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PERFECT MATCHINGS IN INHOMOGENEOUS RANDOM

BIPARTITE GRAPHS IN RANDOM ENVIRONMENT

JAIRO BOCHI, GODOFREDO IOMMI, AND MARIO PONCE

Abstract. In this note we study inhomogeneous random bipartite graphs

in random environment. These graphs can be thought of as an extension
of the classical Erdös-Rényi random graphs in a random environment. We

show that the expected number of perfect matchings obeys a precise quenched

asymptotic and that it can be approximated using an iterative process that
converges exponentially fast.

1. Introduction

In their seminal paper [ER], Erdös and Rényi studied the following random
graphs that now bear their names. Consider a bipartite graph with set of vertices
given by W “ tw1, . . . , wnu and M “ tm1, . . . ,mnu. Let p P r0, 1s and consider the
independent random variables Xpijq with law

Xpijqpxq “

#

1 with probability p;

0 with probability 1´ p.

Denote by Gnpxq the bipartite graph with vertices W and M and edges Epxq, where
the edge pwi,mjq belongs to Epxq if and only if Xpijqpxq “ 1. Let pmpGnpxqq be the
number of perfect matchings of the graph Gnpxq (see Sec. 3 for precise definitions).
Erdös and Rényi [ER, p.460] observed that the mean of the number of perfect
matchings is given by

EppmpGnpxqqq “ n!pn. (1.1)

This number has been also studied by Bollobás and McKay [BolMc, Theorem 1] in
the context of k´regular random graphs and by O’Neil [O, Theorem 1] for random
graphs having a fixed (large enough) proportion of edges. We refer to the text by
Bollobás [Bol1] for further details on the subject of random graphs.

This paper is devoted to study certain sequences of inhomogeneous random bi-
partite graphs Gn,ω in a random environment ω P Ω (definitions are given in Sec. 2).
Inhomogeneous random graphs have been intensively studied over the last years (see
[BolJaRi]). Our main result (see Theorem 3.2 for precise statement) is that there
exists a constant c P p0, 1q such that for almost every environment ω P Ω and for
large n P N,

En,ωppmpGn,ωpxqqq — n!cn. (1.2)

Moreover, we have an explicit formula for the number c. This result implies that
En,ωppmpGn,ωpxqqq is a quenched variable.
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The result in equation (1.2) should be understood in the sense that the mean
number of perfect matchings for inhomogeneous random bipartite graphs in a ran-
dom environment is asymptotically the same as the one of Erdös-Rényi graphs in
which p “ c. The number c is the so-called scaling mean of a function related to
the random graphs. Scaling means were introduced, in more a general setting, in
[BIP] and are described in Sec. 3 and Sec. 5.

2. Inhomogeneous Random Bipartite Graphs in Random Environment

Consider the following generalization of the Erdös-Rényi graphs. Let W “

tw1, . . . , wnu and M “ tm1, . . . ,mnu be two disjoint sets of vertices. For every
pair 1 ď i, j ď n, let apijq P r0, 1s and consider the independent random variables
Xpijq, with law

Xpijqpxq “

"

1 with probability apijq;
0 with probability 1´ apijq.

Denote by Gnpxq the bipartite graph with vertices W,M and edges Epxq, where
the edge pwi,mjq belongs to Epxq if and only if Xpijqpxq “ 1. As it is clear from
the definition all vertex of the graph do not play the same role. This contrasts with
the (homogenous) Erdös-Renyi graphs (see [BolJaRi] for details). In this note we
consider inhomogoeneous random bipartite graphs in random environments, that
is, the laws of Xpijq (and hence the numbers apijq) are randomly chosen following
an exterior environment law. This approach to stochastic processes has developed
since the ground breaking work by Solomon [Sol] on Random Walks in Random
Environment and subsequent work of a large community (see [Bog] for a survey on
the subject).

The model we propose is to consider the vertex sets W,M as the environment and
to consider that the number apijq, which is the probability that the edge connecting
wi with mj occurs in the graph, is a random variable depending on wi and mj .
We remark that similar constructions has been studied in the setting of stochastic
block model (see [HLL]). These have been used, for example, in machine learning
in problems of community detection. We now describe precisely the graphs under
consideration in this note.

