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1 Introduction

Many practically relevant PDEs1 on bounded or unbounded
domainsΩ ⊂ Rd can be equivalently formulated as integral
equations on the(d− 1)-dimensional boundaryΓ = ∂Ω .
This reformulation is then discretized and solved numeri-
cally by BEM2. Striking advantages of BEM over FEM3

rely on the dimension reduction, the natural treatment of
unbounded domains, as well as a potentially high rate of
convergence with respect to both, the natural energy norm
as well as the pointwise error. On the other hand, high con-
vergence rates are only achieved if the (given) data as well
as the (unknown) exact solution are sufficiently smooth or if
the possible singularities are appropriately resolved. Inprac-
tice, one thus observes a huge gap between the theoretically
possible optimal rate and the empirical convergence behav-
ior, if the meshes are refined uniformly. The remedy is to
use appropriately graded meshes which resolve the possible
singularities of data and exact solution. To this end, a poste-
riori error estimation and related adaptive mesh-refinement
have themselves proven to be important tools for scientific

1 partial differential equation (PDE)
2 boundary element method (BEM)
3 finite element method (FEM)
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computing, cf. [3,145]. First, they allow to monitor the ac-
tual error and to stop the computation if the computed so-
lution is accurate enough. Second, they may also drive the
problem-adapted discretization and thus the appropriate res-
olution of the possible singularities. While the convergence
and quasi-optimality of AFEM4 has been mathematically
analyzed within the last decade [26,46,56,110,139], anal-
ogous results for ABEM5 [7,65,66,70,76] have only been
achieved very recently, see also [52,75,77,103] for adaptive
wavelet-based BEM.

1.1 Galerkin BEM and Céa lemma

Throughout, our main focus is on Galerkin BEM. Here, the
mathematical frame reads as follows: LetX be a real Hilbert
space with norm‖·‖X , which will be an appropriate Sobolev
space in the applications in mind. Letb : X ×X →R be a
continuous and elliptic bilinear form, i.e., there are constants
Ccont,Cell > 0 such that

b(v,w)≤Ccont‖v‖X ‖w‖X for all v,w∈ X (1)

and

b(v,v)≥Cell ‖v‖2
X for all v∈ X . (2)

Given a linear and continuous functionalF : X → R, the
so-called weak formulation (or variational formulation) of
the BIE6 reads: Find the exact solutionu∈ X of

b(u,v) = F(v) for all v∈ X . (3)

Based on a triangulationT of the underlying spatial do-
main, letXT ⊂ X be a finite-dimensional subspace. The
Galerkin BEM discretization reads: FindU ∈ XT such that

b(U,V) = F(V) for all V ∈ XT . (4)

For both, the continuous as well as the discrete formula-
tions (3) and (4), the Lax-Milgram lemma applies and proves
the existence and uniqueness ofu∈X resp.U ∈XT . More-
over, a direct computation with the Galerkin orthogonality

b(u−U,V) = 0 for all V ∈ XT , (5)

provides the Céa lemma

Cell

Ccont
‖u−U‖X ≤ min

V∈XT

‖u−V‖X ≤ ‖u−U‖X (6)

i.e., thecomputableGalerkin solutionU ∈ XT is a quasi-
best approximation ofu among all functionsV in the dis-
crete spaceXT .

4 adaptive finite element method (AFEM)
5 adaptive boundary element method (ABEM)
6 boundary integral equation (BIE)

1.2 Adaptive algorithm

As a consequence of the Céa lemma (6), a natural question
is how to choose the discrete spaceXT (resp. the meshT ).
Ideally, one should choose the discrete spaceXT such that
the best approximation error in (6) is minimal with respect
to the number of degrees of freedom. Usually the neces-
sary a priori knowledge is not available (even if the generic
singularities appear to be known), such that it is infeasible
to address this question. Another possibility is to choose
a sequence of meshes such that the best approximation er-
ror shows an “optimal decay” with increasing dimension of
XT . Usually this question is empirically addressed by adap-
tive algorithms which start from an initial meshT0 and gen-
erate a sequence of (locally) refined meshesTℓ for ℓ ∈ N0

by iterating the loop

solve → estimate → mark → refine . (7)

It provides a sequence of Galerkin solutionsUℓ ∈ Xℓ :=
XTℓ

with nested discrete spacesXℓ ⊂ Xℓ+1 ⊂ X for all
ℓ ≥ 0. Adaptive algorithms thus work with a sequence of
meshes and need to solve in every step. Yet, it can be ob-
served in model problems that they outperform algorithms
which uniformly refine a coarse mesh up to a given number
of degrees of freedom and finally solve only once. This su-
periority appears in terms of memory versus error as well as
time consumption versus error, cf. [4,10].

The modulesolve consists of the direct or iterative so-
lution of the linear system corresponding to (4) to compute
the (approximate) Galerkin solutionUℓ ∈ Xℓ. Mathemati-
cal questions arise from the fact that, first, BEM matrices
are densely populated (i.e., the number of non-zero entries
is roughly equivalent to the overall number of entries) and
hence have to be treated by matrix compression techniques
like FMM7 [79,117],H -matrices8 [83,84], panel cluster-
ing [85], or ACA9 [19,21,20], see also the monograph [121]
on this subject. In particular, this prevents the use of di-
rect solvers for problems of practical interest. Second, the
condition number of BEM matrices grows if the mesh is
refined, i.e., one needs cheap and effective preconditioners
which build on the hierarchical structure of the nested dis-
crete spaces. Finally, the right-hand sideF in (3) often in-
volves evaluations of integral operators applied to the given
data. Then, the computation of the right-hand side in (4) can
hardly be done analytically. Instead, appropriate and reliable
data approximation and/or quadrature has to be employed,
and this additional consistency error has to be controlled.

7 fast multipole method (FMM)
8 hierarchical matrices (H -matrices)
9 adaptive cross approximation (ACA)
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The module estimate comprises the computation of
a numerically computable a posteriori error estimator

ηℓ =
(

∑
T∈Tℓ

ηℓ(T)
2
)1/2

(8)

whose local contributionsηℓ(T) measure —at least heuris-
tically— the Galerkin erroru−Uℓ on an elementT of the
current triangulationTℓ. For this purpose, different types of
error estimators have been proposed in the literature which
range from simple two-grid error estimators over residual-
based strategies to estimators which build on the BEM in-
herent Calderón system.

The modulemark uses the local refinement indicators
ηℓ(T) and selects certain elements for refinement, where re-
finement can either be a geometric bisection of the element
(so-calledh-refinement) or the increase of the local approx-
imation order (so-calledp-refinement).

Finally, the modulerefine uses the prior information
to generate a new meshTℓ+1 as well as a related enriched
space Xℓ+1 ⊃ Xℓ. For now, we denote this by
Tℓ+1 ∈ refine(Tℓ). In the later sections, this will be speci-
fied further. Usually, the numerical analysis requires certain
care for the (otherwise simple) operationrefine(·) to en-
sure that, e.g., hanging nodes are avoided, the quotient of
the diameters of neighboring elements does not deteriorate
and neither do the elements’ angles. In particular, this leads
to additional refinement of non-marked elements. As over-
refinement might affect observed convergence rates with re-
spect to the degrees of freedom, this requires mathematical
care if it comes to the proof of optimal convergence rates.

The design of an adaptive algorithm usually consists in
making appropriate choices for the different parts of the adap-
tive loop (7). For theh-version, which is the focus of this
work (although we will also briefly discusshp-versions,
where a mixture ofh- and p-refinement takes place), it is
common to write the loop (7) in pseudo-code in the follow-
ing form:

Algorithm 1 (Adaptive mesh refinement) INPUT: initial
meshT0 and adaptivity parameter0< θ ≤ 1.
OUTPUT: sequence of solutions(Uℓ)ℓ∈N0, sequence of esti-
mators(ηℓ)ℓ∈N0, and sequence of meshes(Tℓ)ℓ∈N0.
ITERATION: For all ℓ= 0,1,2,3, . . . do (i)–(iv).

(i) Compute solution Uℓ of (4).
(ii) Compute error indicatorsηℓ(T) for all elements T∈Tℓ.

(iii) Find a set of (minimal) cardinalityMℓ ⊆ Tℓ such that

θη2
ℓ ≤ ∑

T∈Mℓ

ηℓ(T)
2. (9)

(iv) Refine at least the marked elements T∈ Mℓ to obtain
the new meshTℓ+1 ∈ refine(Tℓ).
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Fig. 1 BEM error for piecewise constants (p = 0) and piecewise lin-
ears (p= 1) on uniform and adaptive meshes for example (10).
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Fig. 2 BEM error and error estimator for piecewise constants (p= 0)
on uniform and adaptive meshes for example (10).

1.3 Mathematical questions

To illustrate some of the mathematical questions which have
to be addressed, we consider simple toy problems for the 2D
and 3D Laplacian: First, we consider the weakly singular
integral equation

Vφ = f on the slitΓ = (−1,1)×{0}, (10)

whereV is the simple-layer integral operator of the 2D Lapla-
cian (see Section 2.2 below). For givenf (s,0)= s, the unique
solution of (10) is known to be

u(s,0) = 2s/
√

1− s2. (11)

We consider BEM with piecewise constant ansatz and test
functions (p = 0) as well as with discontinuous piecewise
linear ansatz and test functions (p= 1). The adaptive mesh
refinement is driven by some(h−h/2)-type error estimator
(see Section 4.2.2 below). The initial mesh consists of one
line segment of length 2.
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initial meshT0 T3 T6 T9 T12

Fig. 3 Sequence of adaptively generated meshes for 3D BEM with anisotropic mesh refinement for example (15).
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Fig. 4 For 3D BEM, each marked rectangleT ∈ Tℓ (left) is either refined isotropically into four elements oranisotropically into two elements.

Figs. 1 and 2 show the outcome of the numerical com-
putations, where we compare uniform vs. adaptive mesh-
refinement. We plot the error (measured in the natural
H̃−1/2 norm) and the computed a posteriori error estima-
tor versus the numberN of elements. Ifu was smooth, the
generically optimal order of convergence would be
O(N−p−3/2), see [123]. However, in the present example,
the exact solution has strong (generic) singularities at the
tips of the slit and thus lacks the required regularity. For uni-
form mesh refinement, where all line segments are bisected
to obtainTℓ+1 from Tℓ, we observe a poor convergence
rate ofO(N−1/2) for both, piecewise constants and piece-
wise linears, see Fig. 1. Consequently, the use of higher-
order polynomials does not pay on uniform meshes. How-
ever, if we use the adaptive algorithm which automatically
enforces an appropriate grading of the mesh towards the sin-
gularities ofu, we observe the optimal convergence behavior
O(N−3/2) for piecewise constantsp= 0 andO(N−5/2) for
piecewise linearsp= 1.

Mathematically, this observation gives rise to the follow-
ing questions:

• Does the adaptive algorithm (Algorithm 1) guarantee
convergence? More precisely, is it true that

‖u−Uℓ‖X → 0 asℓ→ ∞? (12)

For uniform mesh refinement, the Céa lemma (6) and appro-
priate approximation results for smooth functions guarantee
that Galerkin BEM always lead to convergenceUℓ → u, in-
dependently of the overall regularity or possible singulari-
ties of the unknown solutionu. As observed, this conver-
gence can be slow. On the other hand, the adaptive algorithm

does not guarantee that the mesh-size will tend to zero as
ℓ→ ∞. Consequently, the convergence analysis for uniform
meshes does not carry over to adaptive meshes. However,
a priori arguments guarantee that nestednessXℓ ⊆Xℓ+1 for
all ℓ ≥ 0 implies convergence ofUℓ towards some limitU∞
(see Lemma 76), but raises the important question whether
we can identifyu = U∞. In particular, the numerical check
for convergence will always be affirmative even if the adap-
tive algorithm does wrong, i.e.,u 6=U∞.

• Empirically, the adaptive algorithm 1 does not only lead
to convergence,buteven ensureslinear convergence, i.e.,
‖u−Uℓ+1‖X ≤ q‖u−Uℓ‖X for some uniform constant
0< q< 1.

For some symmetric and elliptic bilinear formb(·, ·) and the
induced norm‖v‖X =

√
b(v,v), the Céa lemma (6) holds

with Cell = 1= Ccont. This implies at least‖u−Uℓ+1‖X ≤
‖u−Uℓ‖X , and the numerical experiment also shows that
pre-asymptotically evenq≈ 1 can be observed, see Fig. 1.

• Does the adaptive algorithm 1 recover the optimal rate
of convergence?

Clearly, the last two questions are strongly related to the
a posteriori error estimator which drives the adaptive mesh
refinement. As the adaptive algorithm does not see the ac-
tual error, but only the error estimator, an a posteriori error
estimator is calledreliable, if it provides an upper bound for
the unknown error

‖u−Uℓ‖X ≤Crel ηℓ (13)

up to some generic constantCrel > 0. If the adaptive algo-
rithm thus drives the error estimator to zero, this implies
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Fig. 5 BEM error for piecewise constants on uniform and adaptive
meshes for example (15) with isotropic and anisotropic refinement.
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Fig. 6 BEM error and error estimator for piecewise constants on
uniform and adaptive meshes for example (15) with isotropicand
anisotropic refinement.

convergence of the overall scheme. Conversely,ηℓ is called
efficient, if it provides a lower bound for the unknown error

ηℓ ≤Ceff ‖u−Uℓ‖X (14)

up to some generic constantCeff > 0. If ηℓ is both, efficient
and reliable, the adaptive algorithm monitors the conver-
gence behavior.

Fig. 2 displays error as well as(h−h/2)-type error esti-
mator for uniform and adaptive mesh refinement and lowest-
order elementsp= 0. As the curves of error and error esti-
mator are parallel, independently of the mesh refinement, it
is observed thatηℓ is reliable and efficient. The same ob-
servation is obtained for higher-order polynomials (not dis-
played).

• In which situations can it be mathematically guaranteed
that the BEM error is estimated reliably and efficiently?

Mathematical details (and restrictions) for the(h− h/2)-
error estimator are discussed in Section 4.2.2 below.

Moreover, optimal convergencebehavior is also constrained
by the mesh refinement used. To illustrate this, we consider
the weakly singular integral equation

Vφ = f on the L-screenΓ =
(
(−1,1)2\(0,1)2)×{0},

(15)

whereV now is the simple-layer integral operator of the 3D
Laplacian. We consider lowest-order BEM with piecewise
constant ansatz and test functions. The adaptive mesh re-
finement is driven by some(h− h/2)-type error estimator
(see Section 4.2.2 below). The initial mesh consists of 12
uniform squares with edge length 1/2, see Fig. 3 (left).

It is well-known that the solutions of (15) suffer from
edge singularities. Forf (x) = 1, we therefore compare uni-
form mesh refinement, where each square is divided into
four similar squares of half edge length, with adaptive iso-
tropic resp. anisotropic mesh refinement. In the isotropic
case, marked squares are refined into four similar squares of
half edge length. In the anisotropic case, we also allow that
the (rectangular) elements are only refined along one edge
into two rectangles, see Fig. 4. For the anisotropic refine-
ment, some adaptively refined meshes are shown in Fig. 3.

The overall outcome of these computations is visual-
ized in Figs. 5 and 6, where we compare uniform and adap-
tive isotropic and anisotropic mesh refinement. We plot the
error (measured in the natural̃H−1/2-norm) and the com-
puted a posteriori error estimator versus the numberN of
elements. Ifu was smooth, the generically optimal order
of convergence would beO(h3/2) for the uniform mesh-
sizeh. For 3D BEM, this corresponds to an optimal decay
O(N−3/4) with respect to the number of elements. How-
ever, the exact solution exhibits generic singularities along
the edges ofΓ . For uniform mesh refinement, where all el-
ements are refined isotropically, we observe a poor rate of
convergenceO(N−1/4) for the error. For the adaptive strat-
egy with anisotropic elements, we observe the optimal rate
of convergenceO(N−3/4), while adaptive isotropic refine-
ment leads to approximatelyO(N−1/2). We note that heuris-
tic arguments
show thatO(N−1/2) is the optimal rate of convergence in
the presence of generic edge singularities, if one restricts to
isotropic elements [38]. This is also illustrated by the adap-
tive meshes shown in Fig. 7 as well as Fig. 8 which show
adaptively generated anisotropic resp. isotropic meshes with
(almost) the same number of elements.

Fig. 6 shows the BEM error as well as the(h−h/2)-type
error estimators. As for the 2D example (10), we observe
that the a posteriori error estimators used are reliable and
efficient.
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Fig. 7 Adaptively generated mesh with anisotropic elements.

Fig. 8 Adaptively generated mesh with isotropic elements.

1.4 Outline

Essential ingredients of the mathematical theory of BEM
will be collected in Section 2. The fundamental function
spaces in BEM are Sobolev spaces, which will be introduced
briefly in Section 2.1. There will be no further explanations
on the connection of BIEs and PDEs, but in Section 2.2 we
will define the boundary integral operators that constitute
the equations that are to be solved (Sections 2.3 and 2.4). To
emphasize the significance of local mesh refinement, Sec-
tion 2.5 briefly summarizes the regularity theory in the con-
text of this work. The terms associated with discrete spaces,
such as meshes, piecewise polynomials, and so on, will be

defined in Section 2.6, and the resulting discrete equations
are given in Section 2.7.

As a basis for a posteriori error estimation, Section 3
focuses exclusively on the localization techniques for frac-
tional order Sobolev norms. The results of this section will
be used frequently in this work, and the two omnipresent ap-
proaches, localization by local fractional norms (Section3.1)
and localization by approximation (Section 3.2), will be
treated in particular.

Section 4 gives an overview of the different a posteri-
ori error estimators for BEM that have been proposed in the
mathematical literature. The estimators are classified into
five different groups:

– Residual error estimators (Section 4.1),
– estimators based on space enrichment (Section 4.2),
– averaging on large patches (Section 4.3),
– ZZ-type estimators (Section 4.4),
– and estimators based on the Calderón sytem (Section 4.5).

In addition, Section 4.6 deals with the question of how to es-
timate data approximation errors. The estimators presented
up to this point might serve also in higher-order BEM, but
are analyzed only with respect to mesh refinement. In con-
trast, a posteriori estimators and associated adaptive algo-
rithms for p andhp-versions of the BEM are shown in Sec-
tion 5.

The question of convergence ofh-adaptive algorithms
of the type (12) will be addressed in Section 6, which deals
with the so-calledestimator reduction principle. This is a
rather general concept dealing with convergence of adaptive
algorithms. This will be explained in detail in Section 6.4.
The results of Section 6 are tailored to certain concrete model
problems and estimators which are given in Sections 6.5–
6.7 for a posteriori error estimation with(h−h/2), ZZ, and
weighted residual estimators, as well as in Sections 6.8
and 6.9 including data approximation. We also comment on
convergence in the presence of anisotropic mesh refinement
in Section 6.10.

The properties of modulerefine(·), responsible for mesh
refinement, play an important role in the analysis of opti-
mal rates of adaptive mesh-refining algorithms. Section 7
explains the requirements forrefine(·) and summarizes
available results from the literature to account for local re-
finement in 2D BEM as well as 3D BEM.

Regarding the question of optimal convergence of Al-
gorithm 1, the following Section 8 introduces an abstract
framework that was recently laid out even in a more gen-
eral setting in [37]. At this point, we will have fixed all the
parts of Algorithm 1 exceptestimate . Based on certain
assumptions (called (A1)–(A4)) on the estimatorηℓ that is
employed in estimate , convergence of Algorithm 1 will
be shown in Section 8.2, generalising the results of Sec-
tion 6. Optimal convergence of Algorithm 1 within the ab-
stract framework will be shown in Section 8.3. In



Adaptive Boundary Element Methods 7

Sections 8.4–8.7, it is shown how to apply the abstract set-
ting to concrete model problems, i.e., the assumptions (A1)–
(A4) will be checked for different error estimators. More
precisely, we obtain linear convergence for(h−h/2)-based
estimators and optimal convergence for weighted residual
estimators. From Section 8.8 on, we deal with convergence
and optimality of ABEM including data approximation. To
that end, an extended algorithm (Algorithm 123) will be for-
mulated that differs from Algorithm 1 only in that Galerkin
solutions are computed with respect to an approximate right-
hand side and that error control for data approximation is
included in the error estimation. For this extended error esti-
mators, we again formulate assumptions (called (Ã1)–(Ã6)),
and show not only convergence (Section 8.9) but also opti-
mality (Section 8.10) of Algorithm 123. We show how to
apply this abstract framework to concrete model problems
in Sections 8.11 and 8.12.

The final Section 9 is devoted to details in implemen-
tation. We give detailed explanations how to implement the
L2-orthogonal projection (Section 9.1) as well as the Scott-
Zhang projection (Section 9.2). Furthermore, we show how
to implement the two-level error estimator, the(h− h/2)
based error estimator, as well as the weighted residual error
estimator ford = 2 and in the lowest order case. The ideas
that we present for implementation transfer immediately to
d = 3 and higher-order polynomials.

2 Mathematical foundation of the BEM

This section briefly introduces the mathematical framework
for boundary element methods. Definitive books in this re-
spect are [98,108,114], which deal exclusively with bound-
ary integral equations and their analytical underpinning,and
[123,135], which focus to a great extent on boundary ele-
ment discretizations. Let us also note that the analysis of
finite elements for the discretization of boundary integral
equations of the first kind goes back to Nédélec and Plan-
chard [115], and Hsiao and Wendland [97].

2.1 Sobolev spaces

For a rigorous treatise of Sobolev spaces, we refer to the
standard reference [1]. ForΩ ⊂Rd an open and bounded set
and p ∈ [1,∞], Lp(Ω) denotes the space of all measurable
functionsu : Ω → R whosep-th power is integrable, i.e.,
‖u‖Lp(Ω) < ∞, where

‖u‖Lp(Ω) :=




(
∫

Ω |u|p)1/p for p< ∞,

infM⊂Ω
|M|=0

supx∈Ω\M |u(x)| for p= ∞.

The spaceL2(Ω) is a Hilbert space with inner product and
norm

〈u ,w〉Ω :=
∫

Ω
uwdx, ‖u‖L2(Ω) := 〈u ,u〉1/2

Ω .

The spaceC∞
0 (Ω) is the space of smoothφ ∈ C∞(Ω) with

supp(ϕ)⊂Ω . If, for u∈L2(Ω), a locally integrable function
w : Ω →Rd exists such that, for allϕ ∈C∞

0 (Ω)

∫

Ω
u(x)∇ϕ(x)dx=−

∫

Ω
w(x)ϕ(x)dx,

thenw is called theweak gradientof u, abbreviated by∇u :=
w. It follows from the fundamental lemma of calculus of
variations that the weak gradient is uniquely defined almost
everywhere, and integration by parts shows that it therefore
coincides with the classical gradient ofu if it exists. The
space of all functionsu ∈ L2(Ω) with weak gradient∇u ∈
L2(Ω) is the Sobolev spaceH1(Ω). This is again a Hilbert
space with inner product and norm

〈u ,w〉H1(Ω) := 〈u ,w〉Ω + 〈∇u ,∇w〉Ω ,

‖u‖H1(Ω) := 〈u ,u〉1/2
H1(Ω)

.

For s ∈ (0,1), the fractional order Sobolev spaceHs(Ω)
consists of allu ∈ L2(Ω) with ‖u‖Hs(Ω) < ∞, where inner
product and norm are

〈u ,w〉Hs(Ω) := 〈u ,w〉Ω

+

∫

Ω

∫

Ω

(u(x)−u(y))(w(x)−w(y))

|x− y|d+2s dxdy,

‖u‖Hs(Ω) := 〈u ,u〉1/2
Hs(Ω)

.

Generally, for a non-empty setω ⊂ Ω and s∈ (0,1), the
associated seminorm is denoted by

|u|2Hs(ω) :=
∫

ω

∫

ω

(u(x)−u(y))2

|x− y|d+2s dxdy.

From now on we assume thatΩ is simply connected and
has a Lipschitz boundary∂Ω , i.e., local orthogonal coordi-
nates may be introduced to represent∂Ω locally as a Lip-
schitz function over a(d− 1)-dimensional domain. Then,
we can define Sobolev spacesHs(Γ ) for Γ ⊆ ∂Ω and as-
sociated inner products and norms fors∈ [0,1) exactly as
for (d−1)-dimensional domains but using surface integrals
instead of integrals over domains. The definition of the sur-
face integral does not depend on the parametrization used, so
neither does the spaceHs(Γ ) and its inner product or norm
for s∈ [0,1). Independently of the chosen parametrization
of Γ , a weak surface gradient∇Γ can be defined, cf. [144,
Def. 1.9] or [47, Appendix A.3], and hence a spaceH1(Γ ).
The surface gradient is tangential toΓ , and for smooth func-
tionsu in Rd there holds∇u= ∇Γ u+(n ·∇u) ·n. Ford = 2,
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i.e.,Γ a one-dimensional curve, the notationu′ will be used
to denote the gradient ofu. Fors∈ [0,1], define

H̃s(Γ ) :=
{

u∈ Hs(∂Ω) | supp(u)⊂ Γ
}

with norm

‖u‖H̃s(Γ ) := ‖ũ‖Hs(∂Ω), (16)

whereũ denotes the extension ofu by zero on∂Ω . Clearly,
if Γ = ∂Ω is the boundary of a bounded Lipschitz domain, it
holds thatH̃s(Γ ) = Hs(Γ ) for all s∈ [0,1]. The same space
can be defined for a domainΩ instead ofΓ by usingRd

instead of∂Ω . A different characterization of the spaces
H̃s(Ω) can be given; to that end, we introduce thetrace op-
erator γ0, which is defined for smooth functionsu asγ0u :=
u|∂Ω . It can be shown that‖γ0u‖Hs−1/2(∂Ω) ≤Cs‖u‖Hs(Ω) for
s∈ (1/2,1], henceγ0 can be extended to a linear and contin-
uous operator fromHs(Ω) to Hs−1/2(Γ ) for s∈ (1/2,1]. It
is known that

H̃s(Ω) = {u∈ Hs(Ω) | γ0u= 0} for s∈ (1/2,1],

H̃s(Ω) = Hs(Ω) for s∈ [0,1/2).

Furthermore, in these cases, the norms onH̃s(Ω) from (16)
and the norms onHs(Ω) are equivalent, and the equiva-
lence constants depend ons and Ω , cf. [80, Lem. 1.3.2.6
and Thm. 1.4.4.4]. Ifs∈ {0,1}, the norms coincide. Note
that the cases= 1/2 is excluded. Likewise, an operatorγ1

can be defined which extends the (co-)normal derivative.
For a linear operatorB : X → Y between two normed

linear spaces, denote its operator norm by

‖B‖X →Y := sup
06=x∈X

‖B(x)‖Y

‖x‖X

.

The operatorB is calledboundedif ‖B‖X →Y <∞. The dual
space of a normed linear spaceX , denoted byX ′, consists
of all linear and bounded operators (so-calledfunctionals)
f : X →R. A norm onX ′ is given by

‖ f‖X ′ := ‖ f‖X →R = sup
06=x∈X

| f (x)|
‖x‖X

.

For the Sobolev spaceHs(Γ ), the dual space can be charac-
terized by the concept of the so-calledGelfand triple,
cf. [123, Sec. 2.1.2.4], using the fact that for densely em-
bedded Hilbert spacesV ⊂ U , their dual spaces are also
densely embedded, i.e.,U ′ ⊂ V ′. Then, identifyingU with
its dualU ′, the scalar product〈· , ·〉U can be extended to
a duality pairing betweenV and its dualV ′. The spaceU
is calledpivot space. The described concept is used to de-
fine the duality pairing betweenHs(Γ ) for s> 0 and its dual
H̃−s(Γ ) :=Hs(Γ )′, whereL2(Γ ) is used as pivot space. The
consequence is that, ifu∈Hs(Γ ) andv∈ H̃−s(Γ ) are both in
L2(Γ ), then〈u ,v〉Hs(Γ )×H̃−s(Γ ) = 〈u ,v〉Γ coincides with the

L2(Γ ) scalar product, and the last expression will be used
from now on to denote the duality pairing. The dual space
of H̃s(Γ ) for s> 0 will be denoted byH−s(Γ ).

Certain equations that will be considered have a kernel,
hence a quotient space will be needed to solve them. For
s∈ [−1,1], define

Hs
0(Γ ) := {u∈ Hs(Γ ) | 〈u ,1〉Γ = 0} .

Remark 1In the literature, cf. [123,135], Sobolev spaces
are defined with a fixed parametrization and associated par-
tition of unity on Γ . This gives an equivalent definition to
ours, with constants that depend on the chosen parametriza-
tion. To see this, denote bya a specific parametrization and
partition of unity onΓ , and associated norms‖ · ‖s,a. It fol-
lows immediately that‖ ·‖s,a ≤Ca‖ ·‖Hs(Γ ), and the reverse
inequality can be proven with the same arguments as in the
proof of Theorem 17 below.

2.2 Boundary integral operators

From now on,Ω ⊂Rd will always denote a bounded, simply
connected,d-dimensional domain with Lipschitz boundary
∂Ω and outer normal vectorn(y) for y∈ ∂Ω , andΓ will de-
note a(d−1)-dimensional subsetΓ ⊂ ∂Ω . For simplicity,
in the cased = 2, we assume that cap(∂Ω) < 1, see [108],
which can always be fulfilled by scalingΩ such that its di-
ameter is smaller than 1. In order to transform a given PDE
into an equivalent boundary integral equation, a fundamen-
tal solution of the PDE at hand needs to be available. For the
Laplace operator−∆ , the fundamental solution is given by

G(z) :=

{
− 1

2π log|z| for d = 2,
1

4π
1
|z| for d = 3.

For densitiesφ ,v : Γ →R andx∈Rd \Γ , define the follow-
ing potentials:

– thesingle layer potentialof φ as

Ṽφ(x) :=
∫

Γ
G(x− y)φ(y)dΓ (y),

– and thedouble layer potentialof v as

K̃v(x) :=
∫

Γ
∂n(y)G(x− y)v(y)dΓ (y).

At least forφ ,v ∈ L1(Γ ), these operators are smooth away
from Γ , i.e.,Ṽφ , K̃v∈ C∞(Rd \Γ ), and also harmonic, i.e.,
∆Ṽφ = 0= ∆ K̃v onRd \Γ . Starting from these definitions,
boundary integral operators are defined as

V := γ0Ṽ, K := 1/2+ γ0K̃,

W :=−γ1K̃, K′ := −1/2+ γ1Ṽ.
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The operatorV is called thesingle layer operator,W thehy-
persingular operator, andK andK′ thedouble layer oper-
ator and itsadjoint, respectively. The two following results
recall the stability and ellipticity properties of these bound-
ary integral operators. For proofs and further references,we
refer to [49,108,123,144].

Theorem 2 For Γ = ∂Ω a Lipschitz boundary and
s∈ [−1/2,1/2], the boundary integral operators are bounded
as mappings

V :H−1/2+s(Γ )→ H1/2+s(Γ )

K :H1/2+s(Γ )→ H1/2+s(Γ )

K′ :H−1/2+s(Γ )→ H−1/2+s(Γ )

W :H1/2+s(Γ )→ H−1/2+s(Γ ).

If Γ ⊂ ∂Ω , ∂Ω again a Lipschitz boundary, it holds

V :H̃−1/2+s(Γ )→ H1/2+s(Γ )

W :H̃1/2+s(Γ )→ H−1/2+s(Γ ).

Theorem 3 If Γ = ∂Ω is the boundary of a Lipschitz do-
mainΩ , then there holds ellipticity

〈Vφ ,φ〉Γ ≥Cell‖φ‖2
H−1/2(Γ )

for all φ ∈ H−1/2(Γ ),

〈Wu,u〉Γ + 〈u ,1〉2
Γ ≥Cell‖u‖2

H1/2(Γ )
for all u ∈ H1/2(Γ ).

If Γ ( ∂Ω is only a subset, then there holds

〈Vφ ,φ〉Γ ≥Cell‖φ‖2
H̃−1/2(Γ )

for all φ ∈ H̃−1/2(Γ ),

〈Wu,u〉Γ ≥Cell‖u‖2
H̃1/2(Γ )

for all u ∈ H̃1/2(Γ ).

The constant Cell depends only onΓ .

2.3 Weakly singular integral equations

According to Theorems 2 and 3,〈V· , ·〉Γ is a scalar prod-
uct on H̃−1/2(Γ ), such that the Riesz representation the-
orem immediately yields solutions to the following varia-
tional formulations.

Proposition 4 (Weakly singular integral equation) Denote
byΩ ⊂ Rd a Lipschitz domain withcap(∂Ω) < 1 for d = 2
andΓ ⊂ ∂Ω . Given f∈ H1/2(Γ ), there is a unique solution
φ ∈ H̃−1/2(Γ ) of the variational problem

〈Vφ ,ψ〉Γ = 〈 f ,ψ〉Γ for all ψ ∈ H̃−1/2(Γ ).

Proposition 5 (Dirichlet problem) Denote byΩ ⊂ Rd a
Lipschitz domain withcap(∂Ω)< 1 for d = 2 andΓ = ∂Ω .
Given f∈H1/2(Γ ), there is a unique solutionφ ∈H−1/2(Γ )
of the variational problem

〈Vφ ,ψ〉Γ = 〈(1/2+K) f ,ψ〉Γ for all ψ ∈ H−1/2(Γ ).

2.4 Hypersingular integral equations

Likewise, Theorems 2 and 3 state that〈W· , ·〉Γ is a scalar
product onH̃1/2(Γ ) if Γ ( ∂Ω is an open surface, while
〈W· , ·〉Γ + 〈· ,1〉Γ 〈· ,1〉Γ is a scalar product onH1/2(Γ ) in
case ofΓ = ∂Ω .

Proposition 6 (Hypersingular integral equation) Denote
by Ω ⊂ Rd a Lipschitz domain andΓ ( ∂Ω a simply con-
nected, open surface. Givenφ ∈H−1/2(Γ ), there is a unique
solution u∈ H̃1/2(Γ ) of the variational problem

〈Wu,v〉Γ = 〈φ ,v〉Γ for all v ∈ H̃1/2(Γ ).

If Γ = ∂Ω , then there is a unique solution u∈ H1/2(Γ ) of
the variational problem

〈Wu,v〉Γ + 〈u ,1〉Γ 〈v ,1〉Γ = 〈φ ,v〉Γ for all v ∈ H1/2(Γ ).

Provided that φ ∈ H−1/2
0 (Γ ), the solution satisfies

u∈ H1/2
0 (Γ ).

Proposition 7 (Neumann problem) Denote byΩ ⊂ Rd a

Lipschitz domain andΓ = ∂Ω Givenφ ∈ H−1/2
0 (Γ ), there

is a unique solution u∈ H1/2
0 (Γ ) of the variational problem

〈Wu,v〉Γ + 〈u ,1〉Γ 〈v ,1〉Γ = 〈(1/2−K′)φ ,v〉Γ

for all v ∈ H1/2(Γ ).

2.5 Regularity of solutions

It is well known that solutions to BVPs10 on non-smooth
domains have in general limited regularity, even for smooth
data. For polygonal/polyhedral domains and standard ellip-
tic operators of second order there exists a precise regularity
theory that proves that this regularity reduction is due to the
presence of so-called corner singularities (on polygons and
polyhedra) and corner-edge singularities (on polyhedra).In
this paper we are studying the solution of integral equa-
tions of the first kind where unknowns are Cauchy data of
BVP. Therefore, through trace operations (extended restric-
tion and normal derivative), singular behavior of solutions to
BVP imply in a natural way singular behavior of solutions
to such integral equations.

For an overview of regularity theory for BVP on non-
smooth domains we refer to the monograph by Dauge [53].
The singularity expressions by Dauge have been extensively
studied by Stephan and von Petersdorff [146–148]. Their
main contribution is tensor product expansions of singular-
ities so that they are accessible to approximation analysis
by piecewise polynomial functions. In this way, precise pre-
dictions can be made about convergence orders of FE and

10 boundary value problem (BVP)
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BE approximations. In two dimensions, the study of corner
singularities goes back to the seminal paper by Kondratiev
[104] and, of course, the structure of the appearing singular-
ities is much simpler.

We note that for an optimal error analysis ofhp-methods
with geometric mesh refinement, a more specific regular-
ity analysis based on countably normed weighted spaces is
in order. We refer to [95,96] for a corresponding regularity
theory of boundary integral equations on polygons. To our
knowledge [106], Maischak and Stephan have a manuscript
analyzing the case of the hypersingular integral equation
(governing the Laplacian) on polyhedral surfaces.

Low-order methods severely suffer from the presence
of singularities. They limit the order of convergence of the
boundary element method when quasi-uniform meshes are
used. Adaptive methods refine meshes locally by using in-
formation that stems from a posteriori error estimation. In
this way, adaptivity aims at recovering the orders of conver-
gence that one would obtain for smooth solutions and quasi-
uniform meshes.

In the following, for some typical cases, we recall what
are the principal singularities that one has to expect in so-
lutions to the hypersingular and weakly singular boundary
integral equations. These results stem from the previously
mentioned publications [104,53,147,148].

Two space dimensions.Let Γ be the boundary of a simply
connected polygon with edgesΓ j , verticest j and anglesω j

at the vertices (j = 1, . . . ,J). We consider the weakly singu-
lar integral equation from Proposition 4 (with solutionφ and
right-hand side functionf ) and the hypersingular integral
equation from Proposition 6 (with solutionu and right-hand
side functiong). For piecewise analytic dataf , g, the solu-
tionsφ andu behave singularly at the corners of the polygon
and are smooth elsewhere.

To be precise we consider a partition of unity(χ1, . . . ,χJ)

whereχ j is the restriction of aC∞
0 (R

2) function toΓ such
thatχ j = 1 in a neighborhoodof the vertext j and supp(χ j)⊂
Γ j−1∪{t j}∪Γ j (Γ 0 = Γ J). In this way we may write any
functionϕ onΓ like

ϕ =
J

∑
j=1

(ϕ−,ϕ+)χ j

where a pair(ϕ−,ϕ+) corresponds toϕ onΓ j−1∪{t j}∪Γ j

with

ϕ− = ϕ |Γ j−1 and ϕ+ = ϕ |Γ j .

From [50,94] we cite the following result.
Let α jk := k π

ω j
(integerk ≥ 1, j = 1, . . . ,J) and, fort ≥

1/2, letn be an integer withn+1>
ω j
π (t −1/2)≥ n.

(i) If f is a piecewise analytic function, then there exists a
functionφ0 with φ0|Γ j ∈Ht−1(Γ j) such that, for the solution
φ of the weakly singular integral equation, there holds

φ =
J

∑
j=1

n

∑
k=1

(
(φ jk)−,(φ jk)+

)
χ j +φ0.

Here,

(φ jk)±(x) = c|x− t j |α jk−1

if α jk is not an integer and

(φ jk)±(x) = c1|x− t j |α jk−1+ c2|x− t j |α jk−1 log|x− t j |

if α jk is an integer.
(ii) If g is a piecewise analytic function, then there exists a
functionu0 with u0|Γ j ∈ Ht(Γ j) such that, for the solution
u of the hypersingular integral equation, there holds

u=
J

∑
j=1

n

∑
k=1

(
(u jk)−,(u jk)+

)
χ j +u0.

Here,

(u jk)±(x) = c|x− t j |α jk

if α jk is not an integer and

(u jk)±(x) = c1|x− t j |α jk + c2|x− t j |α jk log|x− t j |

if α jk is an integer.
The constantsc, c1 and c2 above (in (i) and (ii)) are

generic.
The representation of singularities above is valid also in

the case of open curves, by setting the anglesω j = 2π at
the endpoints. For example,Γ being an interval inR2, the
solutionφ of the weakly singular integral equation has (with
t0 being any endpoint ofΓ ) singularities of the form

φ(x)∼ |t0− x|−1/2 (x close tot0)

and the solutionu of the hypersingular integral equation be-
haves like

u(x)∼ |t0− x|1/2 (x close tot0).

An illustration of both cases is given in Figures 9, 10.
Concluding, the solutions of the integral equations are

smooth away from the corners and have reduced regularity
at the corners. In the case of the weakly singular equation,
the solution can be unbounded at corners and in the case of
the hypersingular equation, gradients (derivatives with re-
spect to the arc-length) can be unbounded there. In the ex-
treme case of an open polygon, the singularity| · −t0|−1/2

preventsφ from being anL2(Γ )-function and, similarly,u
with its | ·−t0|1/2-singularity is not an element ofH1(Γ ).
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Fig. 9 Typical singular solution of the weakly singular integral equa-
tion on an interval

Fig. 10 Typical singular solution of the hypersingular integral equation
on an interval

Three space dimensions.For simplicity we restrict our pre-
sentation of singularities in three dimensions to the case of
Γ being a plane open surface with polygonal boundary. We
use the results from [147,148] and follow the notation from
[22,25], see also [127].

Again, we consider the weakly singular integral equa-
tion from Proposition 4 (with solutionφ and right-hand side
function f ) and the hypersingular integral equation from
Proposition 6 (with solutionu and right-hand side function
g). As before, we assume thatf andg are sufficiently smooth.
In the following we present the singularities ofφ andu to-
gether.

Let V andE denote the sets of vertices and edges ofΓ ,
respectively. Forv∈V, let E(v) denote the set of edges with
v as an endpoint. Then,φ andu are of the form

φ = φreg+ ∑
e∈E

φe+ ∑
v∈V

φv+ ∑
v∈V

∑
e∈E(v)

φev,

u= ureg+ ∑
e∈E

ue+ ∑
v∈V

uv+ ∑
v∈V

∑
e∈E(v)

uev,

where, using local polar and Cartesian coordinate systems
(rv,θv) and(xe1,xe2) with origin v, there hold the following
representations:

(i) The regular parts satisfyφreg∈Hk(Γ ), ureg∈Hk+1(Γ ),
with k> 0.

(ii) The edge singularitiesφe, ue have the form

φe =
me

∑
j=1




se
j

∑
s=0

be
js(xe1)| logxe2|s


x

γe
j −1

e2 χe
1(xe1)χe

2(xe2),

ue =
me

∑
j=1




se
j

∑
s=0

be
js(xe1)| logxe2|s


x

γe
j

e2 χe
1(xe1)χe

2(xe2),

whereγe
j+1 ≥ γe

j ≥ 1
2, andme, se

j are integers. Here,χe
1, χe

2
areC∞ cut-off functions withχe

1 = 1 in a certain distance to
the endpoints ofe, andχe

1 = 0 in a neighbourhood of these
vertices. Moreover,χe

2 = 1 for 0≤ xe2 ≤ δe andχe
2 = 0 for

xe2 ≥ 2δe with someδe ∈ (0, 1
2). The functionsbe

jsχe
1 are in

Hm(e) for m as large as required.
(iii) The vertex singularitiesφv, uv have the form

φv = χv(rv)
nv

∑
i=1

qv
i

∑
t=0

Bv
it | logrv|t rλ v

i −1
v wv

it (θv),

uv = χv(rv)
nv

∑
i=1

qv
i

∑
t=0

Bv
it | logrv|t rλ v

i
v wv

it (θv),

whereλ v
i+1 ≥ λ v

i > 0,nv, qv
i ≥ 0 are integers, andBv

it are real
numbers. Here,χv is aC∞ cut-off function withχv = 1 for
0≤ rv ≤ τv andχv = 0 for rv ≥ 2τv with someτv ∈ (0, 1

2).
The functionswv

it are inHq(0,ωv) for q as large as required.
Here,ωv denotes the interior angle (onΓ ) between the edges
meeting atv.

(iv) The edge-vertex singularitiesφev, uev have the form

φev= φev
1 +φev

2 , uev= uev
1 +uev

2 ,

where

φev
1 =

me

∑
j=1

nv

∑
i=1




se
j

∑
s=0

qv
i

∑
t=0

s

∑
l=0

Bev
i jlts | logxe1|s+t−l | logxe2|l




x
λ v

i −γe
j

e1 x
γe

j −1
e2 χv(rv)χev(θv),

uev
1 =

me

∑
j=1

nv

∑
i=1




se
j

∑
s=0

qv
i

∑
t=0

s

∑
l=0

Bev
i jlts | logxe1|s+t−l | logxe2|l




x
λ v

i −γe
j

e1 x
γe

j
e2 χv(rv)χev(θv)

and

φev
2 =

me

∑
j=1

se
j

∑
s=0

Bev
js(rv)| logxe2|sx

γe
j −1

e2 χv(rv)χev(θv),

uev
2 =

me

∑
j=1

se
j

∑
s=0

Bev
js(rv)| logxe2|sx

γe
j

e2 χv(rv)χev(θv),
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Fig. 11 Typical singular solution of the weakly singular integral equa-
tion on the open surface(0,1)× (0,1)×{0}

with

Bev
js(rv) =

s

∑
l=0

Bev
jsl(rv)| logrv|l .

