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ABSTRACT. We build an unbounded sequence of nonradial solutions for

∇(|x|−2a∇u)+ |x|− 2N
N−2 au

N+2
N−2 = 0, u > 0 in RN \{0} ,

where N ≥ 5 and a < 0. This answers an question of L. Veron.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

The celebrated Cafferalli-Kohn-Nirenberg (CKN) inequalities ([2]) assert that there exists a constant
S = S(a,b) such that for all u ∈C∞

0 (RN) it holds

(1.1) S(
∫

RN
|x|−bq|u|qdx)

2
q ≤

∫

RN
|x|−2a|∇u|2dx

for N ≥ 3,−∞ < a < N−2
2 ,0 ≤ b− a ≤ 1,q = 2N

N−2+2(b−a) . Associated with (1.1) is the Euler-Larangian
equation

(1.2) −∇(|x|−2a∇u) = |x|−bquq−1 in RN

which is called CKN-type equation throughout the paper.
There has been intensive research lately on the attainment and symmetries of extremal solutions of

CKN inequalities. An interesting aspect of CKN inequalities is that it connects the classical Sobolev
inequality (a = b = 0) with the Hardy inequality (b = 1,a = 0). In fact, when a = b = 0, inequality (1.1)
is Sobolev inequality, and the constant S(0,0) := S is attained. (1.2) becomes the well-known Yamabe
problem

(1.3) ∆u+u
N+2
N−2 = 0 in RN

whose solutions are classified (Cafferalli-Gidas-Spruck [3]): all positive solutions are radially symmetric
around some point and given by

(1.4) Uε ,ξ = ε−
n−2

2 U(
x−ξ

ε
) with ξ ∈ RN , U(y) = αN

(
1

1+ |y|2
) N−2

2

where αN > 0 is a generic constant.
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In the parameter region

(1.5) 0≤ a <
N−2

2
, a≤ b≤ a+1,

Chou and Chu [5] proved that all solutions to (1.2) are radially symmetric, using the method of moving
planes, and that these solutions also give rise to extremal solutions of CKN inequalities. On the other
hand, in the parameter region

(1.6) −∞ < a < 0, a≤ b≤ a+1,

some striking new phenomena are discovered by Catrina and Wang [4]: they showed that for b = a+1 or
b = a, the best constant in (1.1) is S and is never achieved. Symmetry breaking extremal solutions are also
found. This has initiated intensive studies on (1.1)-(1.2). We refer to Dolbeault-Esteban [9], Dolbeault-
Esteban-Loss-Tarantello [10], del Pino-Dolbeault-Fillippas-Tertikas [6], Felli-Schneider [11], Lin-Wang
[16] and the references therein.

In this paper, we are concerned with the case of b = a and q = 2N
N−2 , namely the following nonlinear

equation

(1.7) ∇(|x|−2a∇u)+ |x|− 2N
N−2 a|u| 4

N−2 u = 0, in RN \{0} .

According to Catrina-Wang [4], the extremal solution to (1.1) does not exist. Since a < 0, the method
of moving plane can not be applied. An interesting question is: if a < 0, are there any positive (radial or
nonradial) solutions to (1.7)? When a > 0, all positive solutions are radially symmetric and unique (up to
scaling). Another interesting question is: if a > 0, are there sign-changing solutions to (1.7)?

For both questions, our answers are affirmative.

Theorem 1.1. Assume that N ≥ 5.
Part a. Assume that a < 0 or a > N−2. Then for any sufficiently large k there is a finite energy solution
to Problem (1.7) of the form

(1.8) uk(x) = |x|a
[

k

∑
j=1

µ−
N−2

2
k U

(
µ−1

k (x−ξ j)
)
+R(x)

]
,

where
µk = cNk−

N−2
N−4

and ‖R‖ 2N
N−2

→ 0 as k →+∞. Moreover,

(1.9)
∫
RN |x|−2a|∇uk|2(∫

RN |x|− 2N
N−2 a|uk|

2N
N−2

)N−2
N

= kS+O(1).

Here O(1) remains bounded as k → ∞. As a consequence, problem (1.2) has infinitely many nonradial
positive solutions.

Part b. Assume that 0 < a < N−2 and a 6= N−2
2 . Then for any sufficiently large k there is a finite energy

solution to Problem (1.7) of the form

(1.10) uk(x) = |x|a
[

k

∑
j=1

(−1) j+1µ−
N−2

2
k U

(
µ−1

k (x−ξ j)
)
+R(x)

]
,
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where
µk = cNk−

N−2
N−4

and ‖R‖ 2N
N−2

→ 0 as k →+∞. Moreover,

(1.11)
∫
RN |x|−2a|∇uk|2(∫

RN |x|− 2N
N−2 a|uk|

2N
N−2

)N−2
N

= kS+O(1).

Here O(1) remains bounded as k → ∞.

Problem (1.7) can also be regarded as a Hardy-type equation with critical Sobolev exponent. Define

(1.12) v(x) = |x| β
2 u(x), where β :=−2a.

A direct computation shows that u is a solution to (1.7) if and only if v solves

(1.13) ∆v− γ
v
|x|2 + |v| 4

N−2 v = 0 in RN \{0}.

We will use the notation

(1.14) γ =
β
2

(
β
2

+N−2) = a(a− (N−2))

The condition a 6∈ {0, N−2
2 ,N−2} implies that γ >−(N−2

2 )2 and γ 6= 0.
In view of problem (1.13), Theorem 1.1 is equivalent to

Theorem 1.2. Assume that N ≥ 5.
Part a. Assume that γ > 0. Then for any sufficiently large k there is a finite energy solution to Problem
(1.13) of the form

(1.15) uk(x) =

[
k

∑
j=1

µ−
N−2

2
k U

(
µ−1

k (x−ξ j)
)
+R(x)

]
,

where
µk = cNk−

N−2
N−4

and ‖R‖ 2N
N−2

→ 0 as k →+∞. Moreover,

(1.16)

∫
RN (|∇uk|2 + γ

|x|2 u2
k)

(∫
RN |uk|

2N
N−2

)N−2
N

= kS+O(1).

Here O(1) remains bounded as k → ∞.

Part b. Assume that −(N−2
2

)2
< γ < 0. Then for any sufficiently large k there is a finite energy solution

to Problem (1.13) of the form

(1.17) uk(x) =

[
k

∑
j=1

(−1) j+1µ−
N−2

2
k U

(
µ−1

k (x−ξ j)
)
+R(x)

]
,
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where

µk = cNk−
N−2
N−4

and ‖R‖ 2N
N−2

→ 0 as k →+∞. Moreover,

(1.18)

∫
RN (|∇uk|2 + γ

|x|2 u2
k)

(∫
RN |uk|

2N
N−2

)N−2
N

= kS+O(1).

Here O(1) remains bounded as k → ∞.

Let us comment on previous works on (1.13). According to [15], L. Veron raised the following ques-
tion: For γ ∈ R and γ 6= 0, let u ∈C∞(Rn\{0}) be a solution to Problem (1.13). Is it true that u must be
radially symmetric about the origin? L. Veron also pointed out that there may be solutions of a certain
form as suggested in Section 4 of Bidaut-Veron and Veron [1]. The form of solutions suggested in [1]
is invariant under Dihedral symmetry Dk. In [14], Jin-Li-Xu proved the following: (i) for γ ≤ − (N−2)2

4 ,

(1.13) has no smooth solutions; (ii) for − (N−2)2

4 < γ < 0, all solutions to (1.13) are radially symmetric;

(iii) for γ > − (N−2)2

4 , problem (1.13) has infinitely many radial solutions; (iv) for γ > N−2
4 , (1.13) has

non-radial solutions. Moreover, the number of non-radial solutions goes to ∞ as γ →+∞. The nonradial
solutions in [14] are constructed by bifurcations. As commented in [14], these solutions are not the types
of solutions suggested in [1], and it is an interesting question to study the existence of solutions of the
suggested form. The existence of nonradial solutions is also open when 0 < γ < N−2

4 . Theorem 1.2 gives
an affirmative answer to Veron’s question and also fills the existence gap 0 < γ < N−2

4 left in [14].
Problem (1.13) also arises in nonrelativistic molecular physics. The inverse square potentials describe

the interaction between electric charges and dipole moments of molecules; see [17]. For mathematical
analysis of such problems, we refer to Felli-Terracini [12], Azorero-Peral [13], Smets [19], Terracini [20]
and the references therein.

The proof of Theorem 1.2 is by reduction method: we look for solutions of (1.13) which are invariant
under 2π

k −rotation, for some integer k ≥ 2. Therefore we put k bubbles at k vortices lying on the unit
circle. The key idea is to use k as parameter. The reduction works if we employ the four fundamental
invariances of (1.13): problem (1.13) is invariant under the Kelvin transform, scaling, reflections, and
rotations. The restriction that N ≥ 5 is only technical.