The space of environments is as follows. Fix α P N and a stochastic vector
pp1, p2, . . . , pαq. Endow the set t1, . . . , αu with the probability measure PW defined
by PW ptiuq “ pi. Denote by ΩW the product space

ś8

i“1t1, . . . , αu and by µW the
corresponding product measure. For β P N let pΩM , µM q be the analogous proba-
bility measure space for the set t1, . . . , βu and the stochastic vector pq1, q2, . . . , qβq.
The space of environments is Ω “ ΩW ˆ ΩM with the measure µΩ “ µW ˆ µM
and an environment is an element ω P Ω. Note that every environment defines two
sequences

W pωq “ pw1, w2, . . . q P ΩW and Mpωq “ pm1,m2, . . . q P ΩM .

For each environment ω P Ω we now define the edge distribution Xω,pijq. Let
F “ rfsrs be a α ˆ β matrix with entries fsr satisfying 0 ď fsr ď 1 and let
f : t1, 2, . . . , αu ˆ t1, 2, . . . , βu Ñ r0, 1s be the function defined by fpw,mq “ fwm.
For each ω P Ω let

apijqpωq :“ f pwipωq,mjpωqq . (2.1)
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Given an environment ω P Ω the corresponding edges distributions are the random
variables Xω,pijq with laws

Xω,pijqpxq “

"

1 with probability apijqpωq;
0 with probability 1´ apijqpωq.

Given an environment ω P Ω, we construct a sequence of random bipartite graphs
Gn,ω considering the sets of vertices

Wn,ω “ pw1pωq, . . . , wnpωqq and Mn,ω “ pm1pωq, . . . ,mnpωqq,

and edges distributions Xω,pijq given by the values of apijqpωq as in (2.1). We denote
by Pn,ω the law of the random graphGn,ω and we call F the edge distribution matrix.

Example 2.1. Given a choice of an environment ω P Ω, the probability that the
bipartite graph Gn,ωpxq equals the complete bipartite graph Kn,n, using indepen-
dence of the edge variables, is

Pn,ω pGn,ωpxq “ Kn,nq “
ź

1ďi,jďn

Pn,ωpXω,pijq “ 1q “
ź

1ďi,jďn

apijqpωq.

3. Counting Perfect Matchings

Recall that a perfect matching of a graph G is a subset of edges containing every
vertex exactly once. We denote by pmpGq the number of perfect matchings of G.
When the graph G is bipartite, and the corresponding partition of the vertices has
the form W “ tw1, w2, . . . , wnu and M “ tm1,m2, . . . ,mnu, a perfect matching can
be identified with a bijection between W and M , and hence with a permutation
σ P Sn. From this, the total number of perfect matchings can be computed as

pmpGq “
ÿ

σPSn

x1σp1qx2σp2q ¨ ¨ ¨xnσpnq, (3.1)

where xij are the entries of the adjacency matrix XG of G, that is xij “ 1 if pwi,mjq

is an edge of G and xij “ 0 otherwise. Of course, the right hand side of (3.1) is the
permanent, perpXGq, of the matrix XG.

In the framework of Section 2, we estimate the number of perfect matchings for
the sequence of inhomogeneous random bipartite graphs Gn,ω, for a given envi-
ronment ω P Ω. More precisely, we obtain estimates for the growth of the mean
of

pmpGn,ωpxqq “ perpXGn,ωpxqq “
ÿ

σPSn

Xω,p1σp1qq ¨ ¨ ¨Xω,pnσpnqq. (3.2)

Denote by En,ω the expected value with respect to the probability Pn,ω. Since the
edges are independent and En,ωpXω,pijqq “ aijpωq we have

En,ω ppmpGn,ωqq “ En,ω

˜

ÿ

σPSn

Xω,p1σp1qq ¨ ¨ ¨Xω,pnσpnqq

¸

“
ÿ

σPSn

ap1σp1qqpωq ¨ ¨ ¨ apnσpnqqpωq

“ perpAnpωqq,

where the matrix Anpωq has entries pAnpωqqij “ apijqpωq. The main result of this
note describes the growth of this expected number for perfect matchings.
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The following number is a particular case of a quantity introduced by the authors
in a more general setting in [BIP].

Definition 3.1. Let F be an α ˆ β matrix with non-negative entries pfrsq. Let
~p “ pp1, . . . , pαq and ~q “ pq1, . . . , qβq be two stochastic vectors. The scaling mean
of F with respect to ~p and ~q is defined by

sm~p,~qpF q :“ inf
pxrqPRα`,pysqPR

β
`

˜

α
ź

r“1

x´prr

¸˜

β
ź

s“1

y´qss

¸˜

α
ÿ

r“1

β
ÿ

s“1

xrfrsysprqs

¸

.

The scaling mean is increasing with respect to the entries of the matrix and lies
between the minimum and the maximum of the entries (see [BIP] for details and
more properties). We stress that the scaling mean can be exponentially approxi-
mated using a simple iterative process (see Section 5).

