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Abstract

We prove that Godeaux–Reid surfaces with torsion group Z/3 have topological
fundamental group Z/3. For this purpose, we describe degenerations to stable KSBA
surfaces with one 1

4(1, 1) singularity, whose minimal resolution are elliptic fibrations
with two multiplicity 3 fibres and one I4 singular fibre. We study special such
degenerations which have an involution, describing the corresponding Campedelli
double plane construction. We also find some stable rational degenerations, some
of which have more singularities, and one of which has a single 1

9(1, 2) singularity,
the minimal possible index for such a surface. Finally, we do the analogous study
for the Godeaux surfaces with torsion Z/4.

Contents

1 Introduction 1

2 Reid’s construction of Z/3-Godeaux surfaces 3

3 A stable Z/3-Godeaux with 1
4
(1, 1) singularity 9

4 On Z/4-Godeaux surfaces 17

1 Introduction

Godeaux surfaces are surfaces of general type with pg = q = 0 and K2 = 1. Such surfaces
have been a classical object of study for a long time. We refer to [1] and [3] for surveys
of differing vintage. In [14], Miyaoka showed among other things, that Godeaux surfaces
have cyclic torsion group H2(X,Z)tors of order at most five, and Reid [16] gave explicit
constructions of the surfaces and their moduli spaces when the torsion has order 3, 4
or 5. In the two latter cases, it is clear from Reid’s construction that the topological
fundamental group is isomorphic to the torsion group, but the fundamental group in the
Z/3 case has not been computed before. In this article, we refer to such surfaces as
Godeaux–Reid surfaces, (or simply Z/3-Godeaux surfaces). Our main result is that the
topological fundamental group of the Godeaux–Reid surface is indeed Z/3.
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We consider KSBA stable degenerations [11] of certain Godeaux–Reid surfaces with an
involution. Specifically, we study a boundary divisor corresponding to Godeaux surfaces
with a single 1

4
(1, 1) singularity. The minimal resolution of those with an involution are

elliptic fibrations with two multiplicity 3 fibres and one I4 singular fibre, and we can
compute the topological fundamental group explicitly.

Theorem 1.1. The topological fundamental group of the Godeaux–Reid surface is Z/3.

The presence of an involution, which was only recently discovered by Reid [18], is
crucial in the configuration of the singular fibres of the elliptic fibration, which in turn is
important for the computation of the fundamental group. We also analyse the quotient,
describing the Godeaux surface as a Campedelli double plane, see [2] and [10].

Theorem 1.2. The Godeaux–Reid surface with an involution is a Campedelli double
plane. That is, the quotient gives a double cover of P2 branched in a curve of degree 10
with five (3, 3) points and one 4-point.

When the Godeaux surface is stable with a single 1
4
(1, 1) singularity and an involution,

the branch curve breaks into two quintics, now with four (3, 3)-points, one 4-point and
a worse singularity of the form {(y2 − x2)(y2 − x4) = 0} in a neighbourhood of 0 ∈ C2;
see Proposition 2.7. This splitting of the branch curve also occurs in degenerations of the
Craighero–Gattazzo surface considered in [15].

We also find the quotient by this involution of the corresponding family of universal
coverings, obtaining after a flip and a divisorial contraction a special family of K3 surfaces
with nodes; see Subsection 3.2.

We then consider stable Z/3-Godeaux surfaces with other types of Wahl singularity,
through the phenomenon described by Kawamata in [8] of confluence of a multiple fibre
and a non-multiple singular fibre in an elliptic fibration. We show (see Subsection 3.3)

Theorem 1.3. There are KSBA stable rational Z/3-Godeaux surfaces X1 with a single
1
9
(1, 2) singularity, X2 with one 1

4
(1, 1) and one 1

9
(1, 2) singularities, and X3 with one

1
4
(1, 1) and two 1

9
(1, 2) singularities. The surfaces X3 have a model as a blown up plane

from a pencil of cubics.

The minimal resolution of a stable Godeaux surface with a 1
4
(1, 1) must have Kodaira

dimension 1 (see e.g. [20, Remark 5.3]), and so the smallest index of a Wahl singularity
in a rational stable Godeaux surface is achieved by 1

9
(1, 2). We remark that for simply

connected Godeaux surfaces, the singularity 1
9
(1, 2) appears in rational and non-rational

stable surfaces; see [19, Table 1].
All stable degenerations mentioned above, have completely explicit descriptions in

terms of Reid’s original moduli parameters. In particular, we exhibit large subvarieties
and even divisors in the boundary of the KSBA moduli space, and further degenerations
can be studied simply by specialising the parameters.

In the last section, we make the corresponding study for Z/4-Godeaux surfaces, where
the covering surface is a complete intersection and so it is easier to understand. This
also serves as a key to unlock the more complicated details of the Z/3 case. We know
of two different involutions on such surfaces, and we consider the one whose quotient is
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an Enriques surface [10], [13]. We get similar results concerning stable degenerations of
the double cover, including the phenomenon of the branch curve breaking into two pieces.
We refer to Section 4 for details.

Gorenstein stable degenerations of Godeaux surfaces have been studied recently in a
series of articles [4], [5]. Our work uses stable Godeaux surfaces of Gorenstein index two
and three.
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2 Reid’s construction of Z/3-Godeaux surfaces

In [16], Reid showed that the moduli space of Z/3-Godeaux surfaces is irreducible and
8-dimensional, by constructing surfaces Y ′ of general type with pg = 2, K2 = 3 and with
fixed point free Z/3-action σ, such that the quotient Y ′/σ = X ′ is the Godeaux surface.
We refer to Y ′ as the covering surface of X ′. More recently, Reid [17, §7], [18] clarified
the construction of Y ′ using a parallel unprojection and a 4-dimensional key variety. We
briefly describe this construction below.

2.1 The key variety W ⊂ P(13, 23, 33)

Let W ⊂ P(13, 23, 33) be the 4-dimensional Z/3-invariant variety defined by 9 equations
R0, R1, R2, S0, S1, S2, T0, T1, T2 formed by taking the orbits of

R0 : −x0z0 + y1y2 − r0x1x2 = 0

S0 : −y0z0 + r1x2y1 + r2x1y2 + sx1x2 = 0

T0 : −z1z2 + r0y
2
0 + sx0y0 + r1r2x

2
0 = 0

under the Z/3-action σ. The coordinates xi, yi, zi for i = 0, 1, 2 have respective weights
1, 2, 3, and σ acts on them by cyclic permutation of indices (012):

σ : xi 7→ xσ(i), yi 7→ yσ(i), zi 7→ zσ(i).

Moreover, ri (respectively s) are weighted homogeneous of degree 2 (resp. 3) and chosen
so that σ permutes the indices of ri (resp. fixes s). Let A denote the restriction of the
ample generator of the ambient space to W , that is, OW (A) = OW (1). Then according
to [18], W is a Fano 4-fold with KW = −3A, A3 = 1 and 3× 1

3
(1, 1, 2, 2) points.

Theorem 2.1 (Reid [16, 18]). Consider the intersection

Y ′ = W ∩ (x0 + x1 + x2 = z0 + z1 + z2 = 0)

of W with the σ-invariant weighted linear subspace L : (
∑

i xi =
∑

i zi = 0). For general
choices of ri, s, Y

′ in L ' P(12, 23, 32) is the canonical model of a surface of general type

3



with pg = 2, K2 = 3. Moreover, σ acts freely on Y ′, and the quotient Y ′/σ = X ′ is a
Godeaux surface X ′.

Reid proves that for general choices of ri and s, the surface Y ′ is smooth and irreducible
(this is checked by computer), and the action of σ on Y ′ is fixed point free. Thus the
quotient surface X ′ is a Godeaux surface with torsion Z/3.