Here,qv
i , se

j , λ v
i , γe

j , χv are as above,Bev
i jlts are real numbers,

andχev is aC∞ cut-off function withχev= 1 for 0≤ θv ≤ βv

andχev= 0 for 3
2βv ≤ θv ≤ ωv for someβv ∈ (0,min{ωv/2,

π/8}]. The functionsBev
jsl may be chosen such that

Bev
js(rv)χv(rv)χev(θv) = χ js(xe1,xe2)χe

2(xe2),

where the extension ofχ js by zero onto

R2+ := {(xe1,xe2); xe2 > 0}

lies inHm(R2+) for m as large as required. Here,χe
2 is aC∞

cut-off function as in (ii).
Concluding, on open surfaces, both integral equations

have solutions with singularities. The strongest ones are of
the edge-type dist(·,∂Γ )−1/2 for the solutionφ of the weakly
singular equation. In this case,φ is not an element ofL2(Γ ),
as in the case of two dimensions on open curves. Corre-
spondingly, the strongest singularities of the solutionuof the
hypersingular equation are of the type dist(·,∂Γ )1/2 so that
u 6∈H1(Γ ), again analogously to the case in two dimensions.
In Figures 11, 12 we present typical solutions to both inte-
gral equations on the open surfaceΓ = (0,1)× (0,1)×{0}.
It remains to mention that on polyhedral surfaces, singulari-
ties have the same structure but with larger exponents defin-
ing the edge and edge-vertex singularities, cf. [147,148] for
more details.

2.6 Discrete spaces

The discrete spaces that will be used to approximate the so-
lutions of the problems given by Propositions 4–7 are spaces

Fig. 12 Typical singular solution of the hypersingular integral equation
on the open surface(0,1)× (0,1)×{0}

of piecewise polynomials over a mesh ofΓ . The related
terms will be introduced in this section.

2.6.1 Meshes

Definition 8 A meshT onΓ ⊂ ∂Ω is a finite, mutually dis-
joint partition T = {T1, . . . ,TM} with the following proper-
ties:

– every element T∈ T is a d-simplex, i.e., the interior of
the convex hull of d points x1, . . . ,xd,

– Γ =
⋃M

i=1T i ,
– the intersectionT ∩T

′
is either empty, a common point,

or a common edge of both T and T′.

The collection of all pointsN := {x1, . . . ,xN} that consti-
tute the elements is called the set ofnodesof T . Associated
to a meshT is the local mesh-width functionhT ∈ L∞(Γ ),
givenT -element-wise ashT |T := hT (T) := |T|1/(d−1). On
certain occasions the indexT will be omitted if no confu-
sion can arise, i.e.,hT will be used instead ofhT |T . The
quantity

σT :=





sup
T,T ′∈T ,T∩T ′ 6= /0

diam(T)
diam(T ′)

for d = 2,

max
T∈T

diam(T)d−1

|T| for d ≥ 3,

is usually called theshape-regularity constantof T , and it
is a measure for the degeneracy of the elementsT.

Remark 2To say thata constant C in a statement depends
on shape-regularitymeans that, given some constantσ > 0,
there is a constantC(σ), depending only onσ , such that the
statement holds true for all meshesT as long asσT ≤ σ .
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For a nodez∈ N , the node-patchωz is the collection of all
elementsT ∈ T which sharez, same idea for the element-
patchωT , i.e.,

ωz :=
{

T ∈ T | z∈ T
}

ωT :=
{

T ′ ∈ T | T ′∩T 6= /0
}
.

An important concept is the so-calledreference element Tref,
which is chosen to be fixed throughout, e.g., as the interior
of the convex hull of(0,0), (1,0), and(0,1). Every element
T ∈T with nodes{x0,x1,x2} is then the imageT = FT(Tref)

of Tref under the affine mapping

FT :

{
R2 →R3

x 7→ BTx+ x0,

with matrixBT = (x1− x0 | x2− x0) ∈ R3×2.

2.6.2 Polynomial spaces

Denoting forp ≥ 0 the polynomial space on the reference
element by

P
p(Tref) := span

{
(x,y) ∈ R2 7→ xiyk | 0≤ i + k≤ p

}
,

polynomial spaces on a meshT are defined by

P
p(T ) := {u∈ L∞(Γ ) | u◦FT ∈ P

p(Tref) for all T ∈ T }
S

p(T ) := P
p(T )∩C0(Γ ).

ForΓ ( ∂Ω , define the space with vanishing boundary con-
ditions

S̃
p(T ) := H̃1/2(Γ )∩S

p(T ).

Remark 3If a mesh carries an index, e.g.,Tℓ, it’s associated
quantities are also equipped with this index, e.g.,σℓ denotes
the shape-regularity constant,hℓ the mesh-width,Nℓ the set
of nodes, and so on.

2.7 Galerkin formulation

Discrete approximations to the exact solutionsφ andu of the
Problems in Propositions 4–7 can be computed by chang-
ing the infinite dimensional spaces̃H±1/2(Γ ) to the discrete
spacesP p(T ) andS p(T ). The fact that we can also use
functions of the discrete spaces in the variational formula-
tions provides best-approximationestimates (Céa’s Lemma).

Proposition 9 (Galerkin for weakly singular) There is a
unique solutionΦ ∈ P p(T ) of

〈VΦ ,Ψ〉Γ = 〈 f ,Ψ〉Γ for all Ψ ∈ P
p(T ).

Proposition 10 (Galerkin for Dirichlet) There is a unique
solutionΦ ∈ P p(T ) of

〈VΦ ,Ψ 〉Γ = 〈(1/2+K) f ,Ψ 〉Γ for all Ψ ∈ P
p(T ).

Lemma 11 If φ ∈ H̃−1/2(Γ ) is the solution of Proposition 4
or Proposition 5, andΦ ∈P p(T ) is the solution of Propo-
sition 9 or 10, then

‖φ −Φ‖H̃−1/2(Γ ) ≤
Ccont

Cell
min

Ψ∈P p(T )
‖φ −Ψ‖H̃−1/2(Γ ).

Here, Ccont = ‖V‖H̃−1/2(Γ )→H1/2(Γ ) is the stability constant
of V , cf. Theorem 2, and Cell is its ellipticity constant, cf.
Theorem 3.

Proposition 12 (Galerkin for hypersingular) In the case
Γ ( ∂Ω , there is a unique solution U∈ S̃ p(T ) of

〈WU ,V〉Γ = 〈φ ,V〉Γ for all V ∈ S̃
p(T ).

In the caseΓ = ∂Ω , there is a unique solution U∈S p(T )

such that for all V∈ S p(T )

〈WU ,V〉Γ + 〈U ,1〉Γ 〈V ,1〉Γ = 〈φ ,V〉Γ .

If φ ∈ H−1/2
0 (Γ ), it holds that〈U ,1〉Γ = 0.

Proposition 13 (Galerkin for Neumann) There is a unique
solution U∈ S p(T ) such that for all V∈ S p(T )

〈WU ,V〉Γ + 〈U ,1〉Γ 〈V ,1〉Γ = 〈(1/2−K′)φ ,V〉Γ .

Lemma 14 If u ∈ H̃1/2(Γ ) is the solution of Proposition 6
or Proposition 7, and U∈ S̃ p(T ) resp. U∈S p(T ) is the
solution of Proposition 12 or 13, then

‖u−U‖H̃1/2(Γ ) ≤
Ccont

Cell
min

V∈S p(T )
‖u−V‖H̃1/2(Γ ).

Here, Ccont= ‖W‖H̃1/2(Γ )→H−1/2(Γ ) is the stability constant
of W, cf. Theorem 2, and Cell is its ellipticity constant, cf.
Theorem 3.

Note that the discrete formulations of Propositions 9– 13
are, indeed, linear systems of equations. A distinct feature
of boundary element methods is that, due to the non-locality
of the boundary integral operators, the system matrices are
dense, and therefore sophisticated data compression tech-
niques are used to reduce complexity for assembling and
solving. In Propositions 10 and 13, also the right-hand sides
contain boundary integral operators. There are fast meth-
ods to compute the right-hand sides, cf. [48,126], but if one
wants to re-use the fast method that is employed for system
matrices, the dataf resp.φ needs to be approximated by
discrete functions.
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Proposition 15 (Galerkin for Dirichlet with data approx-
imation) Denote by JT : H1/2(Γ )→ S p+1(T ) a H1/2(Γ )

stable projection. Then, there is a unique solution
Φ ∈ P p(T ) of

〈VΦ ,Ψ〉Γ = 〈(1/2+K)JT f ,Ψ 〉Γ for all Ψ ∈ P
p(T ).

Proposition 16 (Galerkin for Neumann with data approx-
imation) Denote byπ p−1

T
: L2(Γ )→ P p−1(T ) the L2(Γ )-

orthogonal projection. Then, there is a unique solution U∈
S p(T ) such that for all V∈ S p(T )

〈WU ,V〉Γ + 〈U ,1〉Γ 〈V ,1〉Γ = 〈(1/2−K′)π p−1
T

φ ,V〉Γ .

3 Localization of fractional Sobolev norms

The numerical analysis of boundary element methods takes
place in the Sobolev spacesHs(Γ ) for s∈ [−1,1] that are de-
fined in Section 2. Apart from the exceptional casesH0(Γ )=

L2(Γ ) andH1(Γ ), all other spaces are equipped with norms
that are either non-local (s∈ (0,1)) or additionally impos-
sible to compute (s∈ [−1,0)). A norm is understood to be
non-local if it is not possible to split its square into contribu-
tions on the elements of a mesh, i.e., if one cannot write

‖u‖2
Hs(Γ ) ≃ ∑

T∈T

‖u‖2
Hs(T). (17)

The spaces and dual spaces that are used in the variational
formulations of integral equations are usually equipped with
non-local norms. For example, the residualVΦ − f of a
weakly singular integral equation is computable but has to
be measured in the non-local norm of the spaceH1/2(Γ ).
However, only the knowledge of the residuals local contri-
butions enables us to define local error indicators that can be
used for local mesh refinement in adaptive algorithms. Dif-
ferent possibilities to localize a non-local norm are available
and will be presented in this section.

3.1 Localization by local fractional norms

In general, (17) does not hold equivalently with constants
that are independent of the meshT . Fortunately, this is no
longer true if additional properties of the functions under
consideration are assumed. The following result is shown
in [63] for d = 2 and in [64] ford = 3.

Theorem 17 If T is a mesh onΓ and s∈ (0,1), then it
holds for all v∈ Hs(Γ ) that

|v|2Hs(Γ ) ≤ ∑
z∈N

|v|2Hs(ωz)
+Cloc ∑

T∈T

h−2s
T ‖v‖2

L2(T)
, (18)

where Cloc depends only on s andΓ .

Proof In the following, we use the abbreviation

∫

Y

∫

X
:=
∫

Y

∫

X

|v(x)− v(y)|2

|x− y|d−1+2s dxdy.

The idea of the proof is to write

|v|2Hs(Γ ) = ∑
T∈T

∫

T

∫

ωT

+ ∑
T∈T

∫

T

∫

Γ \ωT

(19)

and bound the second term via the triangle inequality
∫

T

∫

Γ \ωT

.

∫

T
|v(y)|2

∫

Γ \ωT

|x− y|−d+1−2s dxdy+
∫

Γ \ωT

|v(x)|2
∫

T
|x− y|−d+1−2s dxdy.

One shows that the sum over allT ∈ T of the second part
on the right-hand side is the same as the sum over the first
part, hence

∑
T∈T

∫

T

∫

Γ \ωT

. ∑
T∈T

∫

T
|v(y)|2

∫

Γ \ωT

|x− y|−d+1−2s dxdy.

Finally, direct calculation ford = 2 and the use of polar co-
ordinates ford = 3 shows
∫

Γ \ωT

|x− y|−d+1−2s dx. h−2s
T .

The first term on the right-hand side of (19) can be estimated
immediately via

∑
T∈T

∫

T

∫

ωT

≤ ∑
z∈N

|v|2Hs(ωz)
,

which finishes the proof. ⊓⊔

The estimate (18) already provides a reliable localizationof
the non-localHs-norm, independent of the shape-regularity
of the mesh. However, choosingv constant onΓ shows that
the reverse inequality to (18) cannot hold in general, i.e.,
the bound (18) is not efficient. However, efficiency can be
shown to hold when certain orthogonality is available. More
precisely, the following estimate from [64, Lemma 3.4] en-
ables us to bound theL2-terms on the right-hand side of (18)
by localHs-terms. The benefit will be twofold: First, it will
enable us to show efficiency of the localization (18) on shape-
regular meshes. Second, it provides us with another localiza-
tion which is always efficient as well as reliable on shape-
regular meshes (Theorem 19).

Lemma 18 Let ω ⊆ Γ be a measurable set, s∈ (0,1), and
u∈ Hs(ω). Then,

‖u‖2
L2(ω) ≤

diam(ω)d−1+2s

2|ω | |u|2Hs(ω)+
1
|ω |

(∫

ω
u(x)dx

)2

.
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In particular, if T is a mesh onΓ and 〈u ,ΨT〉Γ = 0
for ΨT ∈ P0(T ) the characteristic function of an element
T ∈ T ,

‖u‖2
L2(T)

≤ σT h2s
T

2
|u|2Hs(T). (20)

If 〈u ,Ψz〉Γ = 0 for Ψz∈S 1(T ) the hat-function function of
a node z∈ N ,

‖u‖2
L2(ωz)

≤C
diam(ωz)

d−1+2s

|ωz|
|u|2Hs(ωz)

, (21)

where the constant C> 0 depends only on d.

Proof To see the first estimate, note that

2|ω |‖u‖2
L2(ω) =

∫

ω

∫

ω
|u(x)|2 dxdy+

∫

ω

∫

ω
|u(y)|2 dxdy

=

∫

ω

∫

ω
|u(x)−u(y)|2 dxdy

+2

(∫

ω
u(x)dx

)2

.

Since for allx,y∈ ω with x 6= y it holds

1≤ diam(ω)d−1+2s 1

|x− y|d−1+2s
,

the first estimate follows. To show (20), chooseω = T and
observe that

diam(T)d−1+2s

2|T| ≤ σT h2s
T

2
and

〈u ,ΨT〉Γ =
∫

T
u(x)dx= 0.

To show (21) note first that
∫

ωz

uΨzdx= 0 for all z∈ NT ,

whereΨz is the T -piecewise linear and continuous basis
function forz. The Cauchy-Schwarz inequality shows
∣∣∣∣
∫

ωz

udx

∣∣∣∣=
∣∣∣∣
∫

ωz

(1−Ψz)udx

∣∣∣∣≤ ‖1−Ψz‖L2(ωz)‖u‖L2(ωz).

A direct calculation shows that

‖1−Ψz‖2
L2(ωz)

=

{
|ωz|/2 for d = 3,

|ωz|/3 for d = 2,

hence
∣∣∣∣
∫

ωz

udx

∣∣∣∣≤ q|ωz|1/2‖u‖L2(ωz),

for someq< 1 depending only ond. This concludes (21).⊓⊔

The two preceding results show that the localization (18)
is always reliable and, on shape-regular meshes, also effi-
cient. We can combine the results also to obtain a localiza-
tion which is always efficient, and, on shape-regular meshes
also reliable.

Theorem 19 Denote byT a mesh onΓ and let s∈ (0,1).
Suppose thatXT is a discrete space withP p(T )⊆XT or
S p(T ) ⊆ XT . Then for all v∈ Hs(Γ ) with

∫
Γ vΨ dx= 0

for all Ψ ∈ XT , it holds that

‖v‖2
Hs(Γ ) ≃ ∑

z∈N

|v|2Hs(ωz)
. (22)

The constant in the lower bound depends only on s andΓ ,
while the constant in the upper bound additionally depends
on shape-regularity.

Proof The lower bound& follows immediately from the
definition of the norms and the fact that everyT ∈ T is
part of at mostd node-patchesωz. Now, we show the up-
per bound ifP p(T )⊆XT . SinceP0(T )⊆P p(T ), the
estimate (20) can be used in (18) to show

|u|2Hs(Γ ) ≤ ∑
z∈N

|u|2Hs(ωz)
+Cloc

σT

2 ∑
T∈T

|u|2Hs(T),

and furthermore, due toh2s
T ≤ σs

T
|T|s ≤ σs

T
|Γ |s,

‖u‖2
L2(Γ ) ≤

σ1+s
T

|Γ |s
2 ∑

T∈T

|u|2Hs(T).

Using again the fact that every elementT ∈ T it part of at
mostd patchesωz finally shows the upper bound in (22).

Suppose now that S p(T ) ⊆ XT . Since
S 1(T )⊆S p(T ), the upper bound follows from the same
arguments as in the caseP p(T )⊆ XT , using (21) instead
of (20). ⊓⊔

The sets to which the norm on the left-hand side of (18)
is localized are overlapping. This overlap can be omitted if
further assumptions onu are imposed. The proof of the next
Lemma first appeared in [146, Lemma 3.2] if norms are de-
fined by a method called complex interpolation, and in [2,
Thm. 4.1] if norms are defined by a method called real in-
terpolation.

Lemma 20 Suppose u∈ H̃s(Γ ), s∈ [0,1] and u|T ∈ H̃s(T)
for all elements T∈ T . Then,

‖u‖2
H̃s(Γ )

≤Cloc ∑
T∈T

‖u|T‖2
H̃s(T)

,

where Cloc is a constant independent of all the other involved
quantities.
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Proof The casess= 0,1 are obvious, so chooses∈ (0,1).
We will use the same abbreviation as in Theorem 17. As
‖ũ‖2

Hs(∂Ω) = ‖ũ‖2
L2(∂Ω) + |ũ|2Hs(∂Ω), it suffices to consider

the semi-norm on the right-hand side. Asũ= 0 outsideΓ , it
follows ũ(x)− ũ(y) = 0 outsideΓ × ∂Ω ∪∂Ω ×Γ , hence

|ũ|2Hs(∂Ω) ≤ 2
∫

Γ

∫

∂Ω

|ũ(x)− ũ(y)|2

|x− y|d−1+2s dxdy=: 2
∫

Γ

∫

∂Ω
.

We split the double integral in
∫

Γ

∫

∂Ω
= ∑

T∈T

∫

T

∫

T
+ ∑

T∈T

∫

T

∫

Γ \T
+ ∑

T∈T

∫

T

∫

∂Ω\Γ
.

Now, for the first term,

∫

T

∫

T
=
∫

T

∫

T

|ũ(x)− ũ(y)|2

|x− y|d−1+2s
dxdy

=
∫

T

∫

T

|u|T(x)−u|T(y)|2

|x− y|d−1+2s dxdy≤ ‖u|T‖2
H̃s(T)

.

For the second term, estimate as in the proof of Theorem 17

∑
T∈T

∫

T

∫

Γ \T
. ∑

T∈T

∫

T
|ũ(y)|2

∫

Γ \T
|x− y|−d+1−2s dxdy

where we note that the integral on the right-hand side exists
due toũ|T ∈ H̃s(T). We conclude

∑
T∈T

∫

T
|ũ(y)|2

∫

Γ \T
|x− y|−d+1−2s dxdy.

∑
T∈T

∫

∂Ω

∫

∂Ω

∣∣∣ũ|T(x)− ũ|T(y)
∣∣∣
2

|x− y|d−1+2s dxdy= ∑
T∈T

‖u|T‖2
H̃s(T)

.

For the last term, note that

∫

T

∫

∂Ω\Γ
=

∫

T

∫

∂Ω\Γ

|ũ(x)− ũ(y)|2

|x− y|d−1+2s dxdy

=

∫

∂Ω

∫

∂Ω

∣∣∣ũ|T(x)− ũ|T(y)
∣∣∣
2

|x− y|d−1+2s dxdy. ‖u|T‖2
H̃s(T)

.

⊓⊔

3.2 Localization by approximation

This localization technique is employed to derive a posteri-
ori error estimators based on the so-called(h−h/2)method-
ology, cf. Section 4.2.2. The idea of this approach is to com-
pare the solution on the current mesh with a solution on a
finer mesh. The energy norm of the difference of the two
solutions is an efficient and (under a certain assumption) re-
liable error estimator. To localize the energy norm of the
difference of two solutions, one uses approximation opera-
tors to bound the (non-local) energy norm from above by a

stronger integer order (hence local) norm. This can be done
by employing approximation estimates for the approxima-
tion operators used. The energy spaces of weakly singular
and hypersingular equations require a different amount of
smoothness, and therefore discontinuous as well as continu-
ous approximation operators will be considered in this Sec-
tion. To show efficiency of the(h− h/2) type estimators,
inverse estimateswill be needed. These are the counterparts
to approximation estimates and are important tools in finite
and boundary elements.

Definition 21 For a given meshT , denote byπ p
T

: L2(Γ )→
P p(T ) andΠ p

T
: L2(Γ )→ S p(T ) the L2(Γ )-orthogonal

projections, which are uniquely characterized by

〈π p
T

φ ,Φ〉Γ = 〈φ ,Φ〉Γ for all Φ ∈ P
p(T ),

〈Π p
T

u ,U〉Γ = 〈u ,U〉Γ for all U ∈ S
p(T ).

We also writeπT := π0
T

andΠT := Π1
T

. The approxima-
tion properties ofπ p

T
can be stated as follows.

Lemma 22 For φ ∈ Hs(Γ ), s∈ [0,1], and r∈ (0,1] holds

‖φ −π p
T

φ‖L2(T) ≤Capxh
s
T |φ |Hs(T),

‖φ −π p
T

φ‖2
H−r (Γ ) ≤Capx ∑

T∈T

h2(s+r)
T |φ |2Hs(T).

The second estimate is also true ifH̃−r(Γ ) is used instead
of H−r(Γ ). The constant Capx> 0 depends only on s, and in
the cases s∈ (0,1) or r ∈ (0,1) it additionally depends on
the shape-regularityσT .

Proof For p= 1, the first estimate is proven by a scaling ar-
gument, cf. [135, Thm. 10.2]. This special case extends im-
mediately to generalp∈ N by the best approximation prop-
erty ofπ p

T
. If s∈ {0,1}, the constantCapx does only depend

on s but not on shape-regularity, which is seen by a careful
inspection of the scaling argument. The second estimate is a
slight refinement of [135, Thm. 10.3]: Forv∈ H̃r(Γ ) holds

〈φ −π p
T

φ ,v〉Γ = 〈hr(φ −π p
T

φ) ,h−r(v−π p
T

v)〉Γ

≤ ‖hr(φ −π p
T

φ)‖L2(Γ )‖h−r(v−π p
T

v)‖L2(Γ )

.

(
∑

T∈T

h2(s+r)
T |φ |2Hs(T)

)1/2

‖v‖H̃r (Γ ),

The same estimate holds true if we choosev∈ Hr(Γ ). The
result follows by the dual definition of the
H−r(Γ ) andH̃−r(Γ ) norm. ⊓⊔

Inverse estimates in the context of the last lemma are proven
in [78, Thm. 3.6]:

Lemma 23 For T a mesh onΓ and s∈ [0,1] holds

‖hs
T Φ‖L2(Γ ) ≤Cinv‖Φ‖H̃−s(Γ ) for all Φ ∈ P

p(T ).

The constant Cinv > 0 depends only on the shape-regularity
of T , p∈N, and s.
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The approximation in fractional order spaces by continuous
functions is a little bit more involved. For the proof of the
following two lemmata, we refer to [100] and [12, Prop. 5
and Lem. 7].

Lemma 24 For s∈ [0,1], eachH̃s(Γ )-stable projection JT :
H̃s(Γ )→ S̃ p(T ) satisfies

‖v− JT v‖H̃s(Γ ) ≤Capx min
V∈S p(T )

‖h1−s
T

∇Γ (v−V)‖L2(Γ )

for all v ∈ H̃1(Γ ). The constant Capx depends only onΓ ,
p ∈ N, s, shape-regularity ofT , and the stability constant
of JT .

Lemma 25 For T a mesh onΓ and s∈ [0,1] holds

‖h1−s
T

∇Γ V‖L2(Γ ) ≤Cinv‖V‖Hs(Γ ) for all V ∈ S
p(T ).

The constant Cinv > 0 depends only on the shape-regularity
of T , p∈ N, and s.

Lemma 24 holds for any projectionJT : H̃s(Γ )→ S p(T )
which is stable, i.e., for allv∈ H̃s(Γ ) holds

‖JT v‖H̃s(Γ ) ≤Cstab‖v‖H̃s(Γ ),

and the constantCstab does not depend onv. For an imple-
mentation of an associated(h−h/2) error estimator, the op-
eratorJT needs to be computed. Possible candidates are pre-
sented in the following.

3.2.1 The L2(Γ ) projection ontoS p(T )

The L2(Γ ) orthogonal projectionΠ p
T

onto S p(T ) from
Definition 21 is an easy-to-implement candidate forJT in
Lemma 24. The parameters will subsequently be chosen to
be greater than 0, such that theH̃s(Γ )-stability of Π p

T

‖Π p
T

u‖H̃s(Γ ) ≤Cstab‖u‖H̃s(Γ ), (23)

needs to be available to use Lemma 24. While there holds (23)
for s= 0 andCstab= 1 without any assumption onT , this
might not be the case fors> 0. It can be shown that (23)
holds for s> 0 on a sequence of meshes where the quo-
tient of the biggest and smallest element stays bounded, and
Cstab depends on this bound, cf. [29]. However, as we will
deal with adaptively refined meshes, this quotient will not
stay bounded on the (infinite) sequence of meshes that we
investigate. However, the fact that a sequence of adaptively
refined meshes exhibits a strong structure can be used in or-
der to show useful results. Existing works to this topic in-
clude [17,28,33,34,51,60,101,133].We refer to Section 7.4.2
for a detailed discussion.

3.2.2 The Scott-Zhang projection

The Scott-Zhang projection, developed in [129], is widely
used in numerical analysis. It is a linear and bounded projec-
tion ontoS p(T ) which is defined onH1/2+ε(Γ ) for ε > 0.
The energy spaces in BEM, usually variants ofH1/2(Γ ),
lack the regularity necessary for the classical definition.How-
ever, if the energy space is̃H1/2(Γ ), an operator that maps
into a space with zero boundary conditions is needed. A
slightly modified derivation is therefore necessary and will
be presented here. For ease of presentation, we present the
details only forS 1(T ). Suppose that{zi}N

i=1 is the collec-
tion of degrees of freedom forS 1(T ), which are ordered
in a way such that{zi}N

i=Ñ+1 are on the boundary∂Γ (if Γ is
open, of course). For everyzi , we choose an elementTi with
zi ∈ T i . Denote by

{
φi, j
}d

j=1 the nodal basis ofP1(Ti), and

by
{

ψi,k
}d

k=1 anL2(Ti)-dual basis defined by
∫

Ti

ψi,kφi, j dx= δk, j . (24)

Set ψi to be the dual basis function ofφi, j with φi, j (zi) =

1, and denote by{ηi}N
i=1 the nodal basis ofS 1(T ) with

η j(zk) = δ j ,k. The Scott-Zhang operators are defined forv∈
Lloc

1 (Γ ) via

JT v=
N

∑
i=1

ηi

∫

Ti

ψivdx and J̃T v=
Ñ

∑
i=1

ηi

∫

Ti

ψivdx.

The following results can be shown using arguments
from [129], cf. [12].

Lemma 26 The operator JT : Lloc
1 (Γ )→ S p(T ) is stable

for all s∈ [0,1], i.e.,

‖JT v‖Hs(Γ ) ≤Cstab‖v‖Hs(Γ ) for all v ∈ Hs(Γ ).

The operatorJ̃T : Lloc
1 (Γ ) → S̃ p(T ) is stable for all s∈

[0,1], i.e.,

‖JT v‖H̃s(Γ ) ≤Cstab‖v‖H̃s(Γ ) for all v ∈ H̃s(Γ ).

3.2.3 Nodal interpolation

The nodal interpolatorJT :C(Γ )→S p(T ) is without doubt
the easiest approximation operator when it comes to imple-
mentation, as

JT v=
N

∑
i=1

v(zi)ηi ,

where{zi}N
i=1 and{ηi}N

i=1 are again the degrees of freedom
and it’s associated nodal basis, i.e.,η j(zk) = δ j ,k. However,
JT needs point evaluation, which is only a stable operation
on curves (i.e.,d= 2, cf. Section 2.2) due to the Sobolev em-
bedding theorem. The following result is essentially proved
in [32, Thm. 1] and [42, Cor. 3.4] forp = 1, but transfers
verbatim top≥ 1.
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Lemma 27 For d= 2, i.e.,Γ ⊆Ω a one-dimensional curve,
it holds for all v∈ H1(Γ ) that

‖v− JT v‖Hs(Γ ) ≤Capx‖h1−s
T

v′‖L2(Γ ),

where Capx> 0 depends onlyΓ , σT , and p.

Contrary, for surfaces, i.e.,d = 3, point evaluation is not a
stable operation and a result analogous to the last one can-
not hold. A remedy that can be used at least in(h− h/2)
error estimation is that nodal interpolation can be shown to
be a stable operation when the function to be approximated
is discrete on a finer scale, and the scales do not differ too
much. The following result captures this idea in a mathemat-
ical sense, for a proof see [12].

Lemma 28 Consider a meshT together with its uniform
refinementT̂ , cf. Section 7. For q≥ p, the nodal interpola-
tion operator JT : S̃ q(T̂ )→ S̃ p(T ) satisfies for s∈ [0,1]

‖(1− JT )V̂‖H̃s(Γ ) ≤Capx min
V∈S p(T )

‖h1−s
T

∇Γ (V̂ −V)‖L2(Γ )

as well as

‖h1−s
T

∇Γ (1− JT )V̂‖L2(Γ ) ≤Cstab‖h1−s
T

(1−Π p
T
)∇Γ V̂‖L2(Γ )

for all V̂ ∈ S̃ q(T̂ ). The constant Capx> 0 depends only on
Γ , p, q, s, and the shape-regularityσT , whereas the con-
stant Cstabdepends only on the shape-regularityσT .

The implementation of the nodal interpolation operator is
straight forward and will not be discussed further.

3.3 Localization by Multilevel norms

The localization techniques discussed in Sections 3.1–3.3
depend on either orthogonality and/or approximation. If nei-
ther of those properties is available, one can still use so-
calledmultilevel normsto localize fractional-order Sobolev
norms of discrete functions. The following theorem and its
proof are found in [118]. We will not give the proof here,
as it involves deeper mathematical results such as Besov
spaces.

Theorem 29 Let(Tℓ)ℓ∈N0
be a uniform sequence of meshes

on Γ with corresponding mesh-width hℓ. Denote by
πℓ : L2(Γ ) → P0(Tℓ) the L2 orthogonal projections and
π−1 = 0. Then, there are constants C1,C2 > 0 such that for
all L ≥ 0 and allΦL ∈ P0(TL) it holds that

C1‖ΦL‖2
H̃−1/2(Γ )

≤
L

∑
ℓ=0

hℓ‖(πℓ−πℓ−1)ΦL‖2
L2(Γ )

≤C2(L+1)2‖ΦL‖2
H̃−1/2(Γ )

.

The last theorem gives a reliable, computable bound for the
H̃−1/2 norm of a discrete function. The upper bound in con-
trast depends on the number of levelsL that are involved.
This upper bound cannot be improved in general, cf. [118].

4 A posteriori error estimators for the h-version

The continuous solutionu of any of our model problems is
in general unknown, and so is the erroru−U , whereU is a
discrete approximation tou from a discrete spaceXT based
on a meshT . The idea of a posteriori error estimation is to
estimate the erroru−U in order to

– use an estimate for theglobal error as a stopping crite-
rion, or

– to use local contributions of the error to decide where to
refine the mesh locally.

Adaptive algorithms clearly need estimators that provide lo-
cal contributions, which will be written as

ηT =

(
∑

T∈T

η2
T

)1/2

or ηT =

(
∑
j∈J

η2
j

)1/2

,

whereJ is a certain index set (e.g., the set of nodes). If the
error estimator does not underestimate the error, i.e.,

‖u−U‖ ≤CrelηT

holds true, thenηT is said to bereliable. Likewise, if the
error estimator does not overestimate the error, i.e.,

ηT ≤Ceff‖u−U‖

holds true, it is calledefficient. Here,‖ · ‖ is a norm of in-
terest, typically the energy norm of the problem. Usually,
Crel,Ceff > 0 are unknown (except for(h−h/2) estimators,
whereCeff = 1), but do not depend on the current meshT .

In this Section, we present different approaches for a pos-
teriori error estimation in boundary element methods that
are available in the mathematical literature. The focus is to
show reliability and efficiency and give an overview on the
available approaches. Frequently, we will identify a bilinear
form b : X ×X → R with an operatorB : X → X ′ via

b(v,w) = 〈Bv,w〉X ′×X ,

where〈· , ·〉X ′×X is the chosen duality pairing.

4.1 Residual type estimators

While the exact solutionu of an equation is unknown, the
residualR := F −BU is a computable quantity. Here,B is
the involved operator (i.e., the simple layerV or the hyper-
singular operatorW), andF is the corresponding right-hand
side. In boundary element methods, the residual is usually
measured in a non-local fractional Sobolev norm, and the
different approaches for residual error estimation differin
their approach for localization of this norm.
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4.1.1 Babuška-Rheinboldt-Estimators

In [62], Faermann extended the estimators that were devel-
oped for finite element methods by Babuška and
Rheinboldt [14] to fractional order Sobolev norms. We will
sketch the ideas for the case of the hypersingular integral
equation and lowest-order discretization, and comment on
the other cases afterwards. To that end, denote byu∈H1/2(Γ )

the exact solution to the Neumann problem, see Proposi-
tion 7, and byU ∈S 1(T ) the Galerkin solution, see Propo-
sition 13

Definition 30 Denote by
{

Ψj
}N

j=1 the nodal basis ofS 1(T )

and by R:= (1/2−K′)φ −WU the residual. The BR-type
error estimator is defined by

η2
T =

N

∑
j=1

η2
j , where η j := sup

v∈H1/2(Γ )
Ψj v6=0

〈R,Ψjv〉Γ

‖Ψjv‖H1/2(Γ )

For the hypersingular integral operator, the BR-type estima-
tors are reliable and efficient.

Theorem 31 There are constants Crel,Ceff > 0 such that

C−2
eff η2

T ≤ ‖u−U‖2
H̃1/2(Γ )

≤C2
relη

2
T . (25)

The constant Crel depends on the shape-regularity ofT ,
whereas the constant Ceff depends also onΓ .

Proof We sketch the ideas of [36, Sect. 6]. The exact so-
lution satisfiesu ∈ H1/2

0 (Γ ), henceWu= (1/2−K′)φ in
H1/2(Γ ). AsW−1 is linear and bounded, it follows that‖u−
U‖H̃1/2(Γ ) . ‖R‖H−1/2(Γ ), and

‖R‖H−1/2(Γ ) = sup
‖v‖

H1/2(Γ )
=1
〈R,v〉Γ

≤ ηT sup
‖v‖

H1/2(Γ )
=1

(
N

∑
j=1

‖(v− zj)Ψj‖2
H1/2(Γ )

)1/2

,

with arbitrary zj ∈ R for j = 1, . . . ,N. Now, with
ω j = supp(Ψj), it holds

|(v− zj)Ψj |H1/2(Γ ) . |v|H1/2(ω j )

+diam(ω j)
−1/2‖v− zj‖L2(ω j ).

Choosingzj according to the variant of the Poincaré inequal-
ity of [57, Thm. 7.1] shows the upper bound in (25). To show
the lower bound, note that the index setJ = {1, . . . ,N} can
be decomposed into at mostM pairwise disjoint subsetsJk,
k= 1, . . . ,M, andM depends only on the shape-regularity of
T , such that the supports of the basis functions

{
Ψj
}

j∈Jk
are

pairwise disjoint. Due to the latter property, it is possible to
choose for an arbitrary collection of functionsv j ∈H1/2(Γ ),

j ∈ Jk, a functionwj ∈ H1/2(Γ ) such that on the support of
Ψj it holds

wj =
〈R,Ψjv j〉Γ

‖Ψjv j‖2
H1/2(Γ )

v j .

It follows that

∑
j∈Jk

‖Ψjwj‖2
H1/2(Γ )

= ∑
j∈Jk

〈R,Ψjv j〉2
Γ

‖Ψjv j‖2
H1/2(Γ )

= 〈R, ∑
j∈Jk

Ψjwj〉Γ ,

and hence

∑
j∈Jk

〈R,Ψjv j〉2
Γ

‖Ψjv j‖2
H1/2(Γ )

=

(
〈R,∑ j∈Jk

Ψjwj 〉Γ
)2

∑ j∈Jk
‖Ψjwj‖2

H1/2(Γ )

≤Cloc‖R‖2
H−1/2(Γ )

,

whereCloc is the constant from Lemma 20. Since thev j can
be chosen arbitrarily, we conclude that

∑
j∈JK

η2
j ≤Cloc‖RN‖2

H−1/2(Γ )
≤Cloc‖W‖2‖u−UN‖2

H̃1/2(Γ )
,

where‖W‖= ‖W‖H̃1/2(Γ )→H−1/2(Γ ). Hence, the lower bound

in (25) follows withC2
eff = MCloc‖W‖2. ⊓⊔

In [62], a result like Theorem 31 is proven for bijective, con-
tinuous operatorsB : Hα(Γ )→H−α(Γ ), α ∈R, that satisfy
the Gårding inequality

|b(v,v)| ≥Cell‖v‖2
Hα (Γ )−Cg‖v‖Hα−δ (Γ ) (26)

for all v∈ Hα(Γ ) and someδ > 0, whereCell > 0 andCg ≥
0. As in the case of the hypersingular operator, estimators
of BR-type are associated to a basis

{
Ψj
}N

j=1 of the discrete
trial spaceXT , which is supposed to fulfill the following
assumptions.

Assumption 32 There are constants M∈ N and Cα > 0
such that

(i) The basis
{

Ψj
}N

j=1 can be partitioned into M sets of ba-
sis functions with mutually disjoint support, i.e., there
are at most M disjoint subsets Ik, k= 1, . . . ,M with Ik ⊆
{1, . . . ,N} such that

supp(Ψm)∩supp(Ψn) = /0 for m,n∈ Ik,m 6= n.

(ii) The basis
{

Ψj
}N

j=1 is a partition of unity, i.e.,

N

∑
j=1

Ψj(x) = 1 for almost all x∈ Γ .

(iii) For every function v∈ Hmax{α ,0}(Γ ) there is a function
V ∈ XT such that

N

∑
j=1

‖Ψj(v−V)‖2
Hα (Γ ) ≤Cα‖v‖2

Hα (Γ ).
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(iv) For all v ∈ Hα+δ (Γ ) exists a function VN ∈ XT such
that

‖v−VN‖Hα (Γ ) ≤Capxmax
T∈T

hδ‖v‖Hα+δ (Γ ),

and Capx depends only on the shape-regularityσT and
Γ .

For d = 2, the standard bases ofP p(T ) or S p(T ) al-
ways fulfill (i). By standard bases, we mean functions hav-
ing support only on one element forP p(T ), and the classi-
cal finite-elementhat-functionsfor S p(T ). Ford = 3, the
standard basis ofP p(T ) always fulfills (i), while for the
standard basis ofS p(T ) the constantM depends on shape-
regularity. Independent ofd, the assumption(ii) can always
be fulfilled as long as there are no boundary conditions im-
posed, i.e., in the case ofΓ being not a closed boundary, the
spaceS̃ p(T ) cannot fulfill (ii) . Assumption(iii) holds for
d= 2 forP0(T ) andα =−1/2. In the case ofS 1(T ) and
α = 1/2, the constantCα depends on the shape-regularity of
T . In d = 3, it holds forP0(T ) andα =−1/2 orS 1(T )

and α = 1/2, and the constantCα depends on the shape-
regularity ofT in both cases.

Remark 4Note that the basisΨj is only needed for the com-
putation of the BR-indicators.

In the general case, the following result together with a proof
can be found in [62, Thm. 5.2].

Theorem 33 Denote by B: Hα(Γ ) → H−α(Γ ), α ∈ R, a
linear and bounded operator which satisfies the Gårding in-
equality (26). If Cg > 0, assume that B: Hα−δ (Γ ) →
H−α−δ (Γ ) is bijective and continuous, and denote byXT ⊂
Hα(Γ ) a discrete space which fulfills Assumption 32. If u∈
Hmax{α ,0}(Γ ) and U∈ XT are the exact and the Galerkin
solution of

〈Bu,v〉Γ = 〈F ,v〉Γ for all v ∈ H̃−α(Γ ),

〈BU ,V〉Γ = 〈F ,V〉Γ for all V ∈ XT ,

denote the residual by R:= F −BU and define a BR-type
estimator by

η2
T =

N

∑
j=1

η2
j , where η j := sup

v∈Hα (Γ )
Ψj v6=0

〈R,Ψjv〉Γ
‖Ψjv‖Hα (Γ )

.

Then, the following holds:

– If B is elliptic, i.e., Cg = 0, ηT is reliable, i.e.,

‖u−U‖Hα(Γ ) ≤CrelηT . (27)

– If B is not elliptic but satisfies a G̊arding inequality,
then(27)holds if hT is sufficiently small.

– For α ≥ 0 holds efficiency

ηT ≤Ceff‖u−U‖Hα(Γ ), (28)

where Ceff depends on B,Γ , and M.
– For α ∈ R holds efficiency(28), where Ceff depends on

dim(X).
– For d = 2 and α ∈ (−1/2,0) holds(28) if the mesh is

sufficiently small, where Ceff depends on A,Γ , α, and
the shape-regularity ofT .

As the BR-type estimators are defined as a supremum, they
are not computable. By definition, anyv ∈ Hα(Γ ) with
Ψjv 6= 0 fulfills

〈R,Ψjv〉Γ

‖Ψjv‖Hα (Γ )
≤ η j ,

providing a lower, computable bound by choosing, e.g.,v=
Ψj . Computable upper bounds are more involved. In [62], it
is shown that ford = 2, it holds

η j .





diam(ω j)
α‖RN‖L2(ω j ) for α ≥ 0,

|RN|2H−α (ω j )
+

∑[−α ]
j=0 diam(ω j)

2( j+α)|RN|2H j (ω j )
for α < 0.

For the case of the hypersingular integral operator (α =

1/2), this upper bound corresponds to the weighted residual
error estimator which will be considered in Section 4.1.3.

4.1.2 RYW-Estimators

These types of estimators were the first ones available for
boundary element methods. Developed and analyzed by Rank
[120] and Wendland-Yu [149], they were labeled
RYW-Estimators in [62]. These estimators are connected to
the Babuška-Rheinboldt estimators from Section 4.1.1. Again
we sketch the ideas for the case of the hypersingular integral
equation and lowest-order discretization first. To that end,
denote byu ∈ H1/2(Γ ) the exact solution to the Neumann
problem of Proposition 7, and byU ∈ S 1(T ) the Galerkin
solution of the discrete version of Proposition 13.

Definition 34 Denote by
{

Ψj
}N

j=1 the nodal basis ofS 1(T ).
For every j= 1, . . . ,N, consider the space

H j := H̃1/2(supp(Ψj)
◦),

which is a closed subspace of H1/2(Γ ). Defineζ j ∈ H j as
the unique solution of

〈Wζ j ,v j〉Γ = 〈W(u−UN) ,v j〉Γ for all v j ∈ H j ,

and set

η2
T =

N

∑
j=1

η2
j whereη j := ‖ζ j‖H1/2(Γ ).
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Theorem 35 There are constants Crel,Ceff > 0 such that

C−2
eff η2

T ≤ ‖u−U‖2
H1/2(Γ )

≤C2
relη

2
T . (29)

The constant Crel > 0 depends only on the shape-regularity
of T .

Proof Denote byηBR the Babuška-Rheinboldt estimator
from Definition 30 with its local contributionsηBR, j and by
R := (1/2−K′)φ −WUN the residual. Now, ifv∈ H1/2(Γ )

with Ψjv 6= 0, it followsΨjv∈ H j and hence

〈R,Ψjv〉Γ = 〈Wζ j ,Ψjv〉Γ . ‖ζ j‖H1/2(Γ )‖Ψjv‖H1/2(Γ ).

Taking the supremum over all thosev yields

ηBR, j ≤ η j ,

such that reliability, i.e., the upper bound in (29), follows
from Theorem 31. To show efficiency, choose forδ > 0 a

functionv(δ )j such that

‖Ψjv
(δ )
j − ζ j‖H1/2(Γ ) ≤ δ .