The main result in this note is the following,

Theorem 3.2 (Main Theorem). Let pGn,ωqně1 be a sequence of inhomogeneous
random bipartite graphs in a random environment ω P Ω. If the entries of the edge
distribution matrix F are strictly positive then the following pointwise convergence
holds

lim
nÑ8

ˆ

En,ω ppmpGn,ωqq

n!

˙1{n

“ sm~p,~qpF q, (3.3)

for µW ˆ µM -almost every environment ω P Ω.

Remark 3.3. As discussed in the introduction Theorem 3.2 shows that there exists
a constant c P p0, 1q, such that for almost every environment ω P Ω and for n P N
sufficiently large

En,ωppmpGn,ωpxqqq — n!cn.

Namely, c “ sm~p,~qpF q. This result should be compared with the corresponding one
obtained by Erdös and Rényi for their class of random graphs, that is

EppmpGnpxqqq “ n!pn.

Thus, we have shown that for large values of n the growth of the number of perfect
matchings for inhomogeneous random graphs in a random environment behaves
like the simpler model studied by Erdös and Rényi with p “ sm~p,~qpF q.

Remark 3.4. Theorem 3.2 shows that the expected number of perfect matchings is
a quenched variable.

Remark 3.5. Using the Stirling formula, the limit in (3.3) can be stated as

lim
nÑ8

ˆ

1

n
log pEn,ω ppmpGn,ωqqq ´ log n

˙

“ log sm~p,~qpF q ´ 1,

which gives a quenched result for the growth of the perfect matching entropy for
the sequence of graphs Gω,n (see [ACFG]).

Remark 3.6. Note that we assume a uniform ellipticity condition on the values of
the probabilities apijq as in (2.1). A similar assumption appears in the setting of
Random Walks in Random Environment (see [Bog, p.355]).

We now present some concrete examples.
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Example 3.7. Let α “ β “ 2 and p1 “ p2 “ q1 “ q1 “ 1{2. Therefore, the space
of environments is the direct product of two copies of the full shift on two symbols
endowed with the p1{2, 1{2q´Bernoulli measure. The edge distribution matrix F
is a 2 ˆ 2 matrix with entries belonging to p0, 1q. In [BIP, Example 2.11], it was
shown that

sm~p,~q

ˆ

f11 f12

f21 f22

˙

“

?
f11f22 `

?
f12f21

2
.

Therefore, Theorem 3.2 implies that

lim
nÑ8

ˆ

En,ω ppmpGn,ωqq

n!

˙1{n

“

?
f11f22 `

?
f12f21

2
,

for almost every environment ω P Ω.

Example 3.8. More generally let α P N with α ě 2 and β “ 2. Consider the
stochastic vectors ~p “ pp1, p2, . . . , pαq and ~q “ pq1, q2q. The space of environments
is the direct product of a full shift on α symbols endowed with the ~p-Bernoulli
measure with a full shift on two symbols endowed with the ~q-Bernoulli measure.
The edge distribution matrix F is a αˆ2 matrix with entries fr1, fr2 P p0, 1q, where
r P t1, . . . , αu. Denote by χ P R` the unique positive solution of the equation

α
ÿ

r“1

prfr1
fr1 ` fr2χ

“ q1.

Then

sm~p,~qpF q “ sm~p,~q

¨

˚

˝

f11 f12

...
...

fα1 fα2

˛

‹

‚

“ qq11

ˆ

q2

χ

˙q2 α
ź

r“1

pfr1 ` fr2χq
pr .

Therefore, Theorem 3.2 implies that

lim
nÑ8

ˆ

En,ω ppmpGn,ωqq

n!

˙1{n

“ qq11

ˆ

q2

χ

˙q2 α
ź

r“1

pfr1 ` fr2χq
pr ,

for almost every environment ω P Ω. The quantity in the right hand side first
appeared in work by Halász and Székely in 1976 [HS], in their study of symmetric
means. In [BIP, Theorem 5.1] using a completely different approach we recover
their result.

4. Proof of the Theorem

The shift map σW : ΩW Ñ ΩW is defined by

σW pw1, w2, w3, . . . q “ pw2, w3, . . . q.

The shift map σW is a µW -preserving, that is, µW pΛq “ µW pσ
´1
W pΛqq for every

measurable set Λ Ă ΩW , and it is ergodic, that is, if Λ “ σ´1
W pΛq then µW pΛq equals

1 or 0. Analogously for σM and µM . We define a function Φ : ΩW ˆ ΩM Ñ R by

Φp~w, ~mq “ fw1m1
.