The idea of using the number of bubbles as parameter was first used by Wei-Yan ([21]) in constructing
infinitely many positive solutions to the prescribing scalar curvature problem. del Pino-Musso-Pacard-
Pistoia ([7, 8]) also used this idea in constructing infinitely many sign-changing solutions to (1.3). See
also Musso-Pacard-Wei [18], Wei-Yan [22] for the use of this idea in a different context.

2. CONSTRUCTION OF A FIRST APPROXIMATION AND ESTIMATE OF THE ERROR

This section is devoted to the construction of a first approximate solution to Problem (1.13).

Fix k to be an integer and denote by Rk ∈ O(2)×{IN−2} the rotation of 2π
k in the (x1,x2)-plane. Set

e1 := (1,0, . . . ,0) ∈ RN , let ε be a positive parameter and consider the regular polygon in R2×{0} ⊂ RN
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whose vertices are given by the orbit of the point

(2.1) ξ1 :=
√

1− ε2 e1 ∈ RN ,

under the action of the group generated by Rk, namely

ξ j = R j−1
k ξ1, j = 1, . . . ,k.

Define

(2.2) Vjε(x) = ε−
n−2

2 U(
x−ξ j

ε
) where U(y) = αN

(
1

1+ |y|2
) N−2

2

Observe that equation (1.13) in invariant under Kelvin transformation,

v(x) = |x|2−Nv(
x
|x|2 ),

so it is natural to look for solutions v to (1.13) in the space D1,2(RN) that are invariant under Kelvin
transform.

Thanks to the choice of the point ξ1 given by formula (2.1), we observe that each function Vjε is indeed
invariant under Kelvin transform. Define

(2.3) V+[ε](x) =
k

∑
j=1

Vjε(x), and V−[ε](x) =
k

∑
j=1

(−1) jVjε(x).

These new functions V+ and V− are also invariant under Kelvin transformation.
For simplicity of notation we will write V±[ε](x) = V±(x).
In our construction, the parameter ε is not independent on k. In fact its dependence on k is at main

order explicit, and changes from dimension to dimension. To be more precise, we assume that

(2.4) ε =
µ

k1+ 2
N−4

where µ is a positive parameter, uniformly bounded away from zero and from infinity as k → ∞. In fact
we assume that there exists a positive, small number δ , independent of k, such that

(2.5) δ < µ < δ−1 for all k large.

To simplify the notation we will denote with V the function V+ or the function V−, depending if we are
considering the case of positive or sign changing solutions.

The function E defined as

(2.6) E(x) = ∆V + |V |p−1V − γ
|x|2 V

is the error of approximation. It is clear that a basic issue for our construction is to measure the size of this
error function E, both in a region near the concentration points ξ j and also far away. For reasons that will

become clear later, it is convenient to do this measurement using the L
2N

N+2 -norm.
We write E = E1−E2, where

(2.7) E1(x) = ∆V + |V |p−1V, and E2(x) =
γ
|x|2 V.
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Denote q = 2N
N+2 . Let η > 0 be a small number and decompose the entire space RN as follows

RN =
k⋃

j=1

B(ξ j,
η
k

)
⋃

R

Interior estimate. We first estimate the Lq norm of the error in each ball B(ξ j,
η
k ).

Let us fix j, say j = 1, and observe that, if we denote by

Ẽ(y) = ε
N+2

2 E(εy+ξ1), |y| ≤ η
kε

we have
‖E‖Lq(|x−ξ1|≤ η

k ) = ‖Ẽ‖Lq(|y|≤ η
kε )

Let Ẽi(y) = ε N+2
2 Ei(εy+ξ1), for i = 1,2. In |y| ≤ η

kε , we have, for some 0 < s < 1,

Ẽ1(y) = p

(
U(y)+ s(∑

j 6=1
U(y− ε−1(ξ j−ξ1)))

)p−1

×

×
[
∑
j 6=1

U(y− ε−1(ξ j−ξ1)))

]
−∑

j 6=1
U p(y− ε−1(ξ j−ξ1))

where U is the basic cell in our construction, defined in (2.2). Notice that ε−1|ξi−ξ j| ∼ (εk)−1| j− i| so
that

U(y− ε(ξ j−ξ1))≤C
εN−2kN−2

| j−1|N−2 for |y| ≤ η
εk

.

With this in mind, we can estimate in the region |y| ≤ η
εk ,

(2.8) |Ẽ1(y)| ≤C
(εk)N−2

(1+ |y|2)2

and hence
∫

|y|≤ η
εk

|Ẽ1|q ≤C





(εk)(N−2)q if N = 5,

(εk)(N−2)q| logk| if N = 6,

(εk)(N−2)q+4q−N if N ≥ 7.

Thus we conclude that

(2.9) ‖E1‖Lq(B(ξ1, η
k )) = ‖Ẽ1‖Lq(B(0, η

εk )) ≤C





k−6 if N = 5,

k−4| logk| 1
q if N = 6,

k−1− 6
N−4 if N ≥ 7.

On the other hand, in the region |y| ≤ η
εk , we have that

|Ẽ2(y)| ≤Cε2U(y),
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so

‖ε2U‖Lq(|y|≤ η
εk ) ≤Cε2q

∫ η
εk

0

tN−1

(1+ t)(N−2)q ≤C





ε2q(kε)(N−2)q−N if N = 5,
ε2q| logε| if N = 6,

ε2q if N ≥ 7.

Thus we conclude

(2.10) ‖Ẽ2‖Lq(B(ξ1, η
k )) ≤C





k−5 if N = 5,

k−4| logk| 1
q if N = 6,

k−2− 4
N−4 if N ≥ 7.

Collecting (2.9) and (2.10), we conclude that

(2.11) ‖E‖Lq(B(ξ j ,
η
k )) ≤C





k−5 if N = 5,

k−4| logk| 1
q if N = 6,

k−1− 6
N−4 if N ≥ 7.

Exterior region. We now turn to the exterior region

R = RN \
k⋃

j=1

B(ξ j,
η
k

).

In this region, we have that Vjε(x)≤C ε
N−2

2
|x−ξ j |N−2 and thus

(2.12) |E1(x)| ≤C
k

∑
j=1

ε N+2
2

|x−ξ j|N+2 and |E2(x)| ≤C
k

∑
j=1

ε N−2
2

|x|2|x−ξ j|N−2

We start with the computation of the Lq-norm of E1 in R. We have

(∫

R
|E1|q

) 1
q

≤Ck

(∫

RN\B(ξ j ,
η
k )

ε
(N+2

2 )q

|x−ξ j|(N+2)q

) 1
q

≤Ckε
(N+2

2 )
[∫

B(ξ j ,1)\B(ξ j ,
η
k )

1
|x−ξ j|(N+2)q +O(1)

] 1
q

.

Since ∫

B(ξ j ,1)\B(ξ j ,
η
k )

1
|x−ξ j|(N+2)q ≤ kN ,

we conclude that

(2.13) ‖E1‖Lq(R) ≤Ck−
6

N−4 , for any N ≥ 5.

We now compute the Lq-norm in the region R of the part E2. We separate R into a region close to 0 and
the rest, we get

‖E2‖Lq(R) ≤
(
‖E2‖q

Lq(B(0, 1
2 ))

+‖E2‖q
Lq(R\B(0, 1

2 ))

) 1
q

Observe that E2 has a singularity at 0, but

‖E2‖q
LqB(0, 1

2 )
≤C(kε

N−2
2 )q

(∫

B(0, 1
2 )

1

|x| 4N
N+2

)
≤C(kε

N−2
2 )q
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thanks to N > 2. Thus, arguing as in the previous estimate (2.13), the size of ‖E2‖Lq(R) is given by the
integral over a region close to ∂B(ξ j,

η
k ). Indeed, we have

‖E2‖q
Lq(R) ≤C(kε( N−2

2 ))q
(∫

η
k ≤|x−ξ j |≤1

1
|x−ξ j|(N−2)q

)
≤C





k(−3− 1
2 )q if N = 5,

k−3q| logk|q if N = 6,

k(−1−N−2
N−4 )q if N ≥ 7.

Thus we conclude that

(2.14) ‖E2‖Lq(R) ≤C





k−3− 1
2 if N = 5,

k−3| logk| if N = 6,

k−2− 2
N−4 if N ≥ 7.

Collecting together (2.13) and (2.14) we conclude that

(2.15) ‖E‖Lq(R) ≤C





k−3− 1
2 if N = 5,

k−3| logk| 1
q if N = 6,

k−
6

N−4 if N ≥ 7.

So far, we have showed the validity of the following

Proposition 2.1. Let δ and η be two positive small numbers. There exist k0 and C such that, for all k≥ k0
and ε = µ

k1+ 2
N−4

satisfying (2.5), the following estimates hold true

(2.16) ‖E‖
L

2N
N+2 (B(ξ j ,

η
k ))
≤C





k−5 if N = 5,

k−4| logk|N+2
2N if N = 6,

k−1− 6
N−4 if N ≥ 7.

for any j = 1, . . . ,k, and

(2.17) ‖E‖
L

2N
N+2 (RN\⋃k

j=1 B(ξ j ,
η
k ))
≤C





k−3− 1
2 if N = 5,

k−3| logk|N+2
2N if N = 6,

k−
6

N−4 if N ≥ 7.

where E is the error of approximation defined in (2.6).