Then,

η2
j ≃ 〈Wζ j ,ζ j〉Γ = 〈Wζ j ,Ψjv

(δ )
j 〉Γ + 〈Wζ j ,ζ j −Ψjv

(δ )
j 〉Γ ,

and

〈Wζ j ,Ψjv
(δ )
j 〉Γ ≤ ηBR, j‖Ψjv

(δ )
j ‖H1/2(Γ ),

〈Wζ j ,ζ j −Ψjv
(δ )
j 〉Γ . δ‖ζ j‖H1/2(Γ ).

Due to‖Ψjv
(δ )
j ‖H1/2(Γ ) ≤ η j + δ it follows that

η2
j . ηBR, j(η j + δ )+ δη j ,

such that the limitδ → 0 finishes the proof of efficiency.⊓⊔

In [149], estimators of this type are analyzed for bijective,
continuous operatorsB : Hα(Γ )→H−α(Γ ), α ∈R, that sat-
isfy the Gårding inequality (26) with discretizations that sat-
isfy (ii) and(iii ) of Assumption 32. The following Theorem
summarizes the available results on the RYW estimators.

Theorem 36 ([62,149])Denote by B: Hα(Γ )→ H−α(Γ ),
α ∈ R, a linear and bounded operator which satisfies the
Gårding inequality (26). If Cg > 0, assume that
B : Hα−δ (Γ )→H−α−δ (Γ ) is bijective and continuous, and
denote byXT ⊂ Hα(Γ ) a discrete space which fulfills(ii)
and (iii ) of Assumption 32. Suppose that there is a basis{

Ψj
}N

j=1 of XT such that there are at most M disjoint sub-

sets Ik, k = 1, . . . ,M, Ik ⊆ {1, . . . ,N}, which satisfy the
strengthened Cauchy-Schwarz inequality

〈Avm ,vn〉Γ ≤ (#Ik)
−1〈Avm ,vm〉1/2

Γ 〈Avn ,vn〉1/2
Γ

for all m 6= n∈ Ik and vj ∈ H j , with

H j := H̃α(supp(Ψj)
◦).

If u ∈ Hα(Γ ) and U∈ XT are the exact and the Galerkin
solution of

〈Au,v〉Γ = 〈F ,v〉Γ for all v ∈ H̃−α(Γ ),

〈AU ,V〉Γ = 〈F ,V〉Γ for all V ∈ XT ,

denote the residual by R:= F −BU and define a RYW-type
estimator by

η2
T =

N

∑
j=1

η2
j , where η j := ‖ζ j‖Hα (Γ ),

whereζ j ∈ H j is defined by

〈Aζ j ,v j〉Γ = 〈R,v j〉Γ for all v j ∈ H j .

Then, the following holds:

– If B is elliptic, i.e., Cg = 0, ηT is reliable, i.e.,

‖u−U‖H̃α(Γ ) ≤CrelηT . (30)

– If B is not elliptic but satisfies a G̊arding inequality, i.e.,
Cg > 0, then(30)holds if hT is sufficiently small.

– For α ≥ 0 holds efficiency

ηT ≤Ceff‖u−U‖H̃α(Γ ), (31)

where Ceff depends on B,Γ , and M.
– For α ∈ R holds efficiency(28), where Ceff depends on

M.
– For d = 2 andα ∈ (−1/2,0) efficiency(31)holds if the

mesh is sufficiently small. The efficiency constant Ceff >
0 depends on B,Γ , α and on the shape-regularity ofT .

Proof The proof was first shown in [149], with efficiency al-
ways dependent onM. Later, Faermann [62] showed equiva-
lence of the RYW and the BR estimators, thereby obtaining
efficiency without dependence onM for α ≥ 0 andd = 2
andα ∈ (−1/2,0). ⊓⊔

The constantM in the last theorem can always be chosen as
M = N by decomposing the set of degrees of freedom into
it’s single elements. In [150] it is postulated thatM can be
chosen even much smaller.
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4.1.3 Weighted-residual estimators

Estimators of this kind usually employ orthogonality proper-
ties to localize the residuals’ fractional norm by a weighted
norm of integer order. The very first paper in this sense is [44],
where the following idea was carried out in a more gen-
eral Banach space setting: Suppose thatXT ⊂ X is a dis-
crete space and denote byU the Galerkin approximation to
u∈X , cf. (4), and byR:= Bu−BU the residual. Due to the
open mapping theorem,B−1 is bounded and it holds

‖u−U‖X ≤ ‖B−1‖X ′→X ‖R‖X ′ .

We assume that there are spacesX0,X1 with X ′
0 ⊇ X ′ ⊇

X ′
1 , such thatXT ⊂ X0, R∈ X ′

1 , and

‖u‖X ′ ≤C‖u‖1−s
X ′

0
‖u‖s

X ′
1

for all u∈ X
′

1 ,

0= 〈V ,R〉X0×X ′
0

for all V ∈ XT .
(32)

Then, according to the theorem of Hahn-Banach, there is
ρ ∈ X0 with

‖ρ‖2
X0

= ‖R‖2
X ′

0
= 〈ρ ,R〉X0×X ′

0
= 〈ρ −V ,R〉X0×X ′

0

for all V ∈ XT , and from (32) we infer, using the Cauchy-
Schwarz inequality, that

‖u−U‖X . ‖R‖s
X ′

1
inf

V∈XT

‖ρ −V‖1−s
X0

.

For example, in the context of weakly singular integral equa-
tions in d ≥ 2 one choosesB = V, X = H̃−1/2(Γ ), X ′

0 =

L2(Γ ), X ′
1 = H1(Γ ), s= 1/2, andXT := P p(T ). Then,

ρ = Rand due to Lemma 22,

inf
V∈P p(T )

‖ρ −V‖L2(Γ ) . ‖hT ∇Γ R‖L2(Γ ).

This shows the following, cf. [44, Thm. 2].

Theorem 37 If φ ∈ H̃−1/2(Γ ) is the exact solution of Propo-
sition 4 or 5 with f∈H1(Γ ) andΦ ∈P p(T ) is the respec-
tive Galerkin approximation from Proposition 9 or 10, then

‖φ −Φ‖H̃−1/2(Γ ) . ‖R‖1/2
H1(Γ )

‖hT ∇Γ R‖1/2
L2(Γ )

This method can be applied to problems involving hyper-
singular integrals [44, Thms. 3, 4] as well as transmission
problems [44, Sec. 5]. However, the a posteriori error esti-
mates based on this method are of the form

η2
T :=

(
∑

T∈T

η2
T

)1/2

·
(

∑
T∈T

h2
Tη2

T

)1/2

,

which reflects the fact that this method does not fully lo-
calize a fractional norm, see the discussions in [44, Sec. 6]

and [45, Sec. 1]. This issue can be overcome when consider-
ing a uniform sequence of meshes, where the result of The-
orem 37 clearly reduces to

‖φ −Φ‖H̃−1/2(Γ ) . ηT :=

(
∑

T∈T

η2
T

)1/2

with ηT := ‖h1/2
T

∇Γ R‖L2(T).

(33)

Further works on weighted residual error estimation in BEM
focus on establishing the reliability estimate (33) also for
locally refined meshes. The first one to mention is [45]. For
weakly singular equations, it is shown that ford = 2 it holds

‖φ −Φ‖H̃−1/2(Γ ) . σ1/2
T ∑

T∈T

h1/2
T (h2

T +1)1/4‖R′‖L2(T),

whereσT is the shape-regularity constant ofT and(·)′ ab-
breviates the arclength derivative∇Γ (·) for d = 2. An anal-
ogous result holds for equations involving the hypersingu-
lar operator. The most advanced results regarding reliable
a posteriori estimation by weighted residuals are due to [32]
for d = 2 and [38,39] ford = 3. The first theorem that will
be presented is concerned with the a posteriori error estima-
tion for weakly singular integral equations, cf. [32, Ex. 1]
for d = 2 and [39, Cor. 4.2] ford = 3. The idea of the proof
will be presented briefly.

Theorem 38 If φ ∈ H̃−1/2(Γ ) is the exact solution of Propo-
sition 4 or 5 with f∈H1(Γ ) andΦ ∈P p(T ) is the respec-
tive Galerkin approximation from Proposition 9 or 10, then

‖φ −Φ‖H̃−1/2(Γ ) ≤Crel‖h1/2
T

∇Γ R‖L2(Γ ) =: ηT ,

where R denotes the residual, i.e., R= f −VΦ in the case
of Proposition 4 and R= (1/2+K) f −VΦ in the case of
Proposition 5. The constant Crel > 0 depends only onΓ , the
shape-regularityσT , and on the polynomial degree p.

Proof We will show the result forΓ = ∂Ω a closed bound-
ary. The case of an open boundary then follows easily. Sta-
bility of V−1 shows

‖φ −Φ‖H̃−1/2(Γ ) . ‖R‖H1/2(Γ ).

The set of nodesN of the meshT can be split intom> 0
subsets,mdepending only onσT , into setsN i , i = 1, . . . ,m,
such that

N =
m⋃

i=1

N
i ,

and supp(ϕz1)∩supp(ϕz2) = /0 for z1,z2 ∈N i , whereφz de-
notes the hat function associated to a vertexz ∈ N . As
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(
∑m

j=1a j

)2
≤ m

(
∑m

j=1a2
j

)
, it follows from the triangle in-

equality and Lemma 20 that

‖R‖2
H1/2(Γ )

≤ m
m

∑
i=1

‖ ∑
z∈N i

ϕzR‖2
H̃1/2(Γ )

≤Clocm ∑
z∈N

‖ϕzR‖2
H̃1/2(ωz)

,

whereωz := supp(ϕz). Friedrich’s inequality shows

‖ϕzR‖2
H̃1/2(ωz)

. hz(1+h2
z)

1/2‖∇Γ (ϕzR)‖2
L2(ωz)

,

wherehz := diam(ωz). Now, asR is orthogonal to piecewise
constants, a Poincaré inequality shows

‖R‖L2(ωz) . diam(ωz)‖∇Γ R‖L2(ωz),

and taking into account‖ϕz‖L∞(Γ ) ≃ 1 and‖∇Γ ϕz‖L∞(Γ ) ≃
h−1

z shows the result. ⊓⊔

An analogous estimate holds for hypersingular integral equa-
tions, cf. [32, Ex. 5] ford = 2 and [38, Thm. 4.2] ford = 3.

Theorem 39 If u ∈ H̃1/2(Γ ) is the exact solution of Propo-
sition 6 or 7 withφ ∈ L2(Γ ) and U ∈ S p(T ) is the re-
spective Galerkin approximation from Proposition 12 or 13,
then

‖u−U‖H̃1/2(Γ ) ≤Crel‖h1/2
T

R‖L2(Γ ),

where R denotes the residual, i.e., R= φ −WU in the case
of Prop. 6 and R= (1/2−K′)φ −WU in the case of Prop. 7.
The constantCrel > 0depends only onΓ , the shape-regularity
σT , and on the polynomial degree p.

The preceding two theorems provide reliable and fully lo-
calized error estimators for Galerkin methods for weakly
singular and hypersingular integral equations. Up to now
these estimators are the only ones which can be mathemati-
cally shown to drive adaptive BEM algorithms with optimal
rates, cf. Section 8.5. The efficiency of this type of estima-
tor is more involved and requires a careful analysis of the
(possible) singular behavior of the solutions of the problem
at hand. In the current optimality theory for adaptive algo-
rithms, efficiency can be used to characterize approximation
classes and therefore provides a means to work only with
the error estimator, cf. [7].

Efficiency results for the estimators of Theorem 38 and 39
have first been proved ford = 2 and globally quasi-uniform
meshes in [31]. We state the idea in the context and with no-
tation of Theorem 38. As we consider globally quasi-uniform
meshes, we treat the mesh-withhT of meshT as a constant
rather than a function. For a given meshT with mesh size
hT , suppose thatT⋆ ≥ T is a finer mesh with mesh size
hT⋆ ≤ hT . Recall thatπT andπT⋆ denote theL2 projections
ontoP0(T ) andP0(T⋆), respectively, and thatR denotes

the residual onT , using the Galerkin solutionΦ ∈P p(T ).
As (1−πT⋆) = (1−πT⋆)(1−πT⋆), it follows from the ap-
proximation properties ofπT⋆ that

‖(1−πT⋆)φ‖H̃−1/2(Γ ) . h1/2
T⋆

‖(1−πT⋆)φ‖L2(Γ ),

and an inverse estimate then shows

h1/2
T

‖πT⋆φ −Φ‖L2(Γ ) .

h1/2
T

‖πT⋆φ −φ‖H̃−1/2(Γ )+

(
hT

hT⋆

)1/2

‖φ −Φ‖H̃−1/2(Γ ).

Finally, this gives

h1/2
T

‖R‖H1(Γ ) . h1/2
T

‖φ −Φ‖L2(Γ )

. h1/2
T

‖φ −πT⋆φ‖L2(Γ )+

(
hT

hT⋆

)1/2

‖φ −Φ‖H̃−1/2(Γ ).

(34)

GivenT and an arbitraryq<1, the fine meshT⋆ can always
be chosen such that

‖φ −πT⋆φ‖L2(Γ ) ≤ q‖φ −πT φ‖L2(Γ ) ≤ q‖φ −Φ‖L2(Γ )

(35)

holds. It follows that (34) and (35) yield

h1/2
T

‖R‖H1(Γ ) .

(
hT

hT⋆

)1/2

‖φ −Φ‖H̃−1/2(Γ ). (36)

The meshT⋆ depends onT and onq (it is a refinement
of T that fulfills (35)). However, from (36) we see that ef-
ficiency can only hold if it is guaranteed thathT ≤ ChT⋆ ,
where 0< C < 1 only depends onq. This can be done by
exploiting explicit knowledge of the qualitative behaviorof
φ , cf. [31, Prop. 1] for globally quasi-uniform meshes and
weakly singular and hypersingular equations. The presented
approach is analyzed in a local fashion in [7] to obtain effi-
ciency results on locally refined meshes for the weakly sin-
gular case. The corresponding result is the following.

Theorem 40 Suppose d= 2 and that the data fulfill f∈
H1(Γ ) and f ∈ Hs for some s> 2 on the different sides of
the polygonal boundaryΓ . Then,

C−1
eff ‖h1/2

T
∇Γ R‖L2(Γ ) ≤‖φ −Φ‖H̃−1/2+

C(s,ε)

(
∑

T∈T

hT (T)min{2s,5}−1−ε

)

for all ε > 0. The constant Ceff > 0 depends onlyΓ andσT ,
whereas C(s,ε) additionally depends on s andε.
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4.1.4 Faermann’s local double norm estimators

It was suggested in [72] to split the outer integral of the
Hs norm of the residual in contributions on different faces
of the mesh. The authors used this approach to present an
adaptive boundary element algorithm for the solution of the
Helmholtz equation, but nevertheless this procedure does
not give fully localized indicators. Their approach was re-
fined in [63,64], where localization techniques for Sobolev-
Slobodeckij norms (cf. Section 3) were deduced and put into
action to derive fully localized error indicators. Up to now,
this is the only way to obtain localized estimators that are
both reliable and efficient (on shape-regular meshes) with-
out further conditions or additional analysis. Their opera-
tional area is restricted to continuous and bijective operators

B : H̃s+2α(Γ )→ Hs(Γ ), s∈ (0,1),α ∈R.

The upper bound ons stems from the fact that we deal with
Lipschitz domains, but this bound can be enlarged on
smoother domains. For arbitraryd, denote byφ ∈ H̃s+2α(Γ )
the exact solution of the equation

〈Bφ ,ψ〉Γ = 〈F ,ψ〉Γ for all ψ ∈ H̃−s(Γ ).

For a discrete spaceXT ⊆ H̃s+2α(Γ ), denote byΦ ∈ XT

the Galerkin solution

〈BΦ ,V〉Γ = 〈F ,V〉 for all V ∈ XT .

Denote byR := F −BΦ ∈ Hs(Γ ) the residual. The localiza-
tion result of Theorem 17 immediately provides a localized
a posteriori estimator.

Theorem 41 Suppose that the assumptions and notations
from the beginning of this section hold. For a meshT , define
the a posteriori error estimator

η2
T := ∑

z∈N

η2
z + ∑

T∈T

η2
T with

η2
z := |R|2Hs(ωz)

, η2
T := h−2s

T ‖R‖2
L2(T)

.

Then,ηT is always reliable, i.e.,

‖φ −Φ‖H̃s+2α (Γ ) ≤CrelηT ,

and Crel depends only on s andΓ . If P p(T ) ⊆ XT or
S p(T )⊆ XT , then we have efficiency

ηT ≤Ceff‖φ −ΦN‖H̃s+2α (Γ ),

and Ceff depends only on the shape-regularityσT .

Proof To show reliability, note first thatB−1 is bounded due
to the bounded inverse theorem. This gives

‖φ −ΦN‖2
H̃s+2α (Γ )

. ‖RN‖2
Hs(Γ ) = ‖RN‖2

L2(Γ )+ |RN|2Hs(Γ ).

TheHs-part can be bounded immediately with Theorem 17.
There is a constantC(Γ )> 0 such that for allT ∈T it holds
thathT ≤C(Γ ), and theL2-part can be hence bounded by

‖R‖2
L2(Γ ) ≤C(Γ )2s ∑

T∈T

h−2s
T ‖R‖2

L2(T)
.

This yields reliability. To show efficiency, we note that due
to the assumptionsP p(T )⊆XT or S p(T )⊆XT it fol-
lows that〈R,Ψ〉Γ = 0 for all discrete functionsΨ ∈ XT .
Lemma 18 shows that

∑
T∈T

h−2s
T ‖RN‖2

L2(T)
≤C(σT ) ∑

z∈N

|RN|2Hs(ωz)
.

Hence,

η2
T . ∑

z∈N

|RN|2Hs(ωz)
. ‖RN‖2

Hs(Γ ),

and continuity ofB shows the efficiency. ⊓⊔

The estimator of the last theorem is always reliable, and on
shape-regular meshes it is also efficient. With Theorem 19,
the reverse situation can be generated.

Theorem 42 Suppose that the assumptions and notations
from the beginning of this section hold. For a meshT , define
the a posteriori error estimator

η2
T := ∑

z∈N

η2
z with η2

z := |R|2Hs(ωz)
.

Then,ηT is always efficient, i.e.,

ηT ≤Ceff‖φ −Φ‖H̃s+2α (Γ ),

and Ceff depends only on s andΓ . If P p(T ) ⊆ XT or
S p(T )⊆ XT , then it is also reliable,

‖φ −Φ‖H̃s+2α (Γ ) ≤CrelηT ,

and Crel depends only on the shape-regularityσT .

4.2 Estimators based on space enrichment

The principal idea for the construction of error estimators
based on space enrichment is that, for a given approxima-
tion, the Galerkin error can be approximated by replacing
the exact solution with an improved approximation from an
enriched discrete space. In the following, we introduce the
basic setting for this methodology. Afterwards, in Subsec-
tions 4.2.1 and 4.2.2, we discuss specific variants within this
framework.

To fix notation, let us consider the variational problem
specified in Section 1.1, i.e., findu in a Hilbert spaceX
such thatu is a solution of equation (3), whereb is a contin-
uous and elliptic bilinear form, i.e. (1) and (2) hold true with
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constantsCcont,Cell > 0. Recall that for a discrete approxi-
mationU ∈XT ⊂X , there holds Céa’s Theorem (6). Now,
for the error estimation, one considers an enriched approxi-
mation spaceXT ⊂ X̂T ⊂X with correspondingGalerkin
approximationÛ ∈ X̂T . Under appropriate conditions,

ηT := ‖Û −U‖X (37)

is a good approximation of the error‖u−U‖X .
The estimatorηT is usually not practical for two rea-

sons. First, it requires the calculation of the improved ap-
proximation Û , which is expensive. Second, considering
boundary element methods for integral equations of the first
kind, the X -norm is non-local so thatηT does not im-
mediately provide local informations that could be used for
adaptivity. Therefore, further techniques are needed to avoid
these problems. The resulting methods are callederror esti-
mators based on space enrichment. First and common step
for their analysis is to study reliability and efficiency ofηT

for the estimation of‖u−U‖X . Reliability of the estimator
is based on the “richness” of̂XT which is usually formu-
lated as the followingsaturation assumption.

Assumption 43 (saturation) Let (Xℓ)
∞
ℓ=1 be a sequence

of approximation spacesXℓ ⊂ X with corresponding se-
quence of enriched spaces(X̂ℓ)

∞
ℓ and Galerkin projections

Uℓ ∈ Xℓ, Ûℓ ∈ X̂ℓ. There exists a constant Csat∈ [0,1) such
that

‖u−Ûℓ‖X ≤Csat‖u−Uℓ‖X for all ℓ ∈ N.

In the following, when referring to this assumption and to
simplify notation, we will simply write

‖u−Û‖X ≤Csat‖u−U‖X

in the sense thatU∈XT is an element of a family of Galerkin
approximations and that̂U is an improved approximation
from an enriched spacêXT .

Reliability and efficiency ofηT (or variants) in this or
similar situations are based on the saturation assumption and
have been studied many times in the literature, to our knowl-
edge first in [16]. An immediate consequence of the satu-
ration assumption, combined with the triangle inequality,is
the following two-sided estimate, showing reliability andef-
ficiency of the global estimator (37).

Proposition 44 The estimatorηT is efficient, i.e.,

ηT ≤ Ccont

Cell
‖u−U‖X .

In the situation of Assumption 43,ηT is also reliable, i.e.,

‖u−U‖X ≤ (1−Csat)
−1ηT

Hence,ηT is an efficient measure for the error, whereas it’s
reliability hinges on the saturation assumption. In the case
that the bilinear formb(·, ·) is symmetric, both estimates can
be improved when they are formulated in terms of the so-
calledenergy norm‖ · ‖b :=

√
b(·, ·). In many publications,

the saturation assumption is formulated with respect to this
norm anyhow, whereas Assumption 43 uses theX -norm.
Of course, both norms are equivalent, i.e.,

Cell‖v‖2
X ≤ ‖v‖2

b ≤Ccont‖v‖2
X for all v∈ X . (38)

Using this norm equivalence, Assumption 43 yields

‖u−Û‖b ≤
√

Ccont/Cell Csat‖u−U‖b.

However, from (1) and (2) it follows that

1≤Ccont/Cell,

which does not provide a saturation assumption in the en-
ergy norm. Proposition 46 below shows how to overcome
this problem For convenience, we separately formulate the
saturation assumption for the energy norm first.

Assumption 45 (saturation in energy norm) Let us consider
the situation of Assumption 43 and let the bilinear form
b(·, ·) be symmetric. We assume that there exists a constant
Csata∈ [0,1) such that

‖u−Ûℓ‖b ≤Csata‖u−Uℓ‖b for all ℓ ∈ N.

As previously in Assumption 43, we will use this estimate
for a single discrete spaceXT understanding that it is an
element of a family of spaces (with corresponding Galerkin
approximations and enrichments).

We are ready to present the results corresponding to
Proposition 44 in the case of a symmetric bilinear form and
in terms of the energy norm.

Proposition 46 Let the bilinear form b(·, ·) be symmetric
andX̂T be an enriched space ofXT ⊂ X . Define an esti-
mator by

ηT := ‖Û −U‖b.

Then, the estimatorηT is efficient, i.e.,

ηT ≤ ‖u−U‖b.

If additionally Assumption 45 holds, thenηT is also reli-
able, i.e.,

‖u−U‖b ≤ (1−C2
sata)

−1/2ηT .

Furthermore, Assumption 43 implies Assumption 45.
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Proof Symmetry ofb(·, ·), Galerkin orthogonality and the
saturation assumption 45 immediately yield

‖Û −U‖2
b ≤ ‖u−U‖2

b ≤C2
sata‖u−U‖2

b+ ‖Û −U‖2
b.

This proves both reliability and efficiency. To show that satu-
ration in the norm‖·‖X implies saturation in the norm‖·‖b,
use the reliability of Proposition 44 and the norm equiva-
lence (38) to see

‖u−U‖b ≤
√

Ccont/Cell

1−Csat
‖Û −U‖b.

Galerkin orthogonality then yields

‖u−Û‖2
b = ‖u−U‖2

b−‖Û −U‖2
b

≤ ‖u−U‖2
b−
(√

Ccont/Cell

1−Csat

)−2

‖u−U‖2
b

and saturation in the energy norm‖ · ‖b follows with

Csata=


1−

(√
Ccont/Cell

1−Csat

)−2



1/2

.

As 1 ≤ Ccont/Cell and Csat ∈ [0,1) it follows that Csata∈
[0,1). ⊓⊔

4.2.1 Two-level estimators

The term two-level estimator refers to the fact that, using
the notationX̂T andXT ⊂ X from Section 4.2, the space
X̂T is generated like

X̂T = XT ⊕ZT . (39)

That meansX̂T is generated by adding to the approxima-
tion spaceXT a second level as enrichment. In other words,
X̂T has a hierarchical two-level decomposition like (39). In
order to produce local contributions to the final error estima-
tor, the second level is usually further decomposed so that

X̂T = ZT ,0⊕ZT ,1⊕ZT ,2⊕·· ·⊕ZT ,L (40)

with ZT ,0 := XT if we want to be consistent with (39).
Here, the numberL of subspacesZT , j ⊂ ZT can be fixed
or can vary with the dimension ofXT .

In the following, let us consider the simplest case of
a symmetric (and elliptic, continuous) bilinear formb(·, ·).
Based on the decomposition (40) one defines error indica-
tors

η j := ‖Pj(Û −U)‖b, j = 0, . . . ,L, (41)

with

Pj : X̂T →ZT , j : b(Pjv,w)= b(v,w) for all w∈ZT , j .

The projectorsPj are calledadditive Schwarz projectorsand
P :=∑L

j=0Pj is theadditive Schwarz operatorcorresponding
to the decomposition (40), cf. [119,131,143]. The operator
P corresponds to a preconditioned stiffness matrix and is re-
lated to techniques from domain decomposition when (40)
is constructed via such a decomposition. However, in prin-
ciple, (40) can be generated by any means, in particular to
allow for indicators aimed at anisotropic mesh refinement,
cf., e.g., [61]. Finally, having at hand the indicatorsη j , an
error estimator is defined by

ηT :=
( L

∑
j=0

η2
j )

1/2. (42)

The following simple result shows that the calculation ofηT

is not expensive if the dimensions ofZT , j ( j > 0) are small
andZT ,0 = XT . In particular, there is no need to calculate

the improved Galerkin approximation̂U ∈ X̂T .

Lemma 47 The additive Schwarz projections Pj(Û−U) can
be calculated by solving problems in the subspacesZT , j

without knowingÛ,

b(Pj(Û −U),V) = L(V)−b(U,V) for all V ∈ ZT , j .

Moreover, ifZT ,0 ⊂ XT thenη0 = 0.

Proof These properties follow immediately by the defini-
tion of the projectors and the Galerkin orthogonality. ⊓⊔

To show reliability and efficiency ofη one usually shows
stability of the decomposition (40). This can be formulated
in different equivalent ways as follows (see, e.g., [119,131,
143]).

Proposition 48 Let P be the additive Schwarz operator re-
lated to the symmetric bilinear form b(·, ·) and discrete space
X̂T with decomposition(40). Then, for two positive num-
bersλ0, λ1 the following statements are equivalent.
(i) There hold the boundsλmin(P)≥λ0 andλmax(P)≤λ1 for
the minimum and maximum eigenvalues of P, respectively.

(ii) λ0

L

∑
j=0

b(v j ,v j)≤ b(v,v)≤ λ1

L

∑
j=0

b(v j ,v j)

for all v = ∑L
j=0v j ∈ X̂T with vj ∈ ZT , j ( j = 0, . . . ,L).

(iii ) λ0‖v‖2
b ≤ b(Pv,v)≤ λ1‖v‖2

b for all v ∈ X̂T .

For a decomposition of̂XT that, unlike (40), is not di-
rect, the spectral properties ofP are characterized slightly
differently. In the following we will consider only direct de-
compositions (40) ofX̂T .
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In most applications, the stability of (40) is ensured by
two independent steps, first the enrichment ofXT by a sec-
ond levelZT so that the decomposition (39) is stable and,
second, a stable decomposition of the second level,

ZT = ZT ,1⊕·· ·⊕ZT ,L. (43)

Of course, the stability of (39) is optimal whenXT andZT

are orthogonal,

b(v,v) = b(x,x)+b(z,z)

for all v= x+z∈ X̂T with x∈XT andz∈ZT , cf. Propo-
sition 48, (iii). A generalization of this case is the so-called
strengthened Cauchy-Schwarz inequality.

Definition 49 The decomposition(39) satisfies astrength-
ened Cauchy-Schwarz inequalityif there exists a number
γ ∈ [0,1) such that

b(x,z)≤ γ‖x‖b‖z‖b ∀x∈ XT , z∈ ZT .

Immediate implication of the strengthened Cauchy-
Schwarz inequality is the stability of the two-level decom-
position.

Lemma 50 Let the decomposition(39) satisfy a strength-
ened Cauchy-Schwarz inequality (with constantγ) and let
(43)be a stable decomposition with constantsλ Z

0 andλ Z
1 ,

λ Z
0

L

∑
j=1

b(v j ,v j)≤ b(v,v)≤ λ Z
1

L

∑
j=1

b(v j ,v j) (44)

for all v = ∑L
j=1v j ∈ ZT with vj ∈ ZT , j ( j = 1, . . . ,L).

Then,(40) is stable in the sense of Proposition 48 with

λ0 ≥ (1−γ)min{1,λ Z
0 } and λ1 ≤ (1+γ)max{1,λ Z

1 }.

Proof The strengthened Cauchy-Schwarz inequality implies
that

(1− γ)
(
‖v0‖2

b+ ‖vZ ‖2
b

)
≤ ‖v0+ vZ ‖2

b

≤ (1+ γ)
(
‖v0‖2

b+ ‖vZ ‖2
b

)

for all v0 ∈ XT andvZ ∈ ZT . The assertion then follows
immediately by application of (44). ⊓⊔

A combination of Propositions 46 and 48 leads to the
following general result on the efficiency and reliability of a
two-level error estimator.

Theorem 51 Let the bilinear form b(·, ·) be symmetric and
X̂T be an enriched space ofXT ⊂ X . Assume that the
decomposition(40) is stable in the sense that there exist
positive numbersλ0, λ1 that satisfy the relations of Propo-
sition 48. Then the estimatorηT from (42) defined by the
local projections(41) is efficient,

λ−1/2
1 ηT ≤ ‖u−U‖b.

If, additionally, Assumption 45 holds thenηT is also reli-
able,

‖u−U‖b ≤ (1−C2
sata)

−1/2λ−1/2
0 ηT .

Here, U∈ XT is the Galerkin projection of the exact solu-
tion u∈ X of the abstract problem(3).

Proof By definition of ηℓ and the projectorsPj , and using
the characterization by Proposition 48, (iii), there holds

η2
T =

L

∑
j=0

η2
j =

L

∑
j=0

b
(
Pj(Û −U),Pj(Û −U)

)

=
L

∑
j=0

b
(
Û −U,Pj(Û −U)

)
= b
(
Û −U,P(Û −U)

)

{
≤ λ1‖Û −U‖2

b = λ1η2
T
,

≥ λ0‖Û −U‖2
b = λ0η2

T
,

whereηℓ is the estimator defined in Proposition 46. The as-
sertions follow from the properties ofηℓ. ⊓⊔

Having set the abstract (additive Schwarz) framework
for two-level error estimators we proceed considering the
specific cases of low order approximations to solutions of
weakly singular and hypersingular integral equations.

Weakly singular operator:Let us consider the weakly sin-
gular integral equation (see Proposition 4) on an open or
closed polyhedral surfaceΓ , with solutionφ ∈ H̃−1/2(Γ ).
For simplicity we writeH̃−1/2(Γ ) = H−1/2(Γ ) also on a
closed surface. For a meshT of shape-regular triangles and
quadrilaterals, and discrete spaceP0(T ) of piecewise con-
stant functions,Φ ∈ P0(T ) denotes the Galerkin approx-
imation of φ , cf. Proposition 9. We stress the fact that the
mesh needs not be quasi-uniform and thequadrilaterals
can be anisotropicbut must be convex and satisfy a min-
imum angle condition In the notation introduced previously,

b(u,v) = 〈Vu,v〉Γ , X = H̃−1/2(Γ ), XT = P
0(T ).

Now, in order to define a two-level estimator for the error
‖φ −Φ‖H̃−1/2(Γ ), we define the second level spaceZT as

piecewise constant functions on a refined meshT̂ with the
restriction that the functions have integral-mean zero on any
element ofT :

ZT = {V ∈ P
0(T̂ ) | 〈V ,1〉T = 0 for all T ∈ T }.

The enriched space is

X̂T = P
0(T )⊕ZT = P

0(T̂ ).

Here, we generatêT by refining every element ofT in
such a way that elements of̂T are shape-regular, see Fig-
ure 13. In this enrichment step the objective is two-fold. Es-
sential is to make the saturation assumption hold. Second,
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Fig. 13 Some elements ofT (on the left) and their refinements to
shape-regular elements of̃T (on the right)

if one wants to perform anisotropic mesh refinement then
one needs sufficiently many unknowns on every old element
that allow for direction indicators. Some more details will
be given below.

In this relatively general setting one can show reliabil-
ity (based on saturation) and efficiency of the element-based
error estimator

ηT :=
(

∑
T∈T

η2
T

)1/2
, ηT := ‖PT(Φ̂ −Φ)‖b. (45)

Here,Φ̂ ∈ X̂T is the improved Galerkin approximation and,
for anyT ∈ T andZT := {v∈ ZT | supp(v)⊂ T̄},

PT : X̂T → ZT : 〈VPTv ,w〉T = 〈Vv,w〉T ∀w∈ ZT

and

‖v‖2
b = 〈Vv,v〉T for all v∈ ZT .

Theorem 52 The error estimatorηT defined by(45) is effi-
cient: there exists a constant Ceff > 0 such that, for any mesh
T with shape-regular refinement̂T , there holds

ηT ≤Ceff‖φ −Φ‖b.

Furthermore, if Assumption 45 holds, thenηT is also re-
liable: there exists a constant c> 0 such that, with Crel =

(1−C2
sata)

−1/2c, there holds for any meshT with shape-
regular refinement̃T the estimate

‖φ −Φ‖b ≤Crel ηT .

For a detailed proof of Theorem 52 we refer to [61],
where the vector case of the weakly singular operator for the
Stokes problem is analyzed. As indicated by Theorem 51, a
proof boils down to a stability analysis of the underlying de-
composition

X̂T = P
0(T )⊕

⊕

T∈T

ZT . (46)

This analysis uses estimates for norms from fractional order
Sobolev spaces. Therefore, a major ingredient is to find a

Sobolev norm that is equivalent to the energy norm‖ · ‖b.
For a fixed surfaceΓ , this is theH̃−1/2(Γ )-norm according
to Theorems 2 and 3. However, for an elementv∈ZT , there
holds the equivalence

‖v‖2
b = 〈Vv,v〉T ≃ ‖v‖2

H̃−1/2(T)
,

and it is not immediately clear how the corresponding equiv-
alence numbers depend onT. One has to find a Sobolev
norm that is uniformly equivalent to the energy norm for
shape-regular elementsT ∈ T̂ . By an affine mapping ofT
to a reference elementTref one finds that

‖v‖2
b ≃ h2d−3

T ‖v̂‖2
b.

Here,v̂ is the affinely transformed function defined onTref.
This equivalence is immediate by the two Jacobians of the
double integral in〈V· , ·〉T and by the scaling property of the
weakly singular kernel,

1
|x− y| =

1
|FT(x̂)−FT(ŷ)|

≃ h−1
T

1
|x̂− ŷ| ,

wherex= FT(x̂),y= FT(ŷ). On the other hand,

‖v‖H̃−1/2(T) = sup
ϕ∈H1/2(T)\{0}

〈v ,ϕ〉T

‖ϕ‖H1/2(T)

is certainly not uniformly equivalent to the energy norm since
the duality in the numerator scales under affine transforma-
tions but the denominator does not (the semi-norm| · |H1/2(T)

behaves differently from theL2(T)-norm under affine map-
pings). To fix this mismatch, one uses anH1/2(T)-norm with
weightedL2(T)-term,

‖v‖2
H

1/2
h (T)

:= h−1
T ‖v‖2

L2(T)
+ |v|2

H1/2(T)
,

and defines a scalablẽH−1/2(T)-norm by duality:

‖v‖
H̃
−1/2
h (T)

:= sup
ϕ∈H1/2(T)\{0}

〈v ,ϕ〉T

‖ϕ‖
H

1/2
h (T)

.

This norm is uniformly equivalent to the energy norm under
affine mappings that maintain shape regularity, as long as
the functions under consideration have integral-mean zero.
This integral-mean zero condition is essential and the reason
for the particular construction of our second level spaceZ .

A proof of stability of the decomposition (46) then re-
duces to the following three steps.

1. Replace the energy norm by the uniformly equivalent
scalable Sobolev norm‖ · ‖

H̃−1/2
h (T)

in the spacesZT .

2. One shows (see [61, Lemma 3.2]) that

‖v‖2
H̃−1/2(Γ )

. ∑
T∈T

‖v|T‖2
H̃
−1/2
h (T)

for all v∈ H̃−1/2(Γ ) with v|T ∈ H̃−1/2(T) and〈v ,1〉T =

0 for all T ∈ T .
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Fig. 14 A triangle of T (on the left) and its three partitions (on the
right) for the construction of error indicators with direction control.

3. By scalability and equivalence of norms in finite-dimen-
sional spaces one proves (see [61, (3.16)]) that

∑
T∈T

‖V|T‖2
H̃
−1/2
h (T)

. ‖V‖2
H̃−1/2(Γ )

∀V ∈ ZT .

Finally, having shown the stability of (46) and making use
of the saturation assumption, Theorem 52 is proved by ap-
plication of Theorem 51.

Remark 5The indicatorsηT defined so far give informa-
tion only with respect to the location of elements. By simple
changes, it is easy to define indicators with respect to di-
rections, so that anisotropic refinements can be considered.
One only has to use slightly different local spacesZT , fur-
ther split so that corresponding projections give the direction
indicators. In Figure 14 we have illustrated this for a single
triangle (on the left) which is decomposed into two triangles
in three different ways (on the right). The plus and minus
signs indicate that one has to use piecewise constant func-
tions (positive on the triangle with the plus sign and neg-
ative on the other) so that the function has integral-mean
value zero. In this way, on each triangleT ∈ T , one has
three spaces and together they generate the second levelZ

on T. A refinement algorithm with direction control would
consider, e.g., the triangle refinement that corresponds tothe
space among the three whose error indicator is largest. Sim-
ilar constructions work on quadrilaterals. Throughout, inthe
refinement procedure with direction steering, one has to con-
sider a minimum angle condition.

The inclusion of this direction control in the stability
analysis of the decomposition ofZT is straightforward by
selecting the previously scalable Sobolev norm. One only
has to use an argument from equivalence of norms in finite-
dimensional spaces. For more details we refer to [61].

Let us comment on other publications on two-level error
estimators for weakly singular integral equations. In [113],
Mund, Stephan and Weiße analyze the situation we have

considered above for the particular case of uniform meshes
of squares. In this case, several of the required norm esti-
mates can be calculated exactly so that general arguments
from fractional order Sobolev spaces (that we have discussed
above) can be avoided. Also, [113] reports on numerical ex-
periments on curved surfaces.

In [112], Mund and Stephan study two-level error esti-
mators for the coupling of finite elements and boundary ele-
ments. The model problem is a transmission problem in two
dimensions with nonlinear behavior in a bounded domain,
coupled with the Laplacian in the exterior. The variational
formulation and its discretization involves the weakly sin-
gular operator (on a curve). The proposed error estimator is
of the two-level kind with additive Schwarz theory. Here, the
authors prove stability of the boundary element contribution
up to a perturbation of the typeh−ε with ε > 0 andh being
the mesh size.

So far we have only discussed the case of symmetric
and elliptic bilinear forms. This theory can be extended to
indefinite problems. In particular, in [16] Bank and Smith
analyze in an abstract setting the general case of a varia-
tional form with bounded bilinear form that only satisfies
the continuous and discrete inf-sup conditions (to guaran-
tee existence and uniqueness of a continuous and discrete
solution). Apart from the saturation assumption in the form
of Assumption 43 (with respect to a Sobolev norm rather
than energy norm), the analysis is based on a strengthened
Cauchy-Schwarz inequality in the corresponding Sobolev
norm (cf. Definition 49 in the energy norm). More specif-
ically, for the boundary element method, Maischak, Mund
and Stephan analyze in [107] two-level error estimators for
weakly singular integral equations governing the Helmholtz
problem with small wave number. Their theory follows the
setting from [16], by showing that it is enough to have a
stable decomposition corresponding to the elliptic part of
the operator, and that the compact perturbation due to non-
zero wave number does not change the behavior of the two-
level error estimator. However, proofs are given for the two-
dimensional case. In three dimensions, numerical results ver-
ify the expected behavior of the error estimator.

Finally, we note that in [99] the authors have studied
two-level error estimators for boundary element discretiza-
tions of weakly singular and hypersingular operators in two
dimensions. However, there are several unresolved theoret-
ical hickups involving subtle issues with fractional order
Sobolev spaces that the authors replaced with several as-
sumptions. We prefer not to discuss the outcomes in detail.

Hypersingular operator:In two dimensions, that means for
boundary integral equations on curves, additive Schwarz the-
ory for weakly singular operators is equivalent to the one for
hypersingular operators. This is due to the fact that Sobolev
spaces of orders plus and minus one half are being mapped
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among them by differentiation and integration with respect
to the arc-length. Correspondingly, basis functions are be-
ing transformed. The only, purely technical, difficulty is an
integral-mean zero condition for functions inH−1/2 along
the elements or the curve. For an early observation and ap-
plication of this fact, see [137].

In three dimensions, however, the situation is different.
In this case, rather than simple differentiation and integra-
tion, pseudo-differential operators act as appropriate map-
pings. Possible operators are the square root of the neg-
ative Laplacian (more precisely, of the negative Laplace-
Beltrami operator) and its inverse operator. These operators
do not map piecewise polynomials onto piecewise polyno-
mials. Therefore, in three dimensions on surfaces, the stabil-
ity analyses of two-level decompositions of discrete spaces
in H1/2 andH−1/2 are substantially different.

We do not know of any mathematical publication on
two-level error estimators for hypersingular integral equa-
tions on surfaces that do not also consider thep-version
(where approximations are improved by increasing polyno-
mial degrees). Therefore, we postpone the discussion of this
case to Section 5 which deals with thehp-version.

4.2.2(h−h/2) estimators

The starting point for this type of error estimators is Propo-
sition 46, which states

‖Û −U‖b ≤ ‖u−U‖b ≤ (1−C2
sata)

−1/2‖Û −U‖b

for a symmetric bilinear formb(·, ·), where the upper bound
holds under the saturation assumption 45. Here,U ∈ XT

denotes the Galerkin solution with respect to a meshT and
Û ∈ X̂T := X

T̂
denotes the Galerkin solution with respect

to a uniformly refined mesĥT . The term

η := ‖Û −U‖b

is computable in the sense that it does not contain any un-
knowns and that it can be evaluated easily as a matrix-vector
product

‖Û −U‖2
b = (Û−U) · B̂ · (Û−U),

whereB̂ is the Galerkin matrix on the spacêXT andÛ and
U are the coefficient vectors of the Galerkin solutions with
respect to the chosen basis for̂XT . Now, the idea of(h−
h/2) estimators is to overcome the following two problems:

– The computation of both,U andÛ is necessary.
– The inherent non-locality of the norm prevents us to use
‖Û −U‖b as refinement indicator in an adaptive algo-
rithm.

To motivate a remedy for the first problem, we note that,
due to best approximation properties of Galerkin solutions,
Û will always be a better solution thanU which therefore
becomes only a temporary result. Furthermore, as soon asÛ
is computed, the computational cost of computingU is quite
high in contrast to a simple postprocessing ofÛ . Hence, to
avoid the (expensive) computation ofU , we useΠÛ instead,
whereΠ is a (preferably cheap) projection onto the space
XT , which is supposed to fulfill the following properties
for all Û ∈ X̂T :

‖(1−Π)Û‖b ≤Capx min
V∈XT

‖Û −V‖hs (47)

‖Û‖hs ≤Cinv‖Û‖b, (48)

where‖ ·‖hs denotes an adequatehs-weighted, integer order
seminorm. In BEM, the norm‖ · ‖b is equivalent to a frac-
tional order Sobolev norm. Hence, the first estimate in (47)
is an approximation property for the operatorΠ , whereas
the estimate (48) corresponds to an inverse estimate. Note,
however, that̂U ∈ X̂T is based on a fine mesĥT , whereas
h in (48) corresponds to the meshT . In other words, (48)
requires that the mesh-sizêh of T̂ must not be too small
in comparison with the mesh-sizeh of T . Now, the best
approximation properties of Galerkin methods show imme-
diately that

η ≤ η̃ := ‖(1−Π)Û‖b.