Thus
Φpσi´1

W p~wq, σj´1
M p~mqq “ fwimj “ apijqpωq.

That is, the matrix Anpωq has entries apijqpωq “ Φpσi´1
W p~wq, σj´1

M p~mqq. We are in
the setting of the Law of Large Permanents ([BIP, Theorem 4.1]).
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Theorem (Law of Large Permanents). Let pX,µq, pY, νq be Lebesgue proba-
bility spaces, let T : X Ñ X and S : Y Ñ Y be ergodic measure preserving trans-
formations, and let g : X ˆ Y Ñ R be a positive measurable function essentially
bounded away from zero and infinity. Then for µˆ ν-almost every px, yq P X ˆ Y ,
the nˆ n matrix

Mnpx, yq “

¨

˚

˚

˚

˝

gpx, yq gpTx, yq ¨ ¨ ¨ gpTn´1x, yq
gpx, Syq gpTx, Syq ¨ ¨ ¨ gpTn´1x, Syq

...
...

...
gpx, Sn´1yq gpTx, Sn´1yq ¨ ¨ ¨ gpTn´1x, Sn´1yq

˛

‹

‹

‹

‚

lim
nÑ8

ˆ

per pMnpx, yqq

n!

˙1{n

“ smµ,νpgq

pointwise, where smµ,νpgq is the scaling mean of g defined as

smµ,νpgq “ inf
ϕ,ψ

ť

XˆY
ϕpxqgpx, yqψpyqdµdν

exp
`ş

X
logϕpxqdµ

˘

exp
`ş

Y
logψpyqdν

˘ ,

where the functions ϕ and ψ are assumed to be measurable, positive and such that
their logarithms are integrable.

Let X “ ΩW , Y “ ΩM , T “ σW , S “ σM , g “ Φ. As a consequence of an
alternative characterization of the scaling mean (see [BIP, Proposition 3.5]) we
have

smµW ,µM pΦq “ sm~p,~qpF q.

Since frs ą 0 we can apply the Law of Large Permanents to conclude the proof of
the Main Theorem. �

Remark 4.1. We have chosen to present our result in the simplest possible setting.
That is, the environment space being products of full-shifts endowed with Bernoulli
measures. In terms of stochastic block models we are considering only a finite num-
ber of communities. Using the general form of the Law of Large Permanent above
our results can be extended for inhomogeneous random graphs in more general
random environments.

5. A procedure to compute the scaling mean

It is well known that the computation of the permanent, and therefore of the
number of perfect matchings, is a very hard problem. Indeed, it was shown by
Valiant [Va] that the evaluation of the permanent of p0, 1q-matrices is an NP- hard
problem. Thus, it is of interest to remark that the computation of the scaling
mean, and therefore of the expectation of the number of perfect matchings, can be
performed with a simple iterative process that converges exponentially fast.

Denote by Bα Ă Rα and by Bβ Ă Rβ the positive cones. Define the following
maps forming a (non-commutative) diagram:

Bα Bα

Bβ Bβ

I1

K2K1

I2
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by the formulas:

pI1p~xqqi :“
1

xi
, pI2p~yqqj :“

1

yj
,

pK2p~xqqj :“
α
ÿ

i“1

fijxipi , pK1p~yqqi :“
β
ÿ

j“1

fijyjqj .

Let T : Bα ÞÑ Bα be the map defined by T :“ K1 ˝ I2 ˝ K2 ˝ I1. The map T is a
contraction for a suitable Hilbert metric. Indeed, for ~x, ~z P Bα define the following
(pseudo)-metric

dp~x, ~zq :“ log

ˆ

maxi xi{zi
mini xi{zi

˙

.

The following results were proven in [BIP, Lemma 3.4, Lemma 3.3].

Lemma 5.1. For every ~x, ~z P Bα we have that

dpT p~xq, T p~zqq ď

ˆ

tanh
δ

4

˙2

dp~x, ~zq,

where

δ ď 2 log

ˆ

maxi,j fij
minij fij

˙

ă 8.

Lemma 5.2. The map T has a unique (up to positive scaling) fixed point ~xT P Bα.
Moreover, defining ~yT :“ K2 ˝ I1p~xTq one has that

sm~p,~qpF q “
α
ź

i“1

xpii

β
ź

j“1

y
qj
j .

Therefore, since the scaling mean can be directly computed from the fixed point
of a contraction it possible to find good approximations of it using an iterative
process that converges exponentially fast.
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