Proposition 2.2 (Reid [16, §3]). The coarse moduli space Z/3-Godeaux surfaces is irre-
ducible, unirational of dimension 8, covered by the 9-dimensional parameter space given
by the following forms for ri and s

r0 = a11x
2
1 + a12x1x2 + a22x

2
2 + b0y0 + b1y1, r1 = σ(r0), r2 = σ(r1),

s = c2(x
2
0x1 + x21x2 + x22x0) + c3(x

2
0x2 + x21x0 + x22x1)

+d2(x0y1 + x1y2 + x2y0) + d3(x0y2 + x1y0 + x2y1).

Proof. Reid proves that every Z/3-Godeaux surface is obtained by his original construc-
tion in [16]. This construction is equivalent to the key variety construction by a cyclotomic
change of coordinates [17, 18]. We simply clean up the possible parameters appearing in
ri, s.

It is easy to write out the general forms for ri and s:

r0 =
∑
i≤j

aijxixj +
∑
i

biyi, r1 = σ(r0), r2 = σ(r1),

s = c1Σ(x30) + c2Σ(x20x1) + c3Σ(x20x2) + c4x0x1x2 + d1Σ(x0y0) + d2Σ(x0y1) + d3Σ(x0y2),

where Σ(m) denotes the orbit sum m+ σ(m) + σ2(m) of m under the action of Z/3. For
s, there are only four independent sections of the invariant eigenspace H0(3KY ′)inv and
we just choose them in a nice way.

Now, the terms of ri involving x0 = −x1 − x2 are redundant. Moreover, we can
force b2 = 0 by replacing yi with yi + b2xixi+1 and zi with zi + b2xi+2yi+1 for i = 0, 1, 2.
Indeed, it is clear that any extra terms arising in ri and s as a result of this substitution
can be absorbed by the other parameters in ri and s. Since we have chosen σ-invariant
substitutions, it suffices to show that b2 no longer appears as a free parameter in R0, S0,
T0. Writing R′0 for R0 after making the substitution, we get

R′0 = −x0(z0 + b2x2y1) + (y1 + b2x1x2)(y2 + b2x2x0)− r0x1x2
= −x0z0 + y1y2 − (r0 − b2y2 − b22x0x2)x1x2.

So writing r′0 = r0−b2y2−b22x0x2, we see that R0 no longer involves b2 as a free parameter.
We define r′1, r

′
2 to be permutations of r′0. It is convenient to consider S0− b2x1R0 rather

than S0 directly:

S ′0 − b2x1R′0 = −(y0 + b2x0x1)(z0 + b2x2y1) + r1x2(y1 + b2x1x2) + r2x1(y2 + b2x2x0)

+ sx1x2 − b2x1(−x0z0 + y1y2 − r′0x1x2)
= −y0z0 + r′1x2y1 + r′2x1y2 + (s+ b2(x0r2 + x1r0 + x2r1 − b22x0x1x2))x1x2.
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Again, writing s′ = s+b2(x0r2+x1r0+x2r1−b22x0x1x2), we see that S0 is now independent
of b2. Using the above substitutions, a direct computation shows that T0 is independent
of b2.

Finally, a coordinate transformation of the form xi 7→ λxi, yi 7→ yi, zi 7→ λ−1zi for
parameter λ reduces us to an 8-dimensional moduli space, because the transformation
acts by scaling the parameters in ri and s.

We write M for the KSBA moduli space of Z/3-Godeaux surfaces [11]. We do not
distinguish between M and the moduli space of covering surfaces.

Recall from [16] that the blowup φY ′ : Ỹ ′ → Y ′ of the three basepoints of |KY ′ | has a
model inside the scroll F = ProjP1(O ⊕ 3O(−2)) with base and fibre coordinates (x1, x2)
and (t, y0, y1, y2) respectively. Ignoring the t variable for simplicity (see proof of Lemma

2.3 below and [16, §3]), the five defining equations of Ỹ ′ are

f : x1x2R0 + x2x0R1 + x0x1R2 = 0

g : x0S0 − y0R1 ≡ x1S1 − y1R2 ≡ x2S2 − y2R0 = 0

h0 : x1x2S0 + y0x2R1 + y0x1R2 = 0

and h1 = σ(h0), h2 = σ(h1). In fact, the general fibre of Ỹ ′ → P1 is a weighted complete
intersection f4 = g6 = 0 in P(1, 2, 2, 2), and h0 (respectively h1, h2) is used only to cut
out the fibre over the distinguished point P0 = (0, 1), (resp. P1 = (1, 1), P2 = (0, 1)) of
the base P1.

Notation For brevity, we denote a section α0x0 + α1x1 + α2x2 of |K ′Y | by the triple
(α0, α1, α2) such that α0 + α1 + α2 = 0.

Lemma 2.3. Let Y ′ be a surface in M and suppose C is a curve in |KY ′| corresponding
to the section (α0, α1, α2) of H0(KY ′), where α0 + α1 + α2 = 0. Then C is isomorphic
to the following complete intersection of a quadric and a cubic in P3 with coordinates
t2, y0, y1, y2:

(i) If the αi are all nonzero,

α1α2(y1y2 − r0x1x2) + α0α2(y0y2 − r1x0x2) + α0α1(y0y1 − r2x0x1) = 0,

−y0y1y2 + r0x1x2y0 + r1x0x2y1 + r2x0x1y2 + sx0x1x2 = 0

where xi, ri and s are evaluated at xi = αit.

(ii) If α0 vanishes,

y1y2 − r0x1x2 = 0,

y20(y1 − y2)− x1(r1x2y1 + r2x1y2 + sx1x2) = 0

where now xi, ri and s are evaluated at x0 = 0, x1 = t, x2 = −t.

Curves corresponding to α1 = 0 and α2 = 0 are obtained in a similar manner, or from
the action of σ on Cα0.
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Proof. Substitute xi = αit for i = 0, 1, 2 in equations f, g. For reasons of bihomogeneity,
we can divide f by t2, and this gives the two relations in part (i). The hi are redundant
here because of the syzygies

y0f + x1x2g ≡ x0h0, y1f + x0x2g ≡ x1h1, y2f + x0x1g ≡ x2h2.

For part (ii), examining the same syzygies, we see that if α0 vanishes, then we must take
f and h0, because now g, h1, h2 are redundant.

Remark 2.4. The automorphism σ acts on the base of Y ′ → P1 and there are two σ-
invariant curves Fω and Fω2 in |KY ′ | corresponding to (1, ω, ω2) and (1, ω2, ω) respectively,
where ω is a primitive cube root of unity. The action of σ on these curves is (t, y0, y1, y2) 7→
(ω2t, y1, y2, y0). If we further assume that Y ′ has S3 symmetry (see Section 2.2 below),
then Fω has equations

y1y2 + ω2y0y2 + ωy0y1 − b0t(y0 + ωy1 + ω2y2) + 3(a11 − a12)t2 = 0

−y0y1y2 + b0t(y
2
0 + ω2y21 + ωy22) + (a12 − a11 − d2)t2(y0 + ωy1 + ω2y2)− 3c2t

3 = 0
(2.1)

and Fω2 is similar, with ω and ω2 interchanged.

2.2 A family with S3 symmetry and quotients

As observed in [18], there is a special subfamily Ms ⊂ M for good choices of ri and s,
such that the general surface Y ′ inMs has a larger automorphism group S3 rather than
just Z/3. This family is defined by

Ms : (a11 = a22, b1 = 0, c2 = c3, d2 = d3) ⊂M.

and S3 acts by permutation on the indices of xi, yi, zi. The family Ms is irreducible and
4-dimensional. The action of S3 on Y ′ descends to an involution on the Z/3-Godeaux
surface.

