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PERFECT MATCHINGS IN INHOMOGENEOUS RANDOM
BIPARTITE GRAPHS IN RANDOM ENVIRONMENT

JAIRO BOCHI, GODOFREDO IOMMI, AND MARIO PONCE

ABSTRACT. In this note we study inhomogeneous random bipartite graphs
in random environment. These graphs can be thought of as an extension
of the classical Erdos-Rényi random graphs in a random environment. We
show that the expected number of perfect matchings obeys a precise quenched
asymptotic and that it can be approximated using an iterative process that
converges exponentially fast.

1. INTRODUCTION

In their seminal paper [ER], Erdoés and Rényi studied the following random
graphs that now bear their names. Consider a bipartite graph with set of vertices
given by W = {wy,...,w,} and M = {my,...,m,}. Let p € [0,1] and consider the
independent random variables X(;;) with law

Xijy(w) = {

Denote by G, (x) the bipartite graph with vertices W and M and edges E(x), where
the edge (w;, m;) belongs to E(x) if and only if X(;;y(x) = 1. Let pm(G,,(x)) be the
number of perfect matchings of the graph G, (z) (see Sec. 3 for precise definitions).
Erdos and Rényi [ER, p.460] observed that the mean of the number of perfect
matchings is given by

1 with probability p;
0 with probability 1 — p.

E(pm(G,(z))) = nlp". (1.1)
This number has been also studied by Bollobds and McKay [ , Theorem 1] in
the context of k—regular random graphs and by O’Neil [O, Theorem 1] for random
graphs having a fixed (large enough) proportion of edges. We refer to the text by
Bollobés | ] for further details on the subject of random graphs.

This paper is devoted to study certain sequences of inhomogeneous random bi-
partite graphs G,, ., in a random environment w € € (definitions are given in Sec. 2).
Inhomogeneous random graphs have been intensively studied over the last years (see
[ ). Our main result (see Theorem 3.2 for precise statement) is that there
exists a constant ¢ € (0,1) such that for almost every environment w € Q and for
large n € N,

E, .(pm(Gp w(z))) = nlc™. (1.2)
Moreover, we have an explicit formula for the number c¢. This result implies that
Epnw(pm(Gp o(x))) is a quenched variable.
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The result in equation (1.2) should be understood in the sense that the mean
number of perfect matchings for inhomogeneous random bipartite graphs in a ran-
dom environment is asymptotically the same as the one of Erdds-Rényi graphs in
which p = ¢. The number c is the so-called scaling mean of a function related to
the random graphs. Scaling means were introduced, in more a general setting, in
[BIP] and are described in Sec. 3 and Sec. 5.

2. INHOMOGENEOUS RANDOM BIPARTITE GRAPHS IN RANDOM ENVIRONMENT

Consider the following generalization of the Erdos-Rényi graphs. Let W =

{w1,...,w,} and M = {mg,...,m,} be two disjoint sets of vertices. For every
pair 1 <i,j < n, let ag;) € [0,1] and consider the independent random variables

1 with probability a(;;
Xin (@) = { 0 with probability 1(—])a(ij).
Denote by G,,(x) the bipartite graph with vertices W, M and edges E(x), where
the edge (w;, m;) belongs to E(x) if and only if X(;;)(z) = 1. As it is clear from
the definition all vertex of the graph do not play the same role. This contrasts with
the (homogenous) Erdds-Renyi graphs (see | | for details). In this note we
consider inhomogoeneous random bipartite graphs in random environments, that
is, the laws of X(;;) (and hence the numbers a(;;)) are randomly chosen following
an exterior environment law. This approach to stochastic processes has developed
since the ground breaking work by Solomon [Sol] on Random Walks in Random
Environment and subsequent work of a large community (see [Bog] for a survey on
the subject).

The model we propose is to consider the vertex sets W, M as the environment and
to consider that the number a(;;y, which is the probability that the edge connecting
w; with m; occurs in the graph, is a random variable depending on w; and m;.
We remark that similar constructions has been studied in the setting of stochastic
block model (see | ]). These have been used, for example, in machine learning
in problems of community detection. We now describe precisely the graphs under
consideration in this note.

