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Abstract. We study entire solutions of the Allen-Cahn equation which are
defined in 3-dimensional Euclidean space and which are invariant under screw-
motion. In particular, we discuss the existence and non existence of nontrivial
solutions whose nodal set is a helicöıd of R3.

1. Introduction and statement of the main results

In this short note, we are interested in entire solutions of the Allen-Cahn equation

(1.1) ∆u− F ′(u) = 0,

which are defined in Rn, with n ≥ 1. Here F ′ is the derivative of the function F
which is usually referred to as a double well potential. In this paper, we will assume
that t 7→ F (t) is an even, positive function which is at least of class C2 and which
has only two distinct nondegenerate absolute minima at the points ±t∗ ∈ R, where
t∗ > 0. Hence, for all t ∈ R,

F (t) ≥ F (t∗),

with equality if and only if t = t∗. We further assume that

(1.2) F ′′(0) < 0 and F ′′(0) t ≤ F ′(t),

for all t ≥ 0. We define
λ∗ :=

π√
−F ′′(0)

.

Remark 1.1. A typical example of such a double well potential is given by

(1.3) F (t) :=
1
4

(1− t2)2,

in which case t∗ = 1, F ′′(t∗) = 1 and λ∗ = π.

In recent years, there has been many important results on the existence of non-
trivial entire solutions of (1.1) and also trying to understand the classification of
such solutions. As far as the existence of solutions is concerned, there are two com-
pletely different approaches : the use of the variational structure of (1.1) as in [5]
or [1] ; or perturbation results based on the implementation of an infinite dimen-
sional Liapunov-Schmidt reduction argument as in [7], [8], [9] or [10]. The former is
usually simpler and takes advantage of the symmetries of the solutions constructed
while the latter produces solutions with less (or even without any) symmetry but
is technically more involved. Since we do not use this latter approach in this pa-
per, we will not comment on it further and refer the interested reader to the above
mentioned papers.
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The variational method has already been successfully implemented to prove the
existence of solutions of the Allen-Cahn equation whose nodal set is the minimal
cone

C := {(x, y) ∈ R2m : |x| = |y|} ⊂ R2m,

where m ≥ 1. We refer to [1] and [2] for more information about these solutions
which are usually referred to as the saddle type solutions. In dimension 2, the
method extends to produce solutions which are invariant under dihedral symmetry
[6]. In this short note, we use once more a variational argument to produce new
solutions of (1.1). The arguments is by now standard so we only insist on the
important points which are specific to our construction.

Since we will mainly be working in dimension 3, it will be convenient to identify
R3 with C× R. Given λ > 0, the helicöıd Hλ is defined to be the minimal surface
which can be parameterized by

R× R 3 (t, θ) 7−→
(

t eiθ,
λ

π
θ

)
∈ C× R,

and, we define the screw motion of parameter λ, acting on C× R, by

σα
λ (z, t) =

(
eiα z, t +

λ

π
α

)
,

for all α ∈ R. Clearly, Hλ is invariant under the action of σα
λ , for all α ∈ R.

Our main result is the construction of nontrivial entire solutions of the Allen-
Cahn equation (1.1) which are defined in R3 and whose zero set is equal to Hλ,
provided λ is chosen large enough. More precisely we prove the:

Theorem 1.1. Assume that (1.2) holds and that λ > λ∗. Then, there exists a
solution of the Allen-Cahn equation (1.1) which is bounded and whose zero set is
equal to Hλ. This solution is invariant under the screw motion of parameter λ,
namely

u ◦ σα
λ = u,

for all α ∈ R.

We also prove that the above result is, in some sense, sharp. Indeed, we have
the :

Theorem 1.2. Assume that (1.2) holds and that λ ∈ (0, λ∗]. Then, there are no
nontrivial bounded solution of the Allen-Cahn equation (1.1) whose zero set is equal
to Hλ.

Observe that, in this result, we do not assume that the solution is invariant
under screw motion. In the last section of this note, we will derive some precise
asymptotics for the solutions constructed in Theorem 1.1.