Remark 2.5. From now on, we will use the superscript s to denote the intersection Ds =
D ∩Ms of a stratum D ⊂M with the S3-symmetric family Ms.

Let τ0 = (12), τ1 = (02), τ2 = (01) be the involutions in S3 acting on Y ′ inMs. They
are conjugate under the action of σ, so we use τ = τ0 for our computations. The action
of τ on P(13, 23, 33) has eigenspace decomposition

Degree + −
1 x0, x1 + x2 x1 − x2
2 y0, y1 + y2 y1 − y2
3 z0, z1 + z2 z1 − z2

The relevant part of the fixed locus of τ on the ambient space breaks into two pieces
Fix(τ) = Fix1 ∪Fix2 and here we have to be a bit careful because of the weighted C∗-
action:

Fix1 = (x1 − x2 = y1 − y2 = z1 − z2 = 0),

Fix2 = (x0 = x1 + x2 = y1 − y2 = z1 + z2 = z0 = 0).
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The intersection Y ′ ∩ Fix1 gives five isolated fixed points of τ0 contained in the curve
(−2, 1, 1) ∈ |KY ′ |. Indeed, according to Lemma 2.3, the intersection of F(−2,1,1) with

y1 = y2 on Ỹ ′ is six points, but one of these is the intersection of F with the (−1)-curve
preimage of a basepoint of |KY ′|, and this basepoint is actually contained in Y ′ ∩ Fix2.
The following proposition treats Y ′ ∩ Fix2.

Proposition 2.6 (cf. [10]). The fixed curve R of the involution τ on X ′ is a smooth
rational curve. There are smooth curves R0 and R′0 in Y ′ with g(R0) = 0 and g(R′0) = 1
which intersect transversally at 4 points and R0 + R′0 ∈ |KY ′|. Moreover, R2

0 = −3 and
R′20 = −2. The image of R0 in X ′ is R and that of R′0 is R′.

Proof. The preimage of R on Y ′ is the σ-orbit of the intersection R0 = Fix2 ∩Y ′. By
the above eigenspace decomposition, we see that R0 is a component of the curve C0 in
|KY ′ | corresponding to α0 = 0. Since Y ′ is in Ms, we see by Lemma 2.3 that C0 is the
intersection of the following quadric and cubic in P3:

C0 : (2a11− a12)t4 + b0y0t
2 + y1y2 = ((2a11− a12− d2)t4 + y20 + b0t

2(y1 + y2))(y1− y2) = 0.

The cubic is clearly reducible, so C0 = R0 + R′0 has two components, where R0 is a
nonsingular conic, and R′0 is an intersection of two quadrics in P3 (an elliptic curve). The
slice Fix2 ∩Y ′ cuts out R0. Note also that R0 and R′0 intersect in four points, thus C0 is
a curve of arithmetic genus 4 as expected.

For any given fibre of Ỹ ′ → P1, the locus (t = 0) gives the intersection of that fibre

with the three (−1)-curves in Ỹ ′. Thus we see from the above equations, that R0 contains
one basepoint and R′0 contains two. This implies that KY ′ ·R0 = 1, KY ′ ·R′0 = 2 and the
above stated self-intersection numbers follow from the adjunction formula.

Proposition 2.7. The surface Z ′ = X ′/τ is rational with five A1 singularities. If
ψX′ : X ′′ → X ′ is the blow-up of the five points fixed by τ , then the quotient πZ′′ : X ′′ → Z ′′

is such that Z ′′ is the minimal resolution of Z ′, K2
Z′′ = −2, and the divisor 3KZ′′ + B is

nef, where B := πZ′′(ψ∗(R)). The linear system |3KZ′′ + B| is a base point free pencil of
rational curves. There is a sequence of 11 blowdowns from Z ′′ to P2 such that the image
of B is an (irreducible) plane curve of degree 10 with five (3, 3)-points and one 4-point
(i.e., a Campedelli curve).

Proof. Let E1, . . . , E5 be the exceptional curves of ψX′ , and let Ci = πZ′′(Ei). The double
cover formula reads

KX′′ ≡ π∗Z′′

(
KZ′′ +

1

2
(B + C1 + · · ·+ C5)

)
.

With this and the formula for the blow-up, one computes π∗Z′′(3KZ′′ + B) ≡ ψ∗(R′),
because 3KX′ ≡ R + R′. Since R′2 = 0, we have that 3KZ′′ + B is nef. The surface Z ′′

is the minimal resolution of Z ′, and one computes K2
Z′′ = −2 with the canonical formula

above.
Then we satisfy the requirements of [2, Prop. 3.9], and we belong to the surfaces

analyzed in [2, §6]. In particular, by [2, Lemma 6.1], the linear system |3KZ′′ + B| is a
base point free pencil of rational curves. The curves C1, . . . , C5 are components in the
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fibres. Since the canonical class of X ′ is ample and by the possibilities in [2, Cor. 6.2], the
curves Ci are in distinct fibres. Moreover, each of these fibres is a chain of three rational
curves: Ai,1 + Ci + Ai,2 where the central curve is Ci, and the Ai,j are (−1)-curves. One
checks that B is a 6-section in this pencil, and intersects each Ai,j in three points.

We notice that the image of the linear system |KY ′ | in Z ′ defines a pencil of genus 4
curves with two base points (at the same point). Let ∆ in Z ′′ be the image of Fω + Fω2 ,
where Fω and Fω2 are the two genus 4 curves in |KY ′ | fixed by the action of σ, and
permuted by τ . Then ∆ is a smooth genus two curve. Let Γ in Z ′′ be the image of the
curve in |KY ′| which contains the five fixed points of τ (see description of fixed loci by
τ above). Then Γ is a nodal curve of arithmetic genus 2. Notice that ∆ intersects each
of the Ai,j at one point transversally, and ∆ · Ci = 0. Also, Γ intersects each Ai,j at one
point transversally, and Γ · Ci = 1. Notice that B2 = −6, ∆2 = 2, and Γ2 = 2.

Let Z ′′ → Fm be the blow-down of one of Ai,1 or Ai,2 and then Ci for each i, so blow-
down ten times, where Fm is a Hirzebruch surface. If Γ0 is the (−m)-curve in Fm and F
is a fibre, then one verifies

∆′ ∼ 2Γ0 + (m+ 3)F, Γ′ ∼ 3Γ0 +
1

2
(9 + 3m)F, B′ ∼ 6Γ0 + (3m+ 7)F

where ∆′,Γ′, B′ are the images of ∆,Γ, B. Since none of these curves are equal to Γ0, we
have nonnegative intersection with Γ0. Using that, one easily shows m = 1. This implies
that Γ0 · B′ = 4, Γ0 · ∆′ = 2, and Γ0 · Γ′ = 3. Therefore, in P2, the image of B is an
irreducible degree 10 curve with five (3, 3)-points and one 4-point, the image of ∆ is a
degree 4 curve with a node, and the image of Γ is a degree 6 curve with six nodes and
one triple point.

Proposition 2.8. The minimal model of the quotient Y ′/τ is a K3 surface with five A1

singularities.

Proof. We write πV ′ : Y ′ → V ′ for the quotient map. By the adjunction formula for double
covers, KY ′ = π∗V ′KV ′ +R0, by Proposition 2.6 (see also [10]), we know that KY ′ ·R0 = 1
and R2

0 = −3. Thus π∗V ′K2
V ′ = −2, which implies that K2

V ′ = −1. The residual component
R′0 of C0 is also τ -invariant, and πV ′|R′

0
is ramified in the four points where R′0 intersects

R0. Since 3 = C2
0 = (R0+R′0)

2 = −3+2·4+R′0
2, we see that R′0

2 = −2, and hence πV ′(R′0)
is a (−1)-curve. Thus πV ′(R′0) is contracted to get V ′min. Since R0 + R′0 = C ∈ |KY ′ |, it
follows from the projection formula that KV ′

min
is numerically trivial, and we also know

that pg(V
′
min) = 1, because we computed the invariants of τ above. Thus V ′min is a K3

surface.