3. A GLUING PROCEDURE AND SCHEME OF THE PROOF

We start observing the following facts: the function V± defined in (2.3) not only is invariant under
Kelvin transformation, it is also invariant under the group of rotations Rk ∈ O(2)×{IN−2}. Furthermore
it is even in the last (N−2) coordinates, namely

(3.1) V±(x1,x2,−xi, . . . ,xN) = V±(x1,x2,xi, . . . ,xN) for all i = 3, . . . ,N.

It is thus natural to work in a space of functions that respect all the above symmetries. Let

(3.2) H = {u ∈D1,2(RN) : u(x) = |x|2−Nu(
x
|x| ), u(Rkx) = u(x), u satisfies (3.1)}.

In particular the functions V± defined in (2.3) belong to H.
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When γ > 0, we will look for solutions to (1.13) belonging to the space H of the form

(3.3) v(x) = V+(x)+φ+(x)

where φ+ ∈ H is a lower order term.
On the other hand, when −(N−2

2 )2 < γ < 0, our solution will look like

(3.4) v(x) = V−(x)+φ−(x)

where again φ− ∈ H is a lower order term. As before, to simplify the notation we will denote with φ
the function φ+ or the function φ−, depending if we are considering the case of positive or sign changing
solutions.

Let p = N+2
N−2 . In terms of φ , problem (1.13) takes the form

(3.5) ∆φ − γ
|x|2 φ + pV p−1φ +E +N(φ) = 0, in RN , φ ∈ H.

In (3.5), the function E was introduced before in (2.6), and

(3.6) N(φ) =
[|U +φ |p−1(U +φ)−|U |p−1U− p|U |p−1φ

]
.

We will solve Problema (3.5) using a gluing argument.
For any j = 1, . . . ,k, let ζ j be a cut-off function defined as follows. Let ζ (s) be a smooth function such

that ζ (s) = 1 for s < 1 and ζ (s) = 0 for s > 2. Then we set

(3.7) ζ j(y) =





ζ (kη−1|y|−2|(y−ξ j|y|) |) if |y|> 1 ,

ζ (kη−1 |y−ξ j|) if |y| ≤ 1 ,

for a certain η > 0 small and independent of k. Observe that

(3.8) ζ j(y) = ζ j(y/|y|2).
A function φ of the form

φ =
k

∑
j=1

φ j +ψ

is a solution of Problem (3.5) if we can solve the following coupled system of elliptic equations in φ̄ =
(φ1, . . . ,φk) and ψ:

(3.9) ∆φ j + p|V |p−1ζ jφ j +ζ j[ p|V |p−1ψ− γ
|x|2 φ j +E +N(φ j +Σi 6= jφi +ψ)] = 0, j = 1, . . . ,k,

(3.10)

∆ψ− γ
|x|2 ψ +

(
p|V |p−1− γ

|x|2
)

∑
j
(1−ζ j)φ j +(1−Σk

j=1ζ j)( p|V |p−1ψ + E +N(Σk
j=1φ j +ψ)) = 0.

To solve System (3.9)-(3.10) we will solve first problem (3.10) for given φ j’s of a special form that we
describe next. Define

(3.11) L
2N

N−2 = {u ∈ L
2N

N−2 : u(x) = |x|2−Nu(
x
|x|2 ), u(Rkx) = u(x), u satisfies (3.1)}
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The function φ j will inherit the size of the measure of the error of approximation E defined in (2.6) in the
interior region B(ξ j,

η
k ), for some η > 0, small and independent of k. Thus, given the result in Proposition

2.1, we assume that φ j ∈ H
⋂

L
2N

N−2 for any j = 1, . . . ,k, with

(3.12) ‖
(

ε
ε2 + |x−ξ j|2

)−N−2
2

φ j‖∞ ≤ σ ,

for some fixed constant σ , independent of k and small. For further reference, we will use the notation

(3.13) ‖φ‖ j∗ = ‖
(

ε
ε2 + |x−ξ j|2

)−N−2
2

φ‖∞.

A trivial observation is that
‖φ‖ 2N

N−2
‖ ≤C‖φ‖ j∗,

for some explicit constant C.

The following result holds.

Lemma 3.1. Let δ > 0. There exists k0 and C such that for all k≥ k0 and all ε = µ

k1+ 2
N−4

with δ ≤ µ ≤ δ−1

for all k large, the following holds: Let φ j ∈ H
⋂

L
2N

N−2 , j = 1, . . . ,k satisfy conditions (3.12). Then there

exists a unique solution ψ = Ψ(φ1) ∈ H
⋂

L
2N

N−2 to equation (3.10), such that

(3.14) ‖ψ‖ 2N
N−2

≤C[g(k)+‖φ1‖2
∗1] where g(k) =





k−3− 1
2 if N = 5,

k−3| logk|N+2
2N if N = 6,

k−
6

N−4 if N ≥ 7.

The operator Ψ satisfies the Lipschitz condition

‖Ψ(φ 1
1 )−Ψ(φ 2

1 )‖ 2N
N−2

≤ C ‖φ 1
1 −φ 2

1 ‖∗1.

Furthermore the function ψ(φ1) depends continuously on the parameter µ , in the sense that the function
µ → ψ ∈L

2N
N−2 is continuous in the natural topologies.

Moreover, if we define ψ1 := ζ1ψ (see (3.7) for the definition of ζ1), then we get the finer estimate

(3.15) ‖ψ1‖ 2N
N−2

≤C
[
k−1− 2

N−4 ‖φ1‖1∗+‖φ1‖2
1∗

]

We postpone the proof of the above Lemma to Section 5: Appendix 1, Proof of Lemma 3.1.

Let us consider now the operator ψ = ψ(φ̄) defined in the previous Lemma, that gives a solution to
Problem (3.10) for φ̄ = (φ1, . . . ,φk) fixed. Our next interest is to solve Equations (3.9). We claim that, if
we solve Problem (3.9) for j = 1, then automatically Problem (3.9) is solved for any j = 1, . . . ,k. This
is simply due to the invariance of Equation (3.9) under the rotation Rk of the angle 2π

k in the first two
components in RN . In fact, one gets that if φ1 is a solution to Equation (3.9) for j = 1, then a posteriori
φ j(x) := φ1(R

j−1
k x) is the solution to Equation (3.9), for j = 2, . . . ,k.

We thus solve Equation (3.9) for j = 1.
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Let us rewrite Equation (3.9) as follows

(3.16) ∆φ1 + p|V1ε |p−1φ1 +h(x) = 0,

where V1ε is defined in (2.2) and

(3.17) h(x) = p(|V |p−1ζ1−|V1ε |p−1)φ1 +ζ1[ p|V |p−1ψ− γ
|x|2 φ1 +E +N(φ1 +Σi 6=1φi +ψ)].

Define

(3.18) L
2N

N+2 = {u ∈ L
2N

N+2 : u(x) = |x|−2−Nu(
x
|x|2 ), u(Rkx) = u(x), u satisfies (3.1)}

We make the following observation: if we assume that φ1 is invariant under Kelvin transform, that it is
invariant under the rotation Rk and it is even with respect to the last (N−2) variables, then thanks to the
properties of ψ(φ̄) we find that the function h(x) defined in (3.17) also satisfies

h(x) = |x|−2−Nh(
x
|x|2 ), h(Rkx) = h(x) for all x ∈ RN \{0}

and
h(x1,x2,x3, . . . ,xi, . . . ,xN) = h(x1,x2,x3, . . . ,−xi, . . . ,xN), for all i = 3, . . . ,N.

Even more, if we assume that φ1 ∈L
2N

N−2 then h ∈L
2N

N+2 .
For a general function f ∈L

2N
N+2 , we consider first the linear problem

(3.19) ∆φ + pV p−1
1ε φ = f + cV p−1

1ε Z1ε , in RN \{0},
∫

V p−1
1ε φZ1ε = 0

where

(3.20) Z1ε(x) = ε−
N−2

2 Z(ε−1(x−ξ1)), with Z(y) =
N−2

2
U(y)+∇U(y) · y

(see (2.2) for the definition of U) and

c =−
∫
RN f Z1ε∫

RN V p−1
1ε Z2

1ε
.

We have the following result.

Lemma 3.2. Let us assume that f ∈ L
2N

N+2 . Then Problem (3.19) has a unique solution φ = T (h) ∈
D1,2(RN)

⋂
L

2N
N−2 satisfying

(3.21) ‖φ‖1∗ ≤C‖ f‖ 2N
N+2

,

for some positive constant C.