We briefly comment on the possibility to extend our result to higher dimensional
Euclidean spaces. According to [4], there is an analogue of the helicöıd in any odd
dimension. Given m ≥ 1 and λ > 0, we can define the (2m+2)-dimensional helicöıd
Hλ in R2m+3 to be the hypersurface parameterized by
(1.4)
R× R× (Sm × Sm) −→ R2m+3

(t, θ, (ζ1, ζ2)) 7−→
(

t (cos θ ζ1 − sin θ ζ2), t (sin θ ζ1 + cos θ ζ2),
λ

π
θ

)



SOLUTIONS OF THE ALLEN-CAHN EQUATION INVARIANT UNDER SCREW-MOTION 3

The interested reader will check that, with this definition of the higher dimensional
helicöıd, the above results extend in higher dimensions and lead to solutions of the
Allen-Cahn equation whose zero set is Hλ provided λ > λ∗, while there is so such
a solution when λ ≤ λ∗.

As will become clear from the construction, the key point in the proof of Theo-
rem 1.1 is the existence of a nontrivial minimizer for the one dimensional Allen-Cahn
functional on the interval [0, λ], for λ > λ∗, while the proof of Theorem 1.2 relies on
the fact that 0 is the only minimizer of the one dimensional Allen-Cahn functional
on the interval [0, λ], for λ ≤ λ∗.

2. Preliminary results

Given λ > 0, we consider the Allen-Cahn equation (1.1) defined in the inter-
val [0, λ], with 0 Dirichlet boundary values. This reduces to the study of the
autonomous second order ordinary differential equation

(2.5) v̈ − F ′(v) = 0,

with v(0) = v(λ) = 0, where · denotes the differentiation with respect to the variable
s ∈ [0, λ]. The energy associated to this equation reads

E̊(v) :=
∫ λ

0

(
v̇2

2
+ F (v)

)
ds,

and is well defined for functions v ∈ H1
0 ([0, λ]).

For the sake of completeness, we recall the proof of the following simple and
standard result concerning minimizers of E̊. The arguments used in the proof of
this result will be essential in our analysis :

Lemma 2.1. Assume that λ > λ∗ is fixed. Then, there exists a nontrivial positive
solution of (2.5) which is a minimizer of E̊ in H1

0 ([0, λ]). Assume that λ ≤ λ∗
is fixed. Then, there are no nontrivial positive solution of (2.5) and the trivial
solution 0 is the unique minimizer of E̊ in H1

0 ([0, λ]).

Proof. Obviously 0 is always a solution of (2.5). So the question is whether it is a
minimizer of the energy or not.

Let
φ(s) := sin

(π

λ
s
)

,

be an eigenfunction associated to the first eigenvalue of −∂2
s over [0, λ], with 0

boundary conditions. We just use a small multiple of φ as a test function to prove
that 0 is not a minimizer when λ > λ∗. Indeed, we have

E̊(0) = λF (0),

while, Taylor’s expansion of F implies

E̊(ε φ) = λ F (0) +
ε2

2

∫ λ

0

(φ̇2 + F ′′(0) φ2) ds +O(ε4)

= λ F (0) +
ε2

4
λ

((π

λ

)2

+ F ′′(0)
)

+O(ε4)

< E̊(0),
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for ε > 0 small provided λ > λ∗. Therefore, when λ > λ∗, we get a nontrivial
minimizer of the energy E̊, which by standard arguments can be chosen to be
positive.

To prove that there are no nontrivial solutions when λ ≤ λ∗, we just multiply
(2.5) by φ and integrate by parts the result over [0, λ]. We get

∫ λ

0

φ

(
F ′(v) +

(π

λ

)2

v

)
ds = 0,

which immediately implies that v ≡ 0 when λ ≤ λ∗ since we have assumed that
F ′(u) ≥ F ′′(0)u for all u ≥ 0. ¤

As a by product of the proof of this result, if v denotes the positive minimizer
of E̊, we have the inequality

(2.6) E̊(v) < E̊(0) = λ F (0),

when λ > λ∗. Observe that v depends on λ but we have chosen not to make this
apparent in the notations.