In the right column of Figure 1, we show the situation described in this section. In
the next section we will describe and use the degenerated situation shown at the left side
of Figure 1.
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Figure 1: Big picture for Sections 2 and 3

3 A stable Z/3-Godeaux with 1
4(1, 1) singularity

3.1 Covering with three 1
4(1, 1) and Dolgachev 3, 3 surface

We now consider the divisor Y in M defined by b0 = 0, previously considered in [9].
According to Proposition 2.2, Y is covered by an 8-dimensional parameter space divided
out by a C∗-action. Moreover, the space of admissible parameters is connected and so Y
is irreducible.

Lemma 3.1. The general member Y in Y has a free σ-action and 3 × 1
4
(1, 1) points

forming an orbit under σ, one at each of the coordinate points Pyi. After taking the
quotient by σ, we get a stable Z/3-Godeaux surface with a single 1

4
(1, 1) singularity.

Proof. We work in a neighbourhood of P = Py1 . Relations R0, R2 and S1 serve to elimi-
nate variables y0, y2, z1 in favour of local coordinates x1, x2, z2. Thus P is a hypersurface
singularity inside the 1

2
(1, 1, 1) point induced by the C∗-action on the ambient space. The

tangent cone of T1 − b1R0 is a quadric of rank 3 in the local coordinates, and hence P is
a 1

4
(1, 1) singularity.
The nonsingularity and irreducibility of Y follows by a computer calculation for choices

of parameters. The fact that σ is fixed point free is a standard computation.

Under the degeneration Y ′  Y , the three basepoints of |KY ′| deform to the 1
4
(1, 1)

singular points P0, P1, P2 of Y . The resolution φY : Ỹ → Y is given by a single blow up
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at each of P0, P1, P2 with exceptional (−4)-curves E0, E1, E2. Indeed,

KỸ ≡ φ∗Y (KY )− 1

2
(E0 + E1 + E2),

and Ỹ has an elliptic fibration over P1 given by the vector space of global sections

H0(KỸ ) = 〈x0, x1, x2〉 /(
∑

xi = 0),

where we abuse notation to write xi = φ∗Y (xi). The image of a fibre under φY is a curve
of arithmetic genus 4 with three nodes at basepoints P0, P1, P2.

By the Kodaira formula for the canonical class, KỸ ∼ (χ(OỸ ) − 2)F + γF , where
F is a fibre and γ is a term which is zero if and only if there are no multiple fibres.
Since χ(OỸ ) = 3 and the fibration is induced by |KỸ |, we see that there are no multiple
fibres, and the Ei are 2-sections of the fibration. The automorphism σ acts on the base
of the fibration, and the fibres corresponding to (1, ω, ω2) and (1, ω2, ω) are σ-invariant.
According to Lemma 2.3 above, each fibre has a birational model as the intersection of a
quadric and a cubic in P3.

We consider now the special case when Y has an involution.

Proposition 3.2. The general surface Y in Ys with S3-action has three fibres of type I4
forming an orbit under σ, 24 I1 fibres comprising eight orbits, and the two σ-invariant
fibres Fω and Fω2 are nonsingular.

Proof. Consider the fibre F0 corresponding to (0, 1,−1) in |KỸ |. Since b0 = 0 for Y in
Ys, we use the proof of Proposition 2.6 to write ψY (F0) as

Lt4 + y1y2 = 0, (Mt4 − y20)(y1 − y2) = 0,

where for brevity we write L = 2a11 − a12 and M = 2a11 − a12 − d2. A short calculation
shows that by generality assumption, F0 breaks into four components given by

F 1
0 : λt2 + iy1 = y1 − y2 = 0, F 2

0 : λt2 − iy1 = y1 − y2 = 0,

F 3
0 : µt2 + y0 = Ly20 +My1y2 = 0, F 4

0 : µt2 − y0 = Ly20 +My1y2 = 0

where λ2 = L, µ2 = M . From the equations, we see that P0 ∈ F 1
0 , F

2
0 , whereas P1, P2 ∈

F 3
0 , F

4
0 .

Thus F0 is an I4 fibre F0 = F 1
0 + F 3

0 + F 2
0 + F 4

0 where F 1
0 and F 2

0 are opposite sides,
and the 2-sections intersect F0 as follows: E0 intersects F 1

0 and F 2
0 transversally, while E1

and E2 intersect F 3
0 and F 4

0 transversally. See Figure 1.

Standard Euler number considerations predict the general Ỹ has a further 24 nodes in
fibres. We compute directly that for general Y , these correspond to 24 I1 fibres. Indeed, let
S be the disjoint union S =

⊔
{C : C ∈ |KY |0}, where |KY |0 means we ignore the three I4

fibres where one of αi = 0. Then S ⊂ P3×(P1−{3 points}) is the relative sextic complete
intersection of quadric and cubic described in Lemma 2.3(i). Consider the affine piece St
where t is nonzero, to ignore the three lines of nodes in S. The Jacobian subscheme J of
S is codimension 2 in the ambient space, defined by 2× 2 minors of the Jacobian matrix
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which has entries of degree ( 2 2 2
1 1 1 ). Thus J has relative degree 7. Intersecting with St

decreases this degree by 3 because of the three nodes on every curve, and so the expected
degree of St ∩ J is 6× (7− 3) = 24. We check using a computer that this intersection is
indeed reduced, and comprises 24 points on distinct fibres.

A direct computation using equations (2.1) shows that Fω and Fω2 are nonsingular for
general Y .

Corollary 3.3. The quotient surface X̃ = Ỹ /σ is a Dolgachev (3, 3)-surface, that is an
elliptic surface with two fibres of multiplicity 3. It also has one I4 fibre, eight I1 fibres and
a 6-section E.

Theorem 3.4. The topological fundamental group of a Z/3-Godeaux surface is Z/3.

Proof. The action of σ in a Q-Gorenstein degeneration Y ′  Y over a disc is such that
the quotient is a Q-Gorenstein degeneration X ′  X over a disc. From X to X ′, we are
Q-Gorenstein smoothing the 1

4
(1, 1) singularity of X. On the other hand, the resolution

of X is a Dolgachev (3, 3)-surface X̃, and so X has topological fundamental group π1(X)
isomorphic to Z/3 (see e.g. [3] or [6], Chapter II, Theorem 2.3).

We now follow the strategy in [12]. Using Seifert–van-Kampen theorem, we have that

π1(X) '
(
π1(X̃ \ E) ∗ π1(U)

)
/〈γ〉n where U is a small neighborhood of the singularity

in X, and so π1(U) is trivial, γ is a loop around E in X̃ \ E, and 〈γ〉n is the smallest

normal subgroup in π1(X̃ \ E) containing γ. But by Proposition 3.2, there is a P1 from

the I4 fibre in X̃, which intersects the 6-section E transversally at one point, and so γ is
trivial in π1(X̃ \ E). Therefore π1(X̃ \ E) ' Z/3. Now, since X ′  X is Q-Gorenstein

smoothing, the surface X ′ is homeomorphic to X̃ \E union the Milnor fibre Mf of 1
4
(1, 1)

corresponding to the smoothing, glued along the corresponding link L. So we apply
Seifert–van-Kampen theorem again to X ′ using that decomposition. Since the generator γ
of π1(L) is trivial in π1(X̃\E) and the inclusion induces π1(L) = Z/4� π1(Mf ) = Z/2, we
obtain that π1(X

′) ' Z/3. Similarly, one can use the same strategy with the Q-Gorenstein

degeneration Y ′  Y and the elliptic fibration Ỹ , to prove that Y ′ is simply-connected,
and so π1(X

′) ' Z/3.

