
GENERAL CRITERIA FOR CURVES TO BE SIMPLE

MARTIN CHUAQUI

Abstract. We extend previous results for parametrized curves in euclidean
space to be simple. The new condition depends as before on Ahlfors’ Schwarzian,
and considers a conformal metric on a given interval and the new diameter.
We derive some applications, among which we find Becker type conditions that
depend on a pre-Schwarzian.

1. Introduction

The purpose of this paper is to extend results in [5], where the use of Sturm
comparison and Ahlfors’ Schwarzian for curves led to sufficient conditions for
parametrized curves in euclidean space to be simple. In many cases, the con-
dition was sharp. By considering a “conformal metric” on an interval, we derive
here a more general condition of the same type that takes into account the modified
diameter of the interval. The theorem fills in the gaps when the former condition
was not optimal. In addition, suitable choices of the conformal factor give rise to
criteria that depend on a pre-Schwarzian derivative, and analogues of criteria for
holomorphic mappings in the disk due to Ahlfors, Becker, and Epstein [2], [3], [9].

We begin with a brief account on Ahlfors’ Schwarzian for curves. In [1] the
author generalizes the Schwarzian to cover f : (a, b) → Rn by separately defining
analogues of the real and imaginary parts Re{Sf} and Im{Sf} of the Schwarzian
of a locally injective holomorphic mapping f . He defined

(1.1) S1f =
〈f ′, f ′′′〉
|f ′|2

− 3
〈f ′, f ′′〉2

|f ′|4
+

3

2

|f ′′|2

|f ′|2
,

and

(1.2) S2f =
f ′ ∧ f ′′′

|f ′|2
− 3
〈f ′, f ′′〉
|f ′|4

f ′ ∧ f ′′ ,

respectively. Here, for ~a,~b ∈ Rn, ~a ∧~b is the antisymmetric bivector with compo-

nents (~a ∧~b)ij = aibj − ajbi and norm (
∑

i<j(aibj − ajbi)2)1/2. Ahlfors indicated
that he was led to these seemingly esoteric definitions by a direct identification of
Re{zζ} with the inner product 〈z, ζ〉 of the 2-dimensional vectors z, ζ and the far
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from obvious identification of Im{zζ} with the corresponding ζ ∧ z based on the
fact that (Im{zζ})2 = |ζ∧z|2. For the purposes of injectivity, this far only S1f has
played a role. Invariance In [5] a simpler form was obtained for S1f in the form

S1f =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2k2 .

Thus, if s(x) denotes arc length, then

(1.3) S1f = Ss(x) +
1

2
v2k2 ,

where Sh = (h′′/h′)′ − (1/2)(h′′/h′)2 is the usual Schwarzian.
Both of Ahlfors’ operators are invariant under Möbius transformations of Rn

(see [1], [5]). This allows to extend the definition to include curves into Rn ∪{∞}.
Another important property that we will use, is a the chain rule, which states that
under a change of parameter h,

S1(f ◦ h) = [(S1f) ◦ h](h′)2 + Sh .

The combination of these properties together with comparison techniques from
the Strum theory has given way to important applications of the S1 operator in
questions regarding the injectivity of the conformal immersion of planar domains
into higher dimensional euclidean space [6],[7], [12], [4].

The following results were established in [5]:

Theorem A. Let p = p(x) be a continuous function defined on an interval I ⊂ R
with the property that no non-trivial solution of

(1.4) u′′ + pu = 0

has more than one zero. Let f : I → Rn∪{∞} be a curve of class C3 with nowhere
vanishing f ′. If S1f ≤ 2p then f is injective on I.

Suitable choices of function p on on the interval I = (−1, 1) were shown to render
analogues of the classical injectivity criteria due to Nehari [11]. By considering
p = π2/δ2 on an interval I of length δ we obtain from Theorem A the important
corollary that if

(1.5) S1f ≤
2π2

δ2

on I, then f is injective. The fact that this choice of function p satisfies the
hypothesis of the theorem is readily verified by observing that one can arrange for
a suitable trigonometric function to be a non-vanishing solution of u′′+ pu = 0 on
I.