3. The existence of a solution when λ > λ∗

In this section, it is convenient to use cylindrical coordinates (r, θ, t) ∈ [0,∞)×
S1 × R to parameterize R3. We look for a solution of (1.1) which is defined in R3

and which is invariant under the action of the screw motion σα
λ for all α ∈ R. That

is, given λ > 0, we assume that

u(r, θ, t) = u

(
r, θ + α, t +

λ

π
α

)
,

for all α ∈ R. Observe that this implies that

u(r, θ, t) = u(r, θ, t + 2 λ),

and also that

u(r, θ, t) = u

(
r, 0, t− λ

π
θ

)
.

We further assume that
u(r, θ, t + λ) = −u(r, θ, t).

Assuming that the solution u we are looking for satisfies all these invariance, in
order to construct u, it is enough to know the function U defined in [0,∞)× [0, λ]
by

U(r, s) := u(r, 0, s).
Observe that, if the function U is positive in (0,∞) × (0, λ) and vanishes on the
boundary of [0,∞)× [0, λ], then the zero set of the function u is exactly the helicöıd
Hλ.

In terms of the function U , the Allen-Cahn equation reduces to

(3.7) ∂2
rU +

1
r

∂rU +
(

1 +
λ2

π2 r2

)
∂2

sU − F ′(U) = 0,

and the Allen-Cahn energy reads

E(U) :=
1
2

∫ (
|∂rU |2 +

(
1 +

λ2

π2 r2

)
|∂sU |2

)
r drds +

∫
F (U) r drds,

where the domain of integration is the infinite half strip [0,∞)× [0, λ].
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To prove the existence of U , solution of (3.7) which vanishes on the boundary
of the infinite half strip [0,∞) × [0, λ], we use a variational argument which has
already been used in [5] and [1]. Given R > 0, we define

SR := [0, R]× [0, λ],

and we denote by ER the corresponding energy of a function U defined on SR.
For all R > 0, we minimize ER in H1

0 (SR) (the measure used to define H1
0 (SR)

is r dr ds). Classical results in the calculus of variations imply that the minimum
is achieved by a function UR ∈ H1

0 (SR) whose energy is finite. Moreover, we can
assume without loss of generality that UR takes values in [0, 1]. One easily checks
that UR is a solution of (3.7). Next, elliptic estimates allows one to pass to the
limit in the sequence UR for a sequence of R tending to ∞. Let us call U the
limit function. The function U ≥ 0 and is a solution of (3.7) which extends to a
solution of (2.5). Therefore, it remains to prove that U is positive in the infinite
strip (0,∞)× (0, λ).

Proposition 3.1. Assume that (1.2) holds and that λ > λ∗, then U is not identi-
cally equal to 0 and in fact U > 0 in (0,∞)× (0, λ).

Proof. We argue by contradiction. Assume that λ > λ∗ and that U ≡ 0 then, given
R0 > 0, UR converges uniformly to 0 on SR0 , for a sequence of R tending to infinity.

We compute

ER(0) =
λ

2
F (0)R2.

Since UR minimizes the energy and converges uniformly to 0 in SR0 , we have

ER0(V ) ≥ ER0(0),

for any test function V which vanishes on the boundary of SR0 . To define an
appropriate test function, we first cook up some cutoff function η which is identically
equal to 0 when r ∈ [0, 1/2] ∪ [R0 − 1/2, R0] and identically equal to 1 when
r ∈ [1, R0 − 1]. We can also assume that the gradient of η remains bounded
uniformly in R0, as R0 tends to infinity. We define

V (r, s) = η(r) v(s),

where v is the unique solution of the Allen-Cahn equation in [0, λ] which minimizes
E̊.

A simple computation yields

ER0(V ) =
R2

0

2

∫ λ

0

(
v̇2

2
+ F (v)

)
ds +O(R0).