3.2 Stable Campedelli double plane, K3 quotient and its flipped
family

As before, since the involutions τi are conjugate under the action of σ, we use τ = τ0 for
our computations. The following explains how the involution descends to X̃.

Proposition 3.5. The action of τ on X̃ has two invariant fibres, and swaps the two fibres
of multiplicity three. One of the invariant fibres is the I4 fibre, of which two components
are fixed pointwise. The other invariant fibre is nonsingular and contains four isolated
fixed points.

Proof. From Proposition 3.2, the intersections of Fixi with Y are:

Y ∩ Fix1 = P0 ∪ four points on the fibre F(−2,1,1),

Y ∩ Fix2 = F 1
0 + F 2

0 =: R0.

11



We can check that F(−2,1,1) is nonsingular directly using Lemma 2.3. Moreover, the two σ-
invariant fibres are exchanged by τ . The involution must act nontrivially on the 6-section
E, fixing two points which are the intersection points of E with Fix2 from above.

The 2-sections E1 and E2 on Ỹ form an orbit under τ , while E0 is invariant with two
fixed points at the intersection with the I4 fibre.

Corollary 3.6. The quotient X̃/τ has four A1 singularities on one fibre. Its resolution
is the blow-up at two points of a relatively minimal rational elliptic surface with one fibre
of multiplicity three. The singular fibres are I2, I∗0 , and four I1. Thus a contraction of

X̃/τ to P2 gives a Halphen pencil of index 3.

We now describe the corresponding stable Campedelli double plane which is an ana-
logue of Proposition 2.7. We introduce some notation. Let X̂ → X̃ be the blow-
up at the four points fixed by τ , and let Z̃ be the minimal resolution of X̃/τ . Let

πZ̃ : X̂ → Z̃ be the quotient by τ . Let B1, B2 be the image by πZ̃ of the fixed curve by

τ in X̃, and let C1, C2, C3, C4 be the image of the exceptional curves of X̂ → X̃. Thus,
B1 +B2 + C1 + . . .+ C4 is the branch curve of πZ̃ . Let A1 +A2 +B1 +B2 be the image
of the I4 fibre by πZ̃ , and so A1, A2 and B1, B2 are opposite sides of the new I4, and

A2
i = −1, B2

i = −4. Let E0 be the image by πZ̃ of the (−4)-curve from E in X̃. Let Γ

be the image by πZ̃ of proper transform of the fibre in X̃ which contains the four fixed

points by τ . Finally, let ∆ be the image by πZ̃ of the two multiple fibres in X̃.

Proposition 3.7. The linear system defined by A1 + E0 + A2 ∼ 3KZ̃ + E0 + B1 + B2

defines a genus 0 fibration f : Z̃ → P1, which pulls back to X̃ as a genus 2 fibration.
Each Ci belongs to one fibre of f which is formed by (−1)-curves Ai,1, Ai,2 and Ci. The
blow-down of A1, A1,1, . . . , A4,1 and E0, C1, . . . , C4 is the blow-up at one point of P2. After
blowing-down to P2 the curves B1, B2 become two quintics such that B1 + B2 has four
(3, 3)-points, one 4-point, and one singular point of the form {(y2 − x2)(y2 − x4) = 0}
locally at (0, 0) ∈ C2

x,y. We also realize ∆ as a quartic with two nodes, and Γ as a sextic
with two triple points and four double points.

Proof. The linear system |A1 + E0 + A2| defines a rational fibration in Z̃. The curve
B1 + B2 is a 6-section, and so the pull back is a fibration of genus 2 curves. Notice that
the curves Ci are in fibres of |A1 +E0 +A2|. The options for the irreducible components

of the fibre containing Ci are as in [2, Cor. 6.2]. In X̃ a (−2)-curve has to intersect
the 6-section E since KX is ample. Therefore, as in Proposition 2.7, the only possible
irreducible components for a fibre containing Ci are two (−1)-curves Ai,1, Ai,2, so that
they form a chain with Ci as central curve. Since after blowing down A1, A2 we obtain
a relatively minimal Halphen fibration of index 3, one can check that Γ intersects each
Ai,j transversally at one point. Notice that Γ · Ci = 1 as well, and Γ is a 3-section of
|A1 + E0 + A2|. Also, ∆ · Ai,j = 1 for all i, j, and ∆ is a 2-section of |A1 + E0 + A2|. We
also have Bj · Ai = 1, Bi · E0 = 1, B1 · B2 = 0, ∆2 = 0, and Γ2 = −2. Since K2

Z̃
= −2,

after blowing down A1, A1,1, . . . , A4,1 and E0, C1, . . . , C4 we arrive to a Hirzebruch surface
Fm. Since we know the self-intersections of the images of ∆, Γ, and B1 + B2, we obtain
as in Proposition 2.7 that m = 1.
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Now the point is that B1 + B2 has degree 10 in P2, but there are possibilities for the
degrees of B1 and B2. Since A1, E0 gives nodes to B1 and B2, the degree cannot be smaller
than 3. The possibilities of Bk ·Ai,1 are 0, 1, 2, 3. We check that the only possibility that
works is Bk intersects two Ai,1 at two points each (possible infinitely near) and the other
two at one point each. Therefore, each Bk becomes a quintic in P2. The image in P2 of
∆ is a quartic with two nodes, and the image of Γ is a sextic with two triple points and
four double points.

Proposition 3.8. The minimal model of the quotient Ỹ /τ is a K3 surface, which has an
elliptic fibration with singular fibres I2, I4 and I∗0 , a (−2)-curve which is a 2-section, and
a (−4)-curve which is a 4-section.

Proof. Let us consider the I4 fibre F0 =
∑4

i=1 F
i
0 that is τ -invariant (= τ0). Under the

quotient by τ , the two curves F 1
0 and F 2

0 that are pointwise fixed go to (−4)-curves, while
F 3
0 and F 4

0 of go to (−1)-curves. After contracting the (−1)-curves, we get an I2 fibre.
The other two I4 fibres are identified to give a single I4 fibre. The nonsingular invariant
fibre maps to an I∗0 after resolving the four A1 singularities. The two (−4)-curves E1 and
E2 which form a τ -orbit are identified to give a (−4)-curve which is a 4-section. After
blowing down F 3

0 and F 4
0 , it passes through the two nodes of the I2-fibre. The image of

the single (−4)-curve E0 is a (−2)-curve which is a 2-section. The multiplicity 2 of the
(−1)-components disappears after contracting and stays in the central curve of the I∗0 , so

there are no multiple fibres. Notice that pg = 1, and so the minimal model of Ỹ /τ0 is a
K3 surface.