In Theorem B below, the interval I was normalized to be (−1, 1). The analysis
was simplified with the additional assumption of symmetry of the function p. The
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function F : I → R was defined to be the unique function with SF = 2p and
F (0) = 0, F ′(0) = 1, F ′′(0) = 0.

Theorem B. Let f : (−1, 1) → Rn ∪ {∞} satisfy f(0) = 0, |f ′(0)| = 1, f ′′(0) = 0
and suppose that S1f ≤ 2p for some even function for which (1.4) is disconjugate.
Then

(a) |f ′(x)| ≤ F ′(|x|) on (−1, 1) and f admits a (spherically) continuous extension
to [−1, 1].

(b) If F (1) <∞, then f is one-to-one on [−1, 1] and f([−1, 1]) has finite length.

(c) If F (1) =∞, then either f is one-to-one on [−1, 1] or, up to rotation, f = F .

2. Main Result

We first prove an injectivity condition for parametrized curves that parallels
Theorem A.

Theorem 2.1. Let ϕ = ϕ(x) be a C2 function defined on an interval I ⊂ R, and
let

δ =

∫
I

eϕdx .

Let f : I → Rn ∪ {∞} be a curve of class C3 with nowhere vanishing f ′. If

(2.1) S1f ≤ ϕ′′ − 1

2
(ϕ′)

2
+ e2ϕ

2π2

δ2
,

then f is injective on I.

Proof. Fix x0 ∈ I and let

(2.2) F = F (x) =

∫ x

x0

eϕ(t)dt .

The function F maps I = (a, b) in a one-to-one manner onto an interval J of total
length δ. We will show that (2.1) implies (1.4) for the curve g = f ◦ h, where
h = F−1. The chain rule implies that

S1g = (S1f ◦ h) (h′)2 + Sh ,

which together with the relation

Sh = −(SF )(h′)2 = −[ϕ′′ − 1

2
(ϕ′)2](h′)2

gives that

S1g ≤
2π2

δ2
.

This proves that g, and hence f , are both injective.
�



4 MARTIN CHUAQUI

We claim that Theorem A follows from Theorem 2.1 by choosing ϕ adequately.
It is well known that a locally injective function G : I → R ∪ {∞} has SG = 2p
on I if and only if

G =
u1
u2
,

for a pair u1, u2 of linearly independent solutions of (1.4) [8]. On the other hand,
given a solution u, variation of parameters gives a second, linearly independent
solution of the form u(x)

∫ x
u−2(t)dt. Consequently,

G(x) =

∫ x

u−2(t)dt

is always a function with SG = 2p. The zeros of u will be mapped under F to
the point at infinity. The action of the group of Möbius transformations T (x) =
(Ax + B)/(Cx + D), AD − BC 6= 0, gives rise to all other functions H = T (G)
with SG = 2p and all other solutions of (1.4), v = (H ′)−1/2.

Suppose now that p satisfies the hypothesis of Theorem A, that is, that (1.4) is
disconjugate. This implies that any function G with SG = 2p will be injective on
I (see, e.g., [8]). Thus J = G(I) is a non-overlapping interval on R∪{∞}, in other
words, R∪{∞}\J contains at least one point. By choosing a suitable Möbius shift
F = T (G), we may assume that ∞ /∈ J . Hence u = (F ′)−1/2 is a solution of (1.4)
that is non-vanishing on I. We now choose ϕ so that

eϕ = u−2 ,

which gives that

SF = 2p = ϕ′′ − 1

2
(ϕ′)

2
,

showing the claim.