From the estimate (47) follows immediately that

η̃ = ‖(1−Π)Û‖b . ‖(1−Π)Û‖hs =: µ̃.

The estimator̃µ has all the desired properties as it is local
and avoids the computation ofU . Next, the estimates (48)
and (47) show

µ̃ = ‖(1−Π)Û‖hs . ‖(1−Π)Û‖b . ‖Û −U‖hs =: µ .

Finally it follows from estimate (48) that

µ = ‖Û −U‖hs . ‖Û −U‖b = η

The strength of the resulting estimators is that they are con-
ceptually simple and require nearly no overhead in imple-
mentation. In the following, we will specify the involved
quantities to obtain estimates in the weakly singular and hy-
persingular case.

Weakly singular operator:For weakly singular integral equa-
tions, i.e., integral equations involving the single layerpo-
tentialV, the presented approach was analyzed in detail for
d = 2 in [58] and ford = 3 in [74]. The cited works discuss
only the lowest-order casep = 0, therefore we sketch the
proof for generalp ≥ 0. The energy norm is given in this
case by

‖u‖2
b := ‖u‖2

V := 〈Vu,u〉Γ .
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The first result regarding reliability and efficiency of the
estimatorη follows directly from Proposition 46, cf. [74,
Prop. 1.1] and [58, Prop. 3.1].

Theorem 53 Suppose thatφ ∈ H̃−1/2(Γ ) is the exact solu-
tion of Proposition 4 or 5. Given a meshT and its uniform
refinementT̂ , denote byΦ ∈ P p(T ) and Φ̂ ∈ P p(T̂ )

the respective Galerkin approximations from Proposition 9
or 10. Then,

ηT := ‖Φ − Φ̂‖V ≤ ‖φ −Φ‖V ,

i.e., the estimatorηT is efficient with Ceff = 1. Under the
saturation assumption 45,ηT is reliable, i.e.,

‖φ −Φ‖V ≤ (1−C2
sata)

−1/2ηT .

The localization ofηT and the avoidance of the compu-
tation of Φ is done by using theL2-orthogonal projection
π p

T
from Definition 21, and the seminorm‖ · ‖hs will be the

h1/2
T

-weightedL2 norm in this case. Note that by Theorem 2
and 3,‖ · ‖b is an equivalent norm oñH−1/2(Γ ). Lemma 22
with r = 1/2 ands= 0 provides the approximation proper-
ties for the derivation of (47), and Lemma 23 provides the
inverse estimate that is needed in (48). Note that the pro-
jection property ofπ p

T
is used to arrive at the minima. The

resulting estimators and equivalences are stated in the fol-
lowing theorem, cf. [74, Thms. 3.2, 3.4].

Theorem 54 Define the following a posteriori error estima-
tors:

ηT := ‖Φ̂ −Φ‖V , µT := ‖h1/2
T

(Φ̂ −Φ)‖L2(Γ ),

η̃T := ‖(1−π p
T
)Φ̂‖V , µ̃T := ‖h1/2

T
(1−π p

T
)Φ̂‖L2(Γ ).

Then, it holds

ηT ≤ η̃T ≤C1/2
V Capxµ̃T ,

µ̃T ≤ µT ≤CinvC
−1/2
ell ηT ,

where CV = ‖V‖H̃−1/2(Γ )→H1/2(Γ ) and Cell are the stability
and ellipticity constants of the single layer operator V , Capx

is the constant of Lemma 22, and Cinv is the constant of the
inverse estimate of Lemma 23.

The last theorem shows that all estimators are equivalent
up to constants that depend only onΓ , p, and the shape-
regularity constantσT . In particular, Theorem 53 shows that
all estimators are efficient and (under the saturation assump-
tion 45) reliable.

Remark 6The work [74] uses the quantityρT instead of
hT to define the estimatorsµT and µ̃T , whereρT is de-
fined T -elementwise as the diameter of the largest sphere
centered at a point inT ∈ T whose intersection withΓ lies
entirely in T. The reason for this is that [74] also uses the

estimatorµ̃T to steer an adaptive anisotropic mesh refine-
ment on quadrilaterals, for whichρT is more appropriate
thanhT . After an element has been selected for refinement,
the choice on the refinement directions is based on the ex-
pansion ofΦ̂ in a series of functions on̂T indicating the
possible refinement directions. The resulting adaptive algo-
rithms behave reasonable and the authors observe the op-
timal convergence rateO(N−3/2), whereN is the number
of degrees of freedom. We refer to [11,74] as well as Sec-
tion 6.10 for further details.

Hypersingular operator:For hypersingular integral equa-
tions, the analysis of(h−h/2)-type estimators is given in [42,
59] for d = 2 and the lowest-order casep = 1, and in [12]
for d = 3 and generalp≥ 1. The energy norm is given by

‖u‖2
b := ‖u‖2

W :=

{
〈Wu,u〉Γ for Γ ( ∂Ω
〈Wu,u〉Γ + 〈u ,1〉2

Γ for Γ = ∂Ω ,

cf. Section 2. Again, Proposition 46 shows reliability and
efficiency of the estimator.

Theorem 55 Suppose that u∈ H̃1/2(Γ ) is the exact solu-
tion of Proposition 6 or 7. Given a meshT and its uniform
refinementT̂ , denote by U∈ S̃ p(T ) and Û ∈ S̃ p(T̂ )

the respective Galerkin approximations from Proposition 12
or 13. Then,

ηT := ‖U −Û‖W ≤ ‖u−U‖W,

i.e., the estimatorηT is efficient with Ceff = 1. Under the
saturation assumption 45,ηT is reliable, i.e.,

‖u−U‖W ≤ (1−C2
sata)

−1/2ηT .

The estimatorηT will be localized by the seminorm

‖ · ‖hs = ‖h1/2
T

∇Γ (·)‖L2(Γ ).

Note first that‖ · ‖b is an equivalent norm oñH1/2(Γ ) by
Theorem 2 and 3. Estimate (48) is valid due to the inverse
estimate of Lemma 25 withs= 1/2, as long asΠ is a projec-
tion. To show (47), Lemma 24 withs= 1/2 can be employed
as long asΠ is an H̃1/2 stable projection. Sections 3.2.1–
3.2.3 present different projection operators that can be used
in this context.

– The Scott-Zhang operator̃JT (resp.JT ), which is an
H̃1/2(Γ ) stable projection due to Lemma 26.

– Ford = 2, the nodal interpolation operatorJT , which is
H̃1/2(Γ ) stable due to Lemma 27.

– On a sequence of meshes that is generated by certain
mesh refinement rules, the theL2 projectionΠ p

T
onto

S̃ p(T ) can be shown to be stable iñH1/2(Γ ). Present
proofs for this property require certain restrictions on
the mesh refinement and the polynomial degree, cf. Sec-
tion 7 for details.
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– For d = 3, the nodal interpolation operatorJT is not
H̃1/2(Γ ) stable. However, Lemma 28 withs= 1/2 and
q= p can be used. Indeed, the estimate (47) is given ex-
plicitly in Lemma 28.

The resulting estimators and equivalences are summarized
in the following Theorem, cf. [42,59] ford = 2, p= 1, and
[12] for d = 3, p≥ 1.

Theorem 56 Denote by PT either

(a) the Scott-Zhang operator or
(b) the L2 orthogonal projection ontoS p(T ) (given that it

is H̃1/2(Γ ) stable, cf. Section 7)
(c) the nodal interpolation operator.

Define the following a posteriori error estimators:

ηT := ‖Û −U‖W, µT := ‖h1/2
T

∇Γ (Û −U)‖L2(Γ ),

η̃T := ‖(1−PT )Û‖W, µ̃T := ‖h1/2
T

∇Γ (1−PT )Û‖L2(Γ ).

Then, it holds that

ηT ≤ η̃T ≤C1/2
W Capxµ̃T ,

µ̃T ≤CstabµT ≤CinvC
−1/2
ell ηT ,

where CW = ‖W‖H̃1/2(Γ )→H−1/2(Γ ) and Cell are the stability
and ellipticity constants of the hypersingular operator W,
Cinv is the constant of the inverse estimate of Lemma 25,
and, depending on the choice of PT ,

(a) Capx is the constant of Lemma 24 andCstabdepends solely
on the operator norm‖JT ‖H1(Γ ), or

(b) Capx is the constant of Lemma 24 and Cstab=CinvCapx.
(c) For d= 2,Capx is the constant from Lemma 27 andCstab=

1, and for d= 3, Capx and Cstab are the constants from
Lemma 28.

The estimators of the last theorem always apply an operator
PT to the solutionÛ . However, as Lemma 28 shows, also
the gradient∇Γ Û could be projected locally on the coarse
mesh, which is much cheaper.

Theorem 57 Define the a posteriori error estimator

µT := ‖h1/2
T

(1−π p−1
T

)∇Γ Û‖L2(Γ ).

Then, it holds that

ηT ≤CWCapxCstabµT ≤CinvC
−1/2
ell ηT ,

where Capx,Cstab> 0are the constants from Lemma 28,Cinv >

0 is the constant of the inverse estimate of Lemma 25, and
CW = ‖W‖H̃1/2(Γ )→H−1/2(Γ ) and Cell are the stability and el-
lipticity constants of the hypersingular operator W,

Remark 7The concept of((h−h/2)) type error estimators
has recently been extended to nonconforming boundary ele-
ment methods for hypersingular integral equations, see [55,
90].

4.3 Averaging estimators

The advantage of space-enrichment based error estimators
(Section 4.2) is that their implementation essentially only re-
quires a simple postprocessing of the Galerkin data and the
computed Galerkin solution. For the(h−h/2)-type error es-
timators from Section 4.2.2, one theoretical drawback is that
the Galerkin solution has to computed on the fine-meshT̂ ,
while the error estimators only estimates the coarse-mesh
error, cf. Theorem 53 for the weakly singular integral equa-
tion and Theorem 55 for the hypersingular integral equation.
Although the two-level error estimators from Section 4.2.1
avoid the computation of the fine-mesh solution, their com-
putation requires the assembly of the fine-mesh Galerkin
data. Since the latter is the most time consuming part of
BEM computations, neither of these error estimators seems
to be attractive at the first glance.

This section discusses error estimation by averaging on
large patches. On an abstract level, the approach can be out-
lined as follows: Letu ∈ X denote the unknown exact so-
lution of (3). Suppose thatT is a given mesh with uniform
refinementT̂ and that we are given a spaceX (T̂ ) with
low-order polynomials on the fine mesh and a spacêX (T )

with higher-order polynomials on the coarse mesh. The goal
is to derive a computable error estimatorηT which esti-
mates the fine-mesh error‖u− Û‖X of the Galerkin solu-
tion Û ∈ X (T̂ ) of (4) with X = X (T̂ ). To that end, let
G : X → X̂ (T ) denote the Galerkin projection, i.e., for all
w ∈ X , Gw∈ X̂ (T ) is the unique solution of the linear
system

b(Gw,v) = b(w,v) for all v∈ X̂ (T ). (49)

With this notation, we define the computable error estimator

ηT := ‖(1−G)Û‖X . (50)

The following abstract theorem is found, e.g., in
[41, Thm. 2.1].

Theorem 58 Define the quantities

q :=
‖(1−G)u‖X

‖u−Û‖X

, (51)

λ := max
V∈X̂ (T )

min
V̂∈X (T̂ )

‖V − V̂‖X

‖V‖X

. (52)

Then, the error estimatorηT is efficient

ηT ≤ (Ccont/Cell +q)‖u−Û‖X . (53)

Provided that the ellipticity and continuity constant of b(·, ·)
satisfy q+λ <Cell/Ccont, there also holds reliability

‖u−Û‖X ≤ Ccont

Cell −Ccont(q+λ )
ηT . (54)
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Proof Let 〈· , ·〉X denote the scalar product on the Hilbert
spaceX which gives rise to the norm‖·‖X . Recall that the
Céa lemma (6) also applies for̂X (T ) and henceG. The
efficiency estimate (53) therefore follows from the triangle
inequality

ηT ≤ ‖(1−G)(u−Û)‖X + ‖(1−G)u‖X

≤ (Ccont/Cell +q)‖u−Û‖X .

For the proof of the reliability estimate (54), we definee :=
u− Û . Let E ∈ X̂ (T ) denote the best approximation in
X̂ (T ), i.e.,

‖e−E‖X = min
V∈X̂ (T )

‖e−V‖X . (55)

Recall thatE is then characterized by the orthogonality

〈e−E ,V〉X = 0 for all V ∈ X̂ (T )

which implies the Pythagoras theorem

‖e−E‖2
X + ‖E‖2

X = ‖e‖2
X .

First, note that that the best approximation property (55) and
the triangle inequality forV = Gu+GÛ prove

C−1
contb(e,e−E)≤ ‖e‖X ‖e−E‖X

≤ ‖e‖X (‖(1−G)u‖X +ηT )

≤ ‖e‖X (q‖e‖X +ηT ).

Second, observe that by definition ofλ the Galerkin orthog-
onality fore= u−Û as well as the estimate‖E‖X ≤ ‖e‖X

prove

C−1
contb(e,E) =C−1

cont min
V̂∈X (T̂ )

b(e,E− V̂)≤ λ ‖e‖X ‖E‖X

≤ λ ‖e‖2
X .

Altogether, we see

Cell‖e‖2
X ≤ b(e,e) = b(e,e−E)+b(e,E)

≤Ccont(q+λ )‖e‖2
X +CcontηT ‖e‖X .

Rearranging this estimate, we conclude the proof. ⊓⊔

In practice, higher-order polynomials lead to higher-order
convergence rates if the unknown solutionu is smooth or if
the meshT is appropriately graded. Therefore, one may
expect that the constantq from (51) satisfiesq → 0 if the
mesh is adaptively refined. The constantλ from (52) satis-
fies 0≤ λ ≤ 1 by definition. Geometrically,λ < 1 corre-
sponds to a strengthened Cauchy inequality, cf. [41, Sect 4].
In practice,λ ≪ 1 follows if the meshT̂ is sufficiently fine
with respect toT . We refer to the discussion below. In con-
clusion, the assumptionq+ λ < Cell/Ccont required for the
reliability estimate (54) can be satisfied in practice.

As for the(h−h/2)-error estimator from Section 4.2.2, a
practical BEM application has, first, to replace the non-local
norm ‖ · ‖X by some easily computable local norm, e.g.,
some locally weightedL2-norm resp.H1-seminorm. More-
over, the computationally expensive Galerkin projectionG
has to be replaced by some numerically cheaper operator
Π : X (T̂ ) → X̂ (T ). Both aspects are discussed for the
weakly singular and hypersingular model problem in the fol-
lowing subsections.

We finally note that for our applications, i.e., weakly
singular and hypersingular integral equation, averaging on
large patches turns out to be equivalent to(h− h/2)-type
error estimation.

Weakly singular operator:Averaging on large patches for
weakly singular integral equations in 2D and 3D BEM has
first been proposed and analyzed in [40]. We also refer to [11]
for the discussion on anisotropic mesh refinement. In [40],
it holds X (T̂ ) = P p(T̂ ) andX̂ (T ) = P p+1(T ). We
suppose that̂T is obtained fromk uniform refinements of
T , i.e., the corresponding mesh-sizes satisfy

ĥ= 2−kh. (56)

Let π p

T̂
be the L2-projection onto P p(T̂ ). Fix V ∈

P p+1(T ). The approximation estimate from Lemma 22
yields

min
V̂∈P p(T̂ )

‖V − V̂‖H̃−1/2(Γ ) ≤ ‖(1−π p

T̂
)V‖H̃−1/2(Γ )

. ‖ĥ1/2V‖L2(Γ ) ≤ ‖(ĥ/h)1/2‖L∞(Γ ) ‖h1/2V‖L2(Γ ).

By choice ofT̂ , it holds‖(ĥ/h)1/2‖L∞(Γ ) ≤ 2−k/2. The in-
verse estimate of Lemma 23 proves

‖h1/2V‖L2(Γ ) . ‖V‖H̃−1/2(Γ ).

Combining these observations, we see that the constantλ
from (52) satisfies, fork sufficiently large,

λ := max
V∈P p+1(T )

min
V̂∈P p(T̂ )

‖V − V̂‖H̃−1/2(Γ )

‖V‖H̃−1/2(Γ )

. 2−k/2 ≪ 1,

where the hidden constant depends only onΓ , shape regular-
ity of T , and the polynomial degreep. Moreover, standard
approximation results prove (see e.g. [123]) that, at least
for smooth solutionsu, the constantq from (51) satisfies
q= O(hp+5/2/ĥp+3/2) = O(h).

The following theorem is first found in [40, Sect 5] and
formulated in the energy norm‖ · ‖V ≃ ‖ · ‖H̃−1/2(Γ ). Note
thatηT corresponds to the abstract error estimatorηT from
the abstract Theorem 58. Since the proof is similar to that of
Theorem 54, we omit the details.



34 M. Feischl, T. Führer, N. Heuer, M. Karkulik, D. Praetorius

Theorem 59 Letπ p+1
T

denote the L2-orthogonal projection

ontoP p+1(T ). Let Gp+1
T

denote the Galerkin projection(49)
ontoP p+1(T ). Then, the estimators

ηT := ‖(1−Gp+1
T

)Φ̂‖V , µT := ‖h1/2
T

(1−Gp+1
T

)Φ̂‖L2(Γ ),

η̃T := ‖(1−π p+1
T

)Φ̂‖V , µ̃T := ‖h1/2
T

(1−π p+1
T

)Φ̂‖L2(Γ ),

satisfy the equivalence estimates

ηT ≤ η̃T ≤C1/2
V Capxµ̃T ,

µ̃T ≤ µT ≤ 2k/2CinvC
−1/2
ell ηT ,

where CV = ‖V‖H̃−1/2(Γ )→H1/2(Γ ) and Cell are the stability
and ellipticity constants of the single layer operator V , Capx

is the constant of Lemma 22, and Cinv is the constant of the
inverse estimate of Lemma 23.

The numerical experiments in [40,41,58,11] give em-
pirical evidence thatk = 2 seems to be sufficient in prac-
tice. As first observed in [58, Thm. 5.3] for lowest-order 2D
BEM p= 0, one can prove that averaging on large patches is
equivalent to(h−h/2)-error estimation. The argument also
transfers to 3D and arbitrary polynomial degreep≥ 0.

Corollary 60 For all T ∈ T , it holds

‖(1−π p+1
T

)Φ̂‖L2(T) ≤ ‖(1−π p
T
)Φ̂‖L2(T)

≤Cequiv‖(1−π p+1
T

)Φ̂‖L2(T),
(57)

where the constant Cequiv depends only on the polynomial
degree p. Comparing the error estimatorsµ̃T of Theorem 54
and Theorem 59, this proves that all eight error estimators
are equivalent. In particular, the estimate(57) shows that
the equivalence of the respectiveµ̃T estimators holds even
elementwise.

Proof The lower bound in (57) follows from the local best
approximation property

‖(1−π p+1
T

)Φ̂‖L2(T) = min
Ψ∈P p+1(T)

‖Φ̂ −Ψ‖L2(T)

of theL2-projectionπ p+1
T

and nestednessP p(T)⊆P p+1(T).
To prove the upper bound in (57), observe that

‖(1−π p+1
T

)Φ̂‖L2(T) = 0 ⇐⇒ ‖(1−π p
T
)Φ̂‖L2(T) = 0.

Therefore, the equivalence follows from scaling arguments
and equivalence of seminorms on finite dimensional spaces.
⊓⊔

Hypersingular operator:For hypersingular integral equa-
tions, averaging on large patches has been proposed and an-
alyzed for lowest-order 2D BEM in [42]. The equivalence of
(h−h/2)-type error estimators (cf. Theorem 56) and aver-
aging on large patches has been proved in [59]. These results
have been generalized to 3D BEM and arbitrary polynomial
orderp≥ 1 in [12]. Altogether, the results from Theorem 59
and Corollary 60 hold accordingly. For these reasons, we
leave the details to the reader and refer to the given refer-
ences.

4.4 ZZ-type error estimator

The idea of the ZZ-type error estimator (in the context of
FEM alsogradient recoveryestimator) is torecovera smoother
approximation of the computed solution and to compare it
with the discrete solution. Since the seminal work [151],
the ZZ-type error estimators for FEM became very popular
within the engineering community due to their implemen-
tational ease. Although ZZ-type error estimators are mathe-
matically well-developed for FEM, see e.g. [18,35,30,122],
there was no theory for BEM until [67] which treats the 2D
case and lowest-order elements. In our presentation, we ex-
tend the approach tod = 2,3 but stick with lowest-order el-
ementsp = 0 for weakly singular integral equations resp.
p= 1 for hypersingular integral equations.

Weakly singular operator:The ZZ-type error estimator from
[67] reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−Aℓ)Φℓ‖2
L2(T)

,

where the smoothing operatorAℓ : L2(Γ )→ P1(Tℓ) is de-
fined as follows: Letz denote a node ofTℓ and letωz :=
T1∪ . . .∪T#ωz be the node patch.

– If the normal vector ofΓ does not jump atz, define

(Aℓψ)(z) := |ωz|−1
∫

ωz

ψ dz. (58)

– If the normal vector ofΓ jumps atz, find setsC1, . . . ,Cmz,
with mz ≤ #ωz and

⋃mz
i=1Ci = ωz such that the normal

vector does not jump on theCi , i = 1, . . . ,mz. Then, de-
fine for all i = 1, . . . ,mz

(Aℓψ)|Ci (z) := |Ci |−1
∫

Ci

ψ dz. (59)

This definition is useful sinceΦℓ approximates a normal
derivative and is supposed to jump at corners and edges of
Γ .

Remark 8For d = 2, the definition ofAℓ simplifies as one
only has to check if the normal vector jumps at a given node.
Then, one integrates separately over the two adjacent ele-
ments. The search for continuity componentsCi is no longer
required. Also ford = 3, one may save some implemen-
tational efforts by just settingCi = Ti for all Ti ⊆ ωz. This
might not be the optimal solution, but still works in practice.

Theorem 61 LetTℓ be the uniform refinement of some mesh
T ′

ℓ . Then, there holds

‖Φℓ−Φ ′
ℓ‖H̃−1/2(Γ ) ≤CZZηℓ

for the corresponding Galerkin solutionsΦℓ andΦ ′
ℓ. Under

the saturation assumption (Assumption 45), this implies

‖φ −Φℓ‖H̃−1/2(Γ ) ≤ C̃ZZηℓ.
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The constant CZZ > 0 depends only onΓ and all possible
shapes of element patches inTℓ, whileC̃ZZ > 0 depends ad-
ditionally on Csatafrom Assumption 45.

Proof The complete proof for the 2D situation can be found
in [67, Thm. 5]. Here, we only provide a brief sketch. First,
we use Theorem 54 to see

‖Φℓ−Φ ′
ℓ‖H̃−1/2(Γ ) ≃ ‖h1/2

ℓ (1−π0′
ℓ )Φℓ‖L2(Γ ),

whereπ0′
ℓ : L2(Γ )→P0(T ′

ℓ ). With the element patchωT :=⋃{T ′ ∈ Tℓ : T ∩T
′ 6= /0}, the elementwise estimate

‖h1/2
ℓ (1−π0′

ℓ )Φℓ‖2
L2(T)

. ∑
T ′⊆ωT

ηℓ(T
′)2

then follows by scaling arguments, and the hidden constant
depends on the number of different patch shapes ofTℓ. This
proves

‖Φℓ−Φ ′
ℓ‖H̃−1/2(Γ ) . ηℓ.

Under the saturation assumption, we derive

‖φ −Φℓ‖H̃−1/2(Γ ) . ‖φ −Φ ′
ℓ‖H̃−1/2(Γ ) . ‖Φℓ−Φ ′

ℓ‖H̃−1/2(Γ ).

This concludes the proof. ⊓⊔

Theorem 62 There holds

C−1
ZZ ηℓ ≤ ‖φ −Φℓ‖H̃−1/2(Γ )+ min

Ψ∈S 1(Tℓ)
‖φ −Ψ‖H̃−1/2(Γ ).

The constant CZZ > 0 depends only onΓ and all possible
patch shapes ofTℓ.

Proof The complete proof can be found in [67, Thm. 7].
Here, we only provide a brief sketch. Elementwise argu-
ments show

ηℓ . ‖Φℓ−Ψ‖H̃−1/2(Γ )

for all Ψ ∈ S 1(Tℓ). With this, we obtain

ηℓ . min
Ψ∈S 1(Tℓ)

‖Φℓ−Ψ‖H̃−1/2(Γ )

≤ min
Ψ∈S 1(Tℓ)

‖φ −Ψ‖H̃−1/2(Γ )+ ‖φ −Φℓ‖H̃−1/2(Γ ).

This concludes the proof. ⊓⊔

Hypersingular operator:The ZZ-type error estimator from
[67] reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−Aℓ)∇Uℓ‖2
L2(T)

,

where the smoothing operatorAℓ :
(
L2(Γ )

)d →
(
S 1(Tℓ)

)d

is defined nodewise by

(Aℓψ)(z) := |ωz|−1
∫

ωz

ψ dz

for all nodesz of Tℓ. The difference to the weakly singu-
lar case is the fact thatAℓψ ∈ S 1(Tℓ) is continuous onΓ ,
independently of jumps of the normal vector.

Theorem 63 LetTℓ be the uniform refinement of some mesh
T ′

ℓ . Then, there holds

‖Uℓ−U ′
ℓ‖H̃1/2(Γ ) ≤CZZηℓ.

Under the saturation assumption (Assumption 45), this im-
plies

‖u−Uℓ‖H̃1/2(Γ ) ≤ C̃ZZηℓ.

The constant CZZ > 0 depends only onΓ and all possible
shapes of element patches inTℓ, whileC̃ZZ > 0 depends ad-
ditionally on Csatafrom Assumption 45.

Proof The proof is similar to the weakly singular case in
Theorem 62 and can be found in [67, Thm. 1]. ⊓⊔

Theorem 64 There holds

C−1
ZZ ηℓ ≤ ‖u−Uℓ‖H1/2(Γ )+ min

V∈S̃ 2,1(Tℓ)
‖u−V‖H̃−1/2(Γ ).

The spaceS̃ 2,1
0 (Tℓ) :=S 2(Tℓ)∩C1(Γ )∩H̃1/2(Γ ) denotes

the space of all piecewise quadratics which are globally dif-
ferentiable with zero trace at∂Γ . If Γ is closed, i.e.∂Γ = /0,
we haveS̃ 2,1(Tℓ) = S 2,1(Tℓ). The constant CZZ > 0 de-
pends only onΓ and all possible patch shapes ofTℓ.

Proof The proof is similar to the weakly singular case in
Theorem 62 and can be found in [67, Thm. 3] ford = 2. ⊓⊔

4.5 Two-equation estimators

In this section, we consider only the Dirichlet- or Neumann
problem, i.e.,Γ is always the boundary of a bounded do-
main. In these cases, there is a method that differs com-
pletely from residual-based methods or approaches based on
space enrichment.

In [124,125,132] it is shown that the error of, e.g., the
Dirichlet problem, i.e.,φ −Φ, fulfills a second-kind integral
equation. Indeed, the representation formula allows to define
a potential based on the approximate Neumann data and the
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exact Dirichlet data viãu= ṼΦ − K̃g. The trace and normal
derivative of this potential fulfill

γ0ũ=VΦ +(1/2−K)g

Vγ1ũ= (1/2+K)γ0ũ,

whereγ0 denotes the trace operator andγ1 denotes the (co-
) normal derivative. The combination of this equations and
the identities

(1/2+K)(1/2−K)=VW, KV =VK′

show

Vγ1ũ=V(1/2+K′)Φ +VWg,

and asWg= (1/2−K′)φ , this yields the second-kind inte-
gral equation for the error

γ1ũ−Φ = (1/2−K′)(φ −Φ),

cf. [124, Lemma 2.1]. This equation has to be solved ap-
proximately inH−1/2(Γ ) and the corresponding norm of
the solution to be localized. The approximate solution is
based on the following observation, which is proved in [136,
Thm. 3.1].

Theorem 65 There is a constant Ccnt < 1, such that for all
φ ∈ H−1/2(Γ ) holds

‖(1/2+K′)φ‖V ≤Ccnt‖φ‖V .

Remark 9The notation used in this section is bounded to
Galerkin methods. Error estimators of the type presented
here do not use orthogonality and can therefore be defined
also for collocation or qualocation methods, where, instead
of the factor 1/2, a function has to be used which represents
the curvature of the boundary.

According to the last theorem, the Neumann series

(1/2−K′)−1 =
∞

∑
j=0

(1/2+K′) j

converges in the norm‖ · ‖V , so that one may define forJ ∈
N0 the global error estimator

η(J) := ‖
J

∑
j=0

(1/2+K′) j(γ1ũ−Φ)‖V .

Due to representation via a Neumann series, the estimator is
efficient and reliable, as is shown in [124].

Theorem 66 The estimatorη(J) is efficient and reliable,

1

1+CJ+1
cnt

η(J) ≤ ‖φ −Φ‖V ≤ 1

1−CJ+1
cnt

η(J)

The same arguments also apply for the Neumann problem,
where the error estimator for an approximationU is defined
by

η(J) := ‖
J

∑
j=0

(
P(1/2−K) jP(γ0ũ−U)

)
‖W,

cf. [125,132], whereP is an operator that ensures vanish-
ing integral mean. The analogue to Theorem 66 is of course
valid.

On the implementational side, one has to introduce an
approximation of the application of the Neumann series. If,
e.g.,Φ ∈ P p(T ) is an approximation of the solution of a
Dirichlet problem, theL2(Γ )-projectionπ on a space finer
thanP p(T ) may be used to compute

η̃(J) := ‖
J

∑
j=0

(
π(1/2+K′)

) j π(γ1ũ−Φ)‖V ,

in which case the following result is valid, cf. [124, Thm. 3.3].

Theorem 67 Let(Tℓ)ℓ∈N0 be a uniform sequence of meshes

with mesh-width hℓ and(T̂ℓ)ℓ∈N0 be a uniform sequence of

meshes with mesh-widtĥhℓ such thatTℓ ⊆ T̂ℓ for ℓ ∈ N0. If
Φℓ ∈P p(Tℓ) is an approximation to the exact solutionφ of
a Dirichlet problem with data g,̃uℓ := ṼΦℓ − K̃g, andπ̂ℓ :
L2 →P p(T̂ℓ) is the L2 orthogonal projection, the estimator

η̃(J)
ℓ := ‖

J

∑
j=0

(
π̂ℓ(1/2+K′)

) j π̂ℓ(γ1ũℓ−Φℓ)‖V ,

is efficient and reliable in the sense that there exists a con-
stant C3 > 0 such that

1

1+CJ+1
cnt

{
η̃(J)
ℓ −C3Jĥℓη

(0)
ℓ

}
≤ ‖φ −Φℓ‖V

≤ 1

1−CJ+1
cnt

{
η̃(J)
ℓ +C3Jĥℓη

(0)
ℓ

}

The localization ofη̃(J)
ℓ in this case is a more subtle

matter, as no orthogonality or approximation property can
be used. Indeed, the derivation of this type of estimator as-
sumed no whatsoever special approximation property. In [124]
the authors use the localization
(

η̃(J)
ℓ

)2
= ∑

T∈Tℓ

η̃(J)
T

where

η̃(J)
T = 〈Ve(J)ℓ ,e(J)ℓ 〉T ,

e(J)ℓ =
J

∑
j=0

(
π(1/2+K′)

) j π(γ1ũ−Φℓ)
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This is indeed not a fully localized estimator since it involves
the single layer operatorV. In [132], it is suggested to use
the multilevel localization from Section 3.3. With the nota-
tion from Theorem 67, define the operator

As
ℓφ :=

ℓ

∑
k=0

h−2s
k (πk−πk−1)φ + ĥ−2s

ℓ (π̂ℓ−πℓ)φ

and note that for̂Φℓ ∈ P0(T̂ℓ) holds

ℓ

∑
k=0

h−2s
k ‖(πk−πk−1)Φℓ‖2

ℓ2(Γ )+ ĥ−2s
ℓ ‖(π̂ℓ−πℓ)Φℓ‖2

ℓ2(Γ )

= 〈As
ℓΦ̂ℓ ,Φ̂ℓ〉ℓ2(Γ ) = 〈As/2

ℓ Φ̂ℓ ,A
s/2
ℓ Φ̂ℓ〉ℓ2(Γ ),

where the last identity follows from the properties of the
πk, cf. [132, Prop. 2.1]. Finally, Theorem 29 states that the

H−1/2 norm ofe(J)ℓ can be bounded by

〈A−1/4
ℓ e(J)ℓ ,A−1/4

ℓ e(J)ℓ 〉ℓ2(Γ )

= ∑
T∈Tℓ

〈A−1/4
ℓ e(J)ℓ ,A−1/4

ℓ e(J)ℓ 〉ℓ2(T),

via

∑
T∈Tℓ

η2
T .

(
η̃(J)
ℓ

)2
. (ℓ+2)2 ∑

T∈Tℓ

η2
T .

4.6 A posteriori error control of data approximation

In practice, the right-hand sideF of (4) cannot be computed
analytically. For the weakly singular integral equation from
Proposition 5, it holds for instanceF = (K+1/2) f for some
given f ∈ H1/2(Γ ). For the hypersingular integral equation
from Proposition 7, it holds for instanceF =(K′−1/2) f for

some givenf ∈ H−1/2
0 (Γ ). In either case, the action of the

integral operator to the continuous dataf is well-defined, but
hardly computable. In practice, the given dataf is therefore
replaced by some piecewise polynomial datafℓ. This leads
to a computable right-hand side for the Galerkin discretiza-
tion (4), whereF is replaced by some approximationFℓ. The
following short sections give insight in how to control this
additional approximation error.

4.6.1 Inverse estimates for integral operators

The following inverse-type estimates have independently first
been shown in [70,76] for piecewise polynomials. While [70]
considered lowest-order polynomials on piecewise polygo-
nal geometries, [76] covers arbitrary-order piecewise poly-
nomials but is restricted to smooth boundariesΓ . In [5], the
results of [70,76] are generalized to general densities instead
of piecewise polynomials.

Lemma 68 There exists a constant C4 > 0 such that for all
v∈ H̃1(Γ ) and all ψ ∈ L2(Γ )

‖h1/2
ℓ ∇Γ Vψ‖L2(Γ )+ ‖h1/2

ℓ (1/2−K′)ψ‖L2(Γ )

≤C4
(
‖ψ‖H̃−1/2(Γ )+ ‖h1/2

ℓ ψ‖L2(Γ )

)
,

‖h1/2
ℓ Wv‖L2(Γ )+ ‖h1/2

ℓ ∇Γ (1/2+K)v‖L2(Γ )

≤C4
(
‖v‖H̃1/2(Γ )+ ‖h1/2

ℓ ∇Γ v‖L2(Γ )

)
.

(60)

The constant C4 depends only on the shape regularity ofTℓ

and onΓ . In the special case v= Vℓ ∈ S̃ p(Tℓ) and ψ =

Ψℓ ∈ P p(Tℓ), there even holds

‖h1/2
ℓ ∇Γ VΨℓ‖L2(Γ )+ ‖h1/2

ℓ (1/2−K′)Ψℓ‖L2(Γ )

≤C5‖Ψℓ‖H̃−1/2(Γ ),

‖h1/2
ℓ WVℓ‖L2(Γ )+ ‖h1/2

ℓ ∇Γ (1/2+K)Vℓ‖L2(Γ )

≤C5‖Vℓ‖H̃1/2(Γ ).

(61)

The constant C5 > depends only onΓ , the shape regularity
of Tℓ, and on the polynomial degree p.

4.6.2 Weakly singular integral equation

We show two eligible ways of data approximation for the
weakly singular integral equation from Proposition 10 with
Γ = ∂Ω . First, the approximation for the right-hand sideF
can be done via the Scott-Zhang projectionJℓ : L2(Γ ) →
S p+1(Tℓ) from Section 3.2.2, i.e.

Fℓ := (1/2+K)Jℓ f , (62)

or via the L2-orthogonal projectionΠ p+1
ℓ : L2(Γ ) →

S p+1(Tℓ) from Section 3.2.1, i.e.,

Fℓ := (1/2+K)Π p+1
ℓ f , (63)

where we additionally assume thatΠ p+1
ℓ is H1-stable (cf.,

Section 3.2.1). In the following, we denote withPℓ either the
Scott-Zhang projectionPℓ = Jℓ or theL2-orthogonal projec-
tion Pℓ =Π p+1

ℓ . Let Φ̃ℓ ∈P p(Tℓ) denote the solution of (4)
with right-hand side (62) or (63). The introduced approxi-
mation error can be controlled with the following result

Lemma 69 There exists a constant C6 > 0 such that

C−1
6 ‖Φℓ− Φ̃ℓ‖H−1/2(Γ ) ≤ ‖h1/2

ℓ ∇Γ (1−Pℓ) f‖L2(Γ ). (64a)

Moreover, there exists a constant C7 > 0 such that

C−1
7 ‖Φℓ− Φ̃ℓ‖H−1/2(Γ ) ≤ ‖h1/2

ℓ (1−π p
ℓ )∇Γ f‖L2(Γ ). (64b)

The constant C6 depends only onΓ , the shape regularity
of Tℓ, and on the polynomial degree p. The constant C7 de-
pends additionally on all possible shapes of element patches
in Tℓ.



38 M. Feischl, T. Führer, N. Heuer, M. Karkulik, D. Praetorius

Proof The Galerkin formulation (4) shows

b(Φℓ− Φ̃ℓ , Φℓ− Φ̃ℓ) = 〈(1/2+K)( f −Pℓ f ) ,Φℓ− Φ̃ℓ〉Γ

. ‖ f −Pℓ f‖H1/2(Γ )‖Φℓ− Φ̃ℓ‖H−1/2(Γ ),

where we used the stability ofK from Theorem 2. With el-
lipticity from Theorem 3, this yields

‖Φℓ− Φ̃ℓ‖H−1/2(Γ ) . ‖ f −Pℓ f‖H1/2(Γ ).

We use the assumption onH1-stability onΠ p+1
ℓ or, in case

of Pℓ = Jℓ, the H1-stability of Jℓ from Lemma 26. With
Lemma 24, it holds

‖Φℓ− Φ̃ℓ‖H−1/2(Γ ) . min
Vℓ∈S p+1(Tℓ)

‖h1/2
ℓ ∇Γ ( f −Vℓ)‖L2(Γ ).

This shows (64a). For (64b), the result [8, Proposition 8]
finally shows

min
Vℓ∈S p+1(Tℓ)

‖h1/2
ℓ ∇Γ ( f −Vℓ)‖L2(Γ )

. ‖h1/2
ℓ (1−π p

ℓ )∇Γ f‖L2(Γ ),

where the hidden constant depends on the shapes of the ele-
ment patches inTℓ. This concludes the proof. ⊓⊔

Also the error estimators satisfy certain stability properties.

Lemma 70 Let ηℓ denote one of the(h− h/2)-type error
estimators defined in Theorem 53 or the weighted residual
error estimator from Theorem 38. Moreover, letη̃ℓ denote
the perturbed version of the respective error estimator com-
puted with the perturbed Galerkin approximatioñΦℓ and the
perturbed data Fℓ. Then, there exists a constant C8 > 0 such
that

|η̃ℓ−ηℓ| ≤C8‖h1/2
ℓ ∇Γ (1−Pℓ) f‖L2(Γ ). (65a)

Moreover, there exists a constant C9 > 0 such that

|η̃ℓ−ηℓ| ≤C9‖h1/2
ℓ (1−π p

ℓ )∇Γ f‖L2(Γ ). (65b)

The constant C8 depends only onΓ , the shape regularity of
Tℓ, and on p. The constant C9 depends additionally on all
possible shapes of element patches inTℓ.

Proof As example for(h−h/2)-type estimators, we choose

e.g.,ηℓ = ‖h1/2
ℓ (1−π p

ℓ )Φ̂ℓ‖L2(Γ ). Let ˜̂Φℓ denote the solution

of (4) on the uniformly refined spacêXℓ := P p(T̂ℓ) with
right-hand sideFℓ. The inverse triangle inequality combined
with the inverse estimate from Lemma 23 shows

∣∣‖h1/2
ℓ (1−π p

ℓ )
˜̂Φℓ‖L2(Γ )−‖h1/2

ℓ (1−π p
ℓ )Φ̃ℓ‖L2(Γ )

∣∣

≤ ‖h1/2
ℓ (

˜̂Φℓ− Φ̂ℓ)‖L2(Γ )

. ‖˜̂Φℓ− Φ̂ℓ‖H̃−1/2(Γ ).

The remaining statement follows from (64a)–(64b).
The estimate for the weighted residual error estimator is

similar. There holds
∣∣‖h1/2

ℓ ∇Γ (VΦ̃ℓ−Fℓ)‖L2(Γ )−‖h1/2
ℓ ∇Γ (VΦℓ−F)‖L2(Γ )

∣∣

. ‖h1/2
ℓ ∇Γ V(Φ̃ℓ−Φℓ)‖L2(Γ )

+ ‖h1/2
ℓ ∇Γ (1/2+K)( f −Pℓ f )‖L2(Γ ).

We apply the inverse estimate forV from (61) and for(1/2+
K) from (60) to obtain
∣∣‖h1/2

ℓ ∇Γ (VΦ̃ℓ−Fℓ)‖L2(Γ )−‖h1/2
ℓ ∇Γ (VΦℓ−F)‖L2(Γ )

∣∣

. ‖Φ̃ℓ−Φℓ‖H̃−1/2(Γ )

+ ‖ f −Pℓ f‖H1/2(Γ )+ ‖h1/2
ℓ ∇Γ ( f −Pℓ f )‖L2(Γ ).

The remainder follows as in the proof of Lemma 69. ⊓⊔

4.6.3 Hypersingular integral equation

For the hypersingular integral equation from Proposition 13
with Γ = ∂Ω , the most useful method for data approxima-
tion employs theL2-orthogonal projectionπ p−1

ℓ : L2(Γ ) →
P p−1(Tℓ), i.e.,

Fℓ := (1/2−K′)π p−1
ℓ f . (66)

Note that if f ∈ H−1/2
0 (Γ ), then alsoπ p−1

ℓ f ∈ H−1/2
0 (Γ ).

LetUℓ ∈ S p(Tℓ) denote the solution of (4) with right-hand
side (66). The introduced approximation error can be con-
trolled with the following result.

Lemma 71 There exists a constant C10 > 0 such that

C−1
10 ‖Uℓ−Ũℓ‖H1/2(Γ ) ≤ ‖h1/2

ℓ (1−π p−1
ℓ ) f‖L2(Γ ). (67)

The constant C10 depends only onΓ , the shape regularity of
Tℓ, and on the polynomial degree p.

Proof The proof follows as for the weakly singular case in
Lemma 69. ⊓⊔

Again, also the error estimators satisfy certain stability
properties.

Lemma 72 Let ηℓ denote one of the(h− h/2)-type error
estimators defined in Theorem 55 or the weighted residual
error estimator from Theorem 39. Moreover, letη̃ℓ denote
the perturbed version of the respective error estimator com-
puted with the perturbed Galerkin approximationŨℓ and the
perturbed data Fℓ. Then, there exists a constant C11> 0 such
that

|η̃ℓ−ηℓ| ≤C11‖h1/2
ℓ (1−π p−1

ℓ ) f‖L2(Γ ). (68)

The constant C11 depends only onΓ , the shape regularity of
Tℓ, and on p.

Proof The proof follows as for the weakly singular case in
Lemma 70. ⊓⊔
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5 A posteriori error estimators for the p and
hp-versions

The p-version of the boundary element method is the ex-
treme case of improving approximation properties only by
increasing polynomial degrees, of piecewise polynomials on
a fixed mesh. A combination of mesh refinement with in-
creasing polynomial degrees is calledhp-version. Higher
order polynomial degrees are particularly suited for the ap-
proximation of singular functions, the ones that appear due
to corners and edges of domains, recall Section 2.5 for de-
tails.