Let πV : Y → V be the quotient by τ . Notice that V has five A1 singularities (four
from the four fixed points, and one from two of the 1

4
(1, 1) singularities), and one 1

4
(1, 1)

singularity. The minimal resolution Ṽ of V is the minimal resolution of Ỹ /τ . Using the
notation in the proof of Proposition 3.8, let D1 and D2 be the images of F 3

0 and F 4
0 in

V . Notice that in Ṽ , the proper transforms of D1 and D2 are (−1)-curves intersecting
transversally at one point the (−4)-curve which is the exceptional divisor of the 1

4
(1, 1)

singularity. See Figure 1 for this and what follows.
We have V ′  V , where V ′ := Y ′/τ is the blow-up at one point of a nodal K3

surface, as in Proposition 2.8. Let us consider that degeneration over a disc D. This is,
we consider the Q-Gorenstein deformation (V ⊂ V) → (0 ∈ D) where V ′ is a fibre for
some t ∈ D \ {0}. Let V → U be the contraction of the curve D1. Then, there is a
blow-down deformation (U ⊂ U) → (0 ∈ D) which commutes with V → D over D. This
and what follows is explained in [7], see also [20, §2]. In this way, we have an extremal
neighborhood (D1 ⊂ V) → (Q ∈ U) of type k1A. Notice that (Q ∈ U) is a 1

3
(1, 1)

singularity. This extremal neighborhood is of flipping type, and it is the simplest case
among all k1A (see [20, Prop.2.15]). After we perform the flip, we obtain a Gorenstein
deformation (V1 ⊂ V1) → (0 ∈ D) where V1 is the minimal resolution of U . Hence the
flipping curve is the (−3)-exceptional curve. Since this was a flip, the fibre V ′ in V appears
also in V1.

After that, the proper transform of D2 together with the (−1)-curve in V ′ generate
a contractible divisor in V1. After this divisorial contraction, we obtain a Gorenstein
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Figure 2: Birational transformations on K3 family

deformation (V2 ⊂ V2)→ (0 ∈ D) where V2 is the blow-down of D2 ⊂ V1, and the general
fibre is a nodal K3 surface V ′1 . Notice that the branch curve of Y ′ → V ′ in V ′1 has a
4-point, and degenerates nontrivially to a nonreduced curve formed by three irreducible
components (one with multiplicity 2), two passing through one A1, and the three together
having two 3-points in the smooth locus of V2, as shown in Figure 2. We have proved:

Proposition 3.9. The Q-Gorenstein deformation V ′  V over a disk D is birationally
equivalent over D to a Gorenstein deformation V ′′  V2, where V ′′ is the blow-down of
a (−1)-curve in V ′, and V2 is the K3 surface with five nodes obtained after the flip and
divisorial contraction explained above.

3.3 Stable rational Z/3-Godeaux surfaces

A known method for producing 1
n2 (1, n−1) singularities on an elliptic fibration is to merge

a nodal fibre with a multiple fibre of multiplicity n; see e.g. [8], [20, §4]. We apply this

method with n = 3 to the Dolgachev (3, 3) surfaces X̃. To achieve that, we first merge a

nodal fibre in Ỹ , the universal cover of X̃, with a σ-fixed fibre so that Ỹ acquires an A2

singularity. Then the quotient by σ gives what we want. We can do this independently
with each of the two fixed fibres. In fact, this approach extends to Y ′ inM with a single
A2-singularity that is fixed by σ. For such Y ′, one of the σ-invariant genus 4 fibres of the
canonical pencil Ỹ ′ → P1 acquires a node.

Proposition 3.10. There are two divisors Bω and Bω2 each defined by hypersurfaces in
M corresponding to surfaces Y with an A2 singularity that is fixed by σ. The quotient X
of such a surface is a Godeaux surface with a 1

9
(1, 2) singularity.

Proof. We consider the σ-invariant fibre Fω on Y , corresponding to (1, ω, ω2) in H0(KY ).
The computation for Fω2 is similar. Suppose Fω has a node Q. Since Q is a distinguished
point of Fω, it is fixed by σ. Thus by Lemma 2.3 and the discussion following, Q =
(1, λ, ω2λ, ωλ) in P3 for some λ. We substitute Q into the equations for Fω and rearrange
a little to get the following two conditions:

λ2 = (b0 + ω2b1)λ+ ω2a11 + a12 + ωa22

2λ3 = −3((ω2d2 + ωd3)λ+ ωc2 + ω2c3).
(3.1)

Eliminating λ gives a single hypersurface in M defining Bω. The other divisor Bω2 is
obtained by interchanging ω and ω2.
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It remains to check that the general surface in Bω has a single A2 singularity and no
others. Consider a neighbourhood U of Q ∈ Fω in Y . We can write U as the complete
intersection in A3 × ∆s given by the equations of Lemma 2.3(i) with α1 = ω + s and
α2 = ω2− s, where s is the coordinate on the disc ∆ and we assume t 6= 0. A careful (but
tedious) analysis of the two equations confirms that Q is an A2 singularity for the general
surface in Bω.

Remark 3.11. The hypersurface defining Bω is too large to reproduce here, so we consider
Bsω, the restriction of Bω to Ms. In fact, we have Bsω = Bsω2 = (Bω ∩ Bω2)s, because the
involution maps the first A2 singularity to a second A2 singularity. The hypersurface in
Ms defining (Bω ∩ Bω2)s is

2

3
(a11 − a12)3 + 2(a11 − a12)2d2 + (a11 − a12)(3b0c2 − b20d2 +

3

2
d22) +

1

2
c2(3c2 + 3b0d2 − 2b30).

Lemma 3.12. All intersections between Y, Bω, and Bω2 are transversal. Thus, for a gen-
eral Y in any of these intersections, each singularity of Y can be Q-Gorenstein smoothed
independently, and the same applies to the Godeaux quotient X, see Figure 3 below.

Proof. Let Y be a general surface in Y ∩ Bω. For simplicity, we work analytically on
Bω, but the Lemma also holds in the algebraic setting. From equation (3.1) above, we
can solve for λ using the quadratic, and substitute into the cubic to get an analytic
hypersurface defining Bω.

To smooth the 1
4
(1, 1) singularity, let Yε be the surface with parameters b0 = ε, b1 =

b1− εω and all others the same as those for Y . Thus Yε remains in Bω, but is no longer in
Y . To smooth the 1

9
(1, 2) singularity, simply vary one of aij or b1 while fixing b0 = 0 and

the other parameters, so that any root of the quadratic is no longer a root of the cubic in
(3.1).

Figure 3: Stable Z/3-degenerations of Y and X

Let Xi for i = 1, 2, 3 be stable Godeaux surfaces such that X1 has one 1
9
(1, 2) singular-

ity, X2 has one 1
4
(1, 1) and one 1

9
(1, 2), and X3 has one 1

4
(1, 1) and two 1

9
(1, 2) singularities.

Let Yi be the corresponding cyclic cover of Xi. All of them relate under Q-Gorenstein
degenerations as shown in Figure 3.
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Proposition 3.13. The surfaces X2 and X3 are rational.

Proof. Let i = 2, 3. By construction, if Ỹi → Yi is the minimal resolution of the three
1
4
(1, 1) singularities, then there is elliptic fibration Ỹi → P1 such that the A2 singular-

ity(ies) is(are) in the node of an(two) I1 fibre(s) Fω and/or Fω2 that are σ-invariant. The

quotient X̃i := Ỹi/σ is the minimal resolution of Xi at the 1
4
(1, 1) singularity. Therefore,

there is an elliptic fibration Xi → P1 with an(two) I1 fibre(s) such that the 1
9
(1, 2) of the

surface is(are) at the node(s), and that (those) fibre(s) is(are) multiple with multiplicity
3. Take one 1

9
(1, 2) singularity and minimally resolve. Then the multiple fibre becomes a

I3 fibre in the induced elliptic fibration. Notice that K2
X̃i

= 0, and so the self-intersection

of the canonical class in the resolution is −2. Therefore the proper transform of the I1 is
a (−1)-curve.

In the case i = 2, we obtain an elliptic fibration with pg = q = 0 and one multiple fibre
of multiplicity 3. This corresponds to a Halphen pencil of index 3 in P2. In the case i = 3,
we obtain an elliptic fibration with pg = q = 0 and no multiple fibre. This corresponds to
a pencil of cubics in P2. So in both cases they are rational surfaces.

Proposition 3.14. The surface X1 is rational.