The space of environments is as follows. Fix a € N and a stochastic vector
(p1,p2,---,Da)- Endow the set {1,..., o} with the probability measure Py, defined
by Pw ({i}) = p;. Denote by Qu the product space [[;~ {1,...,a} and by uw the
corresponding product measure. For § € N let (7, uas) be the analogous proba-
bility measure space for the set {1, ..., 8} and the stochastic vector (q1, g2, - ., q3)-
The space of environments is = Quw x Qpr with the measure pg = puw X s
and an environment is an element w € §). Note that every environment defines two
sequences

W(w) = (w1, wa,...) € Qy and M(w) = (m1,ma,...) € Q.

For each environment w € ) we now define the edge distribution X, (;;). Let
F = [fs] be a a x B matrix with entries f, satisfying 0 < fo < 1 and let
f:{1,2,...,a} x {1,2,...,8} — [0,1] be the function defined by f(w,m) = fum.
For each w € ) let

agij) (W) = f (wi(w), m;(w)). (2.1)
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Given an environment w € ) the corresponding edges distributions are the random
variables X, (;;) with laws

- _J 1 with probability aj(w);
Ko i) (%) = { 0 with probability 1 — a(;;)(w).

Given an environment w € €2, we construct a sequence of random bipartite graphs
G, considering the sets of vertices

Whow = (w1 (w),...,w,(w)) and M, = (mi(w),...,myw)),

and edges distributions X,, (;;) given by the values of a(;;)(w) as in (2.1). We denote
by P, ., the law of the random graph G, ., and we call F' the edge distribution matriz.

Example 2.1. Given a choice of an environment w € 2, the probability that the
bipartite graph G, ., (z) equals the complete bipartite graph K, ,, using indepen-
dence of the edge variables, is

]P)n,w (Gn,w(x) = Kn,n) = H ]P)n,w(Xw,(ij) = ]-) = H a(zj) (w)

1<i,j<n 1<i,5<n

3. COUNTING PERFECT MATCHINGS

Recall that a perfect matching of a graph G is a subset of edges containing every
vertex exactly once. We denote by pm(G) the number of perfect matchings of G.
When the graph G is bipartite, and the corresponding partition of the vertices has
the form W = {wy,ws, ..., w,} and M = {my,ma,...,m,}, a perfect matching can
be identified with a bijection between W and M, and hence with a permutation
o € S,. From this, the total number of perfect matchings can be computed as

Pm(G) = Z Tio(1)T20(2) " Tno(n)> (31)
oES,
where x;; are the entries of the adjacency matrix X¢ of G, that is a;; = 1if (w;, m;)
is an edge of G and x;; = 0 otherwise. Of course, the right hand side of (3.1) is the
permanent, per(X¢), of the matrix Xg.

In the framework of Section 2, we estimate the number of perfect matchings for
the sequence of inhomogeneous random bipartite graphs G, ., for a given envi-
ronment w € 2. More precisely, we obtain estimates for the growth of the mean
of

pm (G w(7)) = per(Xa, , () = Z Xo (16(1)) " X, (no(n))- (3.2)
o€eS,
Denote by E,, ., the expected value with respect to the probability P, .,. Since the
edges are independent and E,, ,,(X,, (;;)) = aij(w) we have

En,w (pm(Gn,w)) = En,w < 2 Xw,(la(l)) T Xw,(na(n)))

gES,

Y o) @) - Aoy (@)

oESy
= per(4n(w)),
where the matrix A, (w) has entries (4,(w));; = a(;j)(w). The main result of this
note describes the growth of this expected number for perfect matchings.
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The following number is a particular case of a quantity introduced by the authors
in a more general setting in [BIP].