Hence we have the inequality

λ

2
E̊(v) R2

0 +O(R0) ≥ λ

2
F (0) R2

0.

Therefore, choosing R0 large enough, we reach a contradiction if

λF (0) > E̊(v),

but this is precisely the inequality (2.6) which holds when λ > λ∗. ¤
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Remark 3.1. In general, we can write

u(r, θ, s) = U

(
r, θ, s +

λ

π
θ

)

where U is a function of r ∈ R∗ (observe that here r ∈ R∗ = R \ {0} and not
r ∈ (0,∞) as usual), θ ∈ S1 and s ∈ R. In which case the Allen Cahn equation
becomes

∂2
rU +

1
r

∂rU +
1
r2

∂2
θU +

2λ

πr2
∂s∂θU +

(
1 +

λ2

π2r2

)
∂2

sU − F ′(U) = 0.

Let us comment on the modifications which are needed to handle the higher
dimensional cases. When m ≥ 1, the construction of a nontrivial bounded solution
of the Allen Cahn equation (1.1) in dimension R2m+3 whose level set is equal to
the (2m + 2)-dimensional helicöıd Hλ which has been defined in (1.4), follows very
closely the line of the above construction, after taking into account the following
facts.

Let (X, Y, Z) ∈ Rm+1×Rm+1×R = R2m+3 and parametrize this space as follows

X = t(cos θ z1 − sin θ z2), Y = t(sin θ z1 + cos θ z2), Z = s,

where (t, θ, z1, z2, s) ∈ R× R× Sm × Sm × R.
Given λ > 0, we look for solutions to

∆u− F ′(u) = 0,

in R2m+3 which are rotationally invariant in the z1 and z2 variables, that is

u(t, θ, τz1, z2, s) = u(t, θ, z1, z2, s), u(t, θ, z1, τz2, s) = u(t, θ, z1, z2, s),

for any rotation τ ∈ O(m). Thus in particular we get that

u(t, θ, z1, z2, s) = u(t, θ, p∗, p∗, s),

where p∗ denotes the north pole in Sm. Furthermore, as in the case of the 2-
dimensional helicöıd, we assume that

u(t, θ, z1, z2, s) = u

(
t, θ + α, z1, z2, s +

λ

π
α

)
,

for all α ∈ R and
u(t, θ, z1, z2, s + λ) = −u(t, θ, z1, z2, s).

If u satisfies these invariances, in order to construct u, it is enough to look for a
function U which is defined in [0,∞)× [0, λ] by

U(r, s) := u(r, 0, p∗, p∗, s).

If in addition we assume that the function U is positive in (0,∞) × (0, λ) and
vanishes on the boundary of [0,∞) × [0, λ], we get a solution of the Allen-Cahn
equation whose zero set is exactly the helicöıd Hλ. If λ > λ∗, the proof of the
existence of U follows to the one already performed for the 2-dimensional helicöıd
Hλ. When λ ≤ λ∗ the nonexistence follows as in the two dimensional case. We
leave the details to the reader.
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4. The nonexistence result

In this section, we obtain a nonexistence result for solutions of the Allen-Cahn
equation whose zero set is a helicöıd. The proof of the following result is very
reminiscent of the proof of the famous de Giorgi conjecture in dimension 2 :

Theorem 4.1. Assume that (1.2) holds and that λ ≤ λ∗. Then, there are no non-
trivial, bounded solution to the Allen-Cahn equation whose zero set is the helicöıd
Hλ.

Proof. We use Remark 3.1 and write u(r, θ, t) = U(r, θ, t+λθ). We test the equation
satisfied by U against the function U η2 where η is a cutoff function which only
depends on r and which is defined so that η ≡ 1 for r ≤ R and η ≡ 0 for r ≥ 2R.
Moreover, we assume that |∇η| ≤ C R−1 for some constant C > 0 independent of
R ≥ 2. We obtain

∫ (
|∂rU |2 +

1
r2

(
∂θ +

λ

π
∂sU

)2

+ |∂sU |2 + F ′(U) U

)
η2 r dr dθ ds

=
∫

U ∂rU η ∂rη rdr dθ ds,

where this time, the integrals are understood over [0,∞)× S1 × [0, λ].
We make use of the assumption that F ′(t)t ≥ F ′′(0) t2 for any t ∈ R, together

with the fact that λ ≤ λ∗, to get
∫ λ

0

(|∂sU |2 + F ′(U)U) ds ≥
∫ λ

0

(|∂sU |2 + F ′′(0) U2) ds ≥ 0.