Proof. Assume X1 is not rational. Let X̃1 be its minimal resolution, and let S be the
minimal model of X̃1. We know that S cannot be of general type since K2

X1
= 1 and KX1

is ample; see e.g. [20, Prop. 3.6]. Therefore K2
S = 0. Also, we have that K2

X̃1
= 1−2 = −1,

and so S is the blow down of one (−1)-curve E ⊂ X̃1. Let Γ1 be the (−2)-curve in the

exceptional divisor of X̃1 → X1, and let Γ2 be the (−5)-curve. Since KS is nef, we have
that E cannot touch Γ1. Let m = E ·Γ2. Since KX1 is ample, we have m ≥ 2. Since KS is
nef, we have m ≤ 3. If m = 3, then S cannot have Kodaira dimension 1 since KS ·Γ′5 = 0
and Γ′2 is not a fibre of an elliptic fibration (image of Γ2). Therefore S must be an Enriques
surface since pg(X1) = q(X1) = 0. Then π1(X1) = Z/2. On the other hand, we have a
Q-Gorenstein smoothing X ′  X1 over a disk D, where X ′ is a nonsingular Z/3-Godeaux
surface, and so we have a surjective morphism π1(X

′) = Z/3 → π1(X1) = Z/2, which is
a contradiction.

Thus m = 2. Let us again consider the Q-Gorenstein smoothing X ′  X1 over D
above. We notice that a loop α around Γ2 will satisfy α2 = 1 in π1(X̃1 \ {Γ1 ∪ Γ2}),
because Γ2 · E = 2, Γ1 · E = 0, and E = P1. But α9 = 1 as well, and so α is trivial
in π1(X̃1 \ {Γ1 ∪ Γ2}). By the same Seifert–Van-Kampen argument in Theorem 3.4, this
would imply π1(X1) = π1(X

′) = Z/3. Then S is a Dolgachev surface with two multiple
fibres of multiplicities 3a and 3b where gcd(a, b) = 1. Using the canonical class formula
and KS · Γ′2 = 1, we get 1

3a
+ 1

3b
+ 1

3at
= 1 where 3at is the degree of the multi-section Γ′2

in the elliptic fibration of S. Then a = b = t = 1, and Γ′2 is a 3-section.
We now consider the Q-Gorenstein degeneration X1  X2 over D above. Since around

the singularity 1/9(1, 2) this deformation is trivial, we resolve simultaneously to obtain a
Q-Gorenstein smoothing X ′1  X ′2 over D (of the singularity 1/4(1, 1)). Since K2

X′
1

= −1,

the canonical class of the 3-fold is not nef. As in [21, §2], we either have a divisorial
contraction or a flip for the family (the other “ending options” are not possible). In case
of a flip, the central fiber would become smooth, and then there would be a contradiction
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since the Kodaira dimension must be constant in a smooth deformation (and X2 is rational
by the previous proposition). So we have a divisorial contraction, and it must correspond
to a (−1)-curve in X ′2 which does not touch the singularity 1/4(1, 1). But then in the
general fiber this (−1)-curve propagates as the curve E above. So we contract this divisor
in the family, to obtain another Q-Gorenstein smoothing X ′′1  X ′′2 over D, where X ′′1 is
a Dolgachev 3, 3 surface. But now the canonical class of the 3-fold must be nef (again
flips are not allowed by the above argument) and so, by [8, Theorem 5.1], the canonical
class of this new 3-fold has index 3 (or 1), but this is locally a Q-Gorenstein smoothing
of 1/4(1, 1), which has index 2, a contradiction.

4 On Z/4-Godeaux surfaces

4.1 Setup and involution

Start with P(1, 1, 1, 2, 2) with coordinates x1, x2, x3, y1, y3 and a Z/4-action

σ : (x1, x2, x3, y1, y3) 7→ (ix1,−x2,−ix3, iy1,−iy3).

Now let Y ′ be the intersection of two quartics q0 and q2 in eigenspaces 0, 2 of the form

q0 : x41 + x42 + x43 + x21x
2
3 + a1x1x

2
2x3 + a2x1x2y1 + a3x2x3y3 + a4y1y3,

q2 : x21x
2
2 + x22x

2
3 + y21 + y23 + b1x

3
1x3 + b2x1x

3
3 + b3x1x2y3 + b4x2x3y1.

Reid [16] (see also [14]) showed that for general choices of parameters ai, bi, the surface
Y ′ is the nonsingular canonical model of general type with pg = 3, K2 = 4 and a free
Z/4-action, whose quotient X ′ is a Godeaux surface with π1 = Z/4. Their coarse moduli
space is 8-dimensional, irreducible and unirational. As before, we use M for the KSBA
moduli space of stable Z/4-Godeaux surfaces.

Remark 4.1. For future use, we want to allow certain monomials to appear with coefficient
zero, thus we do not use the above displayed parameters.

Following Keum–Lee [10, §4.3], there is a 4-dimensional family Ms ⊂ M with an
involution τ on X ′ induced by the following action on Y ′:

τ : (x1, x2, x3, y1, y3) 7→ (−x1, x2,−x3, y1, y3). (4.1)

The group generated by τ and σ is Z/2×Z/4. For surfaces inMs, the allowed monomials
for q0 and q2 are

q0 : x41, x
4
2, x

4
3, x

2
1x

2
3, x1x

2
2x3, y1y3,

q2 : x21x
2
2, x

2
2x

2
3, x

3
1x3, x1x

3
3, y

2
1, y

2
3.

Let Y ′ in Ms be the nonsingular cover of a Z/4-Godeaux X ′ = Y ′/σ. The following
Lemma is an easy version of Proposition 2.6.
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Lemma 4.2. The fixed curve R0 of τ on Y ′ is the curve of genus 5 defined by (x2 = 0).
The five σ-orbits Q1, . . . , Q5 on Y ′ corresponding to the five isolated fixed points P1, . . . , P5

of τ on X ′ = Y ′/σ are given by Q1 : (x1 = x3 = 0) and Q2, . . . , Q5 : (y1 = y3 = 0). The
σ-orbit Q1 is pointwise fixed by τ , whereas Q2, . . . , Q5 are only τ -invariant.

Remark 4.3. The Classification Theorem of [2] implies that the quotient X ′/τ must be
an Enriques surface, and by [13, Thm 3.2], this is the unique involution on any Godeaux
surface such that the quotient is an Enriques surface. We work out this quotient in detail
below.

First note that H0(3KY ′)inv = 〈x21x2, x2x23〉, and so |3K inv
Y ′ −R0| is the pencil in |2KY ′ |

spanned by x21, x
2
3; cf. [10, §4]. Next consider the pencil Λ in |KY ′| spanned by x1, x3, of

genus 5 curves on Y ′ with four base points forming the σ-orbit Q1. By construction of Y ′,
we see that σ acts as an involution on Λ. Thus each curve in |3K inv

Y ′ − R0| is a reducible
curve C + σ(C) for C in Λ, with a node at each of the four basepoints.

Lemma 4.4. The image ΛX′ of Λ on X ′ is a pencil of curves of geometric genus 3 with
one node at the only basepoint P1. Each curve in ΛX′ is the image of a σ-orbit of two
curves in Λ. The other four isolated fixed points P2, . . . , P5 of τ appear as second nodes
on four distinct curves in ΛX′. Finally, there are two τ -invariant curves in ΛX′.

Proof. The description of the general curve in ΛX′ follows from the discussion preceding
the Lemma. Using an easier version of the same computation as in the proof of Proposition
3.2, we see that for i = 1, . . . , 4, the σ-orbit Ci + σ(Ci) in Λ passing through Qi has a
node at each of the four points of Qi. Thus the image of this orbit under quotient by σ
is a curve with two nodes, one at P1 and the other at Pi. The two τ -invariant curves in
Λ are the images of F1 : (x1 = 0) and F3 : (x3 = 0).