We now analyze under what circumstances Theorem 2.1 improves Theorem A,
that is, whether it is possible to choose ϕ = −2 log u so that δ < ∞. Let p be
a given function on I for which (1.4) is disconjugate. We distinguish two cases.
Suppose first that the interval J as chosen above, is the entire real line R. This
means that ∫

a

u−2dx =

∫ b

u−2dx =∞ ,

which is equivalent to saying that u is principal at both endpoints of the interval
I = (a, b) [10]. Any other solution of (1.4) that does not vanish on I will be a
constant multiple of u. In this case, Theorem 2.1 will not improve Theorem A
(and corresponds to the case (c) treated in Theorem B).

Suppose now that J is a proper subset of R. This allows for a second Möbius shift
so that J is a bounded interval. In other words, there exists a nowhere vanishing
solution u of (1.4) that is not principal at either a nor b. The choice ϕ = −2 log u
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produces a finite diameter, and Theorem 2.1 improves Theorem A exactly by the
last term on (2.1).

An interesting point is whether in this last case, there exists an optimal choice
of ϕ. For this, we need to analyze how the term

Λ = ΛF = e2ϕ
2π2

δ2

is affected under Möbius changes G = T (F ) that map the bounded interval J =
F (I) = (α, β) to another bounded interval. If T is affine, it is readily seen that
ΛF = ΛG. If T is not affine, then up to an affine change, T is an inversion of the
form

T (y) =
1

y − y0
,

for some y0 /∈ J . A direct calculation shows that

ΛG = µ2ΛF ,

where

µ =
(y0 − α)(y0 − β)

(y0 − F (x))2
.

The extreme values of µ are the reciprocal quantities∣∣∣∣y0 − αy0 − β

∣∣∣∣ ,

∣∣∣∣y0 − βy0 − α

∣∣∣∣ ,
and are attained when F (x) is an endpoint of J . The values of µ stay close to 1
for relatively large y0, but can vary significantly when y0 is close to an endpoint of
J . In summary, among all functions ϕ for which ϕ′′ − (1/2)(ϕ′)2 = 2p, there is no
optimal choice that maximizes the term Λ.

We analyze the sharpness of Theorem 2.1. For given ϕ we let 2p = ϕ′′ −
(1/2)(ϕ′)2. Since u = e−ϕ/2 is a non-vanishing solution of u′′+pu = 0, we see from
the Sturm theory that any solution of this equation can vanish at most once on
I. We now distinguish two cases. We say that Theorem 2.1 is of infinite diameter
type if δ =∞ and

(2.3)

∫
a

eϕdx =

∫ b

eϕdx =∞ .

Equivalently, the equation u′′ + pu = 0 admits a non-vanishing solution that is
principal at both endpoints of I.

We say that Theorem 2.1 is of finite diameter type if at least one of the integrals
in (2.3) is finite. As we saw, in this case it is possible to modify ϕ without changing
2p = ϕ′′ − (1/2)(ϕ′)2 so that both resulting integrals in (2.3) are finite.

Theorem 2.1 is always sharp, in the following two senses. First, there exists a
curve satisfying the hypothesis which is not injective in the closed interval I. It
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is also sharp in the sense that for any ε = ε(x)  0 there exists a non-injective
f : I → Rn ∪ {∞} with

S1f ≤ ϕ′′ − 1

2
(ϕ′)

2
+ e2ϕ

2π2

δ2
+ ε .

To establish these claims, we consider as before

F (x) =

∫ x

x0

eϕ(t)dt .

If we are in the infinite diameter case, then F (a) = F (b) are the point at infinity,
hence F fails to be injective on I.

If we are in the finite diameter case, we can assume that ϕ produces δ < ∞.
Choose x0 ∈ I so that F (b) = −F (a) = δ/2, and let

φ(x) = tan
(π

2
F (x)

)
.

Then φ is an increasing function mapping I onto R, with φ(a) = φ(b) equal to the
point at infinity. Furthermore

Sφ = ϕ′′ − 1

2
(ϕ′)

2
+ e2ϕ

2π2

δ2
.