As is well known from finite element error analysis, the
p-version converges twice as fast as theh-version for prob-
lems with singularities when the meshes match the singu-
larity locations. This is also true of boundary elements. For
a first analysis in two dimensions (on curves) considering
hypersingular and weakly singular operators see [137]. An
optimal analysis of this case has been provided in [81]. In
three dimensions (on surfaces) the firstp-version analysis
for the hypersingular operator appeared in [128]. Here, only
closed surfaces are considered, implyingH1(Γ ) regularity
of the solution. Later, this gap has been closed in [22] for
hypersingular operators and [23] presents an analysis for
weakly singular operators. Of course, the purep-version is
mainly of theoretical interest since in practice, mesh refine-
ment is easier to implement than polynomials of high degree
in a stable way. Combining theh- and thep-version one
can choose quasi-uniform or non-uniformly refined meshes.
The hp-version with quasi-uniform meshes combines the
convergence orders of both variants (twice the rate with re-
spect to degrees in comparison to mesh refinement). The
corresponding analyses have been given in [138] and [82]
(preliminary and optimal estimates, respectively) in two di-
mensions for both operators. In three dimensions, and for
open surfaces with the strongest singularities, the publica-
tions are [24] (hypersingular operator) and [25].

Thehp-version gives full flexibility in choosing any mesh
and degree combination, with analysis for quasi-uniform
meshes provided by the publications mentioned before. In
the so-calledhp-version with geometric meshes one selects
a specific combination of geometrically graded meshes with
polynomial degrees that are larger on larger elements. In
three dimensions (on surfaces) this implies the use of an-
isotropic elements and polynomial degrees that are different
in different directions on the same element. In this way, an
exponential rate of convergence (faster than any algebraic
order in terms of numbers of unknowns) can be achieved,
cf. [91].

Finite and boundary element analysis for meshes includ-
ing anisotropic elements is challenging. This is due to the
fact that no simple scaling arguments related to affine map-
pings onto reference elements apply. In many cases, differ-

ent scaling properties in different directions get mixed up
and make the analysis on distorted elements cumbersome.

In the case of thep-version there is another difficulty.
The analysis of low order methods employs scaling argu-
ments in order to use arguments from the equivalence of
norms in finite-dimensional spaces, defined on reference el-
ements. When considering thep-version, by definition di-
mensions of approximation spaces on elements are not
bounded. This means that simple arguments from the equiv-
alence of different norms do not apply. Analytical tools for
the analysis ofp- andhp-versions are usually different, and
scaling arguments form only a part of the story.

Considering both remarks, on anisotropic elements and
on the difficulties with thep-version, is becomes clear that
error estimation for thehp-version with geometric meshes
is a non-trivial issue. In fact, we are not aware of any pub-
lication analyzing this situation in a satisfying way, neither
using residual-based estimators nor enrichment-based meth-
ods. In particular, nothing is known for the a posteriorip-
error estimation of weakly singular operators in three di-
mensions. Additive Schwarz theory is the most advanced
area dealing withp-approximations of boundary integral op-
erators in three dimensions. This, in particular, is the case
with hypersingular operators. However, let us recall that there
is a satisfying analysis of two-level error estimation on an-
isotropic meshes for weakly singular integral equations [61],
as discussed in Section 4.2.1, cf. Figure 13 and Theorem 52.

In the following we discuss the existing theory for two-
level error estimation of thep- andhp-version with quasi-
uniform meshes for the solution of hypersingular integral
equations on surfaces [89,93]. For thep- andhp-version of
the BEM, solving integral equations on curves, we refer to
[92], see also [86].

Our model problem is the hypersingular integral equa-
tion considered in Proposition 6, and for simplicity we con-
sider an open flat surfaceΓ with polygonal boundary. The
meshesT are assumed to be quasi-uniform with shape-
regular elements. Triangles and convex quadrilaterals areal-
lowed. We will use the notation and framework introduced
in Section 1.1. That means we are considering

b(u,v) = 〈Wu,v〉Γ , X = H̃1/2(Γ ), X
p

T
= S̃

p(T ).

Here, the indexp in the discrete space refers to polynomial
degreesp ≥ 1 that can be different on different elements,
and even different in different directions. The exact solution
of the problem isu ∈ H̃1/2(Γ ) and the discrete solution is
denoted byU ∈ S̃ p(T ).

Now, in order to define a two-level estimator for the error
‖u−U‖H̃1/2(Γ ), we consider as in Section 4.2.1 an enriched

discrete spacêX p
T

with X
p

T
⊂ X̂

p
T

⊂ H̃1/2(Γ ) and decom-
position

X̂
p

T
= ZT ,0⊕ZT ,1⊕ZT ,2⊕·· ·⊕ZT ,L. (69)
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The resulting error estimator is

ηT :=
( L

∑
j=0

η2
j

)1/2
, η j := ‖Pj(Û −U)‖b. (70)

Here,

Pj : X̂
p

T
→ZT , j : 〈WPjv ,w〉Γ = 〈Wv,w〉Γ ∀w∈ZT , j

and

‖v‖2
b = 〈Wv,v〉Γ ∀v∈ ZT , j ( j = 0, . . . ,L).

Moreover,η0 = 0 corresponds toZ0 ⊂ X
p

T
, cf. Lemma 47.

There are different issues to be considered when select-
ing the enriched space and a decomposition.

– Basis functions forX̂ p
T

⊂ H̃1/2(Γ ) must be continuous.
This fact restricts the possibility of having stable decom-
positions ofX̂ p

T
with subspaces that are localized on

elements.
– Decompositions (69) for thep-version based on the sep-

aration of basis functions are inherently unstable for a
standard basis (cf. [13] for the finite element method),
or require specific basis functions that are partially or-
thogonal (cf. [87,88]).

– Partially orthogonal basis functions (as mentioned be-
fore) are not hierarchical. They can be constructed a pri-
orily for rectangles (through tensor product representa-
tions) or a posteriorily through a Schur complement step.
This Schur complement is not a local construction for
boundary integral operators and, thus, expensive.

– Increasing polynomial degrees by a finite number, e.g.,
from p to p+1, for the generation of the enriched space
X̂

p
T

does in general not satisfy the saturation assump-
tion. On the other hand, increasing polynomial degrees
by a fixed factor is not practical since polynomials of
higher degrees are inherently difficult to implement in a
stable and efficient way.

For the reasons above, we suggest to consider two dif-
ferent enrichments with corresponding decompositions. One
for error estimation with focus on satisfying the saturation
assumption (let’s call this estimatorηest) and another one
to generate indicators steering the mesh refinement (and/or
increase of polynomial degrees) with focus on providing lo-
cal information (let’s call this estimatorηref). The estimator
ηestcan be relatively expensive since it will be used only for
a stopping criterion, it is not necessary to calculate it after
each refinement step. On the other hand,ηref is needed for
every refinement step and should be cheap. In the following
we discuss both cases.

Error estimatorηest. We consider the enriched spacêX
p

T
:=

S̃ p̂(T̂ ) that one obtains by refining the meshT uniformly,
i.e., subdividing every triangle and quadrilateral in an iso-
tropic way. Here,T̂ denotes the refined mesh. Polynomial
degreeŝp can be inherited from father elements or one can
select the maximum polynomial degree from the actual space
X

p
T

for the enriched space,̂p = max{p}. In this way, nu-
merical experiments indicate good compliance with the sat-
uration property, cf. [89]. Uniformly stable decompositions
can be obtained through overlapping domain decomposi-
tion. To this end, letω j (zj ∈ N̂ ) denote the patches of
elements that are adjacent to interior nodes of the refined
meshT̂ . Here, for simplicity, we assume thatΓ is convex to
avoid the appearance of special situations at incoming cor-
ners. This is only for technical reasons and not essential.
Then, we consider the decomposition̂X

p
T
=ZT ,0∪ZT ,1∪

. . .∪ZT ,L with

ZT ,0 = S̃
1(T̂ ) and ZT , j = S̃

p̂(T̂ |ω j ), zj ∈ N̂ .

(71)

Two comments are in order. First, this decomposition is not
direct. This results in a slightly more complicated additive
Schwarz theory than presented in Section 4.2.1. Second, we
do not have the inclusionZT ,0 ⊂ X

p
T

so that the error in-
dicator

ηest,0 = ‖P0(Û −U)‖b

corresponding to this subspace does not vanish in general.
ZT ,0 is the so-called coarse grid space of the decomposition
and, since it is defined with lowest order polynomial degree,
its calculation is not too expensive. Additionally, this step
can be accelerated by using efficient low order implemen-
tations (though this has not been studied in this particular
situation).

Theorem 73 Let X̂
p

T
= S̃ p̂(T̂ ) be defined with uniform

degreêp=max{p}. The error estimatorηestdefined through
the decomposition of̂X p

T
with subspaces(71) is efficient:

there exists a constant Ceff > 0 such that, for any quasi-
uniform meshT of shape-regular elements with shape-
regular refinementT̂ , there holds for any polynomial de-
greep̂

ηest≤Ceff‖u−U‖b.

Furthermore, letT̂ be sufficiently refined so that Assump-
tion 45 holds. Thenηest is also reliable: there exists a con-
stant c> 0 such that, with Crel =(1−C2

sata)
−1/2c, there holds

for any meshT with shape-regular refinement̂T and for
any polynomial degreêp the estimate

‖u−U‖b ≤Crel ηest.

For a proof of Theorem 73 we refer to [89].



Adaptive Boundary Element Methods 41

Error indicator ηind. In order to generate error indicators
that are local and useful for adaptive steering we increase
locally polynomial degrees. In particular, we aim at error
indicators that indicate also in which direction to refine (lit-
erally an element or in the sense of increasing polynomial
degrees in a certain direction on elements). Here, we do not
focus on satisfying the saturation assumption. In the follow-
ing, to keep things simpler, we consider only rectangular el-
ements. For meshes consisting of triangles, or rectangles and
triangles, we refer to [89].

Our enriched spacêX p
T

and decomposition will be like

X̂
p

T
= ZT ,0⊕

⊕

T∈T ; i=1,2

ZTi. (72)

Here,ZT1 andZT2 consist of functions with support on (the
closure of) an elementT ∈ T and the two spaces will gen-
erate direction indicators. The spaceZT ,0 consists of func-
tions with support on (the closure of)Γ . In order to have
conformityZTi ⊂ H̃1/2(Γ ) and locality of functions, the el-
ements ofZTi must vanish on the boundary ofT (so that
they can be continuously extended by zero ontoΓ \T). Of
course we are considering polynomials onT, and in that case
these functions (with vanishing trace on the boundary ofT)
are called bubble functions. The generation of bubble func-
tions requires a minimum polynomial degree. On a trian-
gle the lowest order bubble function has degree three, and
on rectangles one uses tensor products of polynomials of at
least degree two in both directions. In both cases, the min-
imum degree allows for only one linearly independent bub-
ble function. Therefore, in order to have enough unknowns
for indicators in different directions, we need slightly higher
polynomial degrees.

For ease of presentation let us now assume thatT is a
rectangle that is oriented in thex1-x2 plane. Furthermore,
P p1,p2(T) indicates the space of polynomials onT with de-
grees up topi in xi-direction,i = 1,2. We then define for any
T ∈ T the spacesZT1, ZT2 as follows.

ZT1 :=





span
{
P p1+1,p2(T)\P p1,p2(T)

}
∩H1

0(T)
if p1 > 1, p2 > 1 (a)

span
{
P p1+1,2(T)\P p1,2(T)

}
∩H1

0(T)
if p1 > 1, p2 = 1 (b)

P2,p2(T)∩H1
0(T)

if p1 = 1, p2 > 1 (c)

P3,2(T)∩H1
0(T)

if p1 = 1, p2 = 1 (d)

is the space to generate an indicator onT in x1-direction and

ZT2 :=





span
{
P p1,p2+1(T)\P p1,p2(T)

}
∩H1

0(T)
if p1 > 1, p2 > 1 (a)

P p1,2(T)∩H1
0(T)

if p1 > 1, p2 = 1 (b)

span
{
P2,p2+1(T)\P2,p2(T)

}
∩H1

0(T)
if p1 = 1, p2 > 1 (c)

P2,3(T)∩H1
0(T)

if p1 = 1, p2 = 1 (d)

will generate an indicator inx2-direction. Here,(p1, p2) are
the polynomial degrees iñS p(T ) onT. They can be differ-
ent on every element. As basis functions for the subspaces
ZT1, ZT2 we take affine images of the tensor products

ψp1(x1)ψp2(x2) with ψq(s) :=
∫ s

−1
Lq−1(t)dt

for p1, p2 ≥ 2 defined on(−1,1)2 with Lq−1 being the Leg-
endre polynomial of degreeq−1.
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Fig. 15 Illustration ofp-enrichment and decomposition on an element
T for direction control.
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In Figure 15 we illustrate the increase of polynomial de-
grees for the generation ofZT1 andZT2 in different situa-
tions. The marked regions represent pairs of polynomial de-
grees for the two spaces. We represent only degrees larger
than one, that means we illustrate only bubble functions.
Case (a) is the general case when the polynomial degrees
p1, p2 on an elementT are larger than one. We increase
the polynomial degrees by one in both directions and define
the local spacesZT1 andZT2 by the indicated degrees. The
remaining situations, wherep1 or p2 is one, are illustrated
by (b), (c) and (d). These cases are not covered by (a) and
we need a specialp-enrichment to produce subspaces that
indicate different directions for refinement. Case (c) is anal-
ogous to the case (b) when exchangingp1 and p2, and is
omitted. Only in the case (a) (withp1 ≥ 2 andp2 ≥ 2) bub-
ble functions of the previous spaceX

p
T

are present. This is
indicated by the diagonal shading. Case (d) is the only sit-
uation where the decomposition ofZT = ZT1∪ZT2 is not
direct.

Now, for elements not being aligned with thex1-x2 di-
rections, the construction of the two spacesZT1, ZT2 works
analogously. Concluding, we have defined the decomposi-
tion (72) with the exception ofZT ,0. In [89] and [93], dif-
ferent strategies have been considered to generateZT ,0 so

thatX p
T

⊂ X̂
p

T
and (72) is (almost) stable. These strategies

are partial or full orthogonalizations and Schur complement
steps. Here we are not interested in reliable error estima-
tion (which is being provided by the error estimator based
on mesh refinement) and therefore, finish this section with
recalling stability of the decomposition of the enrichment
level

ZT =
⊕

T∈T

(
ZT1∪ZT2

)
(73)

and assuming a stable construction ofZT ,0 without giving
more details. This then implies efficient and reliable esti-
mation of ‖Û −U‖b by ηind. Note that in some cases, as
discussed above, the decompositionZT1∪ZT2 can be non-
direct.

As said before, we consider meshes consisting only of
rectangles. As in [89,93] this can be generalized to meshes
including quadrilaterals and triangles.

Theorem 74 LetZT be defined through decomposition(73)
with local spacesZTi (i = 1,2) as defined previously, and
assume that the construction ofZT ,0 in (72) is stable. Then
the corresponding error indicator

ηind :=
(
‖P0(Û −U)‖2

b+ ∑
T∈T , i=1,2

‖PTi(Û −U)‖2
b

)1/2

is reliable and efficient for the estimation of‖Û−U‖b in the
following sense. Assume that the meshT is locally quasi-
uniform, i.e. the ratio of largest side length and smallest side

length on each element is bounded from above by a global
positive constant. Then there exist constants c1, c2 > 0which
are independent of the mesh and polynomial degrees p such
that

c1ηind ≤ ‖Û −U‖b ≤ c2(1+ logpmax)ηind.

Here, pmax is the maximum of all polynomial degrees in
X

p
T

.

For a proof we refer to [89]. We finish this section with
presenting a three-level refinement algorithm that decides
where to add unknowns and whether to refine the mesh or
increase polynomial degrees at those places. This algorithm
has proved to work appropriately in standard situations. The
definition and analysis of optimal algorithms for direction
control and decision forh or p refinement in boundary ele-
ment methods is an open problem.

Three-fold algorithm [89]: Define an initial ansatz space
S̃ p(T ) with initial meshT and low polynomial degrees.
Choose an error toleranceε > 0 and steering parametersδ1,
δ2, δ3 with 0< δ2 < δ1 < 1 and 0< δ3 < 1. Then perform
the following steps.

1. Galerkin solution. Compute the Galerkin solution
U ∈ S̃ p(T ).
2. Error estimator. Calculate the termsη j = ‖Pj(Û −
U)‖b and the estimatorηest, based on the decomposition
(71).
Stop if ηest≤ ε.
3. Adaption steps.

(i) Indicators. Compute the error indicatorsηTi =

‖PTi(Û −U)‖b, ηT := (η2
T1+η2

T2)
1/2 (T ∈ T , i =

1,2) based on the decomposition (73), and setηmax :=
maxT∈T ηT .
(ii) Classification of elements.Classify quadrilat-
eralsT as follows (in pseudo Fortran90 language,
directions are understood with respect to local coor-
dinates):
if (ηT > δ1ηmax) then ! h-refinement
if (ηT1 < δ3ηT2) then

classifyT for horizontal intersection
elseif (ηT2 < δ3ηT1) then

classifyT for vertical intersection
else

classifyT for intersections in both directions
endif

elseif (ηT > δ2ηmax) then ! p-increase
if (ηT1 < δ3ηT2) then

classifyT for increase of polynomial degree
in vertical direction

elseif (ηT2 < δ3ηT1) then

classifyT for increase of polynomial degree
in horizontal direction

else
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classify T for increase of polynomial de-
grees in both directions

endif

endif

Triangles are classified without direction control, i.e.,
they are refined by halving all their edges ifηT >

δ1ηmaxand the polynomial degree is increased ifδ2ηmax<

ηT ≤ δ1ηmax.
(iii) Adaption.

(a) Go through all the elements and refine as
classified.
(b) Go through all the elements and refine as
necessary to remove hanging nodes.
(c) Go through all the elements and increase poly-
nomial degrees as classified if the correspond-
ing element has not been refined in (b).
goto 1.

Remark 10When an element is refined then polynomial de-
grees for the new elements need to be given. To avoid high
polynomial degrees on small elements one can inherit the
degrees reduced by one for the refinement direction when-
ever possible (i.e., when the degree is larger than one). A
more sophisticated algorithm may include the refinement of
quadrilaterals into triangles and vice versa. This has been
studied on [89,93].

Remark 11An adaptiveh-version can be realized by choos-
ing δ2 ≥ δ1. Purep-adaptivity occurs when choosingδ1 > 1.
Isotropic adaption (no direction control) can be performed
by takingδ3 = 0.

6 Estimator reduction

This section explains the concept of estimator reduction and
its use to prove plain convergenceof ABEM, i.e., the validity
of (12). The general idea that will be presented here applies
to error estimators whose local contributions are weighted
by the local mesh-sizehℓ. The approach is illustrated for
some(h−h/2)-type error estimators from Section 4.2.2, the
ZZ-type error estimators from Section 4.4, and the weighted
residual error estimators from Section 4.1.3. To that end, we
consider a sequence of meshesTℓ which, e.g., is generated
by the adaptive Algorithm 1. We only need some minor as-
sumptions on the mesh refinement operationrefine(·).

6.1 Assumptions on mesh refinement

We say that a meshT⋆ is a refinement of another meshTℓ,
writtenT⋆ ∈ refine(Tℓ), if the following applies:

– For all T ∈ Tℓ, there holds

T =
⋃
{T

′
: T ′ ∈ T⋆ with T ′ ⊆ T}, (74)

i.e., each coarse-mesh elementT ∈ Tℓ is basically the
union of fine-mesh elementsT ′ ∈ T⋆.

– For all T ∈ Tℓ andT ′ ∈ T⋆, there holds

T ′ $ T =⇒ |T ′| ≤ |T|/2, (75)

i.e., the area of refined elements is at least halved.

A sequence of meshes(Tℓ)ℓ∈N0 is called nested, if for
all ℓ ∈ N0 it holdsTℓ+1 ∈ refine(Tℓ) and if the shape reg-
ularity constantσℓ from Section 2.6 is uniformly bounded
supℓ∈N0

σℓ < ∞.
Recall that with each meshT⋆, we associate the local

mesh-size functionh⋆ ∈ P0(T⋆) defined byh⋆|T := hT =

|T|1/(d−1).

6.2 Abstract error estimator

Given the meshTℓ, suppose that there exists a computable
error estimator

ηℓ :=
(

∑
T∈Tℓ

ηℓ(T)
2
)1/2

with ηℓ(T) ∈ [0,∞) for all T ∈ Tℓ.

The estimator usually depends on the computed solutionUℓ

of (4) as well as on the right-hand sideF.

6.3 Abstract adaptive algorithm

Convergence of the adaptive algorithm 1 has first been ad-
dressed in the frame of AFEM in the pioneering work [56]
which also introduced the bulk chasing (9). While [56] only
proved convergence up to the resolution of the given data
on the initial meshT0, the work [110] included the adap-
tive resolution of the data and contained the first plain con-
vergence result. For ABEM, convergence of this algorithm
has mathematically been addressed first in [73] and [11]
for (h−h/2)-type and averaging error estimators, while the
analysis of [43] relied on an additional (and practically arti-
ficial and unnecessary) feedback control.

Remark 12In practice, step (iv) of the Algorithm 1 provides
thecoarsestrefinementTℓ+1 of Tℓ such that all marked el-
ements have been refined by the mesh refinement strategy
used, writtenTℓ+1 := refine(Tℓ,Mℓ). We refer to Sec-
tion 7 for possible concrete strategies for local mesh refine-
ment of 2D and 3D BEM meshes.

Remark 13To find a setMℓ ⊆ Tℓ which satisfies the bulk
chasing (9), one arbitrarily adds elementsT ∈ Tℓ to Mℓ

until (9) is satisfied (at leastMℓ = Tℓ will do the job). If
one seeks a set of minimal cardinalityMℓ, it is necessary to
sort the elementwise error indicators, i.e.,ηℓ(T1)≥ηℓ(T2)≥
. . . ≥ ηℓ(T#Tℓ

). Then, determine the minimal 1≤ n ≤ #Tℓ

such that θη2
ℓ ≤ ∑n

j=1 ηℓ(Tj)
2. By construction,
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Mℓ := {T1, . . . ,Tn} satisfies (9) with minimal cardinality.
Obviously, the setMℓ is not unique in general. This may
lead to non-symmetric meshes even for completely symmet-
ric problems.

6.4 Estimator reduction principle

The estimator reduction principle [11] is an elementary yet
very useful starting point for the a posteriori analysis of any
error estimator. The following lemma states the main idea of
the principle.

Lemma 75 Given a sequence of error estimators(ηℓ)ℓ∈N0,
suppose a contraction constant0 < qest < 1 as well as a
perturbation sequence(αℓ)ℓ∈N0 ⊂ R such that the error es-
timator satisfies the perturbed contraction

η2
ℓ+1 ≤ qestη2

ℓ +α2
ℓ for all ℓ ∈ N0. (76)

Then,limℓ→∞ α2
ℓ = 0 implies estimator convergence

lim
ℓ→∞

ηℓ = 0. (77)

Proof Apply the limes superiorlim on both sides of the es-
timator reduction (76) to obtain

lim
ℓ→∞

η2
ℓ+1 ≤ qestlim

ℓ→∞
η2
ℓ + lim

ℓ→∞
α2
ℓ .

Sinceα2
ℓ converges towards zero, there holdslimℓ→∞α2

ℓ = 0.
This implies

lim
ℓ→∞

η2
ℓ+1 ≤ qestlim

ℓ→∞
η2
ℓ = qestlim

ℓ→∞
η2
ℓ+1.

Since 0< qest< 1, this leaves the possibilitieslimℓ→∞η2
ℓ+1=

0 or limℓ→∞η2
ℓ+1 = ∞. To rule out the second option, apply

the estimator reduction (76) inductively to see

η2
ℓ ≤ qestη2

ℓ−1+α2
ℓ−1

≤ q2
estη2

ℓ−2+qestα2
ℓ−2+α2

ℓ−1

≤ qℓestη
2
0 +

ℓ−1

∑
k=0

qk
estα

2
ℓ−k−1.

Convergence ofα2
ℓ implies the boundedness supℓ∈N0

α2
ℓ <∞

and the convergence of the geometric series concludes

η2
ℓ ≤ qℓestη

2
0 +

1
1−qest

sup
ℓ∈N0

α2
ℓ < ∞.

This proveslimℓ→∞η2
ℓ+1 = 0 and elementary calculus yields

0≤ lim
ℓ→∞

η2
ℓ ≤ lim

ℓ→∞
η2
ℓ+1 = 0.

This concludes the proof. ⊓⊔

Before we apply Lemma 75 to concrete error estima-
torsηℓ, we collect a number of auxiliary results on the con-
vergence of projections and quasi-interpolants. Later, these
will prove that the perturbation termsαℓ vanish asℓ → ∞.
The first lemma has already been proved in the pioneering
work [15] for symmetric problems and reinvented in [111,
43].

Lemma 76 Suppose a sequence of nested spaces(Xℓ)ℓ∈N0 ⊂
X , i.e.,Xℓ ⊆ Xℓ+1 for all ℓ ∈ N0. Then, the Galerkin ap-
proximations Uℓ of (4) satisfy

lim
ℓ→∞

‖U∞−Uℓ‖X = 0 (78)

for an a priori limit U∞ ∈ X which is unknown in general
and depends on the concrete sequence of spaces.

Proof Define the closed spaceX∞ :=
⋃

ℓ∈N0
Xℓ ⊆X , where

the closure is understood in the spaceX . The Lax-Milgram
lemma guarantees a unique solutionU∞ ∈ X∞ of (4), where
Xℓ is replaced withX∞. By use of the Galerkin orthogo-
nality, we prove the Céa lemma (6) also forU∞, i.e., any
Vℓ ∈ Xℓ satisfies

Cell‖U∞ −Uℓ‖2
X ≤ b(U∞−Uℓ ,U∞ −Uℓ)

= b(U∞−Uℓ ,U∞ −Vℓ)

≤Ccont‖U∞−Uℓ‖X ‖U∞ −Vℓ‖X .

Hence, we are led to

‖U∞−Uℓ‖X . min
Vℓ∈Xℓ

‖U∞ −Vℓ‖X .

Let ε > 0. The definition ofX∞ implies the existence ofk∈
N andWk ∈Xk such that‖U∞−Wk‖X ≤ ε. Combining this
with the nestednessXk ⊆ Xℓ for ℓ≥ k and the Céa lemma,
we obtain‖U∞ −Uℓ‖X . ε. This concludes the proof. ⊓⊔

The following lemma provides a similar result for quasi-
interpolation operators and is proved in [67, Proposition 11].

Lemma 77 Given a sequence of nested meshes(Tℓ)ℓ∈N0

as well as corresponding linear operators(Jℓ : L2(Γ ) →
L2(Γ ))ℓ∈N which satisfy for all T∈ Tℓ the following prop-
erties (i)–(iii):

(i) local L2-stability

‖Jℓv‖L2(T) ≤CJ‖v‖L2(ωT ) for all v ∈ L2(Γ );

(ii) local first-order approximation property

‖(1− Jℓ)v‖L2(T) ≤CJ‖hℓ∇Γ v‖L2(ωT ) for all v ∈ H1(Γ );

(iii) local definition, i.e.,(Jℓv)|T depends only on the values
of v|ωT .
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Then, there exists a linear and continuous limit operator J∞ :
L2(Γ )→ L2(Γ ) with

lim
ℓ→∞

‖J∞v− Jℓv‖L2(Γ ) = 0 for all v ∈ L2(Γ ). (79)

Suppose in addition that Jℓ(L2(Γ )
)
⊆ H1(Γ ) and that the

following property holds:

(iv) local H1-stability

‖∇Γ (Jℓv)‖L2(T) ≤CJ‖v‖H1(ωT )
for all v ∈ H1(Γ ).

Then, the limit operator J∞ has the following additional prop-
erties:

– J∞ : Hs(Γ )→ Hs(Γ ) is well-defined and continuous for
all 0≤ s≤ 1;

– for all 0≤ s< 1, J∞ is the pointwise limit of Jℓ, i.e.,

lim
ℓ→∞

‖J∞v− Jℓv‖Hs(Γ ) = 0 for all v ∈ Hs(Γ ); (80)

– for s= 1 and all v∈ H1(Γ ), Jℓv converges weakly to J∞v
asℓ→ ∞.

The Scott-Zhang projectionJℓ from Lemma 26 satisfies
even stronger convergence results. We stress thatJℓ satis-
fies the assumptions (i)–(iv) from Lemma 77. The following
lemma is proved in [71, Lemma 18].

Lemma 78 Suppose a sequence of nested meshes(Tℓ)ℓ∈N0

as well as the corresponding Scott-Zhang operators(Jℓ :
L2(Γ )→ L2(Γ ))ℓ∈N. Then, the limit operator J∞ : L2(Γ )→
L2(Γ ), which exists due to Lemma 77, is a projection in the
sense of J∞v= v for all v∈ S p

∞ :=
⋃

ℓ∈N0
S p(Tℓ)⊆ L2(Γ )

where the closure is understood with respect to L2(Γ ), and
satisfies pointwise convergence

lim
ℓ→∞

‖J∞v− Jℓv‖Hs(Γ ) = 0 for all v ∈ Hs(Γ ) (81)

and all 0≤ s≤ 1.

Finally, also the non-localL2-orthogonal projectionΠ p
ℓ :

L2(Γ ) → S p(Tℓ) from Definition 21 satisfies the conver-
gence properties of Lemma 77–78. The following lemma
improves an observation of [100] to general 0≤ s≤ 1. We
note that Lemma 79 does not follow from Lemma 77, since
Π p

ℓ is anon-localoperator and fails to satisfy thelocal prop-
erties (i)–(iv) from Lemma 77.

Lemma 79 Given a sequence of nested meshes(Tℓ)ℓ∈N0,
suppose uniform H1-stability of the L2-orthogonal projec-
tion Π p

ℓ : L2(Γ )→ S p(Tℓ) for all ℓ ∈N0, i.e.,

‖∇Γ Π p
ℓ v‖L2(Γ ) ≤Cstab‖v‖H1(Γ ) for all v ∈ H1(Γ ). (82)

Then, there exists a linear and continuous limit operator
Π p

∞ : L2(Γ ) → L2(Γ ) which is a projection in the sense of
Π p

∞v = v for all v ∈ S p
∞ :=

⋃
ℓ∈N0

S p(Tℓ) ⊆ L2(Γ ) where
the closure is understood with respect to L2(Γ ), and satisfies

– Π p
∞ : Hs(Γ )→Hs(Γ ) is well-defined and continuous for

all 0≤ s≤ 1
– For all 0≤ s≤ 1, Π p

∞ is the pointwise limit ofΠ p
ℓ , i.e.

lim
ℓ→∞

‖Π p
∞v−Π p

ℓ v‖Hs(Γ ) = 0 for all v ∈ Hs(Γ ) (83)

Proof SinceΠ p
ℓ is an orthogonal projection for theL2-scalar

product, one proves analogously to Lemma 76 that there ex-
ists an operatorΠ p

∞ : L2(Γ )→ L2(Γ ) such that

lim
ℓ→∞

‖Π p
ℓ v−Π p

∞v‖L2(Γ ) = 0 for all v∈ L2(Γ ). (84)

Clearly, this and the projection property ofΠ p
ℓ imply in par-

ticular thatv=Π p
∞v for all v∈S p

∞ . AsΠ p
ℓ is stable inL2(Γ )

by definition and stable inH1(Γ ) by assumption (82), it fol-
lows from deeper mathematical techniques (see, e.g., [142])
that it is also stable inHs(Γ ) for s ∈ (0,1). For general
v ∈ Hs(Γ ), the boundedness supℓ∈N0

‖Π p
ℓ v‖Hs(Γ ) < ∞ im-

plies for a subsequenceΠ p
ℓk

v ⇀ w weakly in Hs(Γ ) and
henceΠ p

∞v = w ∈ Hs(Γ ). To seeHs-convergence for all
0≤ s≤ 1, we apply the projection property ofΠ p

ℓ to see

‖Π p
∞v−Π p

ℓ v‖Hs(Γ ) = ‖(1−Π p
ℓ )Π

p
∞v‖Hs(Γ )

= ‖(1−Π p
ℓ )(1− Jℓ)Π p

∞v‖Hs(Γ ),

whereJℓ : L2(Γ ) → S p(Tℓ) denotes the Scott-Zhang pro-
jection from Lemma 26. TheHs-stability of Π p

ℓ then shows

‖Π p
∞v−Π p

ℓ v‖Hs(Γ ) . ‖(1− Jℓ)Π p
∞v‖Hs(Γ )

= ‖(J∞ − Jℓ)Π p
∞v‖Hs(Γ ) → 0,

asΠ p
∞v∈ S p

∞ and henceΠ p
∞v= J∞Π p

∞v by Lemma 78. ⊓⊔

Remark 14For 2D BEM, theH1-stability (82) is well-ana-
lyzed and found in [51]. For 3D BEM, available results in-
clude [17,28,29,33,34,101], and we refer to Section 7.4.2
below.

Remark 15Suppose thatJℓ : L2(Γ ) → L2(Γ ) satisfies
Jℓ(H1

0(Γ ))⊆H1
0(Γ ), i.e.,Jℓ incorporates homogeneous Diri-

chlet conditions. Suppose thatJℓ satisfies the properties (i)–
(iv) of Lemma 77 withH1(Γ ) replaced byH1

0(Γ ) = H̃1(Γ ).
Then, the according a priori convergence holds inH̃s(Γ ) for
0≤ s≤ 1 instead ofHs(Γ ). This observation applies, in par-
ticular, for the Scott-Zhang projection from Lemma 78, and
we refer to [12] for stable Scott-Zhang projectors inH̃s(Γ ).
Finally, also Lemma 79 transfers to this case, ifΠ p

ℓ de-

notes theL2-orthogonal projection ontõS p(Tℓ). We refer
to [102] forH1-stability of thisL2-projection for the lowest-
order casep= 1, see also Section 7.4.2 below.

Remark 16For 2D BEM and lowest-order elements, nodal
interpolationJℓ : C(Γ ) → S 1(Tℓ) from Section 3.2.3 sat-
isfies the identity(Jℓv)′ = π0

ℓ (v
′) for all v ∈ H1(Γ ), where

π0
ℓ : L2(Γ )→P0(Tℓ) denotes theL2-orthogonal projection
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ontoP0(Tℓ). Given a sequence of nested meshes(Tℓ)ℓ∈N0,
it is part of [10, Proof of Prop. 5.2] that therefore the limit
of Jℓv exists inH1(Γ ), i.e.,‖v∞ − Jℓv‖H1(Γ ) → 0 asℓ → ∞
for some appropriatev∞ ∈ H1(Γ ).

6.5 (h−h/2)-type error estimators

This section follows [10,11,100] and discusses the estima-
tor reduction (76) for the easy-to-implement(h−h/2) error
estimator from [12,59,74]. Given anyTℓ, we assume that
T̂ℓ ∈ refine(Tℓ) is the uniform refinement ofTℓ, i.e., it
holds nestedness

P
0(Tℓ)⊆ P

0(Tℓ+1)⊆ P
0(T̂ℓ)⊆ P

0(T̂ℓ+1), (85)

and for allT ∈ Tℓ andT ′ ∈ T̂ℓ holds

T ′ ⊆ T =⇒ q|T| ≤ |T ′| ≤ |T|/2, (86)

for some fixed andℓ-independent 0< q≤ 1/2, i.e., the local
mesh-sizes ofTℓ andT̂ℓ are comparable.

6.5.1 Weakly-singular integral equation

As model problem serves the weakly singular integral equa-
tion from Proposition 9. The corresponding(h−h/2)-type
error estimator from Theorem 54 employs theL2(Γ )-ortho-
gonal projectionπ p

ℓ := π p
Tℓ

: L2(Γ )→P p(Tℓ) from Lemma

21 as well as the solution̂Φℓ of (4), whereXℓ = P p(Tℓ) is
replaced with the uniform refinement̂Xℓ = P p(T̂ℓ) corre-
sponding toT̂ℓ, i.e.,

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−π p
ℓ )Φ̂ℓ‖2

L2(T)
, (87)

wherehT := |T|1/(d−1) ≃ diam(T). The following lemma
proves the estimator reduction estimate (76). The proof re-
veals that the contraction constant 0< qset< 1 essentially
follows from the contraction (75) of the local mesh-size on
refined elements.

Lemma 80 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈
N and some0 < θ ≤ 1, the (h− h/2) error estimatorηℓ

from (87) satisfies the estimator reduction(76) with αℓ :=
Cest‖Φ̂ℓ+1 − Φ̂ℓ‖H̃−1/2(Γ ). While qest depends only on the
marking parameterθ , the constant Cest depends addition-
ally on Γ , the polynomial degree p, and the uniform shape
regularity ofTℓ.

Proof The triangle inequality yields

ηℓ+1 ≤‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖L2(Γ )

+ ‖h1/2
ℓ+1(1−π p

ℓ+1)(Φ̂ℓ+1− Φ̂ℓ)‖L2(Γ ).
(88)

Note that the projectionπ p
ℓ+1 is even theTℓ+1-piecewise

best approximation, i.e.,

‖(1−π p
ℓ+1)ψ‖L2(T ′) = min

Ψℓ+1∈P p(T ′)
‖ψ −Ψℓ+1‖L2(T ′).

This and the inverse estimate from Lemma 23 prove

‖h1/2
ℓ+1(1−π p

ℓ+1)(Φ̂ℓ+1− Φ̂ℓ)‖L2(Γ )

≤ ‖h1/2
ℓ+1(Φ̂ℓ+1− Φ̂ℓ)‖L2(Γ ) . ‖Φ̂ℓ+1− Φ̂ℓ‖H̃−1/2(Γ ).

The first summand in (88) is split into the contributions on
refined and non-refined elements

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(Γ ) =

∑
T∈Tℓ\Tℓ+1

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(T)

+ ∑
T∈Tℓ∩Tℓ+1

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(T)

.

For non-refined elementsT ∈ Tℓ∩Tℓ+1 holds

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(T)

= ‖h1/2
ℓ (1−π p

ℓ )Φ̂ℓ‖2
L2(T)

= ηℓ(T)
2.

For refined elementsT ∈ Tℓ\Tℓ+1 holds

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(T)

≤ 2−1/(d−1)‖h1/2
ℓ (1−π p

ℓ )Φ̂ℓ‖2
L2(T)

= 2−1/(d−1)ηℓ(T)
2. (89)

Combining this with the bulk chasing (9) andMℓ⊆Tℓ\Tℓ+1,
we obtain

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(Γ )

≤ η2
ℓ − (1−2−1/(d−1)) ∑

T∈Tℓ\Tℓ+1

ηℓ(T)
2

≤
(
1−θ (1−2−1/(d−1))

)
η2
ℓ .

This concludes the proof withqest=
√

1−θ (1−2−1/(d−1)).
⊓⊔

Proposition 81 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the(h−h/2)-type estimatorηℓ from (87).

Proof According to Lemma 75 and Lemma 80, it remains to
proveαℓ → 0 asℓ→ ∞. By nestedness (85), Lemma 76 pro-
vides some limitΦ̂∞ ∈ H̃−1/2(Γ ) such that limℓ→∞ ‖Φ̂∞ −
Φ̂ℓ‖H̃−1/2(Γ ) = 0. Hence,

‖Φ̂ℓ+1− Φ̂ℓ‖H̃−1/2(Γ ) → 0

asℓ→ ∞. This concludes the proof. ⊓⊔
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Remark 17Usual implementations of uniform mesh-refine-
ment ensureTℓ+1\Tℓ ⊆ T̂ℓ. This implies

‖h1/2
ℓ+1(1−π p

ℓ+1)Φ̂ℓ‖2
L2(T)

= 0

in (89) for all refined elementsT ∈ Tℓ\Tℓ+1 and thus leads
to qest=

√
1−θ in Lemma 80.

Remark 18Analogous results hold for other(h−h/2)-type

estimators like ηℓ = ‖h1/2
ℓ (Φ̂ℓ − Φℓ)‖L2(Γ ), where

αℓ ≃ ‖Φ̂ℓ+1− Φ̂ℓ‖H̃−1/2(Γ )+ ‖Φℓ+1−Φℓ‖H̃−1/2(Γ ) → 0. We
note that, in practice, the variant from (87) is preferred as
it avoids the computation of the coarse-mesh Galerkin solu-
tion Φℓ.

6.5.2 Hyper-singular integral equation

As model problem serves the hypersingular integral equa-
tion from Proposition 12. One possible(h−h/2)-type error
estimator from Theorem 57 employs theL2(Γ )-orthogonal
projectionπ p−1

ℓ := π p−1
Tℓ

: L2(Γ ) → P p−1(Tℓ) as well as

the solutionÛℓ of (4), whereXℓ = S̃ p(Tℓ) is replaced with
the uniform refinement̂Xℓ = S̃ p(T̂ℓ) and reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−π p−1
ℓ )∇Γ Ûℓ‖2

L2(T)
, (90)

wherehT := |T|1/(d−1) ≃ diam(T).

Lemma 82 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈
N and some0 < θ ≤ 1, the (h− h/2) error estimatorηℓ

from (90) satisfies the estimator reduction(76) with αℓ :=
Cest‖Ûℓ+1 − Ûℓ‖H̃1/2(Γ ). The constant qest depends only on
the marking parameterθ , while Cest additionally depends
on Γ , the polynomial degree p, and uniform shape regular-
ity of Tℓ.

Proof The proof is very similar to that for the weakly singu-
lar integral equation from Lemma 80 and therefore omitted.
The only difference is that at the present case, we need the
inverse estimate from Lemma 25. ⊓⊔

Proposition 83 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the(h−h/2)-type estimatorηℓ from (90).

Proof As the proof of Proposition 81, the statement follows
with Lemma 76 and Lemma 82. ⊓⊔

Remark 19The proofs and assertions of Lemma 82 and Pro-
position 83 also transfer to other(h− h/2)-type error esti-
mators from Theorem 56, e.g.,

ηℓ = ‖h1/2
ℓ ∇Γ (1− Jℓ)Ûℓ‖L2(Γ ),

where

ηℓ+1 ≤‖h1/2
ℓ+1∇Γ (1− Jℓ)Ûℓ‖L2(Γ )

+ ‖h1/2
ℓ+1∇Γ

(
(1− Jℓ+1)Ûℓ+1− (1− Jℓ)Ûℓ

)
‖L2(Γ ).

Arguing with the mesh-size reduction as in the proof of

Lemma 80, one sees‖h1/2
ℓ+1∇Γ (1−Jℓ)Ûℓ‖L2(Γ )≤ qestηℓ. Sup-

pose thatJℓ satisfies the properties (i)–(iv) of Lemma 77,
e.g., Jℓ is the Scott-Zhang projection from Section 3.2.2.
Then, the second term in the above estimate is bounded by

‖h1/2
ℓ+1∇Γ

(
(1− Jℓ+1)Ûℓ+1− (1− Jℓ)Ûℓ

)
‖L2(Γ )

. ‖h1/2
ℓ+1∇Γ (Jℓ+1− Jℓ)Ûℓ+1‖L2(Γ )+ ‖h1/2

ℓ+1(Ûℓ+1−Ûℓ)‖L2(Γ )

. ‖(Jℓ+1− Jℓ)Ûℓ+1‖H̃1/2(Γ )+ ‖Ûℓ+1−Ûℓ‖H̃1/2(Γ ) =: αℓ

where we have used the inverse estimate of Lemma 25. With
the a priori convergence results of Lemma 76 and Lemma 77,
one sees thatαℓ → 0 asℓ→ ∞. This concludes the proof of
the estimator reduction also for other variants of the(h−
h/2) error estimator.

6.6 ZZ-type error estimators

For this section, we consider only the lowest-order case,
which is p= 0 for the weakly singular integral equation and
p= 1 for the hypersingular integral equation.

6.6.1 Weakly singular integral equation

We consider the problem from Proposition 9. The ZZ-type
error estimator from Section 4.4 reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−Aℓ)Φℓ‖2
L2(T)

, (91)

where the smoothing operatorAℓ : L2(Γ )→ P1(Tℓ) is de-
fined in (58)–(59).

Lemma 84 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0< θ ≤ 1, the ZZ-type error estimatorηℓ from(91)
satisfies the estimator reduction(76)with αℓ := (‖h1/2

ℓ+1(1−
Aℓ)(Φℓ+1−Φℓ)‖L2(Γ )+ ‖h1/2

ℓ+1(Aℓ+1−Aℓ)Φℓ+1‖L2(Γ )). The
constant qest depends only onθ .