We use the above lemma to solve the corresponding projected version of (3.16)

(3.22) ∆φ1 + p|V1ε |p−1φ1 +h(x) = cV p−1
1ε Z1ε ,

∫

RN
φ1V p−1

1ε Z1ε = 0

where here h is the explicit function defined in (3.17) and

c :=
∫
RN h(x)Z1ε∫
RN V p−1

1ε Z2
1ε

.
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We can prove the following result

Lemma 3.3. Let δ > 0. There exists k0 and C such that for all k≥ k0 and all ε = µ

k1+ 2
N−4

with δ ≤ µ ≤ δ−1

for all k large, the following holds: there exists a unique solution φ1 = φ1(µ) ∈L
2N

N−2 to equation (3.22),
such that

(3.23) ‖φ1‖1∗ ≤C





k−5 if N = 5,

k−4| logk|N+2
2N if N = 6,

k−1− 6
N−4 if N ≥ 7.

,

Furthermore the solution φ1 depends continuously on µ , in the sense that the function µ → φ1 ∈L
2N

N−2 is
continuous in the natural topologies.

To make our exposition clearer, we also postpone the proofs of Lemma 3.2 and Lemma 3.3 to Section
6 Appendix 2.

Once (3.22) is solved, it is clear that V +φ becomes an exact solution to (1.13) if there exists a choice
for the parameter µ so that

(3.24) c = c[µ] = 0.

This is done in Section 4, where we also conclude the proof of our results.

4. PROOF OF THE RESULTS

This Section is devoted to the
Proof of Theorem 1.2. Let δ > 0 be a small fixed number. Lemma 3.3 garantees the existence of a

large integer k0, such that for all ε = µ

k1+ 2
N−4

with δ < µ < δ−1, for all integers k≥ k0 there exists φ1 ∈H

and c ∈ R solution to the non linear Problem

∆φ1 + pV p−1
1ε φ1 +h(x) = cV p−1

1ε Z1ε , in RN \{0},
∫

V p−1
1ε φZ1ε = 0

where we recall the expression of h given by (3.17)

h(x) = p(|V |p−1ζ1−|V1ε |p−1)φ1 +ζ1[ p|V |p−1ψ(φ1)− γ
|x|2 φ1 +E +N(φ1 +Σi 6=1φi +ψ)],

E is given by (2.6), N(φ) is defined in (3.6), V1ε is defined in (2.2), Z1ε is defined in (3.20) and ψ is the
function whose existence is guaranteed by Lemma 3.1. Furthermore, the function φ1 and the constant c
depends continuously on µ . For further reference, we write

(4.1) h(x) = ζ1E +L (φ1)+N (φ1)

where

(4.2) L (φ1) = p(|V |p−1ζ1−|V1ε |p−1)φ1−ζ1
γ
|x|2 φ1

and

(4.3) N (φ1) = ζ1
[
p|V |p−1ψ(φ1)+N(φ1 +Σi 6=1φi +ψ)

]
.
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It is thus a trivial observation to say that the function

v = V +φ

is a solution to our original problem (1.13) if we can chose µ so that

(4.4) c = c[µ] = 0.

At this point we need to distinguish the case of positive solutions v+ = V+ + φ+ from the case of sign
changing solutions v− = V−+φ−. With obvious notation, define the continuous function g±(µ)

(4.5) g±(µ) =
∫

RN
h±Z1k.

Observe that equation (4.4) is equivalent to find µ so that

g±(µ) = 0

Define the positive constant Γ+
N to be given by

(4.6) Γ+
N = lim

k→∞

1
kN−2 ∑

j 6=1

1

|ξ̂ j− ξ̂1|N−2
, N ≥ 5,

where ξ̂ j = (e
2π( j−1)i

k ,0) ∈ C×RN−2. Furthermore, we define the constant Γ−N to be given by

(4.7) Γ−N = lim
k→∞

1
kN−2 ∑

j 6=1
(−1) j 1

|ξ̂ j− ξ̂1|N−2
, N ≥ 5.

A simple analysis shows that
Γ−N < 0.

Then we claim that the expression of g±(µ) can be explicitly computed as follows

(4.8) g+(µ) =
1

k1+ 2
N−4

[
−γµaN + µN−3Γ+

N bN +
1

k
4

N(N−4)
Θk(µ)

]

and

(4.9) g−(µ) =
1

k1+ 2
N−4

[
−γµaN + µN−3Γ−N bN +

1

k
4

N(N−4)
Θk(µ)

]

In (4.8) and (4.9) aN and bN are positive constants that depend on the dimension N. Furthermore Θk(µ)
denotes a generic continuous function of the variable µ , which is uniformly bounded as k → ∞.

Observe now that if γ > 0, then the function g+(µ) has a positive zero

µ =
(

γaN

bNΓ+
N

) 1
N−2

+O(
1

k
4

N(N−4)
).

This fact proves the existence of the positive solution of the form (1.15) predicted by Theorem 1.2, Part a.
On the other hand, if −(N−2

2

)2
< γ < 0, then the function g+(µ) has a positive zero

µ =
(

γaN

bNΓ−N

) 1
N−2

+O(
1

k
4

N(N−4)
).
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This fact proves the existence of the sign changing solution of the form (1.17) predicted by Theorem 1.2,
Part b.

An adaptation of the arguments that we will use below to prove estimates (4.8) and (4.9) give the
expansion of the Energy (1.16) and (1.18). We omit the proof of this fact.

The rest of the Section will be devoted to prove (4.8). In exactly the same way one gets (4.9).
In the rest of the proof, with Θk(µ) we denote a generic continuous function of the variable µ that is

uniformly bounded as k → ∞.
Expansion (4.8) is consequence of three facts:

(4.10)
∫

RN
ζ1EZ1ε =

1

k2+ 4
N−4

[
−γµ(

∫

RN
U(y)Z(y)dy)+ pµN−3ΓN(

∫

RN
U p−1(y)Z(y)dy)+

1
k

Θk(µ)
]

with

(4.11)
∫

RN
U(y)Z(y)dy > 0 and

∫

RN
U p−1(y)Z(y)dy > 0,

(4.12)
∫

RN
L (φ1)Z1ε =

1

k2+ 6
N−4

Θk(µ)

and

(4.13)
∫

RN
N (φ1)Z1ε =

1

k2+ 8
N−4

Θk(µ)

The rest of this section is devoted to give the proof of expansions (4.10)-(4.11)-(4.12)-(4.13).

Proof of (4.10) and (4.11). Given the definition of the cut off function ζ1, we write

(4.14)
∫

RN
ζ1EZ1ε =

∫

B(ξ1, 2η
k )

ζ1EZ1ε =
∫

B(ξ1, η
k )

EZ1ε +
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1EZ1ε = A+B.

We start with A. Recall that

E = E1(x)−E2(x), E1(x) = ∆V +V p, E2(x) =
γ
|x|2 V (x).

We have the validity of the following expansion

(4.15)
∫

B(ξ1, η
k )

E2Z1ε dx = γµk−2− 4
N−4

(∫

RN
U(y)Z(y)dy

)(
1+

1
k

Θk(µ)
)

.

Indeed, we have by definition

(4.16)
∫

B(ξ1, 2η
k )

E2Z1ε dx = ε−
N−2

2

k

∑
j=1

∫

B(ξ1, 2η
k )

γ
|x|2 Vjε(x)Z(

x−ξ1

ε
)
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The main term is the integral of γ
|x|2 V1ε Z1ε over the ball B(ξ1,

η
k ):

ε−
N−2

2

∫

B(ξ1, η
k )

γ
|x|2 V1ε Z(

x−ξ1

ε
) = ε2

∫

B(0, η
εk )

γ
|εy+ξ1|2 U(y)Z(y)

= ε2[
∫

B(0, η
εk )

U(y)Z(y)dy+
∫

B(0, η
εk )

(
1

|εy+ξ1|2 −1)U(y)Z(y)dy]

= µk−2− 4
N−4

∫

RN
U(y)Z(y)dy−µk−2− 4

N−4

∫

RN\B(0, η
εk )

U(y)Z(y)dy

+ µk−2− 4
N−4 ε2

∫

B(0, η
εk )
|y|2U(y)Z(y)dy(1+o(1)Θk(µ))(4.17)

where o(1)→ 0 as k → ∞ and Θk(µ) is a continuous function in the variable µ , uniformly bounded as
k → ∞. Observe now that

ε2
∫

B(0, η
εk )
|y|2U(y)Z(y)dy = C





ε
k Θk(µ) if N = 5,

ε2| logk|Θk(µ) if N = 6,
ε2Θk(µ) if N > 6

and that ∫

RN\B(0, η
εk )

U(y)Z(y)dy = (εk)N−4Θk(µ).