The functions F, φ are called the extremal functions for Theorem 2.1 for the
finite and infinite diameter cases. In the last section, they will be shown to be
unique up to Möbius transformations.

We show the second claim for both cases with the following theorem.

Theorem 2.2. Let H : I → R be a C3 function with H ′ > 0 and SH = 2q.
Suppose that H(a) = H(b) are the point at infinity. If ε = ε(x)  0 then the
differential equation

(2.4) v′′ + (q + ε)v = 0

admits a non-trivial solution with two zeros.

Proof. Fix x0 ∈ I and consider the solution v of (2.4) with

v(x0) = u(x0) , v′(x0) = u′(x0) ,

where u = (H ′)−1/2. For y ∈ R let

w(y) =
v

u
(H−1(y)) .

Then
w′′(y) = −(u4ε)w(y) ,

where u4ε is evaluated at H−1(y). Furthermore, w(y0) = 1, w′(y0) = 0, y0 =
H−1(x0). Thus w is a non-constant concave function with a maximum at y0. If
w is non-constant to the right and to the left of y0, then by concavity, it will
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vanish at y1, y2 for some y1 < y0 < y2. Then v will vanish at x1 = H−1(y1) and
x2 = H−1(y2).

If not, then w is constant, say, to the right of y0 and non-constant to the left.
Then v has a zero at some x1 < x0 and∫ b

v−2dx =

∫ b

u−2dx =∞ .

Thus

G(x) =

∫ x

x0

v−2(t)dt

is a function with SG = 2(q + ε) with G(x1) = G(b) equal to the point at infinity.
Because G : I → R∪ {∞} is locally injective, it follows that G(x2) = G(x3) = c <
∞ for some x2 < x1 and x3 < b. The function

H =
1

G− c
has SH = SG and ṽ = (H ′)−1/2 will be the desired solution.

�

3. Other Corollaries

In this section we derive a few other corollaries that we find to be of particular
interest. In all cases, the proof is based on considering a particular choice of
function ϕ in Theorem 2.1.

Corollary 3.1. Let f : I → Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′ and finite length δ. If

k ≤ 2π

δ
then f is injective on I.

Proof. We choose ϕ = log |f ′| = log v, so that Ss(x) = ϕ′′ − (1/2)(ϕ′)2. The
corollary follows at once.

�

Corollary 3.2. Let f : (−1, 1)→ Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′. If

(3.1) S1f ≤ 2t
1 + (1− t)x2

(1− x2)2
, t ≥ 1

or

(3.2) S1f ≤ 2t
1 + (1− t)
(1− x2)2

+
2π

(1− x2)2t

(
Γ(3

2
− t)

Γ(1− t)

)2

, 0 ≤ t < 1

then f is injective on I.
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Proof. We choose ϕ = −t log(1 − x2). For t ≥ 1, δ = ∞, and for 0 ≤ t < 1 the
diameter is finite and is given by

δ =
√
π

Γ(1− t)
Γ(3

2
− t)

.

�

Inequalities (3.1) and (3.2) represent analogues of criteria for holomorphic map-
pings by Ahlfors [Ah1].

Corollary 3.3. Let f : I → Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′. If σ is a C2 function on I and

S1f +
2x

1− x2
≤ σ′′ − 1

2
(σ′)2 +

2

(1− x2)2

then f is injective on I.

Proof. We let ϕ = σ − log(1− x2) in Theorem 2.1.
�

Condition (3.3) can be considered an analogue of the Epstein criterion [9].

Corollary 3.4. Let f : I → Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′. If σ is a C2 function on I and

v′

v
σ′ +

1

2
v2k2 ≤ σ′′ − 1

2
(σ′)2

then f is injective on I.

Proof. We let ϕ = log v + σ in Theorem 2.1.
�

Corollary 3.5. Let f : (−1, 1)→ Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′. If

2x

1− x2
v′

v
+

1

2
v2k2 ≤ 2

(1− x2)2

then f is injective on I.