Proof The same arguments as used in the proof of Lemma 80
apply. The triangle inequality and reduction of the mesh-
size (75) on marked elements result in

ηℓ+1 ≤ qestηℓ+ ‖h1/2
ℓ+1

(
(1−Aℓ+1)Φℓ+1− (1−Aℓ)Φℓ‖L2(Γ )

≤ qestηℓ+αℓ.

This concludes the proof. ⊓⊔
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Proposition 85 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the ZZ-type estimatorηℓ from (91).

Proof Lemma 75 and Lemma 84 prove that it suffices to
show αℓ → 0 asℓ → ∞. The operatorAℓ satisfies the as-
sumptions (i)–(iv) of Lemma 77 (see [67]). For the first con-
tribution of αℓ, we use theL2-stability (i) from Lemma 77
and the inverse estimate from Lemma 23 to see

‖h1/2
ℓ (1−Aℓ)(Φℓ+1−Φℓ)‖L2(Γ ) . ‖h1/2

ℓ (Φℓ+1−Φℓ)‖L2(Γ )

. ‖Φℓ+1−Φℓ‖H̃−1/2(Γ ).

Moreover, Lemma 77 provides a limit operatorA∞ : L2(Γ )→
L2(Γ ). For anyk≤ ℓ, there holds

‖h1/2
ℓ (Aℓ+1−Aℓ)Φℓ‖L2(Γ )

≤ ‖h1/2
ℓ (Aℓ+1−Aℓ)Φk‖L2(Γ )

+ ‖h1/2
ℓ (Aℓ+1−Aℓ)(Φk−Φℓ)‖L2(Γ )

. ‖h1/2
ℓ (Aℓ+1−Aℓ)Φk‖L2(Γ )+ ‖h1/2

ℓ (Φk−Φℓ)‖L2(Γ ).

where we used the local stability (i) from Lemma 77. The
inverse estimate from Lemma 23 shows

‖h1/2
ℓ (Aℓ+1−Aℓ)Φℓ‖L2(Γ )

. ‖h1/2
ℓ (Aℓ+1−Aℓ)Φk‖L2(Γ )+ ‖Φk−Φℓ‖H̃−1/2(Γ ).

Given anyε > 0, Lemma 76 allows to choosek ∈ N suffi-
ciently large such that‖Φℓ−Φk‖H̃−1/2(Γ ) < ε for all ℓ ≥ k.
For sufficiently largeℓ, there also holds due to Lemma 77

‖h1/2
ℓ (Aℓ+1−Aℓ)Φk‖L2(Γ ) . ‖(Aℓ+1−Aℓ)Φk‖L2(Γ ) ≤ ε.

Altogether, we getαℓ . ε for all ℓ ≥ k and therefore con-
cludeα → 0 asℓ→ ∞. ⊓⊔

6.6.2 Hyper singular integral equation

We consider the problem from Proposition 12. The ZZ-type
error estimator from Section 4.4 reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−Aℓ)∇Γ Uℓ‖2
L2(T)

, (92)

where the smoothing operatorAℓ : L2(Γ )→ S 1(Tℓ) is de-
fined by

(Aℓψ)(z) := |ωz|−1
∫

ωz

ψ dz for all nodeszof Tℓ

with the node patchωz :=
⋃{T ∈ Tℓ : z∈ T}. The differ-

ence to the weakly singular case is, thatAℓψ is continuous
everywhere onΓ .

Lemma 86 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0< θ ≤ 1, the ZZ-type error estimatorηℓ from(92)
satisfies the estimator reduction(76)with αℓ := (‖h1/2

ℓ+1(1−
Aℓ)∇Γ (Uℓ+1−Uℓ)‖L2(Γ )+‖h1/2

ℓ+1(Aℓ+1−Aℓ)∇Γ Uℓ+1‖L2(Γ )).
The constant qest depends only onθ .

Proof The same arguments as in the proof of Lemma 80,
prove the estimator reduction (76) for the ZZ-type error es-
timator. ⊓⊔

Proposition 87 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the ZZ-type estimatorηℓ from (92).

Proof The proof follows analogously to the proof of Propo-
sition 85. ⊓⊔

6.7 Weighted-residual error estimators

The weighted residual error estimator for BEM is more com-
plex than(h−h/2)-type- or ZZ-type error estimators in the
sense that it requires the evaluation of a non-local integral
operator. Therefore, the techniques are more involved in this
section.

6.7.1 Weakly singular integral equation

We consider the problem from Proposition 9. The standard
weighted residual error estimator from Section 4.1.3 for this
problem reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖∇Γ (VΦℓ− f )‖2
L2(T)

, (93)

where∇Γ (·) denotes the surface gradient onΓ . Note that,
while (9) is well-stated forf ∈ H1/2(Γ ), the definition ofηℓ

requires additional regularityf ∈ H1(Γ ) of the data.

Lemma 88 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0 < θ ≤ 1, the weighted residual error estima-
tor ηℓ from (93) satisfies the estimator reduction(76) with
αℓ := Cest‖Φℓ+1 −Φℓ‖H̃−1/2(Γ ). The constant qest depends
only onθ , while Cestdepends additionally onΓ , the polyno-
mial degree p, and uniform shape regularity ofTℓ.

Proof The proof follows the lines of the proof of Lemma 80.
The triangle inequality and contraction (75) of the mesh-size
on marked elements result in

ηℓ+1 ≤ qestηℓ+ ‖h1/2
ℓ+1∇V(Φℓ+1−Φℓ)‖L2(Γ ).

Instead of the standard inverse estimates, one needs to em-
ploy (61) to obtain

‖h1/2
ℓ+1∇V(Φℓ+1−Φℓ)‖L2(Γ ) . ‖Φℓ+1−Φℓ‖H̃−1/2(Γ ).

This concludes the proof. ⊓⊔
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Proposition 89 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the weighted residual error estimatorηℓ

from (93).

6.7.2 Hyper-singular integral equation

We consider the problem from Proposition 12. The standard
weighted residual error estimator from Section 4.1.3 for this
problem reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖WUℓ− f‖2
L2(T)

. (94)

Note that, while (12) is well-stated forf ∈ H̃−1/2(Γ ), the
definition ofηℓ requires additional regularityf ∈ L2(Γ ) of
the data.

Lemma 90 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0< θ ≤ 1, the weighted residual error estimator
ηℓ from(94)satisfies the estimator reduction(76)with αℓ :=
Cest‖Uℓ+1−Uℓ‖H̃1/2(Γ ). The constant qestdepends only onθ ,
while Cestdepends additionally onΓ , the polynomial degree
p, and uniform shape regularity ofTℓ.

Proof The proof works analogously to the proof of Lemma
88, only this time employ the inverse-type estimate

‖h1/2
ℓ+1W(Uℓ+1−Uℓ)‖L2(Γ ) . ‖Uℓ+1−Uℓ‖H̃1/2(Γ ).

from (61). ⊓⊔

Arguing as before, Lemma 90 allows to derive conver-
gence of the related ABEM with Lemma 75.

Proposition 91 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the weighted residual error estimatorηℓ

from (94).

6.8 Approximation of right-hand side data with
((h−h/2))-type estimators

In many cases, the right-hand sideF in (3) involves the ap-
plication of integral operators to the given data which can
hardly be computed analytically in practice. To circumvent
this bottleneck, the aim of data approximation is to replace
the right-hand sideF in (3) with some computable approxi-
mationFℓ on any meshTℓ and to solve

b(Uℓ ,V) = Fℓ(V) for all V ∈ Xℓ

instead of (4).

6.8.1 Weakly singular integral equation

We consider the problem from Proposition 10, whereΓ =

∂Ω and the right-hand side in (3) readsF(ψ) := 〈(1/2+
K) f ,ψ〉Γ for all ψ ∈ H̃−1/2(Γ ). We approximate the right-
hand side by approximatingf ∈H1/2(Γ ) via the Scott-Zhang
projectionJp+1

ℓ , i.e., fℓ := Jp+1
ℓ f ∈ S p+1(Tℓ), and hence

Fℓ(ψ) := 〈(1/2+K) fℓ ,ψ〉Γ . We thus end up with the for-
mulation given in Proposition 15. The additional error is
controlled via extending the ((h−h/2))-type error estima-
tor from (87) by a data oscillation term

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 (95)

:= ∑
T∈Tℓ

hT
(
‖(1−π p

ℓ )Φ̂ℓ‖2
L2(T)

+ ‖∇Γ (1− Jp+1
ℓ ) f‖2

L2(T)

)
,

cf. Section 4.6.2.

Lemma 92 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0 < θ ≤ 1, the ((h− h/2))-type error estimator
ηℓ with data oscillation term from(95) satisfies the estima-
tor reduction(76) with αℓ := Cest

(
‖Φ̂ℓ+1 − Φ̂ℓ‖H−1/2(Γ ) +

‖(Jp+1
ℓ+1 − Jp+1

ℓ ) f‖H1/2(Γ )

)
. The constant qest depends only

on θ , while Cest depends additionally onΓ , the polynomial
degree p, and uniform shape regularity ofTℓ.

Proof The same arguments as used in the proof of Lemma
80 apply. The triangle inequality and reduction of the mesh-
size (75) on marked elements result in

ηℓ+1 ≤ qestηℓ+ ‖h1/2
ℓ+1(1−π p

ℓ+1)(Φ̂ℓ+1− Φ̂ℓ)‖L2(Γ )

+ ‖h1/2
ℓ+1∇Γ (J

p+1
ℓ+1 − Jp+1

ℓ ) f‖L2(Γ )

As before, the inverse estimate from Lemma 23 proves

‖h1/2
ℓ+1(1−π p

ℓ+1)(Φ̂ℓ+1− Φ̂ℓ)‖L2(Γ ) . ‖Φ̂ℓ+1− Φ̂ℓ‖H−1/2(Γ ).

Moreover, the inverse estimate from Lemma 25 gives

‖h1/2
ℓ+1∇Γ (J

p+1
ℓ+1 − Jp+1

ℓ ) f‖L2(Γ ) . ‖(Jp+1
ℓ+1 − Jp+1

ℓ ) f‖H1/2(Γ )

and concludes the proof. ⊓⊔

Proposition 93 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the ((h−h/2))-type estimatorηℓ with data
approximation from(95).

Proof Lemma 78 proves a priori convergence

‖(J∞ − Jℓ) f‖H1/2(Γ )
ℓ→∞−−−→ 0.

Consequently, it holds

‖(Jℓ+1− Jℓ) f‖H1/2(Γ )
ℓ→∞−−−→ 0.
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It remains to prove that

‖Φ̂ℓ+1− Φ̂ℓ‖H−1/2(Γ ).

Note that one cannot directly employ Lemma 76, sinceΦ̂ℓ+1

and Φ̂ℓ are computed with respect todifferent right-hand
sides. To tackle this issue, let̂Φℓ,∞ ∈ P p(T̂ℓ) be the unique
solution of

b(Φ̂ℓ,∞ ,V) = 〈(1/2+K)J∞ f ,V〉L2(Γ ) for all V ∈ X̂ℓ.

For this, Lemma 76 applies and proves convergence‖Φ̂∞ −
Φ̂ℓ,∞‖H−1/2(Γ ) → 0 asℓ→ ∞. The triangle inequality proves

‖Φ̂ℓ+1− Φ̂ℓ‖H−1/2(Γ )

≤ ‖Φ̂ℓ,∞ − Φ̂ℓ‖H−1/2(Γ )+ ‖Φ̂ℓ+1− Φ̂ℓ+1,∞‖H−1/2(Γ )

+ ‖Φ̂ℓ,∞− Φ̂ℓ+1,∞‖H−1/2(Γ ).

The third term on the right-hand side already vanishes as
ℓ→ ∞. For the remaining to terms, the stability of the prob-
lem and Lemma 79 show

‖Φ̂ℓ,∞ − Φ̂ℓ‖H−1/2(Γ )+ ‖Φ̂ℓ+1− Φ̂ℓ+1,∞‖H−1/2(Γ )

. ‖ fℓ− J∞ f‖H1/2(Γ )+ ‖ fℓ+1− J∞ f‖H1/2(Γ ) → 0

asℓ→∞. Altogether, we obtain limℓ→∞ αℓ = 0 and conclude
the proof. ⊓⊔

Remark 20As a consequence of Proposition 93, one obtains
that‖ f − Jℓ f‖H1/2(Γ ) . ηℓ → 0 asℓ→ ∞, i.e.,J∞ f = f .

Remark 21If the L2-orthogonal projectionΠ p+1
ℓ : L2(Γ )→

S p+1(Tℓ) is H1-stable (82), Lemma 92 and Proposition 93
transfer to data approximation withfℓ =Π p+1

ℓ f . In practice,
this approach is preferred, since it might lead to supercon-
vergence for pointwise errors inside ofΩ .

Remark 22The proofs of Lemma 92 and Proposition 93
transfer to situations, where the approximation error offℓ =

Jℓ f ≈ f is controlled by‖h1/2
ℓ (1− π p

ℓ )∇Γ f‖L2(Γ ) in (95)

instead of‖h1/2
ℓ ∇Γ (1− Jℓ) f‖L2(Γ ). This requires additional

care with the mesh-refinement to ensure equivalence of these
two norms, cf. Section 4.6.2. Possible mesh refinement strate-
gies are discussed in Section 7 below. In this case, one may
even use more generalH1/2-stable projectionsJℓ : H1/2(Γ )→
S p+1(Tℓ) instead of the Scott-Zhang projection to discretize
the data, see [8,65]. This approach will be presented in Sec-
tion 6.9.1.

6.8.2 Hyper singular integral equation

We consider the problem from Proposition 13, whereΓ =

∂Ω and the right-hand side in (3) readsF(ψ) := 〈(1/2−
K′) f ,v〉Γ for all v ∈ H1/2(Γ ). We approximate the right-
hand side by approximatingf ∈H−1/2(Γ ) by fℓ := π p−1

ℓ f ∈
P p−1(Tℓ) and letFℓ(v) := 〈(1/2−K′) fℓ ,v〉Γ . Recall that
π p−1
ℓ is the L2(Γ )-orthogonal projection ontoP p−1(Tℓ).

We thus end up with the formulation given in Proposition 16.
The additional error is controlled via extending the error es-
timator by a data oscillation term

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 (96)

:= ∑
T∈Tℓ

hT
(
‖(1−π p−1

ℓ )∇Γ Ûℓ‖2
L2(T)

+ ‖(1−π p−1
ℓ ) f‖2

L2(T)

)
,

cf. Section 4.6.3

Lemma 94 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0< θ ≤ 1, the(h−h/2)-type error estimator with
data oscillation term from(96)satisfies the estimator reduc-
tion (76) with αℓ := Cest‖Ûℓ+1− Ûℓ‖H1/2(Γ ). While qest de-
pends only onθ , the constant Cest depends additionally on
Γ , the polynomial degree p, the marking parameterθ , and
uniform shape regularity ofTℓ.

Proof The proof works analogously to that of the weakly
singular case from Lemma 92, but may additionally use that
‖(1− π p−1

ℓ+1 ) f‖L2(T) ≤ ‖(1− π p−1
ℓ ) f‖L2(T) for all T ∈ Tℓ.

This leads to an improved perturbation termαℓ. ⊓⊔

As for the weakly singular case in Proposition 93, we
obtain convergence of data perturbed ABEM for the hyper-
singular integral equation.

Proposition 95 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the ((h−h/2))-type estimatorηℓ with data
approximation from(96).

6.9 Approximation of right-hand side data with weighted
residual estimators

6.9.1 Weakly singular integral equation

We consider the problem from Proposition 10, whereΓ =
∂Ω and the right-hand side is given byF(ψ) := 〈(1/2+
K) f ,ψ〉Γ for all ψ ∈ H̃−1/2(Γ ). Let Jp+1

ℓ : H1/2(Γ ) →
S p+1(Tℓ) be an arbitraryH1/2(Γ ) stable projection such
that the pointwise limit

Jp+1
∞ v= lim

ℓ→∞
Jp+1
ℓ v
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exists for anyv ∈ H1/2(Γ ). We approximate the right-hand
side by approximatingf ∈H1/2(Γ ) by fℓ := Jp+1

ℓ f ∈S p+1(Tℓ)

and letFℓ(ψ) := 〈(1/2+K) fℓ ,ψ〉Γ , i.e., we arrive at the dis-
crete formulation of Proposition 15. This additional erroris
controlled via extending the error estimator by a data oscil-
lation term

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 (97)

:= ∑
T∈Tℓ

hT
(
‖∇Γ (VΦℓ− (1/2+K) fℓ)‖2

L2(T)

+ ‖(1−π p
ℓ )∇Γ f‖2

L2(T)

)
.

Possible example forJp+1
ℓ include the Scott-Zhang projec-

tion onto S p+1(Tℓ), cf. Lemma 78, as well as theL2 -
orthogonal projection ontoS p+1(Tℓ), provided that the lat-
ter isH1(Γ ) stable, cf Lemma 79.

Lemma 96 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0< θ ≤ 1, the weighted residual error estimator
ηℓ with data oscillation term from(97) satisfies the estima-
tor reduction(76) with αℓ := Cest(‖Φℓ+1 −Φℓ‖H̃−1/2(Γ ) +

‖ fℓ+1− fℓ‖H1/2(Γ )). While qest depends only onθ , the con-
stant Cest depends additionally onΓ , the polynomial degree
p, the marking parameterθ , and uniform shape regularity
of Tℓ.

Proof The data oscillation term is treated as in the proof
of Lemma 92. For the estimator, one needs additionally the
inverse estimate (61) to estimate

‖h1/2
ℓ+1∇Γ (1/2+K)( fℓ+1− fℓ)‖L2(Γ ) . ‖ fℓ+1− fℓ‖H1/2(Γ ).

The remainder however, follows exactly the lines of the proof
of Lemma 88. ⊓⊔

Proposition 97 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the weighted residual estimator with data
approximation from(97).

Proof The proof follows the lines of Proposition 93. Addi-
tionally, we need to employ the convergence limℓ→∞ ‖ fℓ+1−
fℓ‖2

H1/2(Γ )
= 0 from Lemma 79. ⊓⊔

6.9.2 Hyper-singular integral equation

We consider the problem from Proposition 13, where the
right-hand side in (3) readsF(v) := 〈(1/2−K′) f ,v〉Γ for
all v∈ H1/2(Γ ). We approximate the right-hand side by ap-
proximating f ∈ H̃−1/2(Γ ) by fℓ := π p−1

ℓ f ∈ P p−1(Tℓ)

and letFℓ(v) := 〈(1/2−K′) fℓ ,v〉Γ , i.e., we arrive at the dis-
crete formulation of Proposition 16. The additional error is

controlled via extending the error estimator by a data oscil-
lation term

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 (98)

:= ∑
T∈Tℓ

hT
(
‖∇Γ (WUℓ− (1/2−K′) fℓ)‖2

L2(T)

+ ‖(1−π p−1
ℓ ) f‖2

L2(T)

)
.

Lemma 98 Given a sequence of nested meshes(Tℓ)ℓ∈N,
which additionally satisfy the bulk chasing(9) for all ℓ ∈ N
and some0 < θ ≤ 1, the weighted residual error estima-
tor with data oscillation termηℓ from (98)satisfies the esti-
mator reduction(76) with αℓ := Cest(‖Uℓ+1−Uℓ‖H1/2(Γ )+

‖ fℓ+1− fℓ‖H−1/2(Γ )). The constants qest,Cest depend only on
Γ , the marking parameterθ , the polynomial degree p, and
the uniformσℓ-shape regularity.

Proof The data oscillation term is treated as in the proof
of Lemma 92. For the estimator, one needs additionally the
inverse estimate (61) to estimate

‖h1/2
ℓ+1(1/2−K′)( fℓ+1− fℓ)‖L2(Γ ) . ‖ fℓ+1− fℓ‖H−1/2(Γ ).

The remainder however, follows exactly the lines of the proof
of Lemma 90. ⊓⊔

Proposition 99 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the weighted residual estimator with data
approximation from(98).

Proof The proof follows along the lines of Proposition 93.
Additionally, we need to employ the convergence
limℓ→∞ ‖ fℓ+1 − fℓ‖2

H−1/2(Γ )
≤ limℓ→∞ ‖ fℓ+1 − fℓ‖2

L2(Γ ) = 0

from Lemma 79. ⊓⊔

6.10 Anisotropic mesh refinement

The presence of edge singularities in solutions of simple
problems likeVφ = 1 on some boundaryΓ := ∂Ω with
Ω ⊆ R3 makes it necessary to allow for anisotropic mesh
refinement if one aims to achieve optimal convergence rates.
This implies that the shape-regularity constantσℓ from Sec-
tion 2.6 cannot remain bounded for a given sequence of
meshes(Tℓ)ℓ∈N0, but satisfies supℓ∈N0

σℓ = ∞. The follow-
ing variant of the ((h−h/2))-type error estimator accounts
for this:

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

ρT‖(1−π0
ℓ )Φ̂ℓ‖2

L2(T)
, (99)

whereρT > 0 denotes the radius of the largest inscribed cir-
cle of the elementT ∈ Tℓ. Obviously, there holdsρT ≤ hT ,
and supT∈Tℓ

hT/ρT depends only onσℓ. We briefly discuss
the lowest-order casep = 0 for rectangular elementsT ∈
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Fig. 16 FunctionsΨT,i with their values on the elementT ∈ Tℓ used for the computation of the error estimator from Section6.10.

Tℓ, which provides an easy-to-implement criterion to decide
how to refine the elements, while the general casep ≥ 0 is
discussed in [11]. As depicted in Figure 16, we define four
element functionsΨT,i ∈P0(T̂ℓ) with supp(ΨT,i)⊆ T. Note

that{ΨT,i : T ∈ Tℓ, i = 1, . . . ,4} defines a basis ofP0(T̂ℓ).
Hence, for eachT ∈ Tℓ, there exist (computable) coeffi-
cients

cT,i :=

∫
T ΨT,i Φ̂ℓdx
‖ΨT,i‖L2(T)

for i = 1,2,3,4,

such that

Φ̂ℓ =
4

∑
i=1

cT,iΨT,i onT.

If one intends to refineT (i.e.,T is marked for refinement by
the bulk chasing (9)), the following set of rules decides the
direction of refinement: Choose an additional parameter 0<

τ < 1 which steers the sensitivity to directional refinement
(cf. Figure 4 from the introduction).

(R1) If c2
T,2+ c2

T,3 ≤ τ/(1− τ)c2
T,4, split T along the vertical

direction to generate two sonsT1,T2 ∈ Tℓ+1.
(R2) If c2

T,2+c2
T,4 ≤ τ/(1−τ)c2

T,3, splitT along the horizontal
direction to generate two sonsT1,T2 ∈ Tℓ+1.

(R3) If none of the above applies splitT along both directions
to generate four sonsT1,T2,T3,T4 ∈ Tℓ+1.

We note that (R1) and (R2) are exclusive, i.e., if the crite-
rion from (R1) is satisfied, the criterion from (R2) fails to
hold (cf. [11]). Moreover, we need to ensure the following
two refinement rules to guarantee the validity of the inverse
estimate [78, Thm. 3.6] of Lemma 23 on anisotropic meshes.

(R4) Hanging nodes are at most of order one, i.e., each sidee
of an elementsT ∈Tℓ contains at most one nodezwhich
is not an endpoint ofe.

(R5) K-mesh property: there holds for someκℓ > 0

ρT

ρT ′
+

hT

hT ′
≤ κℓ < ∞,

for all T,T ′ ∈ Tℓ with T ∩T ′ 6= /0.

The following lemma is proved in [74,11].

Lemma 100 Given a sequence of meshes(Tℓ)ℓ∈N with
Tℓ+1 ∈ refine(Tℓ) for all ℓ ∈ N0 and K := supℓ∈N0

κℓ <
∞, which additionally satisfy the bulk chasing(9) for all
ℓ ∈ N and some0 < θ ≤ 1. Suppose that all marked ele-
mentsMℓ ⊆ Tℓ \Tℓ+1 are refined according to the rules
(R1)–(R5). Then, the modified(h−h/2) error estimatorηℓ

from (99) satisfies the estimator reduction(76) with αℓ :=
Cest‖Φ̂ℓ+1−Φ̂ℓ‖2

H̃−1/2(Γ )
. The constants qestdepends only on

θ andτ, while Cest depends additionally onΓ , the polyno-
mial degree p, and the K-mesh constant K.

As before, Lemma 75 implies convergence of ABEM.

Proposition 101 Algorithm 1 guarantees convergence
limℓ→∞ ηℓ = 0 of the modified ((h−h/2))-type estimatorηℓ

from (99) for anisotropic mesh refinement.

7 Mesh refinement

When it comes to the mathematical proof of optimal conver-
gence rates of ABEM (Section 8), it is clear that this requires
certain properties of the mesh refinement which go beyond
the elementary properties from Section 6.1. While those are
sufficient to prove plain convergence of ABEM by means of
the estimator reduction principle from Section 6, they for-
mally do not prevent that marking ofone singleelement
Mℓ = {T} ⊂ Tℓ results in a refinementTℓ+1, whereall ele-
ments have been refined, i.e.,Tℓ\Tℓ+1 = Tℓ. Moreover, the
contemporary mathematical proofs of optimal convergence
rates require certain additional properties.

7.1 General notation

Suppose a fixed mesh refinement strategyrefine(·) and an
admissible meshT , i.e., the mesh refinementrefine(·)
can be used to refineT and provides a refined admissi-
ble mesh. ForM ⊆ T being a set of marked elements, we
writeT ′ = refine(T ,M ) if T ′ is the coarsest admissible
mesh which is obtained fromT by refinement of at least the
marked elementsM , i.e., T \T ′ ⊇ M . For some admis-
sible meshT , we write T ′ ∈ refine(T ), if there exists
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somek ∈ N0 and sets of marked elements̃M0, . . . ,M̃k−1

as well as meshes̃T0,T̃1, . . . ,T̃k such thatM̃ j ⊆ T̃ j and

T̃ j+1 = refine(T̃ j ,M̃ j) for all j = 0, . . . ,k−1, with T =

T̃0 andT ′ = T̃k.

7.2 Optimality conditions on mesh refinement

Besides the naive properties from Section 6.1, the contem-
porary mathematical proofs of optimal convergence rates re-
quire certain additional properties of the mesh refinement.
Suppose thatT0 is a given admissible initial mesh for the
adaptive algorithm and thatTℓ for ℓ ≥ 1 is obtained induc-
tively by Tℓ = refine(Tℓ−1,Mℓ−1). Let ηℓ be the a pos-
teriori error estimator used to mark elementsMℓ ⊆ Tℓ for
refinement. Then, the analysis of Section 8 relies on the fol-
lowing three properties ofrefine(·), where #(·) denotes the
number of elements of a finite set:

• Bounded shape-regularity:The mesh refinement strat-
egy has to ensure that all estimator related constants in,
e.g., reliability or efficiency estimates (13)–(14), remain
uniformly bounded asℓ→ ∞.

• Mesh-closure estimate:The number of refined elements
can (at least in average and up to some multiplicative
constant) be controlled by the number of marked ele-
ments in the sense that

#Tℓ+1−#T0 ≤Cnvb

ℓ

∑
k=0

#Mk (100)

for some constantCnvb> 0.
• Overlay estimate:To compare the adaptively generated

meshesTℓ with some (purely theoretical) optimal mesh,
one requires that for allT⋆ ∈ refine(T0) exists a coars-
est common refinementT⋆⊕Tℓ of bothT⋆ andTℓ such
that

#(T⋆⊕Tℓ)≤ #T⋆+#Tℓ−#T0. (101)

Different methods for local mesh refinement are available
in the literature. To the best of our knowledge, only three
strategies are available which ensure these properties: for 2D
BEM, the extended 1D bisection algorithm from [7]; for 3D
BEM, the 2D NVB algorithm11, see e.g. [140,101], as well
as red-refinement with hanging nodes of maximum order 1,
see [27]. In the following, we shall discuss the extended 1D
bisection algorithm from [7] as well as the results of [101]
on 2D NVB.

We close this section with some historical remarks. The
mesh-closure estimate (100) has first been proved in [26] for
2D NVB and later for NVB and general dimensiond ≥ 2
in [140]. Either work requires an additional assumption on
the initial meshT0. For 2D, this assumption has recently

11 newest vertex bisection (NVB).

been removed in [101]. The overlay estimate (101) first ap-
peared in [139] for 2D NVB. In [46], the proof is generalized
to NVB in arbitrary dimensiond ≥ 2. Bisection in 1D has
only been considered and analyzed in [7]. Even though the
above mesh refinement strategies seem fairly arbitrary, to the
best of the authors’ knowledge, NVB is the only refinement
strategy ford ≥ 2 known to satisfy (100)–(101). Even the
simple red-green-blue refinement, see e.g. [34], fails to sat-
isfy (101), while the mesh-closure estimate (100) can still
be proved, see [101] and the references therein.

7.3 Extended 1D bisection for 2D BEM

In 2D BEM, the constants in the a priori or a posteriori error
analysis usually depend on a uniform upper boundσ > 0 of
the shape-regularity constant (or: bounded local mesh-ratio)

diam(T)
diam(T ′)

≤ σ for all neighborsT,T ′ ∈ Tℓ andℓ≥ 0.

(102)

Since this property is not guaranteed by simple 1D bisection
algorithms, it has to be ensured explicitly. With the shape-
regularity constant of the initial mesh

σT0 := max{ diam(T)
diam(T ′)

: T,T ′ ∈ T0 with T ∩T
′ 6= /0},

we use the following algorithm from [7].

Algorithm 102 (Extended 1D biesction) INPUT: local mesh-
ratio σT0, current meshTℓ, and set of marked elementsMℓ⊆
Tℓ.
OUTPUT: refined meshTℓ+1.

(o) Set counter k:= 0 and defineM (0)
ℓ := Mℓ .

(i) DefineU (k) :=
⋃

T∈M
(k)
ℓ

{T ′ ∈Tℓ\M (k)
ℓ neighbor of T:

diam(T ′)> σT0 diam(T)} andM
(k+1)
ℓ :=M

(k)
ℓ ∪U (k).

(ii) If M
(k)
ℓ $ M

(k+1)
ℓ , increase counter k7→ k+1 and goto

(i).
(iii) Otherwise bisect all elements T∈ M (k) to obtain the

new meshTℓ+1.

The following result is proved in [7, Thm. 2.3].

Theorem 103 Suppose thatT0 is a partition of Γ , and
(Tℓ)ℓ∈N0

is generated by Algorithm 102, i.e., for allℓ ∈ N0

holds

Tℓ+1 = refine(Tℓ,Mℓ) .

Then, bounded shape regularity(102)with σ = 2σT0 is guar-
anteed. As a consequence of bisection and(102), only finitely
many shapes of node and element patches can occur. More-
over, the mesh closure estimate(100)as well as the overlay
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Fig. 17 For 1D bisection, refined elementsTℓ \ Tℓ+1 are bisected
into two sons, whence #Mℓ ≤ #(Tℓ \ Tℓ+1) = #Tℓ+1 − #Tℓ. With
σTℓ

≤ 2σT0, the converse inequality #Tℓ+1−#Tℓ . #Mℓ cannot hold
in general as the following elementary example proves: LetT0 denote
the partition of[0,1] in two elements of length 1/2, i.e.,σT0 = 1. Re-
peated marking of the leftmost elements ofT0,T1, . . . ,Tℓ−1 generates
the meshTℓ with σTℓ

= 2 and #Tℓ = ℓ. Marking the highlighted el-
ementT1 ∈ Tℓ results in the meshTℓ+1 := refine(Tℓ,{T1}), where
ℓ−1 elements are refined to ensureσTℓ+1 = 2. Consequently, the num-
ber of additional refinements can be arbitrarily large, and (104) cannot
hold in general.

estimate(101) are valid, where the constant Cnvb > 0 de-
pends only onT0. Finally, the coarsest common refinement
T⋆⊕Tℓ of Tℓ,T⋆ ∈ refine(T0) is the overlay

T⋆⊕Tℓ =
{

T ∈ T⋆∪Tℓ :∀T ′ ∈ T⋆∪Tℓ

(T ′ ⊆ T ⇒ T ′ = T)
}
,

(103)

i.e., the union of the locally finest elements. ⊓⊔

We note that, while the mesh-closure estimate (100) is
true, a stepwise variant

#Tℓ+1−#Tℓ ≤Cnvb#Mℓ for all ℓ ∈ N0 (104)

cannot hold with anℓ-independent constantCnvb > 0. We
refer to a simple counter example from [7] which is also
illustrated in Fig. 17.

7.4 2D newest vertex bisection for 3D BEM

Denote byTℓ a given mesh and byEℓ its edges. Suppose
that for each triangleT ∈ Tℓ, there is a so-calledreference
edge eT ∈ Eℓ with eT ⊂ ∂T. To refine a specific element
T ∈ Tℓ, the midpointme of its reference edgeeT becomes a
new node, andT is bisected alongme and the node opposite
to eT into its two sons, see Fig. 18 (left). The edges opposite
to me become the reference edges of the two sons ofT.

If the marked elementsMℓ of a mesh are refined ac-
cording to this rule, the new mesh automatically inherits a
distribution of reference edges. Hence, only the initial mesh
T0, with which an adaptive algorithm would be initialized,
needs to be equipped with a distribution of reference edges.

In order to keep the mesh conforming, i.e., to avoid hang-
ing nodes, different approaches are available: Sewell [130]
proposes to bisectT either if its reference edge is on the
boundary, or if it iscompatibly divisible, i.e., the neighborT ′

on the other side of the reference edgeeT of T also uses the
common edge as reference edge. This approach was refined
by Mitchell in [109], who proposes to recursively call the
bisection algorithm on the neighborT ′ of T until a compat-
ibly divisible element is found. This approach is reasonable
under certain conditions, however, situations exists where
the recursion per se cannot terminate, cf. [105]. However,
if all elements inT0 are compatibly divisible, the recursion
terminates on every following meshTℓ. Distributing the ref-
erence edges onT0 this way, i.e., all elements end up being
compatibly divisible, is always possible as proven in [26].
However, no scalable algorithm is known which performs
this task. To circumvent this problem, as shown in [101], it
is possible to cast the 2D NVB into an iterative algorithm,
which does not need a special distribution of the reference
edges to terminate:

Algorithm 104 (Iterative formulation of 2D NVB) INPUT:
meshTℓ and set of marked elementsMℓ ⊆ Tℓ.
OUTPUT: refined meshTℓ+1.

(o) Set counter k:= 0 and define set of marked reference

edgesM (0)
ℓ := {eT | T ∈ Mℓ}.

(i) DefineM
(k+1)
ℓ :=

{
eT | ∃e∈ M

(k)
ℓ with e⊂ ∂T

}
.

(ii) If M
(k)
ℓ $ M

(k+1)
ℓ , increase counter k7→ k+1 and goto

(i).
(iii) Otherwise and withM (k)

ℓ being the set of marked edges,
use newest vertex bisection to refine all elements T∈ Tℓ

with eT ∈ M
(k)
ℓ according to Fig. 18 to obtain the new

meshTℓ+1.

The following proposition collects the elementary prop-
erties of NVB, and we also refer to Fig. 19.

Proposition 105 Algorithm 104 terminates regardless of the
distribution of reference edges. The outputTℓ+1 = refine(
Tℓ,Mℓ) is the coarsest conforming mesh such that all ele-
ments inMℓ are refined. Moreover, NVB ensures that only
finitely many shapes of elements (and hence also patches)
may occur. In particular, NVB generated meshes are uni-
formly σ -shape regular, cf. Section 2.6, whereσ > 0 de-
pends only on the initial meshT0.

7.4.1 Mesh closure and overlay estimate

Another look back to Algorithm 104 reveals that, while only
advised to refine elements ofMℓ, it refines all the elements
T ∈ Tℓ with eT ∈ M

(k)
ℓ . It does this to circumvent the gen-

eration of hanging nodes. We refer to a counter example
in [116, p. 462] that, as in 1D, an elementary estimate of
the type

#Tℓ+1−#Tℓ ≤Cnvb#Mℓ for all ℓ ∈ N0

cannot hold with anℓ-independent constantCnvb > 0. The
following theorem is proved in [101] for 2D NVB.
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Fig. 18 For each triangleT ∈ Tℓ, there is one fixedreference edge, indicated by the double line (left, top). Refinement ofT is done by bisecting
the reference edge, where its midpoint becomes a new node. The reference edges of the son trianglesT ′ ∈ Tℓ+1 are opposite to this newest vertex
(left, bottom). To avoid hanging nodes, one proceeds as follows: We assume that certain edges ofT, but at least the reference edge, are marked for
refinement (top). Using iterated newest vertex bisection, the element is then split into 2, 3, or 4 son triangles (bottom). If all elements are refined
by three bisections (right, bottom), we obtain the so-called uniform bisec(3)-refinement which is denoted bŷTℓ.

Fig. 19 NVB refinement only leads to finitely many shapes of trianglesfor the family of all possible triangulations obtained by arbitrary newest
vertex bisections. To see this, we start from a macro element(left), where the bottom edge is the reference edge. Using iterated newest vertex
bisection, one observes that only four similarity classes of triangles occur, which are indicated by the coloring. After three steps of bisections
(right), no additional similarity class appears.

Theorem 106 Suppose thatT0 is a mesh onΓ with an ar-
bitrary distribution of reference edges, and(Tℓ)ℓ∈N0

is gen-
erated by Algorithm 104, i.e., for allℓ ∈ N0 holds

Tℓ+1 = refine(Tℓ,Mℓ) .

Then, the mesh-closure estimate(100)is valid, and the con-
stant Cnvb > 0 depends only onT0.

Theorem 106 was first proved in [26] ford = 2, under
the additional assumption that the distribution of reference
edges inT0 is such that all elements are compatibly divisi-
ble. In [140], the theorem was extended tod≥ 2, and in [54]
it was shown to hold also if additional refinements are made
to keep the mesh mildly graded. The work [101] finally re-
moved the assumption on the special distribution of the ref-
erence edges ind = 2.

The following theorem is proved in [26] ford= 2 and [46]
for d≥ 3. To guarantee termination of their recursive formu-
lations of the NVB algorithm, these works require that the
distribution of reference edges inT0 is such that all elements
are compatibly divisible. However, their proofs of the over-
lay estimate (101) do not use this assumption and also apply
to the inductive formulation of 2D NVB from [101].

Theorem 107 Suppose thatT0 is a mesh onΓ with an ar-
bitrary distribution of reference edges and that(Tℓ)ℓ∈N0

is
generated by Algorithm 104, i.e., for allℓ ∈ N0 holds

Tℓ+1 = refine(Tℓ,Mℓ) .

Then, the overlay estimate(101)is valid. Moreover, the coars-
est common refinementT⋆⊕Tℓ of Tℓ,T⋆ ∈ refine(T0) is
the overlay(103).

7.4.2 Hs stability of the L2 projection

If the L2(Γ ) projection ontoS p(T ) (or S̃ p(T )) is used
for localization of a fractional order Sobolev norm, it needs
to fulfill the approximation estimate from Lemma 24. Ac-
cording to this Lemma, stability inHs(Γ ) (or H̃s(Γ )) is a
sufficient condition, and it is seen easily that it is also neces-
sary. Indeed, choosings= 1 in Lemma 24, it holds

‖Π p
T

v‖H1(Γ ) ≤ ‖v‖H1(Γ )+ ‖v−Π p
T

v‖H1(Γ )

. (1+diam(Γ ))‖v‖H1(Γ ).

By deeper mathematical results, it follows from this estimate
thatΠ p

T
is Hs(Γ ) stable. Hence there is no other way than

analyzingΠ p
T

’s stability in H1. For quasi-uniform meshes,
it follows with arguments from [29] thatΠ p

T
isH1(Γ )-stable.

In fact, with an arbitraryH1(Γ )-stable Clément-type opera-
tor JT (e.g., the Scott-Zhang projection from 3.2.2), it fol-
lows with the inverse estimate from Lemma 25 that

‖∇Π p
T

v‖L2(Γ ) ≤ ‖∇(Π p
T
− JT )v‖L2(Γ )+ ‖∇JT v‖L2(Γ )

. ‖h−1
T
‖L∞(Γ )‖(Π p

T
− JT )v‖L2(Γ )+ ‖∇JT v‖L2(Γ ),

and due to the projection property ofΠ p
T

and itsL2(Γ )-
stability,

‖(Π p
T
− JT )v‖L2(Γ ) ≤ ‖(1− JT )v‖L2(Γ )

. ‖hT ‖L∞(Γ )‖v‖H1(Γ ),

where we have finally used the first-order approximation
property ofJT . Combining these two estimates and regard-
ing the fact that for quasi-uniform meshes

‖h−1
T
‖L∞(Γ )‖hT ‖L∞(Γ ) . 1,

theH1(Γ )-stability of Π p
T

follows.
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Unfortunately, this argument cannot be used in this straight
forward manner on adaptively refined meshes. TheHs(Γ )-
stability can be shown, though, under certain conditions on
the mesh. There are basically two approaches:

– Imposing global or local growth-conditions on the mesh.
This approach is used in the works [28,33,51,60,133,
134].

– Using only a sequence of adaptively generated meshes
such that an equivalent mesh-size function can be used,
which takes care of the fact that the mesh is not quasi-
uniform. This approach is used in the works [17,34,101,
102].

The strength of the first approach is that it can be used for
anarbitrary sequence of meshes which does not have to be
the output of an adaptive mesh refinement strategy. How-
ever, certain growth-conditions may be too restrictive if al-
ready the coarsest mesh violates them. Therefore, the sec-
ond approach will yield more general results when it comes
to adaptive mesh refinement.

Theorem 108 Suppose thatT0 is a mesh onΓ with an ar-
bitrary distribution of reference edges. Then, if(Tℓ)ℓ∈N0

is
generated by Algorithm 104, the sequence of L2(Γ )-ortho-
gonal projectionsΠℓ ontoS 1(Tℓ) is uniformly H1(Γ )-stable,
i.e., for all ℓ ∈N0 holds

‖Πℓv‖H1(Γ ) ≤Cstab‖v‖H1(Γ ), for all v ∈ H1(Γ ),

and the constant Cstab depends only onT0. The same result
holds for the L2(Γ )-projection ontoS̃ p(T ).

The first proof of this type of result is due to Carsten-
sen [34]. In the latter work, the distribution of reference
edges is supposed to fulfill an additional assumption, and
instead of 2D NVB, a modified 2D red-green-blue mesh re-
finement strategy is considered. In the work [101], the as-
sumptions on the initial distribution of reference edges has
been removed, and 2D NVB was considered as underlying
refinement strategy. In [102] the analysis of [101] has been
generalized to NVB in arbitrary dimensiond ≥ 3.

The last theorem can be employed in lowest-order
Galerkin boundary element methods, but higher-order meth-
ods require theH1(Γ )-stability of theL2(Γ )-projection onto
S p(T ). Results of this kind have been shown by Bank and
Yserentant in [17]. To state their result, the concept of theso-
called level-functiongenℓ : Tℓ → N0 has to be introduced,
which measures the number of bisections needed to create
a specific element. For allT ∈ T0, define gen0(T) := 0.
Then, the two sonsT1 andT2 of an elementT that arise due
to a bisection, see Fig. 18 (left), have level genℓ+1(T1) =
genℓ+1(T2) := genℓ(T) + 1. The following theorem is the
main result of [17].

Theorem 109 Assume that for the sequence of meshes
(Tℓ)ℓ∈N0

holds
∣∣genℓ(T)−genℓ(T

′)
∣∣≤ 1 if T ∩T ′ 6= 0.

Then, the sequence
(
Π p

ℓ

)
ℓ∈N0

of L2(Γ )-orthogonal projec-

tions ontoS p(Tℓ) is uniformly H1(Γ ) stable for p≤ 12 in
d = 2 and for p≤ 7 in d = 3.

The assumption on the level function in Theorem 109
suggests that also elements sharing a vertex need to have
a difference in their level-functions of at most 1. This as-
sumption needs to be enforced via additional refinements,
as suggested in [17].

8 Optimal convergence of adaptive BEM

Whereas plain convergence of error estimators was the con-
cern of Section 6, this section deals with convergence of Al-
gorithm 1 even with optimal rates. The first result on con-
vergence rates [26] considered AFEM for the 2D Poisson
model problem and required an additional coarsening step
which has later been proved to be unnecessary [139]. The
latter work introduced the assumption that the set of marked
elements in Step (iii) of Algorithm 1 has minimal cardinality
and proved that the marking criterion (9) is (in some sense)
even necessary (see Lemma 114 below).

