ≤ Csat|||φ− Φℓ(k)|||+ oscℓ

with oscℓ being a term of higher order than the others. In [EH06℄, the saturation assumption

is analyzed for an edge singularity on a plane square-shaped domain, and uniform as well as

graded meshes are 
onsidered.

4.2. Lo
alized error estimators. The a posteriori estimators of Se
tion 4.1 use the H̃−1/2(Γ)-
norm, whi
h is hard to 
ompute and nonlo
al. In order to provide a posteriori error estimators

whi
h 
an be split into element-wise indi
ators, we will use a weighted L2-norm. We introdu
e

the lo
alized estimators

µT := ‖h1/2T curlT̂ (Φ̂− Φ)‖L2(Γ),

µ̃T := ‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ).

Then we have the following result.

Lemma 10. There holds

‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ) ≤ ‖h1/2T curlT̂ (Φ̂− Φ)‖L2(Γ) . |||Φ̂− Φ|||T̂(27a)

and

|||Φ̂− IT Φ̂|||T̂ . ‖h1/2T (curlT̂ Φ̂− ΠT curlT̂ Φ̂)‖L2(Γ).(27b)

In parti
ular, all estimators are equivalent up to ρT + ρT̂ , and for τ ∈ {ηT , η̃T , µT , µ̃T }, the
estimator τ is reliable and e�
ient up to ρT + ρT̂ , i.e.,

|||φ− Φ||| . τ + ρT + ρT̂ ,

τ . |||φ− Φ|||+ ρT + ρT̂ .
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Proof. As in [FLP08℄, the �rst estimate in (27a) follows from the best approximation property

of ΠT , while the se
ond one follows from the inverse inequality [GHS05, Theorem 3.6℄. The

�rst estimate in (27b) is estimate (16b) from Lemma 4. Now, sin
e

ηT = |||Φ̂− Φ|||T̂ and η̃T = |||Φ̂− IT Φ̂|||T̂

are equivalent up to ρT + ρT̂ a

ording to Lemma 7, all estimators are equivalent up to

ρT + ρT̂ as well. As ηT is e�
ient and reliable up to ρT + ρT̂ a

ording to Theorem 8, this

is also true for the three other estimators. �

4.3. Statement of the adaptive algorithm. We now introdu
e the adaptive algorithm.

As error indi
ators on a mesh Tℓ, we use the element-wise quantities

̺ℓ(T )
2 := ‖h1/2ℓ (1− Πℓ)curlT̂ℓΦ̂ℓ‖

2
L2(T ) + ‖hℓJΦℓK‖

2
H1(Eℓ(T )) + ‖ĥℓJΦ̂ℓK‖

2
H1(Êℓ(T ))

.

For a subset Mℓ ⊂ Tℓ, we write ̺ℓ(Mℓ)
2 =

∑
T∈Mℓ

̺ℓ(T )
2
, and we use the abbreviation

̺ℓ := ̺ℓ(Tℓ). Hen
e,

̺2ℓ = µ̃2
ℓ + ρ2ℓ + ρ̂2ℓ

is a reliable error estimator a

ording to Lemma 10. The adaptive algorithm now reads as

follows.

Algorithm 11. Input: Initial mesh T0, parameter θ ∈ (0, 1), 
ounter ℓ := 0.

(i) Obtain T̂ℓ by uniform bise
(3)-re�nement of Tℓ, see Figure 1.

(ii) Compute solutions Φℓ and Φ̂ℓ of (7) with respe
t to Tℓ and T̂ℓ.

(iii) Compute re�nement indi
ators ̺ℓ(T ) for all T ∈ Tℓ.

(iv) Choose a set Mℓ ⊆ Tℓ with minimal 
ardinality su
h that

∑

T∈Mℓ

̺ℓ(T )
2 ≥ θ

∑

T∈Tℓ

̺ℓ(T )
2.(28)

(v) Re�ne mesh Tℓ a

ording to Algorithm NVB and obtain Tℓ+1.

(vi) Update 
ounter ℓ := ℓ+ 1 and goto (i).

5. Numeri
al experiments

In this se
tion we present numeri
al experiments for two di�erent problems. The exa
t

solution φ of the �rst experiment will be smooth in the sense that uniform and adaptive mesh

re�nement yield the same rate of 
onvergen
e. Still, φ exhibits singularities whi
h stem from

the geometri
 setting (i.e., polygonal boundary). As we emphasized in the introdu
tion, it

is a pe
uliarity of Crouzeix-Raviart BEM that uniform mesh re�nement is optimal for these

kind of singularities.

The se
ond example reports on a 
ase where the right-hand side of our model problem is


hosen to be singular, su
h that, due to the mapping properties of W, the exa
t solution φ
su�ers from low regularity as well. In this 
ase, it will turn out that uniform mesh-re�nement

is suboptimal while adaptive re�nement re
overs the optimal rate.
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Figure 3. Initial mesh T0 used in the numeri
al experiments.