Thus we conclude that

(4.18) ε−
N−2

2

∫

B(ξ1, η
k )

γ
|x|2 V1ε Z(

x−ξ1

ε
) = µk−2− 4

N−4 (
∫

RN
U(y)Z(y)dy)

(
1+

1
k

Θk(µ)
)

Now we estimate the other terms in (4.16). For instance consider j = 2. Performing the change of variables
x−ξ1

ε = y we have
∣∣∣∣ε−

N−2
2

∫

B(ξ1, η
k )

γ
|x|2 V2ε Z(

x−ξ1

ε
)
∣∣∣∣ =

∣∣∣∣ε2
∫

B(0, η
εk )

U(y+ ε−1(ξ1−ξ2))Z(y)
∣∣∣∣

≤Cε2(kε)N−2
∫ η

εk

0

tN−1

(1+ t)N−2 ≤Ck−2− 4
N−4 k−2,

where we used the fact that, if |y| ≤ η
εk then |U(y+ ε−1(ξ1−ξ2))| ≤C(εk)N−2.

We thus conclude that

ε−
N−2

2

∫

B(ξ1, η
k )

γ
|x|2 V2ε Z(

x−ξ1

ε
) = k−2k−2− 4

N−4 Θk(µ)

and hence

ε−
N−2

2

∫

B(ξ1, η
k )

γ
|x|2

(
∑
j 6=1

Vjε(x)

)
Z(

x−ξ1

ε
) = k−2− 2

N−4 k−1Θk(µ).

This last fact, together with (4.12) and (4.18), give the validity of (4.15).
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Let us now evaluate
∫

B(ξ1, η
k ) E1Z1ε . Recall that

E1(x) = [V p−
k

∑
j=1

V p
j ]

In the ball B(ξ1,
η
k ), we perform the natural change of variables x−ξ1

ε = y, that gives

V (x) = ε−
N−2

2

[
U(y)+ ∑

j 6=1
U(y+ ε−1(ξ1−ξ j))

]
.

Define Ũ(y) = ∑ j 6=1 U(y+ ε−1(ξ1−ξ j)). Thus,

I =
∫

B(0, η
εk )

(
[U +Ũ ]p− [U p + ∑

j 6=1
U p(y+ ε−1(ξ1−ξ j))]

)
Z(y)dy

= p
(∫

B(0, η
εk )

U p−1ŨZ(y)dy+
∫

B(0, η
εk )

[(U− sŨ)p−1−U p−1]ŨZ(y)dy

+
∫

B(0, η
εk )

∑
j 6=1

U p(y+ ε−1(ξ1−ξ j))Z(y)dy

)
= I1 + I2 + I3(4.19)

We start with the observation that

I1 = εN−2

(
∑
j 6=1

1
|ξ1−ξ j|N−2

)[
p

∫

B(0, η
εk )

U p−1Z
]
(1+(εk)2O(1))

= pΓN(
∫

RN
U p−1Z)(εk)N−2 +(εk)NΘk(µ)

=
1

k2+ 4
N−4

[
µN−3 pΓN(

∫

RN
U p−1Z)+

1

k
4

N−4
Θk(µ)

]
.(4.20)

Let us now evaluate I2. We use the inequality |(a+b)s−as| ≤C|b|s, for any 0 < s < 1, to get first that,
for y ∈ B(0, η

εk ), one has
Ũ(y)≤Ck(εk)N−2.

Thus we get

I2 = εN−2k(εk)N−2(
∫ 1

εk

0

tN−1

(1+ t)N+2 dt)Θk(µ) = k−2− 4
N−4 k−

2
N−4 Θk(µ).

In an analogous way one gets

I3 = k−2− 4
N−4 k−

2
N−4 Θk(µ).

With this we conclude that

(4.21)
∫

B(ξ1, η
ε )

E1Z1k =
1

k1+ 2
N−4

[
µN−3 pΓN(

∫

RN
U p−1Z)+

1
k

Θk(µ)
]
.

Estimates (4.15) and (4.21) give the computation of the term A in (4.14).
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We will next check that B is smaller than A in (4.14). We write
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1EZ1ε =

∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E1Z1ε −

∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E2Z1ε

Arguing as in the proof of estimate (4.15) (see in particular (4.17)), we have that
∣∣∣∣
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E2Z1ε

∣∣∣∣≤Cε2
∫ 2η

kε

η
kε

tN−1

(1+ t2)N−2 ≤Cε2(kε)N−2

thus we get

(4.22)
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E2Z1ε = k−2− 4

N−2 ε2Θk(µ).

On the other hand, arguing as in (4.19), (4.20) and (4.21) we have
∣∣∣∣
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E1Z1ε

∣∣∣∣≤C(εk)N−2
∫ 2η

kε

η
kε

tN−1

(1+ t2)
N+2

2
≤Cε2(kε)N−2

thus we get

(4.23)
∫

B(ξ1, 2η
k )\B(ξ1, η

k )
ζ1E1Z1ε = k−2− 4

N−2 ε2Θk(µ).

From (4.22) and (4.23) we conclude that

(4.24) B = k−4− 8
N−4 Θk(µ).

Estimate (4.10) thus follows from (4.14), (4.15), (4.21) and (4.24).
Finally, since (see (2.2) and (3.20))

Z(y) =
(

∂
∂ µ

Uµ(y)
)

µ=1
, where Uµ(y) = αN(

µ
(µ2 + |y|2) )

N−2
2

we have that
∫

RN
U(y)Z(y) =

(
∂

∂ µ

∫

RN
U2

µ

)

µ=1
, and

∫

RN
U p−1(y)Z(y) =

(
∂

∂ µ

∫

RN
U p

µ

)

µ=1

Thus we have the validity of (4.11) because
∫

RN
U2

µ = µ2
∫

RN
U2, and

∫

RN
U p

µ = µ
N−2

2

∫

RN
U p.

Proof of (4.12). Referring to (4.2), we first observe that
∣∣∣∣
∫

RN
p(V p−1ζ1−V p−1

1ε )φ1Z1ε

∣∣∣∣≤C
∣∣∣∣
∫

B(ξ1, 2η
k )

(V p−1ζ1−V p−1
1ε )φ1Z1ε

∣∣∣∣

≤C
∫

B(ξ1, 2η
k )

V p−1
1ε φ1

(
∑
j>1

Vjε

)
≤C‖φ1‖1∗

∫

B(ξ1, 2η
k )

V p
1ε

(
∑
j>1

Vjε

)
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(performing the change of variables εy = x−ξ1)

= C‖φ1‖1∗
∫

B(0, 2η
εk )

U p

(
∑
j>1

(
1

(1+ |y− ε−1(ξ j−ξ1)|2 )
N−2

2

)
≤C(εk)N−2‖φ1‖1∗

where we have used the fact that in the region we are considering we have ∑ j>1( 1
(1+|y−ε−1(ξ j−ξ1)|2 )

N−2
2 ≤

C(εk)N−2. Collecting the above estimates, we conclude that

(4.25)
∫

RN
p(V p−1ζ1−V p−1

1ε )φ1Z1ε = k−2− 4
N−4− 2

(N−4) Θk(µ)

where Θk(µ) denotes a continuous function of µ , which is uniformly bounded as k→ ∞. To conclude the
estimate (4.12), we observe that

∣∣∣∣
∫

RN
ζ1

γ
|x|2 ζ1φ1Z1ε

∣∣∣∣≤C‖ζ1
γ
|x|2 ζ1φ1‖ 2N

N+2
‖Z1ε‖ 2N

N−2
≤C‖ζ1

γ
|x|2 ζ1φ1‖ 2N

N+2
.

We next estimate ‖ γ
|x|2 ζ1φ1‖ 2N

N+2
. A direct use of Holder inequality gives

‖ γ
|x|2 ζ1φ1‖ 2N

N+2
≤C(

∫

B(ξ1, c
k )
|φ1|

2N
N+2 )

N+2
2N ≤C(k−N)

2
N ‖φ1‖ 2N

N−2
.

Thus we conclude

(4.26)
∣∣∣∣
∫

RN
ζ1

γ
|x|2 ζ1φ1Z1ε

∣∣∣∣≤Ck−3− 6
N−4

Estimate (4.12) follows directly from (4.25) and (4.26).

Proof of (4.13). Since (3.15) holds, we get
∣∣∣∣
∫

ζ1 p|V |p−1ψ(φ1)Z1ε

∣∣∣∣≤C‖ζ1 p|V |p−1ψ(φ1)‖ 2N
N+2
‖Z1ε‖ 2N

N−2
≤C‖ζ1 p|V |p−1‖ N

2
‖ζ1ψ(φ1)‖ 2N

N−2

(4.27) ≤Ck−2− 8
N−4 .