For ABEM, optimal convergence rates for weighted-resi-
dual error estimators have independently first been proved
in [70,76]. While [70] considers ABEM for the 3D Lapla-
cian on polyhedral domains, [76] considers ABEM for gen-
eral operators, but the analysis requires smooth boundaries.

The goal of this section is to explain the concept of con-
vergence with optimal rates and to provide abstract results
which cover the BEM model problems from Section 8.4–
8.7. Since most of the analysis can be done in an abstract
mathematical setting, we stick with the frame and the nota-
tion of the Lax-Milgram lemma from Section 1.

8.1 Necessary approximation property

We suppose that the discrete spacesXℓ are nested in the
sense thatXℓ ⊆X⋆ ⊆X if T⋆ ∈ refine(Tℓ) and that they
satisfy the following approximation property: For allTℓ ∈
refine(T0) and allε > 0, there existsT⋆ ∈ refine(Tℓ)
such that

‖u−U⋆‖X ≤ ε, (105)

whereU⋆ ∈ X⋆ is the solution of (4) on the meshT⋆.

Remark 23Although one could theoretically construct spac-
esX , where assumption (105) is violated, the authors are
unaware of any practical example, where this is the case. In
practice, (105) is satisfied forT⋆ being a sufficiently fine
uniform refinement ofTℓ.
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8.1.1 Assumptions on the adaptive algorithm

Algorithm 1 needs to be modified to allow for convergence
with optimal rates. In contrast to Section 6, we now have
to ensure that we choose a set of minimal cardinalityMℓ

in Step (iii) of Algorithm 1 (see also Remark 13 for de-
tails on the realization). In step (iv) of Algorithm 1, we sup-
pose thatTℓ+1 is the coarsest refinement ofTℓ such that all
marked elementsT ∈Mℓ have been refined, writtenTℓ+1 =

refine(Tℓ,Mℓ). Finally, we suppose that the mesh refine-
ment strategy used satisfies the properties of Section 7.2 plus
the fact that it produces only finitely many shapes of ele-
ment patches. These assumptions are, for example, satisfied
for the bisection strategies discussed in Section 7.

8.1.2 Assumptions on the error estimator

The following four assumptions on the error estimatorηℓ

are first found in [37] and distilled from the literature on
AFEM [8,46,69,71,139] and ABEM [7,65,66,70,76]. We
will use these assumptions to prove the main results on con-
vergence (Theorem 111) and optimal rates (Theorem 113).
In Section 8.4–8.7 below, these assumptions will be verified
for concrete model problems.

(A1) Stability on non-refined elements: There exists a con-
stantC12> 0 such that any refinementT⋆ ∈ refine(Tℓ)

of Tℓ ∈ refine(T0) satisfies

∣∣∣
(

∑
T∈Tℓ∩T⋆

ηℓ(T)
2
)1/2

−
(

∑
T∈Tℓ∩T⋆

η⋆(T)
2
)1/2∣∣∣

≤C12‖U⋆−Uℓ‖X .

(A2) Reduction on refined elements: There exist constantsC13>

0 and 0< qred < 1 such that any refinementT⋆ ∈
refine(Tℓ) of Tℓ ∈ refine(T0) satisfies

∑
T∈T⋆\Tℓ

η⋆(T)
2 ≤ qred ∑

T∈Tℓ\T⋆

ηℓ(T)
2+C13‖U⋆−Uℓ‖2

X .

(A3) Reliability: There exists a constantC14> 0 such that any
meshTℓ ∈ refine(T0) satisfies

‖u−Uℓ‖X ≤C14ηℓ.

(A4) Discrete reliability: There exist constantsC15 > 0 and
C16 > 0 such that any refinementT⋆ ∈ refine(Tℓ) of
Tℓ ∈ refine(T0) satisfies

‖U⋆−Uℓ‖X ≤C15

(
∑

T∈R(ℓ,⋆)

ηℓ(T)
2
)1/2

,

where the set R(ℓ,⋆) ⊇ Tℓ \ T⋆ satisfies
#R(ℓ,⋆)≤C16#(Tℓ \T⋆).

Remark 24The assumptions (A1)–(A2) are fulfilled by many
error estimators withh-weighting factor, e.g., weighted resid-
ual error-estimators,(h−h/2)-type error estimator, and ZZ-
type error estimators as shown implicitly in Section 6. They
form the main ingredients for the abstract proof of estima-
tor reduction (76). Discrete reliability (A4) is stronger than
reliability (A3) as is shown in the following. So far, it is
only proved for the weighted residual error estimator with
R(ℓ,⋆) being the refined elements plus one additional ele-
ment layer around them.

Lemma 110 The discrete reliability(A4) implies the relia-
bility (A3) with C14 =C15.

Proof Suppose (A4) and use the approximation property (105)
for ε > 0 to see

‖u−Uℓ‖X ≤ ‖u−U⋆‖X + ‖U⋆−Uℓ‖X

≤ ε +C15

(
∑

T∈R(ℓ,⋆)

ηℓ(T)
2
)1/2

≤ ε +C15ηℓ.

Sinceε > 0 is arbitrary, this implies (A3) withC14 =C15. ⊓⊔

8.2 Convergence of error estimator and error

Theorem 111 Suppose that the error estimator satisfies sta-
bility (A1) and reduction(A2). Then, Algorithm 1 drives the
estimator to zero, i.e.

lim
ℓ→∞

ηℓ = 0. (106)

Suppose that the error estimator additionally satisfies relia-
bility (A3). Then, Algorithm 1 converges even R-linearly in
the sense that there exist constants C17 > 0 and0< qR < 1
such that

C−2
14 ‖u−Uℓ+n‖2

X ≤ η2
ℓ+n ≤C17q

n
Rη2

ℓ for all ℓ,n∈N0,

(107)

which particularly implies

‖u−Uℓ‖2
X ≤C2

14C17η2
0 qℓR for all ℓ ∈ N0. (108)

The constants C17 and qR depend only onθ as well as on
the constants in(A1)–(A3).

The proof of the above theorem is split into several steps.
The first lemma states that the assumptions (A1) and (A2)
imply the estimator reduction (76) and thus render an ab-
stract version of the results in Lemmas 80–90. Such an es-
timate is first but implicitly found in [46]. Together with
the a priori convergence of Lemma 76, it proves that the
adaptive algorithm drives the estimator to zero (106). This
so-calledestimator reduction principleis discussed in Sec-
tion 6 and has been proposed in [11] for(h−h/2)-type es-
timators and was generalized afterwards to data-perturbed
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BEM [10,100], residual-based error estimators [70], as well
as the FEM-BEM coupling [9,6]. Instead of the respective
concrete settings, the following proof relies only on the ab-
stract assumptions (A1)–(A2) as well as the marking crite-
rion (9).

Lemma 112 Suppose(A1)–(A2). Then, there exist constants
C18 > 0 and0< qest< 1 such that Algorithm 1 satisfies

η2
ℓ+1 ≤ qestη2

ℓ +C18‖Uℓ+1−Uℓ‖2
X (109)

for all ℓ ∈ N. The constant qest depends only onθ and qred

from (A2). The constant C18 depends additionally on C13 as
well as C12.

Proof We split the error estimator into refined and non-refined
elements and apply (A1)–(A2). With Young’s inequality(a+
b)2 ≤ (1+δ )a2+(1+δ−1)b2 for all a,b∈R and allδ > 0,
this shows

η2
ℓ+1 = ∑

T∈Tℓ+1\Tℓ

ηℓ+1(T)
2+ ∑

T∈Tℓ+1∩Tℓ

ηℓ+1(T)
2

≤ qred ∑
T∈Tℓ\Tℓ+1

ηℓ(T)
2+(1+ δ ) ∑

T∈Tℓ∩Tℓ+1

ηℓ(T)
2

+(C13+(1+ δ−1)C2
12)‖Uℓ+1−Uℓ‖2

X .

The bulk chasing (9) together withMℓ ⊆ Tℓ+1\Tℓ implies

η2
ℓ+1 ≤ (qred− (1+ δ )) ∑

T∈Tℓ\Tℓ+1

ηℓ(T)
2+(1+ δ )η2

ℓ

+(C13+(1+ δ−1)C2
12)‖Uℓ+1−Uℓ‖2

X

≤ ((1+ δ )−θ ((1+ δ )−qred))η2
ℓ +C18‖Uℓ+1−Uℓ‖2

X ,

whereC18 := (C13+ (1+ δ−1)C2
12) and qest := (1+ δ )−

θ ((1+ δ )−qred) ∈ (0,1) for δ > 0 sufficiently small. ⊓⊔

With the previous results, we are able to prove the first
part of Theorem 111.

Proof (of estimator convergence(106)) By assumption (Sec-
tion 8.1), the discrete spaces are nested. Therefore, Lemma76
proves a priori convergence ofUℓ towards some limitU∞,
and hence the perturbation term in (109) vanishes. Conse-
quently, Lemma 75 applies and concludes the proof. ⊓⊔

The next goal is theR-linear convergence (107). To this
end, the literature usually employs the Pythagoras identity

‖u−Uℓ+1‖2
X + ‖Uℓ+1−Uℓ‖2

X = ‖u−Uℓ‖2
X , (110)

see, e.g., [46,70,76,139]. Under reliability (A3), estimator
convergence (106) implies

lim
ℓ→∞

‖u−Uℓ‖X = 0. (111)

Consequently, (110) results in

∞

∑
k=ℓ

‖Uk+1−Uk‖2
X = ‖u−Uℓ‖2

X . (112)

However, (110) and thus (112) rely heavily on the symme-
try of the bilinear formb(· , ·). This may suffice for many
problems, however, when it comes to mixed boundary value
problems or the FEM-BEM coupling, (110) is wrong in gen-
eral. The recent work [68] proves a weaker version of (112)
which holds for general continuous and elliptic bilinear forms
b(· , ·) and is sufficient for the upcoming analysis. With (1)–
(2) and as the sequence(Uℓ)ℓ∈N0 is convergent (111), there
exists a constantC19 > 0 such that allℓ ∈N0 satisfy

∞

∑
k=ℓ

‖Uk+1−Uk‖2
X ≤C19‖u−Uℓ‖2

X . (113)

We note that (113) is weaker than (112), but avoids the use
of the symmetry ofb(· , ·). This will be employed in the fol-
lowing proof.

Proof (of R-linear estimator convergence(107)) Let N, ℓ ∈
N. Use the estimator reduction (109) to see

ℓ+N

∑
k=ℓ+1

η2
k ≤

ℓ+N

∑
k=ℓ+1

(
qestη2

k−1+C18‖Uk−Uk−1‖2
X

)
.

This implies

(1−qest)
ℓ+N

∑
k=ℓ+1

η2
k ≤ η2

ℓ +C18

ℓ+N

∑
k=ℓ+1

‖Uk−Uk−1‖2
X .

The estimate (113) together with reliability (A3) then shows

ℓ+N

∑
k=ℓ

η2
k ≤ 2+C18C19C2

14

1−qest
η2
ℓ .

Since the right-hand side does not depend onN, there also
holds withC17 := (2+C18C19C2

14)(1−qest)
−1 ≥ 1

∞

∑
k=ℓ

η2
k ≤C17η2

ℓ .

This result is employed several times to conclude the proof.
Mathematical induction onn∈ N shows

η2
ℓ+n ≤

∞

∑
k=ℓ+n−1

η2
k −η2

ℓ+n−1

≤ (1−C−1
17 )

∞

∑
k=ℓ+n−1

η2
k

...

≤ (1−C−1
17 )

n
∞

∑
k=ℓ

η2
k ≤C17(1−C−1

17 )
nη2

ℓ .

This proves (107) withqR = (1−C−1
17 ). ⊓⊔
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8.3 Convergence with optimal rates

Having fixed the error estimatorη for Step (ii) and the mesh
refinement strategy for Step (iv) of Algorithm 1, the overall
goal in this section is to prove algebraic convergence rates.
Fors> 0, we define the approximability norm

‖η‖As := sup
N∈N0

(N+1)s( inf
T⋆∈refine(T0)

#T⋆−#T0≤N

η⋆

)
∈ [0,∞]. (114)

By definition,‖η‖As <∞ means that one can find a sequence
(T ℓ)ℓ∈N0 of meshes such that the corresponding sequence
of estimators(ηℓ)ℓ∈N0 satisfies

ηℓ . (#T ℓ−#T0)
−s for all ℓ ∈ N0, (115)

i.e., the estimators decay with algebraic rate−s. We note
that the meshesT ℓ are not necessarily nested.

The following theorem proves that for eachs> 0,‖η‖As <

∞ is equivalent to (115) forT ℓ := Tℓ being the adaptively
generated mesh, i.e., each possible algebraic convergence
rate (constrained by estimator and mesh refinement) will
in fact by achieved by Algorithm 1 (which produces only
nested meshes). In particular, adaptive mesh refinement is
superior to uniform mesh refinement.

Theorem 113 Suppose(A1)–(A2) as well as discrete reli-
ability (A4). Let the adaptivity parameter satisfyθ < θ0 :=
(1+C2

12C
2
15)

−1. Then, Algorithm 1 converges with the best
possible rate in the sense that for all s> 0, it holds‖η‖As <
∞ if and only if

ηℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (116)

where C20 > 0 depends only on the constants in(A1)–(A4)
as well as on‖η‖As andθ .

An essential part of the proof of the above theorem is
that the bulk chasing criterion (9) does not mark too many
elements. This is the concern of the first lemma, which states
that if one observes linear convergence (107), the refined el-
ements satisfy the bulk chasing (9). In this respect the mark-
ing strategy (9) appears to be sufficient as well as neces-
sary for linear convergence (107). We note that at this stage
the discrete reliability (A4) enters. This observation hasfirst
been proved for AFEM in [139]. Unlike the AFEM liter-
ature [139,46], our statement and proof relies only on the
error estimator and avoids the use of any efficiency estimate
(or lower error bound) for the estimator.

Lemma 114 Let the error estimator satisfy stability(A1)
and discrete reliability(A4). Then, there exists0 < κ0 < 1
such that any refinementT⋆ ∈ refine(Tℓ) which satisfies

η2
⋆ ≤ κ0η2

ℓ (117)

fulfils the bulk chasing(9) in the sense

θη2
ℓ ≤ ∑

T∈R(ℓ,⋆)

ηℓ(T)
2 (118)

for all 0≤ θ < θ0. The constantθ0 is defined in Theorem 113
whereasR(ℓ,⋆)⊆ Tℓ is guaranteed by(A4).

Proof Similar to the proof of the estimator reduction in Lem-
ma 112, we split the error estimator and apply (A1) together
with Young’s inequality(a+b)2 ≤ (1+δ )a2+(1+δ−1)b2

for all a,b∈R andδ > 0. This yields

η2
ℓ = ∑

T∈Tℓ\T⋆

ηℓ(T)
2+ ∑

T∈Tℓ∩T⋆

ηℓ(T)
2

≤ ∑
T∈Tℓ\T⋆

ηℓ(T)
2+(1+ δ )η2

⋆

+(1+ δ−1)C2
12‖U⋆−Uℓ‖2

X .

The assumption (117) as well as (A4) apply and show

η2
ℓ ≤ ∑

T∈Tℓ\T⋆

ηℓ(T)
2+(1+ δ )κ0η2

ℓ

+(1+ δ−1)C2
12‖U⋆−Uℓ‖2

X

≤ (1+(1+ δ−1)C2
12C

2
15) ∑

T∈R(ℓ,⋆)

ηℓ(T)
2+(1+ δ )κ0η2

ℓ .

This implies

1− (1+ δ )κ0

1+(1+ δ−1)C2
12C

2
15

η2
ℓ ≤ ∑

T∈R(ℓ,⋆)

ηℓ(T)
2.

If θ < θ0, there existδ > 0 andκ0 > 0 such that

θ ≤ 1− (1+ δ )κ0

1+(1+ δ−1)C2
12C

2
15

≤ 1

1+C2
12C

2
15

=: θ0.

The combination of the last two estimates concludes the
proof. ⊓⊔

Proof (of Theorem 113)The very technical proof of Theo-
rem 113 is found in great detail in [37, Section 4]. Therefore,
we only provide a brief sketch here. Givenλ > 0 and by use
of ‖η‖As < ∞, one can find a meshTε ∈ refine(T0) with
η2

ε ≤ ε2 := λ η2
ℓ and #Tε −#T0 . ε−1/s. The overlay prop-

erty (101) proves forT⋆ := Tε ⊕Tℓ ∈ refine(Tℓ) that

#(Tℓ \T⋆)≤ #Tε −#T0 . ε−1/s. (119)

The arguments of the proof of Lemma 112 apply also for
T⋆ ∈ refine(Tε) and show

η2
⋆ . η2

ε + ‖U⋆−Uε‖2
X .

Then, the discrete reliability (A4) implies

η2
⋆ . η2

ε ≤ ε2 = λ η2
ℓ .
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Finally, we chooseλ > 0 sufficiently small such that there
holds

η2
⋆ ≤ κ0η2

ℓ . (120)

Note that the choice ofλ depends only on the constants
in (A1)–(A2) and (A4), as well as on‖η‖As. With (120),
Lemma 114 applies and proves thatR(ℓ,⋆) satisfies the bulk
chasing (118). SinceMℓ is chosen in Step (iii) of Algo-
rithm 1 as a set with minimal cardinality which satisfies the
bulk chasing criterion, there holds with (119)

#Mℓ ≤ #R(ℓ,⋆)≤C16#(Tℓ \T⋆). ε−1/s = λ−1/2sη−1/s
ℓ .

Next, the mesh closure estimate (100) provides

#Tℓ−#T0 .
ℓ−1

∑
k=0

#Mk .
ℓ−1

∑
k=0

#η−1/s
k for all ℓ ∈N0

TheR-linear convergence (107) showsη2
ℓ . qℓ−k

R η2
k , which

impliesη−1/s
k . q(ℓ−k)/(2s)

R η−1/s
ℓ . By convergence of the ge-

ometric series, this concludes

#Tℓ−#T0 . η−1/s
ℓ

ℓ−1

∑
k=0

q(ℓ−k)/(2s)
R ≤ η−1/s

ℓ

1

1−q1/(2s)
R

.

Taking the estimate to the power of−sshows

ηℓ . (#Tℓ−#T0)
−s for all ℓ ∈N0.

This concludes the proof. ⊓⊔

8.4 Linear convergence of a(h−h/2)-type error estimator
for the weakly singular integral equation

This section discusses the(h−h/2)error estimator from [74],
cf. Section 4.2.2 and extends the estimator reduction result
from Section 6.5.1 in the context of the abstract framework.
In the terms of the previous section, it holds according to
Proposition 9

b(φ , ψ) := 〈Vφ ,ψ〉Γ for all φ ,ψ ∈ X := H̃−1/2(Γ ),

F(ψ) := 〈 f ,ψ〉Γ for all ψ ∈ X , (121)

where f ∈ H1/2(Γ ). The exact solutionφ ∈ X satisfies

b(φ , ψ) = F(ψ) for all ψ ∈ X . (122)

Since the(h−h/2) error-estimator defined in (87) uses the
uniformly refined meshT̂ℓ := refine(Tℓ,Tℓ) instead of
the original meshTℓ, it is natural to consider the discrete
spacesXℓ := X̂ℓ := P p(T̂ℓ) for the discrete Galerkin for-
mulation (4) which reads in this setting: find̂Φℓ ∈ X̂ℓ such
that

b(Φ̂ℓ ,Ψ ) = F(Ψ) for all Ψ ∈ X̂ℓ. (123)

Recall the(h−h/2)-type error estimator from Theorem 54,
i.e.,

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−π p
ℓ )Φ̂ℓ‖2

L2(T)
, (124)

wherehT := |T|1/(d−1) ≃ diam(T). The next step is to prove
the assumptions (A1)–(A2) forηℓ.

Lemma 115 The (h− h/2) error estimatorηℓ from (124)
satisfies stability(A1) and reduction(A2). The constants
C12,qred,C13 depend only onΓ , the polynomial degree p,
and on the shape regularity ofTℓ.

Proof Stability (A1) and reduction (A2) are implicitly shown
in the proof of Lemma 80. ⊓⊔

Theorem 116 For all 0< θ ≤ 1, Algorithm 1 with the(h−
h/2) error estimatorηℓ converges in the sense

lim
ℓ→∞

ηℓ = 0. (125)

If the saturation assumption (Assumption 45) is satisfied,
thenηℓ from (124)satisfies reliability(A3), and there holds
R-linear convergence

C−2
14 ‖φ −Φℓ+n‖2

H̃−1/2(Γ )
≤ η2

ℓ+n ≤C17q
n
Rη2

ℓ (126)

for all ℓ,n∈ N0. The constant C14 depends only on the sat-
uration constant Csata, Γ , the shape regularity ofTℓ, and
the polynomial degree p. The constants C17 and qR depend
additionally onθ .

Proof The convergence (125) follows from Theorem 111,
sinceηℓ satisfies the assumptions (A1)–(A2). The reliabil-
ity of ηℓ under the saturation assumption is proved in Theo-
rem 53 together with the equivalence of‖·‖V ≃‖·‖H̃−1/2(Γ ).
The remaining statement follows from Theorem 111. ⊓⊔

8.5 Optimal convergence of weighted residual error
estimator for the weakly singular integral equation

We consider the model problem (122), but in contrast to the
previous section, the discrete problem employs the original
meshTℓ instead of its uniform refinement̂Tℓ, i.e., findΦℓ ∈
Xℓ := P p(Tℓ) such that

b(Φℓ ,Ψ) = F(Ψ) for all Ψ ∈ Xℓ. (127)

As in Section 6.7.1, the standard weighted residual error es-
timator from Section 4.1.3 reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖∇Γ (VΦℓ− f )‖2
L2(T)

, (128)

where∇Γ (·) denotes the surface gradient onΓ . Note that,
while (3) and (127) are well-stated forf ∈H1/2(Γ ), the def-
inition of ηℓ requires additional regularityf ∈ H1(Γ ) of the
data.
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Lemma 117 The weighted residual error estimatorηℓ from
(128)satisfies the assumptions(A1)–(A4). The setR(ℓ,⋆)

from (A4) satisfiesR(ℓ,⋆) := {T ∈Tℓ : ∃T ′ ∈Tℓ \T⋆,T
′∩

T 6= /0}. The constantC16 depends only on the shape regular-
ity of the meshTℓ, whereas the constants C12,C13,qred,C14,
C15 depend additionally onΓ and the polynomial degree p.

Proof Reliability (A3) is well-known forηℓ since its in-
vention in [45] ford = 2 and [39] ford = 3. The assump-
tions (A1)–(A2) are shown in the proof of Lemma 88. The
proof of discrete reliability (A4) analyzes the original relia-
bility proof from [39]. The technical proof is found in [70,
76] for p= 0 and in [65] for generalp≥ 0. ⊓⊔

Theorem 118 For all 0< θ ≤ 1, Algorithm 1 with the resid-
ual error estimatorηℓ from (128)converges in the sense

C−2
14 ‖φ −Φℓ+n‖2

H̃−1/2(Γ )
≤ η2

ℓ+n ≤C17q
n
Rη2

ℓ (129)

for all ℓ,n∈N0. For 0< θ < θ0, Algorithm 1 converges with
the best possible rate s> 0 in the sense that‖η‖As < ∞ if
and only if

ηℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (130)

where the constants C17,qR depend only onΓ , the shape
regularity of the meshesTℓ, the polynomial degree p, and
θ . The constant C20 > 0 depends additionally on‖η‖As.

Proof Lemma 117 shows that the assumption (A1)–(A4) are
satisfied. Theorem 111 and Theorem 113 prove the state-
ments. ⊓⊔

8.6 Linear convergence of a(h−h/2)-type error estimator
for the hyper singular integral equation

This section extends the estimator reduction result from Sec-
tion 6.5.2 in the context of the abstract framework. In the
terms of previous section, the variational formulation reads
according to Proposition 12

b(u, v) :=

{
〈Wu,v〉Γ for Γ ( ∂Ω ,

〈Wu,v〉Γ + 〈u ,1〉Γ 〈v ,1〉Γ for Γ = ∂Ω ,

F(v) := 〈φ ,v〉Γ for all u,v∈ X := H̃1/2(Γ ),

(131)

whereφ ∈ H−1/2(Γ ), respectivelyφ ∈ H−1/2
0 (Γ ) := {ψ ∈

H−1/2(Γ ) : 〈ψ ,1〉Γ = 0}. The exact solutionu∈ X satis-
fies

b(u, v) = F(v) for all v∈ X . (132)

Since the(h− h/2) error-estimator from Theorem 56 uses
the uniformly refined mesĥTℓ := refine(Tℓ,Tℓ) instead
of the original meshTℓ, it is natural to consider the discrete

spacesXℓ := X̂ℓ := S̃ p(T̂ℓ) for the discrete Galerkin for-
mulation (4) which reads in this setting: find̂Uℓ ∈ X̂ℓ such
that

b(Ûℓ ,V) = F(V) for all V ∈ X̂ℓ. (133)

Recall the(h−h/2)-type error estimator from Theorem 56

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−π p
ℓ )∇Γ Ûℓ‖2

L2(T)
, (134)

where∇Γ denotes the surface gradient onΓ . The next step
is to prove the assumptions (A1)–(A2) forηℓ.

Lemma 119 The(h−h/2) error estimatorηℓ from 134 sat-
isfies stability(A1) and reduction(A2). The constants C12,

qred,C13 depend only onΓ , the polynomial degree p, and on
the shape regularity ofTℓ.

Proof The statement is essentially proved in Lemma 82.⊓⊔

Theorem 120 For all 0 < θ ≤ 1, Algorithm 1 with the
(h− h/2) error estimatorηℓ from (134) converges in the
sense

lim
ℓ→∞

ηℓ = 0. (135)

If the saturation assumption (Assumption 45) is satisfied,
then ηℓ satisfies reliability(A3), and there holds R-linear
convergence

C−2
14 ‖u−Uℓ+n‖2

H̃1/2(Γ )
≤ η2

ℓ+n ≤C17η2
ℓ qn

R (136)

for all ℓ,n∈ N0. The constant C14 depends only on the sat-
uration constant Csata, Γ , the shape regularity ofTℓ, and
the polynomial degree p. The constants C17 and qR depend
additionally onθ .

Proof The convergence (135) follows from Theorem 111,
sinceηℓ satisfies the assumptions (A1)–(A2). The reliability
of ηℓ under the saturation assumption is proved in Theo-
rem 55 together with the equivalence of‖ ·‖W ≃ ‖·‖H̃1/2(Γ ),
and the remaining statement follows from Theorem 111.⊓⊔

8.7 Optimal convergence of weighted residual error
estimator for the hyper singular integral equation

We consider the model problem (132), but in contrast to the
previous section, the discrete problem employs the original
meshTℓ instead of its uniform refinement̂Tℓ, i.e., findUℓ ∈
Xℓ := S̃ p(Tℓ) such that

b(Uℓ ,V) = F(V) for all V ∈ Xℓ. (137)

As in Section 6.7.2, the weighted residual error estimator
from Section 4.1.3 requires more regularity, i.e.,φ ∈ L2(Γ )

needs to be assumed. The error estimator then reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2 := ∑

T∈Tℓ

hT‖WUℓ−φ‖2
L2(T)

. (138)
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Lemma 121 The weighted residual error estimatorηℓ from
(138)satisfies the assumptions(A1)–(A4). Moreover,(A4)
holds withR(ℓ,⋆) := Tℓ \T⋆ and C16 = 1. The constants
C12, C13, qred, C14, C15 depend only on the shape regularity
of the meshTℓ, Γ and the polynomial degree p.

Proof Reliability (A3) is well-known forηℓ since its in-
vention in [45] ford = 2 and [38] ford = 3. The assump-
tions (A1)–(A2) are shown in the proof of Lemma 90. The
proof of discrete reliability (A4) employs the Scott-Zhang
projection from Lemma 26 to obtain the local statement. The
technical proof refines the arguments from [38] and is found
in [66, Proposition 4]. Alternatively, the proof of [76] built
on the localization techniques from [63,64]. This, however,
restricts the analysis to lowest-order elementsp= 1, where
R(ℓ,⋆) consists ofTℓ\T⋆ plus one layer of non-refined el-
ements. ⊓⊔

Theorem 122 For all 0< θ ≤ 1, Algorithm 1 with the resid-
ual error estimatorηℓ from (138)converges in the sense

C−2
14 ‖u−Uℓ+n‖2

H̃1/2(Γ )
≤ η2

ℓ+n ≤C17q
n
Rη2

ℓ (139)

for all ℓ,n∈N0. For 0< θ < θ0, Algorithm 1 converges with
the best possible rate s> 0 in the sense that‖η‖As < ∞ if
and only if

ηℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (140)

where the constants C17,qR depend only onΓ , the shape
regularity of the meshesTℓ, the polynomial degree p, and
θ . The constant C20 > 0 depends additionally on‖η‖As.

Proof Lemma 121 shows that the assumption (A1)–(A4) are
satisfied. Theorem 111 and Theorem 113 prove the state-
ments. ⊓⊔

8.8 Inclusion of data approximation

Also the data approximation, which is already discussed in
Section 6.8, can be analyzed towards optimal convergence
rates. As in Section 6.8, we replace the right-hand sideF
in (3) with some computable approximationFℓ on any mesh
Tℓ and solve

b(Ũℓ ,V) = Fℓ(V) for all V ∈ Xℓ (141)

instead of (4). To control the additional error‖Ũℓ−Uℓ‖X

introduced by this approximation, the error estimatorηℓ is
extended by some data approximation term

data2ℓ := ∑
T∈Tℓ

dataℓ(T)
2 ≥C−1

data‖Ũℓ−Uℓ‖2
X . (142)

This is an abstract approach to the concrete results of Sec-
tion 4.6, where several examples for dataℓ are given. The
extended error estimator reads elementwise for allT ∈ Tℓ

η̃ℓ(T)
2 := ηℓ(T)

2+dataℓ(T)
2,

whereηℓ(T) uses the computable approximate solutionŨℓ

and the approximate dataFℓ instead of the non-computable
solutionUℓ. Note the difference with the notation of Sec-
tion 4.6. With this, the extension of Algorithm 1 reads:

Algorithm 123 (adaptive mesh refinement) INPUT: initial
meshT0 and adaptivity parameter0< θ ≤ 1.
OUTPUT: sequence of solutions(Ũℓ)ℓ∈N0, sequence of esti-
mators(η̃ℓ)ℓ∈N0, and sequence of meshes(Tℓ)ℓ∈N0.
ITERATION: For all ℓ= 0,1,2,3, . . . do (i)–(iv)

(i) Compute solutioñUℓ of (141).
(ii) Compute error indicators̃ηℓ(T) for all elements T∈Tℓ.
(iii) Find a set of minimal cardinalityMℓ ⊆ Tℓ such that

θη̃2
ℓ ≤ ∑

T∈Mℓ

η̃ℓ(T)
2. (143)

(iv) Refine (cf. Section 8.1.1) at least the marked elements to
obtain the new meshTℓ+1 := refine(Tℓ,Mℓ).

To account for the new estimator term, we have to adopt
the assumptions from Section 8.1.2 slightly. To that end, we

introduce a theoretical data approximation term̃data
2
ℓ which

satisfiesC−1
datadata2ℓ ≤ d̃ata

2
ℓ ≤ Cdatadata2ℓ for some constant

Cdata> 0. The only reason for this is that we want to allow
ourselves to use a slightly different oscillation term for im-
plementation than we use for the analysis. This simplifies
the realization of Algorithm 123.

(Ã1) Stability on non-refined elements: There exists a con-
stantC12> 0 such that any refinementT⋆ ∈ refine(Tℓ)

of Tℓ ∈ refine(T0) satisfies

∣∣∣
(

∑
T∈Tℓ∩T⋆

η̃ℓ(T)
2
)1/2

−
(

∑
T∈Tℓ∩T⋆

η̃⋆(T)
2
)1/2∣∣∣

2

≤C2
12

(
‖Ũ⋆−Ũℓ‖2

X + d̃ata
2
ℓ − d̃ata

2
⋆

)
.

(Ã2) Reduction on refined elements: There exist constants
C13 > 0 and 0< qred< 1 such that any refinementT⋆ ∈
refine(Tℓ) of Tℓ ∈ refine(T0) satisfies

∑
T∈T⋆\Tℓ

η̃⋆(T)
2 ≤ qred ∑

T∈Tℓ\T⋆

η̃ℓ(T)
2

+C13

(
‖Ũ⋆−Ũℓ‖2

X + d̃ata
2
ℓ − d̃ata

2
⋆

)
.

(Ã3) Reliability: There exists a constantC14> 0 such that any
meshTℓ ∈ refine(T0) satisfies

‖u−Ũℓ‖X ≤C14η̃ℓ.



Adaptive Boundary Element Methods 63

(Ã4) Discrete reliability: There exist constantsC15 > 0 and
C16 > 0 such that any refinementT⋆ ∈ refine(Tℓ) of
Tℓ ∈ refine(T0) satisfies

‖Ũ⋆−Ũℓ‖2
X + d̃ata

2
ℓ − d̃ata

2
⋆ ≤C2

15 ∑
T∈R(ℓ,⋆)

η̃ℓ(T)
2,

where the set R(ℓ,⋆) ⊇ Tℓ \ T⋆ satisfies
#R(ℓ,⋆)≤C16#(Tℓ \T⋆).

Moreover, and in contrast to the unperturbed case in Sec-
tion 8.1.2, the a priori convergence (78) as well as the gen-
eralized Pythagoras estimate (113) are not available in this
general setting. Hence, we also have to verify

(Ã5) A priori convergence of data: There exists a continuous
linear functionalF∞ : X∞ →R such that

lim
ℓ→∞

‖F∞ −Fℓ‖X ′
ℓ

:= lim
ℓ→∞

sup
V∈Xℓ

‖V‖X =1

|F∞(V)−Fℓ(V)|= 0,

whereX∞ :=
⋃

ℓ∈N0
Xℓ ⊆X (the closure is understood

with respect toX ). Moreover, there exists̃data∞ ≥ 0
such that

lim
ℓ→∞

d̃ataℓ = d̃ata∞.

(Ã6) Pythagoras estimate: For allε >0, there exists a constant
C19(ε)> 0 such that for allk∈ N holds

∞

∑
k=ℓ

‖Ũk+1−Ũk‖2
X − εη̃2

k ≤C19(ε)η̃2
ℓ .

8.9 Data approximation and convergence of ABEM

The proofs in this section differ only slightly from the un-
perturbed case in Section 8.2. Therefore, we only highlight
the differences.

Theorem 124 Suppose that there hold(Ã1)–(Ã2) as well
as (Ã5). Then, Algorithm 123 drives the estimator to zero,
i.e.,

lim
ℓ→∞

η̃ℓ = 0. (144)

Suppose that the error estimator additionally satisfies(Ã3)
and (Ã6). Then, Algorithm 123 converges even linearly in
the sense that there exist constants C17 > 0 and0< qR < 1
such that

C−2
14 ‖u−Ũℓ+n‖2

X ≤ η̃2
ℓ+n ≤C17q

n
Rη̃2

ℓ for all ℓ,n∈ N0,

(145)

which particularly implies

‖u−Ũℓ‖2
X ≤C2

14C17η̃2
0 qℓR for all ℓ ∈ N0. (146)

The constants C17 and qR depend only onθ as well as on
the constants in(Ã1)–(Ã3) and(Ã6).

Again, an important ingredient is the a priori conver-
gence ofŨℓ.

Lemma 125 (a priori convergence)Suppose(Ã5). Then,
there exists̃U∞ ∈ X such that Algorithm 123 satisfies

lim
ℓ→∞

‖Ũ∞−Ũℓ‖X = 0. (147)

Proof ReplaceF in (4) by F∞ from (Ã5) and consider the
corresponding solution(U∞,ℓ)ℓ∈N. Lemma 76 shows the ex-
istence ofŨ∞ ∈ X such that

lim
ℓ→∞

‖Ũ∞−Uℓ,∞‖X = 0. (148)

From stability

‖Uℓ,∞−Ũℓ‖X ≤ ‖F∞ −Fℓ‖X ′
ℓ
,

it follows

‖Ũ∞−Ũℓ‖X ≤ ‖Ũ∞ −Uℓ,∞‖X + ‖Uℓ,∞−Ũℓ‖X

. ‖Ũ∞ −Uℓ,∞‖X + ‖F∞−Fℓ‖X ′
ℓ
→ 0

asℓ→ ∞ by assumption (̃A5) and (148). ⊓⊔

Also the estimator reduction follows accordingly.

Lemma 126 Suppose(Ã1)–(Ã2). Then, there exist constants
C18 > 0 and0< qest< 1 such that Algorithm 123 satisfies

η̃2
ℓ+1 ≤ qest̃η2

ℓ +C18

(
‖Ũℓ+1−Ũℓ‖2

X + d̃ata
2
ℓ − d̃ata

2
ℓ+1

)

(149)

for all ℓ ∈ N. The constant qest depends only onθ and qred

from (Ã2). The constant C18 depends additionally on C13 as
well as C12.

Proof The proof is identical to that of Lemma 112. ⊓⊔

This implies the first part of Theorem 124.

Proof (of estimator convergence(144)) Due to (̃A5), there

holdsd̃ata
2
ℓ − d̃ata

2
ℓ+1 → 0 asℓ → ∞. With this and the ar-

guments of the proof of (106), we see with a priori con-
vergence (147) for the limes superiorlimℓ→∞η̃2

ℓ+1 = 0 or
limℓ→∞η̃2

ℓ+1 = ∞. To rule out the second option, apply the
estimator reduction iteratively to see

η̃2
ℓ ≤ qℓest̃η

2
0 +C18

ℓ−1

∑
k=0

qk
est

(
‖Ũℓ−k−Ũℓ−k−1‖2

X

+ d̃ata
2
ℓ−k−1− d̃ata

2
ℓ−k

)

≤ qℓest̃η2
0 +C18

(
d̃ata

2
0+

ℓ−1

∑
k=0

qk
est‖Ũℓ−k−Ũℓ−k−1‖2

X

)
,
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by exploiting the telescoping series. The a priori conver-
gence of Lemma 125 implies supℓ∈N ‖Ũℓ−Ũℓ−1‖2

X
≤Cmax<

∞. This and the convergence of the geometric series show

η̃2
ℓ ≤ η̃2

0 +2C18(data20+Cmax)< ∞ for all ℓ ∈ N

and consequentlylimℓ→∞η2
ℓ = 0. This concludes the proof

of (144). ⊓⊔

The convergence (144) leads us to theR-linear conver-
gence.

Proof (of R-linear estimator convergence(145)) Let N, ℓ ∈
N. Use the estimator reduction (149) to see

ℓ+N

∑
k=ℓ+1

η̃2
k ≤

ℓ+N

∑
k=ℓ+1

(
qest̃η2

k−1+C18
(
‖Ũk−Ũk−1‖2

X

+ d̃ata
2
k−1− d̃ata

2
k

))
.

By use of the telescoping series, this implies

(1−qest−C18ε)
ℓ+N

∑
k=ℓ+1

η̃2
k

≤ η̃2
ℓ +C18

(
d̃ata

2
ℓ +

ℓ+N

∑
k=ℓ+1

(‖Ũk−Ũk−1‖2
X − εη̃2

k )
)
.

The assumption (̃A6) together withC−1
datad̃ata

2
ℓ ≤ data2ℓ ≤ η̃2

ℓ

then shows

ℓ+N

∑
k=ℓ

η̃2
k ≤ 2+C18(C19(ε)+Cdata)

1−qest−C18ε
η̃2
ℓ :=C17η̃2

ℓ .

Clearly,C17 ≥ 1 for sufficiently smallε > 0. Moreover, the
right-hand side is independent ofN and hence

∞

∑
k=ℓ

η̃2
k ≤C17η̃2

ℓ .

The remainder of the proof follows as in the proof of (107).
⊓⊔

8.10 Data approximation and optimal rates

The approximability norm now also contains the data ap-
proximation term dataℓ, i.e.,

‖η̃‖As := sup
N∈N0

(N+1)s( inf
T⋆∈refine(T0)

#T⋆−#T0≤N

η̃⋆

)
∈ [0,∞]. (150)

This allows us to formulate the following theorem.

Theorem 127 Suppose(Ã1)–(Ã2) as well as discrete relia-
bility (Ã4) and(Ã5)–(Ã6). Let the adaptivity parameter sat-
isfyθ < θ0 := (1+C2

12C
2
15)

−1. Then, Algorithm 1 converges
with the best possible rate in the sense that for all s> 0, it
holds‖η̃‖As < ∞ if and only if

ηℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (151)

where C20 > 0 depends only on the constants in(Ã1)–(Ã6)
as well as on‖η̃‖As andθ .

The optimality of the marking criterion still holds with
data approximation.

Lemma 128 Let the error estimator satisfy stability(Ã1)
and discrete reliability(Ã4). Then, there exists0 < κ0 < 1
such that any refinementT⋆ ∈ refine(Tℓ) which satisfies

η̃2
⋆ ≤ κ0η̃2

ℓ , (152)

fulfils the bulk chasing(143)in the sense

θη̃2
ℓ ≤ ∑

T∈R(ℓ,⋆)

η̃ℓ(T)
2 (153)

for all 0≤ θ < θ0. The constantθ0 is defined in Theorem 127
whereasR(ℓ,⋆)⊆ Tℓ is defined in(Ã4).

Proof The proof is identical to that of Lemma 114. ⊓⊔

Proof (of Theorem 127)The proof combines only the pre-
vious results and is therefore identical to the proof of Theo-
rem 127. ⊓⊔

The final lemma proves that the overall best rate is now
determined by the respective best rates for data approxima-
tion terms and for the non-perturbed problem.

Lemma 129 Suppose that for s1,s2 > 0, there holds

sup
N∈N0

(N+1)s1
(

inf
T⋆∈refine(T0)

#T⋆−#T0≤N

η⋆

)
< ∞ (154)

as well as

sup
N∈N0

(N+1)s2
(

inf
T⋆∈refine(T0)

#T⋆−#T0≤N

data⋆
)
< ∞. (155)

Then, this implies‖η̃‖As < ∞ for s := min{s1,s2}. Con-
versely,‖η̃‖As < ∞ implies(154)–(155)with s1 = s= s2.

Proof The proof is technical and can be found in [65], but
essentially only relies on the overlay estimate (101). ⊓⊔
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8.11 Optimal convergence of weighted residual error
estimator for the weakly singular integral equation with
data approximation

As in Section 6.9.1, we consider the model problem from
Proposition 10, i.e.

b(φ , ψ) := 〈Vφ ,ψ〉 for all φ ,ψ ∈ X := H̃−1/2(Γ ),

F(ψ) := 〈(1/2+K) f ,ψ〉 for all φ ∈ X ,

where f ∈ H1(Γ ). In contrast to Section 6.9.1, the data ap-
proximation is done via the Scott-Zhang operatorJp+1

ℓ :=

Jp+1
Tℓ

: L2(Γ )→ S p+1(Tℓ) from Lemma 26. We define

Fℓ(ψ) := 〈(1/2+K)Jp+1
ℓ f ,ψ〉 for all ℓ ∈ N0.

With Xℓ := P p(Tℓ), the discrete version (141) reads: Find
Φ̃ℓ ∈ Xℓ such that

b(Φ̃ℓ ,Ψ ) = Fℓ(Ψ ) for all Ψ ∈ Xℓ.

There holdsJℓ f ∈ H1(Γ ) and hence the standard
weighted residual error estimator reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2

:= ∑
T∈Tℓ

hT‖∇Γ (VΦ̃ℓ− (1/2+K)Jp+1
ℓ f )‖2

L2(T)
,

where∇Γ (·) denotes the surface gradient onΓ . The data
approximation term is defined as

data2ℓ := ∑
T∈Tℓ

dataℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−π p
ℓ )∇Γ f‖2

L2(T)
.

It is proved in Lemma 69, thatC−1
data‖Φℓ − Φ̃ℓ‖2

X
≤ data2ℓ ,

where the constantCdata=C7 > 0 depends only on the poly-
nomial degreep, on T0 (since Proposition 105 states that
Algorithm 104 produces only finitely many different shapes
of element patches), and on the shape regularity ofTℓ. Al-
together, the extended error estimator reads

η̃2
ℓ = ‖h1/2

ℓ ∇Γ (VΦ̃ℓ− (1/2+K)Jp+1
ℓ f )‖2

L2(Γ )

+ ‖h1/2
ℓ (1−π p

ℓ )∇Γ f‖2
L2(T)

.
(156)

For the abstract analysis of Section 8.8, we define an ele-
mentwise equivalent data approximation term, which is only
of theoretical purpose and does not have to be computed at
all. This term is defined as

d̃ata
2
ℓ = ‖h̃1/2

ℓ (1−π p
ℓ )∇Γ f‖2

L2(T)
,

where we exchanged the mesh-size functionhℓ with the mod-
ified mesh-size functioñhℓ from [37, Section 8] in the data
approximation term. This modified mesh-width function sat-
isfies the following.