Therefore, we can write
∫
|∂rU |2 η2 r dr dθ ds ≤

∫
U ∂rU η ∂rη rdr dθ ds.

Using Cauchy-Schwarz inequality, we conclude that

(4.8)

∫
|∂rU |2 η2 r dr dθ ds ≤

(∫

r∈[R,2R]

|∂rU |2 η2 r dr dθ ds

)1/2

×
(∫

r∈[R,2R]

|∂rη|2 U2 r dr dθ ds

)1/2

.

Observe that the second integral is bounded (this is where we use the fact that our
domain is two dimensional). This immediately implies that

∫

r∈[0,R]

|∂rU |2 η2 r dr dθ ds,

is bounded independently of R. Letting R tend to infinity, we conclude that
∫
|∂rU |2 r dr dθ ds ≤ C,

in particular, there exists a sequence Rj tending to +∞ such that

lim
j→+∞

∫

r∈[Rj ,2Rj ]

|∂rU |2 η2 r dr dθ ds = 0.
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Using once more (4.8), we conclude that∫
|∂rU |2 r dr dθ ds ≤ 0,

which completes the proof of the result. ¤
Remark 4.1. A similar non existence result for nontrivial bounded solutions to the
Allen-Cahn equation (1.1) in R2m+3 whose zero level set is the (2m+2)-dimensional
helicöıd Hλ readily follows using similar arguments.

5. Asymptotic behavior of the solution U

In this last section, we derive some precise asymptotics for the solutions whose
existence is guarantied by Theorem 1.1. We know from Lemma 2.1 that for all
λ > λ∗, there exists v a non trivial minimizer of E̊ on [0, λ]. We further assume
from now on that

(5.9) v is the only positive minimizer of E̊ on [0, λ].

Example 5.1. In the case where

F (t) :=
1
4

(1− t2)2,

we have already seen that λ∗ = π. It follows from [3] that the period function for
solutions of (1.1) is monotone. More precisely, for all t ∈ (0, 1) there exists a
unique positive solution of

v̈ − F ′′(v) = 0
such that v(0) = t and v̇(0) = 0 and the result of [3] implies that the first positive
zero of this solution, is a strictly monotone function of t which tends to 0 as t tends
to 0 and which tends to +∞ as t tends to 1. In particular, this implies that for
each λ > 0 there exists a unique positive solution of

v̈ − F ′′(v) = 0,

such that v(0) = v(λ) = 0.

We now assume that λ > λ∗ = π and that U is the solution defined in the
previous section and we derive some precise asymptotics for the function U as r
tends to infinity.

First, we prove the following general result :

Lemma 5.1. Assume that (1.2) and (5.9) hold. Any positive, bounded solution Ū
of the Allen-Cahn equation which is defined in a strip R × [0, λ], vanishes on the
boundary of this strip and which is minimizing depends only on one variable. Hence
Ū ≡ 0 when λ ≤ λ∗ and Ū ≡ v when λ > λ∗.

Proof. We choose L > 0. On the piece of strip

SL := [−L,L]× [0, λ],

the function Ū is a minimizer of the energy with respect to functions which have
the same boundary values as Ū on ∂SL.