This final criterion represents an analogue of the condition be Becker [3].

Proof. We let ϕ = log v − log(1− x2) in Theorem 2.1.
�
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4. Distortion and Extensions

The purpose of this final section is to derive the corresponding version of Theo-
rem B for the main result here.

Theorem 4.1. Let f : (−1, 1) → Rn ∪ {∞} be a curve of class C3 with nowhere
vanishing f ′, satisfying (2.1). Let H = F or H = φ be the extremal function
depending on whether condition (2.1) is of infinite or finite type. For x0 ∈ I fixed,
suppose that

(4.1) |f ′(x0)| = H ′(x0) , |f ′|′(x0) = H ′′(x0) .

Then

(i) |f(x1)− f(x2)| ≤ |H(x1)−H(x2)| and |f ′(x)| ≤ H ′(x);

(ii) f admits a spherically continuous extension to I. If f is not injective in the
closed interval then, up to a Möbius transformation, f = H.

Proof. The normalizations (4.1) are no restriction, in the sense that for given f ,
they can be achieved by postcomposition with a suitable Möbius transformation
of Rn ∪ {∞}.

To show (i), we consider u = −2 log |f ′|. Then

u′′ + qu = 0 ,

where 2q = Ss. Because of (2.1), we have that q ≤ (1/2)SH. The inequality
|f ′(x)| ≤ H ′(x) follows now from Sturm comparison, while the first inequality in
(i) follows after integration.

We show the continuous extension at, say, x = b. Fix x0 near b and let T be a
Möbius transformation of Rn ∪ {∞} so that the curve g = T (f) satisfies

|g′(x0)| = G′(x0) , |g′|′(x0) = G′′(x0) ,

for G = −1/H. If x0 is close to b then G is regular on (x0, b). The previous
argument implies that

|g′(x)| ≤ G′(x) ,

and hence for x0 ≤ x1, x2 < b

|g(x1)− g(x2)| ≤ |G(x1)−G(x2)| .
This shows that the modulus of continuity of g is controlled by that of G, and the
continuous extension for g follows.

Suppose now that f is not injective on I. Since it is injective on I, then either
f(a) = f(b) or f(c) ∈ {f(a), f(b)}, for some c ∈ I. We claim that the latter cannot
occur. Suppose, by way of contradiction, that say f(c) = f(b) for some c ∈ I. We
may assume that the common point lies at infinity. For y ∈ [γ,∞), H(c) = γ,
consider the function

w(y) =
u

v
(H−1(y)) ,
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where u = |f ′|−1/2 and v = (H ′)−1/2. Then

w′′(y) =
1

2
w4 (SH − Ss) ≥ 0 .

If w were constant on [c, b), then |f ′| would be a constant multiple of H ′ on [c, b),
which would contradict that f(c) is the point at infinity. Hence w is not constant,
and is therefore bounded below by some line my + n, m 6= 0. If m > 0 we analyze
the inequality w(y) ≥ my + n > 0 for large values of y, which leads to

|f ′| ≤ H ′

(mH + n)2

for x close to b. This last estimate implies that∫ b

|f ′|dx <∞ ,

a contradiction to the fact that f(b) =∞.
If m < 0 we analyze the inequality w(y) ≥ my+n > 0 for values of y close to γ,

to reach the contradicting conclusion that f(c) is a finite point. This shows that if
f is not injective on I then f(a) = f(b). Again, we may assume that the common
point lies at infinity, and follow the previous argument to conclude that w must be
constant, and hence that |f ′| = H ′ (up to a constant factor). But if w is constant
then SH ≡ Ss, which implies that the curvature k ≡ 0. Therefore the image of f
is a straight line, traced at the same speed as the extremal H. We conclude that
f = H up to an affine change. This finishes the proof.

�
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