Referring to (4.3), we have that

|ζ1N(φ1)| ≤Cζ1V p−2
1ε (∑

j
|φ j|2 + |ψ|2)

Thus, we get
∣∣∣∣
∫

RN
ζ1N(φ1)Z1,ε

∣∣∣∣≤C

∣∣∣∣∣
∫

B(ξ1, η
k )

ζ1V p−1
1ε

(
∑

j
|φ j|2 + |ψ|2

)∣∣∣∣∣

≤C‖V (p−1)
1ε ‖ N

2

[
‖ζ1φ1‖2

2N
N−2

+ ∑
j 6=1
‖ζ1φ j‖2

2N
N−2

+‖ζ1ψ‖2
2N

N−2

]
.
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Observe now that ‖V (p−1)
1ε ‖ N

2
≤C, and ‖ζ1φ1‖2

2N
N−2

≤C‖φ1‖2
1∗, while for j 6= 1, one has

‖ζ1φ j‖ 2N
N−2

≤C‖φ j‖ j∗
(∫

B(ξ1, η
k )

(
ε

ε2 + |x−ξ j|2 )N
)N−2

2
≤C(εk)

N−2
2 ‖φ j‖ j∗ ≤Ck−1− 2

N−4 ‖φ1‖1∗.

Collecting the above estimates and using (3.15), we get

(4.28)
∫

RN
ζ1N(φ1)Z1,ε = k−2− 12

N−4 Θk(µ),

where Θk(µ) is a continuous function of µ , uniformly bounded as k → ∞.
Estimate (4.13) follows directly from (4.27) and (4.28).

This concludes the proof of the Theorem.

5. APPENDIX1: PROOF OF LEMMA 3.1

Proof of Lemma 3.1. The result stated in Lemma 3.1 will be a consequence of a corresponding linear result
and an application of the Contraction Mapping Principle. Thus let us first consider the linear problem

(5.1) ∆ψ− γ
|x|2 ψ = h in RN \{0},

where h belongs to the space L
2N

N+2 defined in (3.18). Hardy Inequality guarantees that if u ∈D1,2(RN),
then u

|x| ∈ L2(RN) and

(5.2)
(

N−2
2

)2 ∫

RN

u2

|x|2 dx≤
∫

RN
|∇u|2.

For any γ >−(N−2
2 )2, we define the Hilbert space Dγ given by D1,2(RN) equipped with the scalar product

(u,v)γ =
∫

RN
[∇u∇v+ γ

uv
|x|2 ].

We denote with ‖·‖γ the corresponding norm and with ‖·‖ the natural norm in D1,2(RN). Inequality (5.2)
gives that

(1+
γ

CN
)

1
2 ‖u‖ ≤ ‖u‖γ

where CN =
(N−2

2

)2
. Observe that

(5.3) ‖u‖
L

2N
N−2 (RN)

≤ [S(1+
γ

CN
)]−1‖u‖γ

where S is the best Sobolev constant of the embedding D1,2(RN) ↪→ L
2N

N−2 (RN).
Let us denote with Tγ the embedding Tγ : Dγ ↪→ L

2N
N−2 (RN). Then the adjoint operator T ∗γ : L

2N
N+2 (RN)→

Dγ defined as

ψ = T ∗γ (h) ⇔ ψ is the unique solution of ∆ψ− γ
|x|2 ψ = h in RN \{0}
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is a continuous operator and
‖T ∗γ (h)‖γ ≤C‖h‖

L
2N

N+2
.

Observe furthermore that if h(x) = |x|−N−2h( x
|x|2 ) then the function ψ̃(x) = |x|−N+2ψ( x

|x|2 ) also satisfies

∆ψ̃ − γ
|x|2 ψ̃ = h in RN \ {0}. By uniqueness we get that ψ(x) = |x|−N+2ψ( x

|x|2 ). In a very similar way,
one can show that if h(Rkx) = h(x), where Rk denotes the rotation in the first two variables of the angle
2π
k , also ψ is invariant under that rotation. And finally, if h is even in the last (N−2) variable, we also get

that ψ is. We thus conclude that, in case h ∈L
2N

N+2 , then ψ = T ∗γ (h) ∈L
2N

N−2 , thanks to (5.3).

Let us go back to problem (3.10): Problem (3.10) is equivalent to
(5.4)

ψ =−T ∗γ

(
(p|V |p−1− γ

|x|2 )∑
j
(1−ζ j)φ j +(1−Σk

j=1ζ j)( p|V |p−1ψ + E +N(Σk
j=1φ j +ψ))

)
:= M (ψ)

Observe furthermore that if ψ ∈L
2N

N−2 , then M (ψ) ∈L
2N

N−2 .
We will see that the operator M is a contraction mapping in the set

X = {ψ ∈L
2N

N−2 : ‖ψ‖ 2N
N−2

≤ cg(k)}

for some c > 0, where g(k) is defined in (3.14).
Referring to (5.4), Holder inequality gives

p
∫

RN
|(1−∑

j
ζ j)V p−1ψ| 2N

N+2 ≤
(∫

RN
|(1−∑

j
ζ j)V p−1|N+2

4

) 4
N+2 (∫

RN
|ψ| 2N

N−2

) N−2
N+2

Arguing as in the argument to get (2.15), we see that
(∫

RN
|(1−∑

j
ζ j)V p−1|N+2

4

) 4
N+2

≤Ck

(∫

|x−ξ j |> η
k

ε N+2
2

|x−ξ j|N+2

) 4
N+2

≤C ε2 k1+ 8
N+2 ≤Ck−1− 4

N−4 + 8
N+2

We thus conclude that

(5.5) ‖p(1−∑
j

ζ j)V p−1ψ‖ 2N
N+2

≤ o(1)‖ψ‖ 2N
N−2

with o(1)→ 0 as k → ∞.
We next estimate the 2N

N+2 -norm of the term pV p−1 ∑ j(1− ζ j)φ j. A direct use of Holder inequality
gives

‖pV p−1 ∑
j
(1−ζ j)φ j‖ 2N

N+2
≤Ck‖pV p−1(1−ζ1)φ1‖ 2N

N+2
≤Ck‖φ1‖1∗‖V p−1(1−ζ1)V1ε‖ 2N

N+2

Arguing as in the estimate (2.13), we get

k‖V p−1(1−ζ1)V1ε‖ 2N
N+2

≤Ck−
6

N−4
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from which we conclude that

(5.6) ‖pV p−1 ∑
j
(1−ζ j)φ j‖ 2N

N+2
≤Ck−

6
N−4 ‖φ1‖1∗.

On the other hand, we write

|(1−∑
j

ζ j)N(∑
j

φ j +ψ)| ≤C|(1−∑
j

ζ j)|
(

∑
j
|φ̃ j|p + |ψ|p

)
,

from which we easily get

‖(1−∑
j

ζ j)N(∑
j

φ j +ψ)‖ 2N
N+2

≤C

[
∑

j
‖(1−∑

i
ζi)|φ j|p‖ 2N

N+2
+‖(1−∑

i
ζi)|ψ|p‖ 2N

N+2

]

Let us fix j = 1. Holder inequality gives

∫ [
(1−∑

i
ζi)|φ1|p

] 2N
N+2

≤C‖φ1‖
2N

N+2
1∗

∫

RN\B(ξ1, η
k )

V
2N

N−2
1ε ≤C(εk)N‖φ1‖

2N
N+2
1∗

from which we conclude that

‖(1−∑
i

ζi)|φ1|p‖ 2N
N+2

≤Ck−1− 6
N−4 ‖φ1‖1∗.

On the other hand, a direct use of Holder inequality gives

‖(1−∑
i

ζi)|ψ|p‖ 2N
N+2

≤C‖ψ‖p
2N

N−2
.

We thus conclude that

(5.7) ‖(1−∑
j

ζ j)N(∑
j

φ̃+ψ)‖ 2N
N+2

≤C
[

1

k
6

N−4
‖φ1‖p

2N
N−2

+‖ψ‖p
2N

N−2

]
.

Next we shall estimate ‖ γ
|x|2

(
∑k

j=1(1−ζ j)φ j

)
‖ 2N

N+2
. We start with the observation

‖ γ
|x|2

(
k

∑
j=1

(1−ζ j)φ j

)
‖ 2N

N+2
≤Ck‖ γ

|x|2 (1−ζ1)φ1‖ 2N
N+2

≤Ck‖φ1‖1∗‖ γ
|x|2 (1−ζ1)V1ε‖ 2N

N+2

Arguing as in (2.14) we get that ‖ γ
|x|2 (1−ζ1)V1ε‖ 2N

N+2
≤Ck−3− 2

N−4 . Thus, we conclude that

(5.8) ‖ γ
|x|2

(
k

∑
j=1

(1−ζ j)φ j

)
‖ 2N

N+2
≤Ck−2− 2

N−4 ‖φ1‖ 2N
N−2

¿From estimates (5.5), (5.6), (5.7) and (5.8) we conclude that M defined in (5.4) maps X into itself.