5.1. Experiment with smooth solution. We 
onsider the s
reen Γ := [0, 1]2. The initial
mesh T0 
onsists of 8 
ongruent triangles, 
f. Fig. 3, su
h that Γ is halved along the diagonals

and the midpoints of its sides. The referen
e edges are 
hosen on the two diagonals. The

right-hand side is given by

f(x, y) = 1,

and it is well known that the exa
t solution φ has square root edge singularities [Ste87℄ so

that φ ∈ H̃1−ε(Γ) for all ε > 0. We use the following �ve di�erent sequen
es of meshes.

Uniform sequen
e, Figure 4. The sequen
e Tℓ, ℓ ∈ N0, is generated by uniform re�ne-

ment, i.e., the initial mesh T0 is 
hosen as in Figure 3, and the mesh Tℓ, ℓ ≥ 1 is generated

from Tℓ−1 by a bise
(3)-re�nement (as des
ribed in Figure 1) of every triangle T ∈ Tℓ. Due to

the results in [HS09℄, we expe
t a 
onvergen
e rate of O(h
1/2−ε
ℓ ) = O(N

−1/4+ε
ℓ ) for all ε > 0,


f. (8). This is exa
tly what we observe in the 
onvergen
e history in Fig. 4.

Adaptive sequen
e, Figure 5. The sequen
e of meshes Tℓ, ℓ ∈ N0, is generated by

Algorithm 11 with θ = 0.5, where T0 is 
hosen as in Figure 3. As we 
onje
tured in Se
tion 2.4,

the rate O(N
−1/4
ℓ ) 
annot be improved in general, and this is what we see in the 
onvergen
e

history in Fig. 5. In Fig. 8 we plot the intermediate mesh T11 and the �nal mesh T22 that

are 
onstru
ted by the adaptive algorithm. What we observe qualitatively is that the meshes

are re�ned towards the boundary ∂Γ, whi
h meets the expe
tation as φ exhibits singularities

there. Nevertheless, the 
omputed meshes are not optimal for a 
onforming method. This is

visualized in Fig. 5, where we also plot the 
onforming energy error |||φ− Φ0
ℓ |||

2
. Clearly, we

use the number of the degrees of freedom of the 
onforming method for the x-axis.

Graded sequen
e, Figs. 6 and 7. We use a sequen
e of meshes Tℓ, ℓ ∈ N0 that is

graded towards ∂Γ, i.e., for all elements T ∈ Tℓ there holds

hℓ(T ) ≃ dist(T,Γ)β.

We sele
t the parameters β ∈ {2, 3}. The numeri
al results show that both gradings maintain

the optimal rate for the Crouzeix-Raviart BEM, see Figs. 6 and 7.

5.2. Experiment with singular solution. The right-hand side is given by

f(x, y) := x−6/10,
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Figure 4. Convergen
e history for uniform mesh re�nement and smooth so-

lution. We see that the squared quantities exhibit the optimal rate O(N
−1/2
ℓ ).
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Figure 5. Convergen
e history for adaptive algorithm and smooth solution.

We see that the squared quantities exhibit the optimal rate O(N
−1/2
ℓ ).

and be
ause of f /∈ L2(Γ) we 
on
lude from the mapping properties of W that the exa
t

solution ful�lls φ /∈ H1(Γ). The missing regularity will lead to a suboptimal 
onvergen
e

rate for uniform re�nement, whi
h will be re
overed by the adaptive algorithm. Let us
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Figure 6. Convergen
e history for graded meshes with β = 2 and smooth

solution. We see that the squared quantities exhibit the optimal rateO(N
−1/2
ℓ ).
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Figure 7. Convergen
e history for graded meshes with β = 3 and smooth

solution. We see that the squared quantities exhibit the optimal rateO(N
−1/2
ℓ ).

brie�y dis
uss what to expe
t in the uniform 
ase: for the fun
tion g(x) = xα there holds

g ∈ Hα+1/2−ε(0, 1) \Hα+1/2(0, 1) for all ε > 0. We 
on
lude that, f ∈ H−0.1−ε(Γ) \H−0.1(Γ),
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Figure 8. Meshes T11 and T22 of the adaptive algorithm for smooth solution.

and due to the mapping properties of W we 
on
lude that φ /∈ H̃9/10(Γ). Hen
e, we expe
t

a 
onvergen
e rate whi
h is worse than O(h
4/10
ℓ ) = O(N

−1/5
ℓ ) for uniform re�nement. We

already stated the 
hoi
e of the initial mesh T0. Uniform and adaptive meshes are 
omputed

exa
tly as des
ribed in Se
tion 5.1. The 
onvergen
e history for the uniform sequen
e of

meshes is depi
ted in Fig. 9. We see that the uniform s
heme is suboptimal, and the the


onvergen
e rate is indeed worse than O(N
−1/5
ℓ ) (note that we plot squared quantities). How-

ever, the adaptive sequen
e of meshes, depi
ted in Fig. 10, re
overs the optimal 
onvergen
e

rate. In Fig. 11, we plot the two adaptive meshes T11 and T23 whi
h are generated by the

adaptive algorithm.
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