Definition 3.1. Let F' be an o x § matrix with non-negative entries (f,s). Let
P = (p1,-..,pa) and ¢ = (qi,--.,q3) be two stochastic vectors. The scaling mean
of F with respect to p’and ¢ is defined by

a 8 a B
Smﬁ,@(F) = inf <n xrpr) ( ysqs> (Z Z xrfrsyspr(Zs> .
s=1 r=1s=1

(zr)eRS,(ys)eR? \ ;] _

The scaling mean is increasing with respect to the entries of the matrix and lies
between the minimum and the maximum of the entries (see [BIP] for details and
more properties). We stress that the scaling mean can be exponentially approxi-
mated using a simple iterative process (see Section 5).

The main result in this note is the following,

Theorem 3.2 (Main Theorem). Let (G w)n>1 be a sequence of inhomogeneous
random bipartite graphs in a random environment w € ). If the entries of the edge
distribution matriz F are strictly positive then the following pointwise convergence

holds
<E <pm<Gn,w)))1/"

lim
n!

n—0o0

= Smﬁ@(F)v (3.3)
for pw x ppr-almost every environment w € Q.

Remark 3.3. As discussed in the introduction Theorem 3.2 shows that there exists
a constant ¢ € (0, 1), such that for almost every environment w €  and for n € N
sufficiently large

E, .(pm(Gp w(z))) = nlc".
Namely, ¢ = smp 7(F). This result should be compared with the corresponding one
obtained by Erdos and Rényi for their class of random graphs, that is

E(pm(G(2))) = nlp™.

Thus, we have shown that for large values of n the growth of the number of perfect
matchings for inhomogeneous random graphs in a random environment behaves
like the simpler model studied by Erdds and Rényi with p = smy (F').

Remark 3.4. Theorem 3.2 shows that the expected number of perfect matchings is
a quenched variable.

Remark 3.5. Using the Stirling formula, the limit in (3.3) can be stated as

1
lim ( log (E,, ., (pm(Gr w))) — log n) = logsmy 7(F) — 1,
n

n—0o0

which gives a quenched result for the growth of the perfect matching entropy for
the sequence of graphs G, ,, (see | .

Remark 3.6. Note that we assume a uniform ellipticity condition on the values of
the probabilities a(;;) as in (2.1). A similar assumption appears in the setting of
Random Walks in Random Environment (see [Bog, p.355]).

We now present some concrete examples.
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Ezample 3.7. Let a = =2 and p; = pos = ¢1 = ¢1 = 1/2. Therefore, the space
of environments is the direct product of two copies of the full shift on two symbols
endowed with the (1/2,1/2)—Bernoulli measure. The edge distribution matrix F

is a 2 x 2 matrix with entries belonging to (0,1). In [BIP, Example 2.11], it was
shown that
N <f11 f12> _ VIufer + Viiefa
PO\ far fa2 2 ’

Therefore, Theorem 3.2 implies that
lim (E”’w (Pm(Grw)) ) e _ Vii1fa2 + V2 fa

n! 2

n—o0
for almost every environment w € €.
Ezample 3.8. More generally let « € N with @ > 2 and 8 = 2. Consider the
stochastic vectors p'= (p1,p2,...,pa) and ¢ = (¢1,¢2). The space of environments
is the direct product of a full shift on a symbols endowed with the p-Bernoulli
measure with a full shift on two symbols endowed with the g-Bernoulli measure.

The edge distribution matrix F is a o x 2 matrix with entries f,1, fr2 € (0,1), where
re{l,...,a}. Denote by x € Rt the unique positive solution of the equation

Z prfri - a.
frl + frax
Then
fin o fi2 o
smpg(F) =smpgz | ( ) [T+ )™
fa1  fa2 =1
Therefore, Theorem 3.2 implies that

1/n Q2 «
lim (En,w (pm(Gn,w))) _ (]?1 <(12) H (frl + f’l"2X)pT

n—0 n! X i
e

for almost every environment w € . The quantity in the right hand side first
appeared in work by Haldsz and Székely in 1976 [[15], in their study of symmetric
means. In | , Theorem 5.1] using a completely different approach we recover
their result.