Next we will show that M is a contraction mapping. Observe that

|M (ψ1)−M (ψ2)| ≤C

[
p|V |p−1(1−∑

i
ζi)|ψ1−ψ2|+(1−∑

i
ζi)|N(φ +ψ1)−N(φ +ψ2)|

]
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Arguing as in (5.5), we easily get

(5.9) ‖p|V |p−1(1−∑
i

ζi)|ψ1−ψ2|‖ 2N
N+2

≤Co(1)‖ψ1−ψ2‖ 2N
N−2

with o(1)→ 0 as k → ∞. On the other hand,

(1−∑
i

ζi)|N(φ +ψ1)−N(φ +ψ2)| ≤C(1−∑
i

ζi)
[
(|V +φ +ψ1|p−|V +φ +ψ2|p)+ p

(|V |p−1|ψ1−ψ2|
)]

Thanks to the assumptions on φ , we get that |V +φ +ψ1|p−|V +φ +ψ2|p ≤C|V |p−1|ψ1−ψ2|, and then
arguing again as in (5.5) we can conclude that

(5.10) ‖(1−∑
i

ζi)|N(φ +ψ1)−N(φ +ψ2)|‖ 2N
N+2

≤Co(1)‖ψ1−ψ2‖ 2N
N−2

with o(1)→ 0 as k → ∞. We thus get from (5.9) and (5.10) that M is a contraction in X .

Consider now the function ψ1 := ζ1ψ . Then ψ1 solves

∆ψ1− γ
|x|2 ψ1 = H in RN \{0}

where
H(x) =−p(1−∑

j
ζ j)|V |p−1ψ1− (p|V |p−1− γ

|x|2 )ζ1 ∑
j
(1−ζ j)φ j

(5.11) −ζ1(1−∑
j

ζ j)(E +N(φ))−∇ψ∇ζ1−∆ζ1ψ.

Since ψ1 solves the above equation, the previous argument gives

(5.12) ‖ψ1‖ 2N
N−2

≤C‖H‖ 2N
N+2

To get our estimate (3.15), we just need to evaluate the L
2N

N+2 norm of the function h.
We start with the observation that, arguing as in (5.5), we get

(5.13) ‖p(1−∑
j

ζ j)|V |p−1ψ1‖ 2N
N+2

≤Ck−1− 4
N−4 + 8

N+2 ‖ψ1‖ 2N
N+2

Let us now consider the term (p|V |p−1− γ
|x|2 )ζ1 ∑ j(1−ζ j)φ j. Assume first that j 6= 1, then

∣∣|V |p−1ζ1(1−ζ j)φ j
∣∣≤C‖φ j‖∗ j

∣∣|V |p−1ζ1(1−ζ j)Vjε
∣∣

Thus we get, using Holder inequality,

‖|V |p−1ζ1(1−ζ j)φ j‖ 2N
N+2

≤C‖φ1‖1∗‖V p−1ζ1‖ N
2
‖ζ1Vjε‖ 2N

N−2

and, taking into account that ‖V p−1ζ1‖ N
2
≤C while ‖ζ1Vjε‖ 2N

N−2
≤C (εk)N−2

| j−1|N−2 , we get

‖|V |p−1ζ1(1−ζ j)φ j‖ 2N
N+2

≤C
(εk)N−2

| j−1|N−2 ‖φ1‖1∗
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and hence
‖|V |p−1ζ1 ∑

j 6=1
(1−ζ j)φ j‖ 2N

N+2
≤Ck−1− 2

N−4 ‖φ1‖1∗

On the other hand, if j = 1, we get
∣∣p|V |p−1ζ1(1−ζ1)φ1

∣∣≤C‖φ1‖∗1ζ1(1−ζ1)V
p

1ε

and hence
‖p|V |p−1ζ1(1−ζ1)φ1‖ 2N

N+2
≤Ck−1− 6

N−4 ‖φ1‖∗1.

Now, arguing as in (5.8), we get that

‖ γ
|x|2 ζ1

(
k

∑
j=1

(1−ζ j)φ j

)
‖ 2N

N+2
≤Ck−2− 2

N−4 ‖φ1‖∗1

Collecting the above estimates we conclude that

(5.14) ‖(p|V |p−1− γ
|x|2 )ζ1 ∑

j
(1−ζ j)φ j‖ 2N

N+2
≤Ck−1− 2

N−4 ‖φ1‖1∗.

Next we evaluate ‖ζ1(1−∑ j ζ j)E‖ 2N
N+2

. A first observation is that ‖ζ1(1−∑ j ζ j)E‖ 2N
N+2

≤ C‖ζ1(1−
∑ j ζ j)E1‖ 2N

N+2
. Arguing as in (2.8), one has that in the region where ζ1(1−∑ j ζ j) 6= 0, we have

|E1(x)| ≤Cε−
N+2

2
(εk)N−2

(1+ | x−ξ1
ε |2)

≤Cε
N+2

2 kN−2

This gives immediately that

(5.15) ‖ζ1(1−∑
j

ζ j)E‖ 2N
N+2

≤Cε
N+2

2 kN−2k−
N+2

2 ≤Ck−4− 6
N−4

Next consider the nonlinear term ζ1(1−∑ j ζ j)N(φ). In the region where ζ1(1−∑ j ζ j) 6= 0, we have

|N(φ)| ≤C

[
|V |p−2 ∑

j
|φ j|2 + |ψ1|p

]
≤C

[
V p

1ε‖φ1‖2
1∗+ |ψ1|p

]

Thus

(5.16) ‖ζ1(1−∑
j

ζ j)N(φ)‖ 2N
N+2

≤C
[
‖φ1‖2

1∗+‖ψ1‖p
2N

N−2

]

Using the inequality ‖ f g‖ 2N
N+2

≤C‖ f‖N
2
‖g‖ 2N

N−2
, we get

(5.17) ‖∆ζ1ψ‖ 2N
N+2

≤C‖∆ζ1‖ N
2
‖ψ1‖ 2N

N−2
≤Ck−2 N−2

N ‖ψ1‖ 2N
N−2

Using now the inequality ‖ f g‖ 2N
N+2

≤ ‖ f‖2‖g‖N , we get

‖∇ζ1∇ψ‖ 2N
N+2

≤ ‖ζ1∇ψ‖2‖∇ζ1‖N .
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Now, a direct consequence of the definition of ψ1 gives that ‖ζ1∇ψ‖2 ≤C‖ψ1‖H1 ≤C′‖ψ1‖ 2N
N−2

, which
in particular implies that

(5.18) ‖∇ζ1∇ψ‖ 2N
N+2

≤Ck−
N−1

N ‖ψ1‖ 2N
N−2

Collecting estimates (5.13), (5.14), (5.15), (5.16), (5.17), (5.18), inequality (5.12) gives

‖ψ1‖ 2N
N−2

≤C
[
o(1)‖ψ1‖ 2N

N−2
+ k−4− 6

N−4 + k−1− 2
N−4 ‖φ1‖1∗+‖φ1‖2

1∗
]

where o(1)→ 0 as k → ∞. This gives the validity of estimate (3.15).
This concludes the proof of the result. ¤

6. APPENDIX 2

We start with the proof of

Proof of Lemma 3.2. Let us define φ̃(y) = ε N−2
2 φ(εy + ξ1) and h̃(y) = ε N+2

2 h(εy + ξ1) and consider the
equivalent problem for φ̃ and h̃ given by

(6.1) ∆φ̃ + pU p−1φ̃ = h̃+ cU p−1(y)Z(y) in RN ,
∫

RN
U p−1Zφ̃ = 0

With no loss of generality we may assume that

(6.2)
∫

RN
h̃U p−1Z = 0.

The evenness of the function h in the last (N−2) variables implies that
∫

RN
h̃

∂U
∂y j

= 0, for all j = 3, . . . ,N.

We want to show that also
∫
RN h̃ ∂U

∂y j
= 0, for j = 1,2. Consider the vector integral

I =
∫

RN
h̃

[
∂U
∂y1
∂U
∂ y2

]
= cN

∫

RN

h̃(y)

(1+ |y|2)N
2

ȳ dy, where ȳ =
[

y1
y2

]

Changing the variable ȳ into e
2π
k iȳ and using the rotational symmetry of h̃, we get e

2π
k iI = I, thus I = 0

since k 6= 1.

Let us consider the subspace

X = {φ̃ ∈D1,2(RN) :
∫

RN
φ̃Z = 0,

∫

RN
φ̃

∂U
∂y j

= 0, for all j = 1, . . . ,N}

which is well defined thanks to the Sobolev’s embedding D1,2(RN) ↪→ L
2N

N−2 (RN).
Since

∫
RN h̃Z = 0,

∫
RN h̃ ∂U

∂y j
= 0, for all j = 1, . . . ,N, finding weak solution to (6.1) corresponds

to finding φ ∈ X such that
∫

RN
∇φ̃∇Ψ− p

∫

RN
U p−1φ̃Ψ+

∫

RN
h̃Ψ = 0 for all Ψ ∈ X .
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Now, for h̃ ∈ L
2N

N+2 (RN), let us denote by φ̃ = A(h̃) ∈ H the unique solution of the problem

(6.3)
∫

RN
∇φ̃∇ψ +

∫

RN
h̃ψ = 0 for all ψ ∈ X ,

given by Riesz’s theorem. Then A defines a continuous linear map between L
2N

N+2 (RN) and X . Problem
(6.1) can be formulated as

(6.4) φ̃ −A( pU p−1φ̃ ) = A(h̃), φ̃ ∈ X .