Lemma 130 The modified mesh-size functionh̃ℓ ∈P0(Tℓ)

from [37, Section 8] satisfies forT⋆ ∈ refine(Tℓ) the fol-
lowing properties(i)–(iii) :

(i) Elementwise equivalence: C−1
h hℓ|T ≤ h̃ℓ|T ≤ hℓ|T for all

T ∈ Tℓ;
(ii) Monotonicity: h̃⋆|T ≤ h̃ℓ|T for all T ∈ Tℓ;
(iii) Reduction:h̃⋆ ≤ qhh̃ℓ onR(ℓ,⋆),

whereR(ℓ,⋆)⊇ Tℓ \T⋆ is defined as

R(ℓ,⋆) := {T ∈ Tℓ : exists T1 = T,T2, . . . ,T6

with T6 ∈ Tℓ \T⋆ andT j ∩T j+1 6= /0

for all j = 0, . . . ,4}
(157)

which roughly meansTℓ \T⋆ plus five additional layers of
elements aroundTℓ \T⋆. The constants Ch > 0 and 0 <

qh < 1 depend only on theσ0-shape regularity ofT0 and
the space dimension d.

Due to (i) in the above Lemma 130, there holds obviously
d̃ataℓ ≃ dataℓ.

Lemma 131 The weighted residual error estimatorη̃ℓ from
(156)satisfies the assumptions(Ã1)–(Ã6). The setR(ℓ,⋆)

from(A4) is defined in(157). The constant C16 depends only
on the shape regularity of the meshTℓ, whereas the con-
stants C12, C13, qred, C14, C15, C19 depend additionally onΓ
and the polynomial degree p.

Proof (of (Ã1)–(Ã2)) The assumptions (̃A1)–(Ã2) are proved
very similar to the assumptions (A1)–(A2) for the unper-
turbed case in Lemma 131. The proof can be found in great
detail in [65] and is only sketched in the following.

The main difference to the proofs of (A1)–(A1) in the
unperturbed case of Lemma 117 is that one obtains analo-
gously to the proof of Lemma 70 the additional term

‖J⋆ f − Jℓ f‖2
H1/2(Γ )

on the right-hand side. The elementwise equivalence ofhℓ
and h̃ℓ from Lemma 130 together with an approximation
property of the Scott-Zhang projection proved in
[65, Lemma 2] imply

‖J⋆ f − Jℓ f‖2
H1/2(Γ )

. ‖h1/2
ℓ (1−πℓ)∇Γ f‖2

L2(
⋃

R(ℓ,⋆))

≃ ‖h̃1/2
ℓ (1−πℓ)∇Γ f‖2

L2(
⋃

R(ℓ,⋆))

The fact that̃h⋆ ≤ qhh̃ℓ on R(ℓ,⋆) together with the mono-
tonicity of h̃ℓ show

(1−qh)h̃ℓ|R(ℓ,⋆) ≤ h̃ℓ− h̃⋆
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pointwise almost everywhere onR(ℓ,⋆). Hence, we get

‖h̃1/2
ℓ (1−πℓ)∇Γ f‖2

L2(
⋃

R(ℓ,⋆))

=

∫
⋃

R(ℓ,⋆)
h̃ℓ
(
(1−πℓ)∇Γ f

)2
dx

≤ (1−qh)
−1
∫

Γ
(h̃ℓ− h̃⋆)

(
(1−πℓ)∇Γ f

)2
dx

. ‖h̃1/2
ℓ (1−πℓ)∇Γ f‖2

L2(Γ )−‖h̃1/2
⋆ (1−πℓ)∇Γ f‖2

L2(Γ )

≤ d̃ata
2
ℓ − d̃ata

2
⋆.

(158)

This result is the main ingredient for the proof. ⊓⊔

Proof (of (Ã3)) Defineφℓ ∈ H−1/2(Γ ) as solution of (122)
when replacing the right-hand side withFℓ := (1/2+K)Jℓ f .
By definition of dataℓ and the reliability of the unperturbed
problem (A3) from Lemma 117, there holds

‖φ − Φ̃ℓ‖X ≤ ‖φ − φ̃ℓ‖X + ‖φ̃ℓ− Φ̃ℓ‖X

. η̃ℓ+dataℓ,

where we used Lemma 69 for the last estimate. This proves (Ã3).
⊓⊔

Proof (of (Ã4)) The proof is very similar to the unperturbed
case but additionally utilizes Lemma 69. It can be found
in [65]. ⊓⊔

Proof (of (Ã5)) The proof of a priori convergence (̃A5) for
Fℓ :=(1/2+K)Jℓ f uses the a priori convergence of the Scott-
Zhang projection proved in Lemma 78 in the sense

lim
ℓ→∞

Jℓ f = J∞ f ∈ H1/2(Γ ).

This and the stability ofK : H1/2(Γ )→ H1/2(Γ ) imply for
F∞ := (1/2+K)J∞ f

‖F∞−Fℓ‖H1/2(Γ ) . ‖J∞ f − Jℓ f‖H1/2(Γ ) → 0

asℓ→ ∞.
We define d̃ata∞ := limℓ→∞ ‖h̃1/2

ℓ (1 − π p
∞)∇Γ f‖2

L2(Γ ),
whereπ p

∞ : L2(Γ ) → X∞ is the L2-orthogonal projection.
By definition ofX∞, there holds limℓ→∞ d̃ataℓ = d̃ata∞. This
concludes the proof. ⊓⊔

Proof (of (Ã6)) Defineφ̃k ∈ H−1/2(Γ ) as solution of (122)
when replacing the right-hand side withFk := (1/2+K)Jk f .
Then, there holds for allk∈N0 thatb(φk+1− Φ̃k+1 , Φ̃k+1−
Φ̃k) = 0 and hence

‖Φ̃k+1− Φ̃k‖2
Ṽ
= ‖φ̃k+1− Φ̃k‖2

Ṽ

−‖φ̃k+1− Φ̃k+1‖2
Ṽ
.

Young’s inequality(a+b)2 ≤ (1+ δ )a2+(1− δ−1)b2 for
all a,b∈ R andδ > 0 shows

‖Φ̃k+1− Φ̃k‖2
Ṽ

≤ (1+ δ )‖φ̃k− Φ̃k‖2
Ṽ
−‖φ̃k+1− Φ̃k+1‖2

Ṽ

+(1+ δ−1)‖φ̃k+1− φ̃k‖2
Ṽ
.

The stability of the problem (3) implies‖φ̃k+1 − φ̃k‖2
Ṽ
≃

‖φ̃k+1 − φ̃k‖2
Ṽ
. ‖Jk+1 f − Jk f‖H1/2(Γ ) and as in the proof

of (Ã1)–(Ã2) above, we see

‖φ̃k+1− φ̃k‖2
Ṽ
. d̃ata

2
k − d̃ata

2
k+1.

As in the proof of (̃A3), one shows that‖φ̃k−Φ̃k‖Ṽ ≤C14η̃k.
Altogether, this shows forεC−1

14 = δ

∞

∑
k=ℓ

(‖Φ̃k+1− Φ̃k‖2
Ṽ
− εη̃2

k )

≤
∞

∑
k=ℓ

(
‖Φ̃k+1− Φ̃k‖2

Ṽ
− δ‖φ̃k− Φ̃k‖2

Ṽ

)

.
∞

∑
k=ℓ

(
‖φ̃k− Φ̃k‖2

Ṽ
−‖φ̃k+1− Φ̃k+1‖2

Ṽ

+ d̃ata
2
k − d̃ata

2
k+1

)
.

The telescoping series reveals

∞

∑
k=ℓ

(‖Φ̃k+1− Φ̃k‖2
Ṽ
− εη̃2

k )

. ‖φ̃ℓ− Φ̃ℓ‖2
Ṽ
+ d̃ata

2
ℓ . η̃2

ℓ .

This concludes the proof. ⊓⊔

Theorem 132 For 0< θ ≤ 1, Algorithm 1 with the residual
error estimatorη̃ℓ from (156)converges in the sense of

C−2
14 ‖φ − Φ̃ℓ+n‖2

H−1/2(Γ )
≤ η̃2

ℓ+n ≤C17q
n
Rη̃2

ℓ (159)

for all ℓ,n∈N0. For 0< θ < θ0, Algorithm 1 converges with
the best possible rate s> 0 in the sense that‖η̃‖As < ∞ if
and only if

η̃ℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (160)

where the constants C17,qR depend only onΓ , the shape
regularity of the meshesTℓ, the polynomial degree p, and
θ . The constant C20 > 0 depends additionally on‖η̃‖As.

Proof Lemma 131 shows that the assumption (Ã1)–(Ã6) are
satisfied. Theorem 124 and Theorem 127 prove the state-
ments. ⊓⊔
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8.12 Optimal convergence of weighted residual error
estimator for the hyper singular integral equation with data
approximation

As in Section 6.9.2, we consider the model problem from
Proposition 13, i.e.

b(u, v) := 〈Wu,v〉Γ + 〈u ,1〉Γ 〈v ,1〉Γ for all u,v∈ X ,

F(v) := 〈(1/2−K′)φ ,v〉 for all v∈ X := H1/2(Γ ),

whereφ ∈ L2(Γ ). The data approximation is done via the
L2-orthogonal projectionπℓ := π p−1

Tℓ
: L2(Γ )→P p−1(Tℓ).

We define

Fℓ(ψ) := 〈(1/2−K′)πℓφ ,ψ〉 for all ℓ ∈ N0.

With Xℓ := S p(Tℓ) for p ≥ 1, the discrete version (141)
of (132) reads: Find̃Uℓ ∈ Xℓ such that

b(Ũℓ ,V) = Fℓ(V) for all V ∈ Xℓ.

The standard weighted residual error estimator reads

η2
ℓ := ∑

T∈Tℓ

ηℓ(T)
2

:= ∑
T∈Tℓ

hT‖WŨℓ− (1/2−K′)πℓφ)‖2
L2(T)

.

The data approximation term is defined as

data2ℓ := ∑
T∈Tℓ

dataℓ(T)
2 := ∑

T∈Tℓ

hT‖(1−πℓ)φ‖2
L2(T)

,

with d̃ataℓ= dataℓ. Lemma 71 shows thatC−1
data‖Uℓ−Ũℓ‖2

X
≤

data2ℓ , where the constantCdata= C10 > 0 depends only on
the polynomial degreep and on the shape regularity ofTℓ.
Altogether, the extended error estimator reads

η̃2
ℓ = ‖h1/2

ℓ (WŨℓ− (1/2−K′)πℓφ)‖2
L2(Γ )

+ ‖h1/2
ℓ (1−πℓ)φ‖2

L2(T)
.

(161)

Lemma 133 The weighted residual error estimatorη̃ℓ from
(161)satisfies the assumptions(Ã1)–(Ã6). The setR(ℓ,⋆)
from (Ã4) satisfiesR(ℓ,⋆) :=Tℓ \T⋆ and C16= 1. The con-
stants C12, C13, qred, C14, C15, C19 depend onΓ , the shape
regularity ofTℓ, and the polynomial degree p.

Proof The assumptions (̃A1)–(Ã3) are straightforward to
prove. A detailed proof is found in [66]. The proof of the
discrete reliability is very similar to the unperturbed case
and is also found in [66]. To see (̃A5), defineP p(T∞) :=⋃

ℓ∈N0
P p(Tℓ)⊆ L2(Γ ) andF∞(v) := 〈(1/2−K′)π∞φ ,v〉Γ ,

whereπ∞ : L2(Γ ) → P p(T∞) denotes theL2-orthogonal
projection. By definition and with the stability ofK′ :
H−1/2(Γ )→ H−1/2(Γ ), there holds

‖F∞−Fℓ‖X ′
ℓ
≤ ‖(1/2−K′)(π∞ −πℓ)φ‖H−1/2(Γ )

. ‖(π∞ −πℓ)φ‖2
L2(Γ ).

The term on the right-hand side tends to zero asℓ→ ∞. The
convergence of̃dataℓ follows as in the weakly singular case
in the proof of Lemma 131. This shows (̃A5). Finally, (Ã6)
follows analogously to the proof for the weakly singular
case in Lemma 131. Withuk ∈H1/2(Γ ) the solution of (132)
with right-hand sideFk := (1/2−K′)πkφ , the only differ-
ence is the proof of‖uk+1 − uk‖H1/2(Γ ) . data2k − data2k+1,
which is much easier now. By ellipticity ofb(· , ·), there
holds

‖uk+1−uk‖H1/2(Γ ) . ‖(πk+1−πk)φ‖H−1/2(Γ )

= ‖(1−πk)πk+1φ‖H−1/2(Γ ).

The approximation property of theL2-orthogonal projection
πk (see Lemma 22) implies

‖(1−πk)πk+1φ‖H−1/2(Γ ) . ‖h1/2
ℓ (πk+1−πk)φ‖L2(Γ )

= ‖h1/2
ℓ (πk+1−πk)φ‖L2(

⋃
(Tk\Tk+1),

where we used the elementwise definition ofπk andπk+1 =

πk on Tk ∩Tk+1. There exists a constant 0< q < 1 which
depends on the space dimensiond, such thathk+1|T ≤ qhk|T
for all T ∈ R(k,k+1) = Tk \Tk+1. Hence there holds

(1−q)hk|R(k,k+1) ≤ hk−hk+1

and therefore

‖h1/2
ℓ (πk+1−πk)φ‖2

L2(
⋃
(R(k,k+1)) . data2k −data2k+1.

The remainder follows analogously to the proof for the weak-
ly singular case in Lemma 131. ⊓⊔

Theorem 134 For all 0 < θ ≤ 1, Algorithm 123 with the
residual error estimator̃ηℓ from(161)converges in the sense

C−2
14 ‖u−Ũℓ+n‖2

H1/2(Γ )
≤ η̃2

ℓ+n ≤C17q
n
Rη̃2

ℓ (162)

for all ℓ,n∈ N0. For 0< θ < θ0, Algorithm 123 converges
with the best possible rate s> 0 in the sense that‖η̃‖As < ∞
if and only if

η̃ℓ ≤C20(#Tℓ−#T0)
−s for all ℓ ∈ N, (163)

where the constants C17,qR depend only onΓ , the shape
regularity of the meshesTℓ, the polynomial degree p, and
θ . The constant C20 > 0 depends additionally on‖η̃‖As.

Proof Lemma 133 shows that the assumption (Ã1)–(Ã6) are
satisfied. Theorem 124 and Theorem 127 prove the state-
ments. ⊓⊔
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9 Implementational details

This section deals with implementational issues for theL2-
orthogonal projectionπ p

ℓ and the Scott-Zhang operatorJℓ
as well as for some of the error estimators discussed above.
For the ease of presentation, we consider onlyd = 2 and
give precise examples for the lowest-order casesp∈ {0,1}.
However, the following considerations are elementary and
most of the ideas directly transfer to higher-order discretiza-
tions as well asd ≥ 3.

9.1 Implementation ofL2-orthogonal projectionπ p
ℓ

Let {Ψ ref
j }m

j=1 ∈ P p(Tref) denote a basis of the space of
piecewise polynomials on the reference elementTref with

m := dim(P p(Tref)) =

{
p+1 d = 2,
1
2(p+1)(p+2) d = 3.

(164)

Define the mass matrixMTref ∈ Rm×m associated to the ref-
erence elementTref by

(MTref) jk = 〈Ψ ref
k ,Ψ ref

j 〉Tref. (165)

Recall the affine mappingFT : Tref → T from Section 2.6,
which maps the reference elementTref to T ∈ Tℓ. Define
the basis{ΨT

j }m
j=1 of P p(T) byΨT

j ◦FT =Ψ ref
j . Let MT ∈

Rm×m denote the local mass matrix with entries

(MT) jk := 〈ΨT
k ,ΨT

j 〉T . (166)

By using the transformationFT , the computation of the en-
tries(MT) jk can be reduced to the computation of(MTref) jk,
i.e.,

〈ΨT
k ,Ψ T

j 〉T =

∫

T
Ψ T

k ΨT
j dx=

√
det(BT

TBT)

∫

Tref

Ψ ref
k Ψ ref

j dy

=
√

det(BT
TBT)〈Ψ ref

k ,Ψ ref
j 〉Tref.

(167)

Hence,

MT =
√

det(BT
TBT)MTref =

|T|
|Tref|

MTref. (168)

Note thatMTref can be computed analytically. This is useful
in practice, as we have to computeMTref only once and then
multiply it by |T|/|Tref| to getMT for each elementT ∈ Tℓ.

Let g∈ L2(Γ ) and letπ p
ℓ : L2(Γ )→ P p(Tℓ) denote the

L2-orthogonal projection ontoP p(Tℓ). Then,π p
ℓ g satisfies

〈π p
ℓ g ,Ψ〉Γ = 〈g ,Ψ〉Γ for all Ψ ∈ P

p(Tℓ). (169)

A basis{Ψj}M
j=1 with M := m#Tℓ is given by the combi-

nation of all basis functionsΨT
k for each elementT ∈ Tℓ.

Define the mass matrixM ∈ RM×M by

M jk = 〈Ψk ,Ψj〉Γ . (170)

Then, (169) is equivalent to

Mx = g with g j := 〈g ,Ψj〉Γ , (171)

whereπ p
ℓ g=∑M

j=1x jΨj . However, a simple calculation shows
thatπ p

ℓ is local in the sense that

(π p
ℓ )g|T = π p

ℓ,Tg= π p
ℓ,T(g|T), (172)

whereπ p
ℓ,T denotes theL2-orthogonal projection ontoP p(T).

This allows us to reduce the computation of the orthogonal
projectionπ p

ℓ g to the solution of the local problems

MTxT = gT for all T ∈ Tℓ, (173)

where(gT) j = 〈g ,ΨT
j 〉T andπ p

ℓ,Tg=∑m
j=1(xT) jΨ T

j . The co-
efficients〈g ,Ψj〉T can be computed by use of, e.g., Gaussian
quadrature rules, cf. [141], as follows: First, we transform
the integral overT to the reference elementTref. Then, we
apply an appropriate quadrature rule of orderq ∈ N with
weights{wi}q

i=1 and evaluation points{yi}q
i=1 ⊆ Tref, i.e.

〈g ,ΨT
j 〉T =

∫

Tref

g◦FTΨ ref
j dy≈

q

∑
j=1

wi(g◦FT)(yi)Ψ ref
j (yi).

(174)

We give some examples for the matrixMT for d = 2,3
and p = 0,1. Let d = 2 with the reference elementTref =

(−1,1). For p = 0 and the basis functionΨ ref
1 (x) = 1 for

x∈ Tref, we get

MT = |T|. (175)

Ford = 2 andp= 1 with the basis

Ψ ref
1 (x) = 1 and Ψ ref

2 (x) = x for x∈ Tref,

the local mass matrix reads

MT = |T|
(

1 0
0 1

3

)
. (176)

Let d = 3 with reference element given by

Tref = conv{(0,0),(1,0),(0,1)}.

For p= 0 with basisΨ ref
1 (x,y) = 1 for (x,y) ∈ Tref, we have

MT = |T|. (177)

For p= 1 with basis

Ψ ref
1 (x,y) = 1, Ψ ref

2 (x,y) = x, Ψ ref
3 (x,y) = y

for (x,y) ∈ Tref, we get

〈ΨT
k ,ΨT

j 〉T = 2|T|
∫ 1

0

∫ 1−x

0
Ψ ref

k Ψ ref
j dydx. (178)

Thus, the local mass matrix reads

MT =
|T|
12




12 4 4
4 2 1
4 1 2


 . (179)



Adaptive Boundary Element Methods 69

9.2 Implementation of the Scott-Zhang projectionJT

The implementation of the Scott-Zhang projection defined
in Section 3.2.2 requires the computation of anL2-dual ba-
sis and a numerical integration. We stick with the setting and
notations of Section 3.2.2. Suppose thatTi ∈ T is the ele-
ment chosen for the computation ofJT v at the nodezi and{

φi, j
}d

j=1 is the nodal basis ofP1(Ti). Recall the definition

∫

Ti

ψi,kφi, j dx= δk, j

of the dual basis{ψi,k}d
k=1 from (24). Hilbert space theory

predicts the representation

ψi,k =
d

∑
m=1

a(i)k,mφi,m with a(i)k,m ∈R.

Using the duality (24), the coefficientsa(i)k,m can be computed
by solving thed systems ofd×d linear equations

d

∑
m=1

a(i)k,m

∫

Ti

φi,m(x)φi, j = δk, j .

Denoting byA(i) ∈ Rd×d the matrix withA(i)
k,m = a(i)k,m, this

yields

A(i) = |Ti |−1
(

4 −2
−2 4

)
for d = 2,

A(i) = |Ti |−1




18 −6 −6
−6 18 −6
−6 −6 18


 for d = 3.

Let ψi denote the dual basis functionψi,k with k∈ {1, . . . ,d}
such thatφi,k(zi) = 1. Hence,

ψi =
d

∑
m=1

A(i)
k,mφi,m.

To compute
∫

Ti
ψivdx, standard quadrature rules on intervals

respectively triangles can be used, cf. [141].

9.3 Assumptions on uniform refinement ford = 2

We suppose that the uniform refinement̂Tℓ of Tℓ is obtained
by splitting each elementT ∈ Tℓ into k sonsT ′ ∈ T̂ℓ for
some fixedk ≥ 2. A natural approach ford = 2 employs
k= 2 and ensuresh

T̂ℓ
= hTℓ

/2 for the respective mesh-size

functionshℓ, ĥℓ : Γ →R with, e.g.,hℓ|T = hT = diam(T) for
all T ∈ Tℓ. For the remainder of this section, letT+,T− ∈
T̂ℓ denote the unique elements withT

+ ∪ T
−
= T for all

T ∈ Tℓ.

9.4 Two-level estimator

Recall the hierarchical two-level decomposition

X̂T = XT ⊕ZT (180)

from (39), whereZ is further decomposed into

ZT = ZT ,1⊕·· ·⊕ZT ,L with dim(ZT ,i) = 1. (181)

LetΨj 6= 0 denote an appropriate element ofZT , j . The ba-
sis functionsΨj , henceZT , j , will be specified accordingly
for the weakly singular integral equation as well as the hy-
persingular integral equation later on. Note that̂XT = X

T̂

denotes the space associated to the uniformly refined mesh
T̂ .

The computation of the local indicators

η j = ‖Pj(Û −U)‖b, (182)

whereb(·, ·) denotes the bilinear form corresponding to the
weakly singular or hypersingular integral equation, requires
the representation of the projection operatorsPj . SinceZT , j

is one-dimensional, the subsequent identity follows immedi-
ately from the definition ofPj ,

PjV̂ =
b(V̂,Ψj)

‖Ψj‖2
b

Ψj for all V̂ ∈ X̂T . (183)

With V̂ = Û −U , Lemma 47 shows

η j =
| f (Ψj)−b(U,Ψj)|

‖Ψj‖2
b

. (184)

The computation ofη j involves the assembling of the Galerkin
matrix corresponding tob(·, ·) with ansatz spaceXT and
test functionΨj as well as the computation ofb(Ψj ,Ψj).
Therefore, we have to compute the entries

b(Vk,Ψj) as well as b(Ψj ,Ψj),

where{Vk}dim(XT )
k=1 denotes a basis ofXT . We note that this

quantities can be obtained from the Galerkin matrix with
respect to the fine spacêXT .

9.4.1 2D weakly singular integral equation

We considerXT = P0(T ) and X̂T = X
T̂

= P0(T̂ ).

For eachTj ∈ T , let T±
j ∈ T̂ denote the two elements with

T
+
j ∪T

−
j = T j and|T±

j |= |Tj |/2. Define the basis function

Ψj ∈ X̂T by

Ψj |T+
j
=+1 Ψj |T−

j
=−1 Ψj |Γ \T j

= 0. (185)

It holds

〈Ψj ,1〉T = 0. (186)

The stability of the corresponding decomposition (180) is
proved in [92] resp. [58] ford = 2 and [61] ford = 3.



70 M. Feischl, T. Führer, N. Heuer, M. Karkulik, D. Praetorius

9.4.2 2D hypersingular integral equation

We considerXT = S 1(T ) andX̂T = S 1(T̂ ). For each
Tj ∈ T , let T±

j ∈ T̂ denote the two elements withT
+
j ∪

T
−
j = T and|T±

j |= |Tj |/2. Define the midpointmj = T
+
j ∩

T
−
j and the basis functionΨj ∈ X̂T by

Ψj(mj ) = 1 and Ψj |Γ \T j
= 0. (187)

The stability of the corresponding decomposition (180) is
proved in [92] resp. [58] ford = 2 and [89] resp. [12] for
d = 3.

9.5 (h−h/2) error estimators in 2D

For the(h− h/2)-based error estimatorsµℓ, µ̃ℓ from Sec-
tion 4.2.2, we have to compute local refinement indicators
of the form

hT‖Ψ̂‖2
L2(T)

for all T ∈ Tℓ

with Ψ̂ ∈ P p(T̂ℓ) andhT = diam(T).
Let T± ∈ T̂ℓ denote the son elements of the fatherT ∈

Tℓ, i.e.,T = T
+ ∪T

−
. We define the local mesĥTT as the

restriction ofT̂ℓ to T, i.e.,T̂T := {T+,T−}. Let {Ψ̂j}2(p+1)
j=1

denote a basis of the local subspaceP p(T̂T). With the rep-
resentation of̂Ψ ∈ P p(T̂T) on the father elementT ∈ Tℓ

Ψ̂ |T =
2(p+1)

∑
j=1

α jΨ̂j , (188)

and the local mass matrix̂MT ∈R2(p+1)×2(p+1)
sym with entries

(M̂T) jk = 〈Ψ̂j ,Ψ̂k〉T , (189)

the computation of the local indicators read

hT‖Ψ̂‖2
L2(T)

= hTαTM̂T α. (190)

In the following, this observation is employed for the weakly
singular and hypersingular integral equation. Note that the
estimators for the hypersingular integral equation require the
computation of the arclength derivative∇Γ (·) of a discrete
function.

9.5.1 2D weakly singular integral equation

We consider the local refinement indicators of the estimator

µ2
ℓ = ∑

T∈Tℓ

hT‖Φ̂ℓ−Φℓ‖2
L2(T)

=: ∑
T∈Tℓ

hT‖Ψ̂‖2
L2(T)

, (191)

whereΦℓ ∈ P p(Tℓ) andΦ̂ℓ ∈ P p(T̂ℓ) are the respective
Galerkin solutions.

For the lowest-order casep= 0, we choose the charac-
teristic functions as basis, i.e.,̂Ψi is the characteristic func-
tion on the elementTi ∈ T̂T . The corresponding local mass
matrix readsM̂T = hT/2I , whereI denotes the 2×2 iden-
tity matrix. Hence, the computation ofµ2

ℓ (T) = hT‖Φ̂ℓ −
Φℓ‖2

L2(T)
reads

µ2
ℓ (T) = hTαT · M̂Tα = h2

T/2αT · Iα

=
h2

T

2

(
(Φ̂ℓ|T+ −Φℓ|T)2+(Φ̂ℓ|T− −Φℓ|T)2

)
.

(192)

The computation of the local refinement indicators

µ̃2
ℓ (T) = hT‖Φ̂ℓ−πℓΦ̂ℓ‖2

L2(T)
(193)

of the estimator̃µℓ is done in the same manner. For the com-
putation ofπℓΦ̂ℓ we proceed as in Section 9.1. LetΨT denote
the characteristic function onT ∈ Tℓ. It holds〈Φ̂ℓ ,ΨT〉T =

hT/2(Φ̂ℓ|T+ + Φ̂ℓ|T−). Hence,

πℓΦ̂ℓ|T =
1
2
(Φ̂ℓ|T+ + Φ̂ℓ|T−). (194)

For the local refinement indicators in (193), we get

µ̃2
ℓ (T) =

h2
T

2
(Φ̂ℓ|T+ − 1

2
(Φ̂ℓ|T+ + Φ̂ℓ|T−))2

+
h2

T

2
(Φ̂ℓ|T− − 1

2
(Φ̂ℓ|T+ + Φ̂ℓ|T−))2

=
h2

T

4
(Φ̂ℓ|T+ − Φ̂ℓ|T−)2.

(195)

From a practical point of view, the estimatorµ̃ℓ is more
attractive thanµℓ, since the computation involves only the
Galerkin solution on the fine mesĥTℓ.

For p= 1, we use the basis{Ψ̂j}4
j=1 ⊆ P1(T̂T) with

Ψ̂1|T+ = 1, Ψ̂1|T− = 0,

Ψ̂2|T+ = 0, Ψ̂1|T− = 1, (196)

Ψ̂3|T+ ◦FT+(x) = x, Ψ̂3|T− = 0,

Ψ̂4|T+ = 0, Ψ̂4|T− ◦FT−(x) = x,

for all x ∈ Tref = (−1,1). The local mass matrix̂MT then
reads

M̂T =
hT

2




1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1

3


 , (197)

and withΨ̂ = Φ̂ℓ|T −Φℓ|T = ∑4
j=1α jΨ̂j , we get

µ2
ℓ (T) =

hT

2
‖Ψ̂‖2

L2(T)
=

h2
T

2
(α2

1 +α2
2 +

1
3
(α2

3 +α2
4)).

(198)
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For the computation of the local error indicatorµ̃2
ℓ (T), we

proceed as before and computeπ1
ℓ . Letβ ∈R4 satisfyΦ̂ℓ|T =

∑4
j=1 β jΨ̂j . We end up with

µ̃2
ℓ (T) =

h2
T

4
((β1−β2)

2+
1
3
(β3−β4)

2). (199)

9.5.2 2D hypersingular integral equation

We consider the local refinement indicators of the estimator

µ2
ℓ = ∑

T∈Tℓ

hT‖∇Γ (Ûℓ−Uℓ)‖2
L2(T)

=: ∑
T∈Tℓ

hT‖Ψ̂‖2
L2(T)

,

(200)

whereUℓ ∈ S p+1(Tℓ) resp.Ûℓ ∈ S p+1(T̂ℓ) are the re-
spective Galerkin solutions. Hence,̂Ψ := ∇Γ (Ûℓ −Uℓ) ∈
P p(T̂ℓ). To apply (190), it remains to provide a formula to
compute the arclength derivative∇Γ (Ûℓ−Uℓ)|T ∈P p(T̂T).

Let p= 0 and let{η1,η2,η3} denote a basis of the local
subspaceS 1(T̂T). We define the matrix̂GT ∈R2×3, which
represents the gradients of the basis{η j} with respect to the

basis{Ψ̂1,Ψ̂2} of P0(T̂T), i.e.

∇Γ η j =
2

∑
k=1

(ĜT)k jΨ̂k. (201)

Then,∇Γ (Ûℓ−Uℓ) = ∑ j β j∇Γ η j , whereα = ĜTβ . Testing

equation (201) withΨ̂j in L2(T), we obtain the equivalent
matrix equation

D̂T = M̂TĜT (202)

with (D̂T) jk = 〈∇Γ ηk ,Ψ̂j〉T . Hence,ĜT = (M̂T)
−1D̂T . To-

gether with (190), the computation of the local indicators
in (200) withΨ̂ = ∇Γ (Û −U) reads

hT‖Ψ̂‖2
L2(T)

= hTαTM̂T α = hTβ TĜT
TM̂TĜTβ

= hTβ T(M̂−1
T D̂T)

TM̂TM̂−1
T D̂Tβ

= hTβ TD̂T
TM̂−1

T D̂Tβ .

(203)

Let x1,x2 denote the endpoints of the elementT ∈ Tℓ and
let x3 = (x1 + x2)/2 denote the midpoint ofT. We choose
the nodal basis{η j} with respect to the nodes{x j}. Let

Ψ̂1,Ψ̂2 denote the characteristic functions onT+,T− ∈ T̂ℓ

with T
+∪T

−
= T andx1 ∈ T

+
, x2 ∈ T

−
. Then,

D̂T =

(
−1 0 +1
0 +1 −1

)
, M̂T =

hT

2

(
1 0
0 1

)
,

and (203) becomes withβ j = (Ûℓ−Uℓ)(x j )

hTβ TD̂T
TM̂−1

T D̂T β = 2β T




1 0 −1
0 1 −1
−1 −1 2


β

= 2(β1−β3)
2+2(β2−β3)

2.

(204)

UsingUℓ(x3) = (Uℓ(x1)+U(x2))/2, the indicatorµℓ(T)2 is
computed by

µℓ(T)
2 = 2(Ûℓ(x1)−Ûℓ(x3)+ (Uℓ(x2)−Uℓ(x1))/2)2

+2(Ûℓ(x2)−Ûℓ(x3)+ (Uℓ(x1)−Uℓ(x2))/2)2.

(205)

For the computation of the local error indicators

µ̃2
ℓ (T) = hT‖(1−πℓ)∇Γ Ûℓ‖2

L2(T)
=: hT‖Ψ̂‖2

L2(T)
, (206)

we proceed as in Section 9.5.1 to compute theL2-projection

πℓ∇Γ Ûℓ =
1
2

(
(∇Γ Ûℓ)|T+ +(∇Γ Ûℓ)|T−

)
. (207)

With α resp.β given byΨ̂ =∑2
j=1 α jΨ̂j resp.Ûℓ=∑3

j=1β jη j ,
a straightforward computation shows that

α =
1
2

(
1 −1
−1 1

)
ĜTβ , (208)

Putting this into (190), we get

hT‖Ψ̂‖2
L2(T)

= (2β3−β1−β2)
2. (209)

Usingβ j = Ûℓ(x j), the local refinement indicators become

µ̃2
ℓ (T) = (2Ûℓ(x3)−Ûℓ(x1)−Ûℓ(x2))

2. (210)

Again, the computation of̃µℓ is more attractive compared to
the computationµℓ, since only the solution̂Uℓ on the fine
mesh is needed.

Let p = 1 and let{Ψ̂j}4
j=1 be given as in (196). We

choose the basis{η j}5
j=1, whereη1,η2,η3 are the (linear)

nodal basis functions with respect tox1,x2,x3, andη4 :=
η1η3 as well asη5 := η2η3. Arguing as forp= 0, we obtain

D̂T =




−1 0 1 0 0
0 1−1 0 0
0 0 0 − 1

3 0
0 0 0 0 − 1

3


 . (211)

Using (203) withΨ̂ := ∇Γ (Ûℓ−Uℓ)|T = ∑5
j=1 β j∇Γ η j , we

infer

µ2
ℓ (T) = 2((β1−β3)

2+(β2−β3)
2+

1
3
(β 2

4 +β 2
5 )). (212)

For the computation of the local error indicators ofµ̃ℓ, let
β ∈ R5 be given byÛℓ = ∑5

j=1 β jη j . We proceed as in the
casep= 0 and get

µ̃2
ℓ (T) = (2β3−β1−β2)

2+
1
3
(β4−β5)

2. (213)

Similar results hold ford = 3 resp.p> 1.
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9.6 Weighted-residual error estimator

9.6.1 2D weakly singular integral equation

We consider the computation of the local error indicators

η2
ℓ (T) = hT‖∇Γ (VΦℓ− f )‖2

L2(T)
=: hT‖∇Γ Rℓ‖2

L2(T)
(214)

of the weighted-residual error estimator ford = 2. By the
definition of∇Γ (·), we have

(∇Γ Rℓ)◦FT = 2h−1
T (∇Γ (Rℓ ◦FT)), (215)

whereFT denotes the affine mapping fromTref = (−1,1) to
T = conv{x1,x2}. For (214), this yields

hT‖∇Γ Rℓ‖2
L2(T)

= hT

∫

T
(∇Γ Rℓ)

2dx

= 2
∫

Tref

(∇Γ (Rℓ ◦FT))
2 dy.

(216)

Recall that∇Γ (·) = (·)′, where(·)′ denotes the arclength
derivative. We approximateRℓ◦FT by some polynomialΨ ∈
P2q(Tref) with q≥ 1, i.e.
∫

Tref

(∇Γ (Rℓ ◦FT))
2 dy≈

∫

Tref

(Ψ ′)2dy. (217)

Note hatΨ ′ ∈P2q−1(Tref), whence(Ψ ′)2 ∈P4q−2. To com-
pute the integral on the right-hand side of (217), we use a 2q-
point Gaussian quadrature rule, which is exact for polynomi-
als of order 2(2q)−1, and thus for(Ψ ′)2. Let{yi}2q

i=1 denote
the quadrature nodes onTref with corresponding weights
{wi}2q

i=1. This leads for the local error indicators

hT‖∇Γ Rℓ‖2
L2(T)

≈ 2
∫

Tref

(Ψ ′)2dy= 2
2q

∑
i=1

wi(Ψ ′(yi))
2. (218)

For the construction ofΨ ∈ P2q(Tref) by interpolation, we
use the 2q points{yi}2q

i=1 from the Gaussian quadrature rule
plus the midpoint of the reference elementy2q+1 = 0. Ac-
cording to (218), we need to evaluateΨ ′ at the pointsyi for
i = 1, . . . ,2q. To that end, let{Li}2q+1

i=1 denote the Lagrange

basis with respect to the points{yi}2q+1
i=1 . It holds

Ψ =
2q+1

∑
k=1

βkLk

with βk :=Ψ(yk). Define the matrixL ′ ∈ R2q×(2q+1) by

(L ′) jk := L′
k(y j). (219)

Then,α j := Ψ ′(y j) can be obtained by the matrix-vector
multiplication

α = L ′β . (220)

We consider the lowest-order casep = 0, where we use a
2-point Gaussian quadrature rule (q= 1) onTref with y1 =

−1/
√

3, y2 = 1/
√

3 and weightsw1 = 1= w2. The deriva-
tives of the Lagrange basisL1,L2,L3 with respect to the
pointsy1,y2,y3 := 0 are given by

L′
1(y) = 3y−

√
3

2
, L′

2(y) = 3y+

√
3

2
, L′

3 = 1−3y2.

(221)

Forα1 =Ψ ′(y1),α2 =Ψ ′(y2), we get

α =

(
L′

1(y1) L′
2(y1) L′

3(y1)

L′
1(y2) L′

2(y2) L′
3(y2)

)
β

=

√
3
4

(
−3 −1 4
1 3 −4

)
β .

(222)

Altogether, we approximate the local error indicatorsη2
ℓ (T)

by

ρ2
ℓ (T)≈

2

∑
i=1

wiα2
i =

3
4

β T




10 6 −16
6 10 −16

−16−16 32


β , (223)

whereβ j := (Rℓ ◦FT)(y j ) for j = 1,2,3. The advantage of
this approach is that we do not need to evaluate the arclength
derivativeR′

ℓ of the functionRℓ numerically, but instead eval-
uate the function at specific points directly.

In practice, it suffices to use a small number of quadra-
ture pointsq. For p = 0, we stress that the choiceq = 1

is sufficient. Defineη(q)
ℓ as the residual error estimatorηℓ

with the difference that the local indicatorsρℓ(T)2 are ap-
proximated as given above, and 2q denotes the number of
points in the chosen Gaussian quadrature rule. On uniformly
refined meshes, we stress that for a sufficiently smooth func-
tion Rℓ it holds

|ρℓ−ρ (q)
ℓ |. N−(q+1/2) with N = #Tℓ. (224)

Thus for p = 1, we useq = 2, i.e., four quadrature points
y1,y2,y3,y4 and the additional evaluation pointy5 := 0.

9.6.2 2D hypersingular integral equation

We consider the computation of the local refinement indica-
tors

η2
ℓ (T) = hT‖WUℓ− (1/2−K′)φ‖2

L2(T)
=: hT‖Rℓ‖2

L2(T)

(225)

of the weighted residual error estimatorηℓ for d = 2. Let
FT denote the affine mapping fromTref = (−1,1) to T. We
use aq-point Gaussian quadrature rule with nodes{yi}q

i=1
and weights{wi}q

i=1 on the reference elementTref, which is
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exact for polynomials inP2q−1(Tref). The local refinement
indicatorη2

ℓ (T) is approximated by

hT‖Rℓ‖2
L2(T)

=
hT

2

∫

Tref

(Rℓ ◦FT)
2dx

≈ hT

2

q

∑
i=1

wi(Rℓ ◦FT)
2(yi).

(226)

Defineη(q)
ℓ asηℓ with the difference that the local refine-

ment indicatorsη2
ℓ (T) are approximated as given above. On

uniformly refined meshes and for sufficiently smooth resid-
ualRℓ, we stress that

|ηℓ−η(q)
ℓ |. N−(2q+1/2) with N = #Tℓ. (227)

For the lowest order casep= 0, it is sufficient to useq= 2
quadrature points, whereas forp = 1 it is sufficient to use
q= 3 quadrature points.

10 Conclusion

In this work, we presented all a posteriori error estimators
for Galerkin BEM that are available in the mathematical lit-
erature. Up to now, it is known how to apply contemporary
convergence and optimality analysis only to several of them,
and an overview of this analysis and its application to these
estimators was given.

Although all estimators behave well in numerical exper-
iments (cf. the references given above, where the respective
estimators haven been introduced), they differ with respect
to overhead in implementation, computational expense, and
mathematically guaranteed convergence as well as optimal-
ity of the related ABEM algorithms. The choice is also af-
fected by the regularity of the right-hand side data.

With respect to these requirements, a short summary of
the advantages and disadvantages of the estimators follows.
We consider only estimators that have been mathematically
analyzed on locally refined meshes.

The ((h−h/2))-type estimators(Section 4.2.2) are,
in general, structurally easy. They require nearly no over-
head for their implementation and can be used to steer an-
isotropic mesh refinement in a straightforward manner (Sec-
tion 6.10), which are their biggest advantages. Also, thereis
no additional requirement on the data. They are always effi-
cient, but reliability is equivalent to the saturation assump-
tion, which is still an open problem. They are proven to con-
verge, but the convergence is not proven to be optimal.

Averaging estimators(Section 4.3) are globally equiv-
alent to(h−h/2)-type estimators, and the implementation-
ally and computationally interesting variants are even lo-
cally equivalent to their(h−h/2) counterparts.

Advantages of theZZ-type estimators (Section 4.4)
are that the implementation is also very easy, and as they

avoid artificial mesh refinement, they are much cheaper than
(h−h/2)-type estimators. While reliability relies on an ap-
propriate saturation assumption, efficiency involves higher-
order terms and is therefore weaker than for(h−h/2)-type
estimators. In addition, it is not clear how to steer anisotropic
refinement. Convergence is proven, but optimality remains
open.

The two-level estimators(Section 4.2.1) also need the
assembly of the Galerkin data on a finer mesh. Moreover,
their reliability depends also on the saturation assumption.
Up to now, nothing is known about convergence or optimal-
ity. However, their great strength is that they are analyzed
with respect tohp-methods and that they are reliable on
anisotropic refinement in the case of weakly singular inte-
gral operators (assuming saturation).

The weighted residual estimators(Section 4.1.3) are
the only ones which are proven to converge with optimal
rates. As they are also reliable, they are preferred in theory.
However, their disadvantage is that their requirements on
the data is quite strong and that the implementation requires
a certain amount of overhead. Anisotropic meshes can be
used, but there is no analysis in this respect.

The local double norm estimators(Section 4.1.4) are
the only estimators that are known to be efficientand re-
liable without any further assumption on data or saturation.
However, their stable implementation is non-trivial, and noth-
ing is known with respect to convergence or optimality.

Approximation of the given right-hand side data ren-
ders an important aspect for BEM implementations and can
be used and mathematically controlled in adaptive bound-
ary element methods on isotropic meshes. Convergence and
optimality is proven as long as the data satisfy additional
regularity and appropriate approximation operators are used.
There is no analysis on anisotropic meshes.

Several importantopen problems in this field center
around anisotropic mesh refinement. There is a need for es-
timators which are reliable on anisotropic meshes (two-level
estimators for weakly singular operators are reliable on an-
isotropic meshes under the saturation assumption), and op-
timality theory needs to be extended in this respect. To that
end, suitable mesh refinement strategies need to be devel-
oped and analyzed. Furthermore, the approximation of smooth
geometries in isoparametric BEM algorithms, its incorpora-
tion into ABEM, as well as a mathematical analysis with re-
spect to convergence and optimality remains an interesting
open problem. Also, as stated in the introduction, competi-
tive BEM algorithms need to employ fast methods for ma-
trix compression. Hence, it is an inevitable task to control
the introduced error in adaptive BEM algorithms.
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