4. PROOF OF THE THEOREM
The shift map ow : Qw — Qw is defined by
ow (w1, we, w3, ...) = (wa,ws,...).

The shift map ow is a puw-preserving, that is, pw (A) = ,uw(()';[/ (A)) for every
measurable set A < Quy, and it is ergodic, that is, if A = oy, (A) then puw (A) equals
1 or 0. Analogously for o and pps. We define a function @ : Qp x Qp — R by
O(W, M) = fuym,-

Thus

¢(U£V1(w) U%/[_l(m)) = fwimj = a(ij)(w)'
That is, the matrix A, (w) has entries a;j)(w) = ®(oi (W), o (m)). We are in
the setting of the Law of Large Permanents ([BIP, Theorem 4.1]).
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Theorem (Law of Large Permanents). Let (X, ), (Y,v) be Lebesgue proba-
bility spaces, let T: X — X and S: Y — Y be ergodic measure preserving trans-
formations, and let g: X x Y — R be a positive measurable function essentially
bounded away from zero and infinity. Then for p x v-almost every (x,y) € X x Y,
the n x n matrix

g(x,y) g(Tx,y) (T e, y)
g(z, Sy) g(Tx, Sy) o g(T" 1z, Sy)
Mn(.’IJ, y) = : . :
g(z, S”*ly) 9(Tx, Snﬂy) g(Tnflx’ S"fly)
1/n
. per (M, (z,
o, <(n'(y))) = sy (9)

pointwise, where sm,, ,,(g) is the scaling mean of g defined as

sm,, ,(g) = inf Sx vy ¢(@)g(2, )¢ (y)dudv
w2 e (T log pla)di) exp (5 Tog b (y)i)

where the functions ¢ and 1 are assumed to be measurable, positive and such that
their logarithms are integrable.

Let X = Qw,Y = Qu, T = ow,S = oy, g = . As a consequence of an
alternative characterization of the scaling mean (see [BIP, Proposition 3.5]) we
have

S vy, s ((I)) = SIIl@q*(F).

Since f.s > 0 we can apply the Law of Large Permanents to conclude the proof of
the Main Theorem. ]

Remark 4.1. We have chosen to present our result in the simplest possible setting.
That is, the environment space being products of full-shifts endowed with Bernoulli
measures. In terms of stochastic block models we are considering only a finite num-
ber of communities. Using the general form of the Law of Large Permanent above
our results can be extended for inhomogeneous random graphs in more general
random environments.

5. A PROCEDURE TO COMPUTE THE SCALING MEAN

It is well known that the computation of the permanent, and therefore of the
number of perfect matchings, is a very hard problem. Indeed, it was shown by
Valiant [Va] that the evaluation of the permanent of (0, 1)-matrices is an NP- hard
problem. Thus, it is of interest to remark that the computation of the scaling
mean, and therefore of the expectation of the number of perfect matchings, can be
performed with a simple iterative process that converges exponentially fast.

Denote by B < R® and by B? < R? the positive cones. Define the following
maps forming a (non-commutative) diagram:

B 1, ge

BBTBB



PERFECT MATCHING IN INHOMOGENEOUS RANDOM BIPARTITE GRAPHS 7

by the formulas:

(12(2)); = xi (12(9)); = yl

o 8
(Ko(2)); := Y, figwipi,  (Ka()i == D, fijyis-
1=1 j=1

Let T : B — B be the map defined by T := K; 0 I 0Ky 0I;. The map T is a
contraction for a suitable Hilbert metric. Indeed, for &, 2’ e B define the following

(pseudo)-metric
d(7,7) = log (maxx/z> .
min; x;/z;

The following results were proven in [BIP, Lemma 3.4, Lemma 3.3].

Lemma 5.1. For every Z,7 € B* we have that

d(T(),T(2)) < <tanh i) ’ (7, 7),

where

6 < 2log (max”f”) < 0.

min; fi;
Lemma 5.2. The map T has a unique (up to positive scaling) fized point Xy € B*.
Moreover, defining §r := Ko 0 I1(Zr) one has that

a B

smﬁﬁ(F) = n $€)Z H y;b
- i=1

1=1

Therefore, since the scaling mean can be directly computed from the fixed point
of a contraction it possible to find good approximations of it using an iterative
process that converges exponentially fast.
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