The map φ̃ ∈ X 7→ U p−1φ̃ ∈ L
N
2 (RN) is easily seen to be compact, thanks to local compactness of

Sobolev’s embeddings and the fact that U p−1 = O(|y|−4).

Hence, Fredholm’s alternative applies to problem (6.1): for h̃ = 0, (6.1) reduces to (∆+ pU p−1)(φ̃) = 0
with φ̃ ∈ X . Elliptic regularity yields that φ̃ is also bounded, and hence it is a linear combination of the
functions Z and ∂U

∂y j
for j = 1, . . . ,k. Then, the definition of X implies that necessarily φ̃ = 0. We conclude

that Problem (6.1) is uniquely solvable in X for any h̃. Besides,

‖∇φ̃‖L2(RN) +‖φ̃‖
L

2N
N−2 (RN)

≤ C‖h̃‖ 2N
N+2

.

Arguing by uniqueness, as in the proof of Lemma 3.1, we find that φ̃ satisfies the corresponding symme-
tries.

It remains to prove that φ satisfies estimate (3.21). In terms of φ̃ , this is equivalent to show that

(6.5) ‖(1+ |y|N−2)φ̃‖∞ ≤C‖h̃‖ 2N
N+2

.

Being φ̃ a solution to (6.1), local elliptic estimates yield

‖φ̃‖L∞(B1) ≤C‖ h̃‖ 2N
N+2)

.

Now, let us consider Kelvin’s transform of φ̃ ,

φ̂(y) = |y|2−N φ̃(|y|−2y)

Then we check that φ̂ satisfies the equation

(6.6) ∆φ̂ + pγU p−1(y)φ̂ = ĥ in RN \{0},
where ĥ(y) = |y|−N−2h̃(|y|−2y). We observe that

‖ĥ‖
L

2N
N+2 (B(0,2))

= ‖ h̃‖
L

2N
N+2 (|y|> 1

2 )
≤C‖ h̃‖ 2N

N+2
.

and
‖∇φ̂‖L2(Rn) +‖φ̂‖ 2N

N−2
= ‖∇φ̃‖L2(RN) +‖φ̃‖ 2N

N−2
.

Then we get, from elliptic estimates applied to equation (6.6),

‖φ̂‖L∞(B1) ≤C‖ĥ‖
L

2N
N+2 (B2)

≤C‖ h̃‖ 2N
N+2

.

But
‖φ̂‖L∞(B1) = ‖|y|N−2φ̃ ‖L∞(RN\B1),

Combining the above estimates, relation (3.21) follows.
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The proof is complete. ¤

We have now the tools to prove Lemma 3.3.

Proof of Lemma 3.3. Let T be the linear operator defined by Lemma 3.2. Then we can set up Problem
(3.22) as the fixed point problem
(6.7)

φ1 = T
(

p(|V |p−1ζ1−|V1ε |p−1)φ1 +ζ1[ p|V |p−1ψ(φ)− γ
|x|2 φ1 +E +N(φ1 +Σi 6=1φi +ψ)]

)
:= F (φ1).

Observe first that

(6.8) ‖ζ1E‖ 2N
N+2

≤C f (k), where f (k) :=





k−5 if N = 5,

k−4| logk|N+2
2N if N = 6,

k−1− 6
N−4 if N ≥ 7,

as proved in Proposition 2.1. We show that the map F (φ1) is a Contraction Mapping in the ball

(6.9) X = {φ ∈L
2N

N−2 : ‖φ‖1∗ ≤ α f (k)},
for some constant α large, but independent of k.

Let us consider first the term pζ1|V |p−1ψ(φ1). Holder inequality and estimate (3.15) give

(6.10) ‖pζ1|V |p−1ψ(φ1)‖ 2N
N+2

≤C‖ζ1|V |p−1‖ N
2
‖ζ1ψ‖ 2N

N−2
≤C

[
k1− 2

N−4 ‖φ1‖1∗+‖φ1‖2
1∗

]

where o(1)→ 0 as k → ∞.
Consider now the term p(|V |p−1ζ1−|V1ε |p−1)φ1. First we observe that

∫

RN
|p(|V |p−1ζ1−|V1ε |p−1)φ1|

2N
N+2 ≤C‖φ1‖

2N
N+2
1∗

∫

B(ξ1, η
k )
|V p−1

1ε

(
∑
j>1

Vjε

)
| 2N

N+2

Thus, we get

(6.11) ‖p(|V |p−1ζ1−|V1ε |p−1)φ1‖ 2N
N+2

≤C‖φ1‖1∗‖V1ε‖ N
2
‖∑

j>1
Vjε‖ 2N

N−2
≤C‖φ1‖1∗k−

2
N−4 .

We next estimate ‖ γ
|x|2 ζ1φ1‖ 2N

N+2
. A direct use of Holder inequality gives

(6.12) ‖ γ
|x|2 ζ1φ1‖ 2N

N+2
≤C(

∫

B(ξ1, c
k )
|φ1|

2N
N+2 )

N+2
2N ≤C(k−N)

2
N ‖φ1‖ 2N

N−2
.

Finally, we are left with ‖ζ1N(φ1 +∑ j 6=1 φ j +ψ)‖ 2N
N+2

. We have
∣∣∣∣∣N(φ1 + ∑

j 6=1
φ j +ψ)

∣∣∣∣∣≤C

[
|φ1|p + ∑

j>1
|φ j|p +ψ|

]
.
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Arguing as in (6.10)-(6.11), we easily get thanks to (3.15)

‖ζ1|V |p−1|φ +ψ|‖ 2N
N+2

≤C

[
‖φ1‖p

2N
N−2

+ ∑
j>1
‖ζ1φ j‖p

2N
N−2

+‖ζ1ψ‖p
2N

N−2

]

(6.13) ≤C
[
‖φ1‖p

1∗+o(1)‖φ1‖p
1∗+‖φ1‖2p

1∗
]
,

where o(1)→ 0 as k→∞. Thus consequence of estimates (6.10)-(6.13) is that the map F defined in (6.7)
maps X into X . Next we will show that F is a contraction mapping in X . This will conclude our proof.

Observe that
∣∣F (φ 1

1 )−F (φ 2
1 )

∣∣≤C
[
(|V |p−1ζ1−|V1ε |p−1)|φ 1

1 −φ 2
1 |+ζ1|V |p−1|ψ(φ 1)−ψ(φ 2)|

+
γ
|x|2 |φ

1
1 −φ 2

1 |+ |N(φ 1 +ψ(φ 1))−N(φ 2 +ψ(φ 2))|
]

Arguing as in (6.10) we get

‖(|V |p−1ζ1−|V1ε |p−1)|φ 1
1 −φ 2

1 |+ζ1|V |p−1||ψ(φ 1)−ψ(φ 2)|‖ 2N
N+2

≤Ck−1− 4
N(N−4) (‖φ 1−φ 2‖ 2N

N−2
+‖ψ(φ 1)−ψ(φ 2)‖ 2N

N−2
)≤ o(1)‖φ 1

1 −φ 2
1 ‖ 2N

N−2
,

where o(1)→ 0 as k → ∞. As in (6.12) we get

‖ γ
|x|2 (φ 1

1 −φ 2
1 )‖ 2N

N+2
≤ o(1)‖φ 1

1 −φ 2
1 ‖ 2N

N−2
,

where o(1)→ 0 as k → ∞. Finally, denote by f (t) = t p and φ̂ i = φ i +ψ(φ i). Then we have

‖N(φ 1 +ψ(φ 1))−N(φ 2 +ψ(φ 2)‖ 2N
N+2

= ‖
(∫ 1

0

d
dt

f (V + φ̂ 2 + t(φ̂ 1− φ̂ 2))
)
− f ′(V )(φ̂ 1− φ̂ 2)‖ 2N

N+2

≤‖
∫ 1

0
[ f ′(V + φ̂ 2 +t(φ̂ 1− φ̂ 2))− f ′(V )](φ̂ 1− φ̂ 2)‖ 2N

N+2
≤C‖φ̂ 1

1 − φ̂ 2
1 ‖ 2N

N−2
sup

‖z‖ 2N
N−2

≤r
‖ f ′(V +z)− f ′(V )‖N

2
,

If we choose the number α in the definition of the set X (6.9) small, but fixed independently of k, we can
obtain that

‖N(φ 1 +ψ(φ 1))−N(φ 2 +ψ(φ 2)‖ 2N
N+2

≤ 1
2
‖φ̂ 1

1 − φ̂ 2
1 ‖ 2N

N−2

Thus we conclude that F is a contraction map in X .
¤
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