Recall that v is defined to be the minimizer of E̊ on [0, λ]. We compare the
energy of Ū on SL with the energy of a test function v̄ which is identically equal to
v on [−L+1, L−1]×[0, λ] (namely v̄(t, s) = v(s) on this set) and which interpolates
between v and Ū in the sets [−L,−L + 1]× [0, λ] and [L− 1, L]× [0, λ], so that v̄
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has the same boundary data as Ū on ∂SL. It is easy to check that one can define
such a test function v̄ so that its energy on SL is bounded by 2 L E̊(v)+C, for some
constant C > 0 independent of L ≥ 2. Since Ū is a minimizer, we conclude that

∫

SL

1
2
|∂rŪ |2dsdr +

∫

SL

(
1
2
|∂sŪ |+ F (U)

)
ds dr ≤ 2 L E̊(v) + C,

where C > 0 does not depend on L ≥ 2.
Now, since v is the minimizer of E̊, we have

E̊(v) ≤
∫ λ

0

(
1
2
|∂sŪ |+ F (U)

)
ds.

Integrating this inequality over r ∈ [−L,L], we conclude that

2 L E̊(v) ≤
∫

SL

(
1
2
|∂sŪ |+ F (U)

)
ds dr.

Therefore, ∫

SL

|∂rŪ |2dsdr ≤ 2 C,

for some constant C > 0 which does not depend on L ≥ 2. Letting L tend to
infinity, we conclude that ∫

R×[0,λ]

|∂rŪ |2dsdr ≤ 2 C.

Now, we make use of the fact that ∂rŪ satisfies

∆∂rŪ − F ′′(U) ∂rŪ = 0,

and vanishes on the boundary of the infinite strip. In particular, this implies that∫

R×[0,λ]

(|∇∂rŪ |2 + F ′′(U) |∂rŪ |2) dr ds = 0.

Moreover, since Ū is a minimizer we have

Q(W ) :=
∫

R×[0,λ]

(|∇W |2 + F ′′(U) W 2) dr ds ≥ 0,

for any function W having compact support in R × (0, λ). Classical arguments
imply that ∂rŪ does not change sign in R × (0, λ) and in fact is either identically
equal to 0 or does not vanish in R× (0, λ). Indeed, from the above, we see that ∂rU
is a minimizer of the quadratic form Q and hence so is |∂rU |. Therefore, |∂rU | is a
solution of (−∆ + F ′′(U)) |∂rU | = 0 and elliptic regularity then implies that |∂rU |
is a smooth function. Finally, Hopf maximum principle implies that |∂rU | does not
vanish in R× (0, λ) and hence ∂rU does not change sign.

This analysis implies that (r, s) 7→ Ū(r, s) is a monotone function of r. Now,
since Ū is bounded, we conclude that, as r tends to +∞, the function r 7−→ Ū(r, ·)
converges uniformly (in C2 topology) to some function V which only depends on
s over [−1, 1] × [0, λ]. Certainly V is a solution of (2.5) and hence since we have
assumed that this equation has only one positive solutions either V = v or V = 0.
A similar arguments holds as r tends to −∞.

We have already proven that Ū is monotone in r (say for example that Ū is
increasing), then either Ū ≡ v, or Ū ≡ 0 or Ū is monotone increasing in r and
tends to 0, as r tends to −∞ and tends to v as r tends to +∞. In particular, since
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v ≡ 0 when λ ≤ λ∗, we have proven that Ū ≡ 0 in this case. When λ > λ∗, thanks
to (2.6) we see that U cannot be a minimizer if Ū is close to 0 on some long enough
piece of strip. Therefore, the last two cases do not occur and this also completes
the proof of the result when λ > λ∗. ¤

As a corollary, we get

Proposition 5.1. Assume that (1.2) and (5.9) hold. As r tends to ∞, Ū(r, ·)
tends to v uniformly on [0, λ].

Proof. We argue by contradiction. If, for some ε > 0 and for some sequence
rj tending to +∞ we have sups∈[0,λ] |Ū(rj , ·) − v| ≥ ε, then extracting subse-
quences one concludes that there exists a function Ũ which is defined on an in-
finite strip and which is a positive solution of the Allen-Cahn equation. Moreover,
sups∈[0,λ] |Ũ(0, ·)− v| ≥ ε and Ũ is a minimizer (since it is the limit of a family of
minimizers). This certainly contradicts the result of the previous Lemma. ¤

Let us now give further details about the asymptotic behavior of the solution U .
This requires yet some extra assumption which we now describe. Let us denote by
ψ1 a positive eigenfunction of −∂2

s + F ′′(v) on [0, λ] (here v is the positive solution
obtained in Lemma 2.1 which is assumed to be unique), which associated to the
first eigenvalue λ1, i.e.

(−∂2
s + F ′′(v)) ψ1 = λ1 ψ1,

and ψ1(0) = ψ1(λ) = 0. We know that λ1 ≥ 0 since v is a minimizer of the energy.
We further assume that

(5.10) λ1 > 0.

Example 5.2. Assume that

(5.11) F ′′(t) t < F ′(t),

for t > 0, then λ1 > 0. Indeed, multiply the equation satisfied by ψ1 by v and the
equation satisfied by v by ψ1 and integrate the difference between 0 and λ. We find

λ1

∫ λ

0

ψ1 v ds =
∫ λ

0

(F ′′(v) v − F ′(v)) ψ1 ds

and hence we conclude that λ1 > 0. Observe that (1.2) and (5.11) are compatible
and in fact the double well potential defined in (1.3) is an example of potential
which satisfies all our assumptions.

We write
U(r, s) = v(s) + φ(r, s).

We now prove the

Proposition 5.2. Assume that (1.2), (5.10) and (5.11) hold. Then, there exists a
constant C > 0 such that

|φ(r, s)| ≤ C

r2
ψ1(s).

Proof. Using both the equation satisfied by U and the ordinary differential equation
satisfied by v, we can rewrite the equation satisfied by φ as

(5.12)
(

∂2
r +

1
r

∂r +
(

1 +
λ2

π2r2

)
∂2

s

)
φ− φ + (v + φ)3 − v3 = − λ2

π2r2
∂sv.
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Is is easy to check that, provided C > 0 is chosen large enough and r ≥ R, where
R is fixed large enough, the function

(r, s) 7−→ C ψ1(s) r−2 + ε ψ1(s) r,

is a supersolution for our equation, for all ε > 0. Moreover the operator which
appears on the left hand side of (5.12) satisfies the maximum principle in [R, +∞)×
[0, λ], provided R is chosen large enough. This implies that

|φ(r, s)| ≤ C

r2
ψ1(s) + ε ψ1(s) r.

The estimate in the Proposition follows at once by letting ε tend to 0. ¤
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[1] X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equations in all of
R2m. Jour. of the European Math. Society 11, no. 4, (2009), 819-843.

[2] X. Cabré and J. Terra,Qualitative properties of saddle-shaped solutions to bistable dif-
fusion equations, arxiv.org/abs/0907.3008, to appear in Communications in Partial Dif-
ferential Equations.

[3] C. Chicone, The monotonicity of the period function for planar hamiltonian vector fields,
Journal of Differential equations, 69, (1987), 310-321.

[4] J. Choe and J. Hoppe, Higher dimensional minimal submanifolds arising from the
catenoid and helicoid, Preprint.

[5] E.N. Dancer, New solutions of equations on Rn. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 30 no. 3-4, (2002), 535-563.

[6] H. Dang, P.C. Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation,
Z. Angew. Math. Phys. 43, no. 6, (1992), 984-998.

[7] M. del Pino, M. Kowalczyk, F. Pacard and J. Wei, Multiple-end solutions to the Allen-
Cahn equation in R2. J. Funct. Analysis. 258, (2010), 458-503.

[8] M. del Pino, M. Kowalczyk and F. Pacard, Moduli space theory for some class of solu-
tions to the Allen-Cahn equation in the plane. Preprint (2010).

[9] M. del Pino, M. Kowalczyk and J. Wei, A conjecture by de Giorgi in large dimensions.
Preprint (2008).

[10] M. del Pino, M. Kowalczyk and J. Wei Entire solutions of the Allen-Cahn equation and
complete embedded minimal surfaces of finite total curvature.Preprint (2008).
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