Let R denote the image of R0 in X ′. Then R is a smooth genus 2 curve with R2 = 1,
and the above Lemma shows that ΛX′ = |3KX′ −R|.

Corollary 4.5. The pencil ΛX′ descends to an elliptic half pencil on the Enriques surface
given by the minimal resolution of the five A1 points in Z ′ = X ′/τ . The image of R is a
2-section of the pencil on Z ′.

Corollary 4.6. For general Y ′ in Ms, the quotient V ′ := Y ′/τ is a nodal K3 surface
(2, 2, 2) ⊂ P5 with four A1 singularities. The minimal resolution of V ′ is a K3 surface with
the elliptic fibration image of the pencil Λ = 〈x1, x3〉 ⊂ |KY ′|, and so the four (−2)-curves
coming from the A1 are sections.

Proof. The invariant monomials of the τ -action on Y ′ are x2 , v1 = x21, v2 = x1x3, v3 = x23,
y1, y3. There is one monomial relation between these generators: v1v3 = v22 and the two
quartics q0 and q2 can also be expressed in terms of the invariants. This gives a complete
intersection (4, 4, 4) ⊂ P(1, 2, 2, 2, 2, 2) which is however, not well formed. The variable
x2 appears only as a square, so we can divide all weights by two and set v0 = x22 to get
the K3 surface (2, 2, 2) ⊂ P5.

By Lemma 4.2, the σ-orbit Q1 descends to four A1 singularities on Y/τ , while the
other orbits Q2, . . . , Q5 descend to pairs of nonsingular points on Y/τ . After blowing up
the four A1 singularities, the image of Λ is an elliptic fibration with ramification curve
comprising the 4-section R0 together with the four (−2)-curves.
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As we did for Z/3-Godeaux, in the right column of Figure 3 we show the situation de-
scribed in this subsection. In the next subsections we will describe and use the degenerate
situation shown at the left side of Figure 3.

Figure 4: Big picture for Section 4

4.2 A stable Z/4-Godeaux with 1
4(1, 1) singularity

We exhibit a divisor Y ⊂M in the moduli space corresponding to Z/4-Godeaux surfaces
with a single 1

4
(1, 1) singularity, cf. [9]. Take Y8,8 ⊂ P(1, 1, 4, 4, 4) with Z/4-action

σ : (u1, u3, y1, y2, y3) 7→ (εu1, ε
3u3, iy1, y2,−iy3),

where ε = exp(2πi
8

). Although ε is a primitive 8th root of unity, σ has order four because
of the C∗-action on the weighted projective space. The defining equations q0, q2 of Y are
in eigenspaces 0 and 2 respectively, and are combinations of the following monomials:

q0 : u81, u
4
1u

4
3, u

8
3, u

3
1u3y1, u

2
1u

2
3y2, u1u

3
3y3, y

2
2, y1y3,

q2 : u61u
2
3, u

2
1u

6
3, u1u

3
3y1, u

4
1y2, u

4
3y2, u

3
1u3y3, y

2
1, y

2
3.

Lemma 4.7. The general member Y in Y is a complete intersection

Y2,4,4 ⊂ P(1, 1, 1, 2, 2, 2)

defined by equations x1x3 − x22 = 0 and qi(x1, x2, x3, y1, y2, y3) = 0 for i = 0, 2 where
x1 = u21, x2 = u1u3, x3 = u23 and the qi are quartics. The four 1

4
(1, 1) singularities Y ∩(x1 =

x2 = x3 = 0) form a σ-orbit. The quotient X = Y/σ is a stable Z/4-Godeaux surface with
a single 1

4
(1, 1) singularity, and there is a Q-Gorenstein smoothing X  X ′ to a smooth

Z/4-Godeaux surface.
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Proof. The general Y8,8 ⊂ P(1, 1, 4, 4, 4) is quasismooth with four 1
4
(1, 1) singularities at

Y ∩ (u1 = u3 = 0). Using adjunction, ωY = OY (2), and we compute pg(Y ) = 3, K2
Y = 4.

The graded ring R(Y,KY ) =
⊕

k≥0H
0(OY (2k)) is generated by x1 = u21, x2 = u1u3,

x2 = u23 in degree 1 and y1, y2, y3 in degree 2, and the surface described in the statement
of the Lemma is precisely that given by ProjR. The σ-action extends that of Section
4.1 with y2 invariant, and this is still fixed point free for general Y . The Q-Gorenstein
smoothing of the four singularities can be done simultaneously and Z/4-equivariantly by
varying the quadric equation to x1x3 − x22 = λy2 to eliminate y2 for λ 6= 0.

Remark 4.8. We use the above Lemma to interchange between Y8,8 ⊂ P(1, 1, 4, 4, 4) and
Y2,4,4 ⊂ P(1, 1, 1, 2, 2, 2) without further comment.

As before, there is a family Ys = Ms ∩ Y of stable Z/4-Godeaux surfaces with an
involution. The action of τ on the ambient space P(1, 1, 4, 4, 4) is

τ : (u1, u3, y1, y2, y3) 7→ (iu1,−iu3, y1, y2, y3),

and the defining equations of Y are linear combinations of the following monomials

q0 : u81, u
4
1u

4
3, u

8
3, u

2
1u

2
3y2, y

2
2, y1y3,

q2 : u61u
2
3, u

2
1u

6
3, u

4
1y2, u

4
3y2, y

2
1, y

2
3.

Again, we can check that τ extends the smooth case of Section 4.1.

Proposition 4.9. Let X be a stable Godeaux surface with a single 1
4
(1, 1) point P and

involution τ , arising as the quotient X = Y/σ for general Y in Ys. The fixed curve of τ
is R = C1 + C2, where the intersection C1 ∩ C2 is the singular point P . There are four
isolated fixed points of τ on X.

Proof. This is similar to Lemma 4.2. The fixed curve on Y is defined by (x2 = 0),
and since x2 = u1u3, R splits into two components C1 + C2 on X. Moreover, the locus
Y ∩ (u1 = u3 = 0) is the σ-orbit Q1 of 1

4
(1, 1) singularities, so the Ci intersect at a

single 1
4
(1, 1) point on X. The isolated fixed points of τ are the images of four σ-orbits

Q2, . . . , Q5 defined by (y1 = y3 = 0) on Y .

Let φY : Ỹ → Y be the minimal resolution of the four 1
4
(1, 1) singularities on Y . Then

KỸ = φ∗Y (KY )− 1
2
(E1 + · · ·+E4), where the Ei are the (−4)-exceptional curves. Since Ỹ

is an elliptic surface with pg = 3, by the Kodaira bundle formula, we also have KỸ ∼ 2F
where F is a fibre. The curves Ei are therefore sections of the fibration.

Thus the elliptic fibration Ỹ → P1 is the resolution of the pencil 〈u1, u3〉, and all fibres
are complete intersection curves F8,8 ⊂ P(1, 4, 4, 4). Unlike in the Z/3 case, these fibres
are really just hyperplane sections of Y , and because KỸ = 2F , they are nonsingular at
the 1

4
(1, 1) points.

Lemma 4.10. The elliptic surface Ỹ associated to a general surface Y in Y has two
nonsingular fibres F1, F3 that are invariant under the action of σ and 48 I1 fibres. If Y
is in Ys, then 16 of the nodes in I1 fibres form four σ-orbits of isolated τ -fixed points.
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Proof. The automorphism σ acts on the base of the fibration only, and the two fibres
F1 : (u1 = 0) and F3 : (u3 = 0) are invariant. A direct computation shows that for general
Y , Fi are nonsingular, and the computation of singular fibres and fixed points is again an
easier version of the argument in the last paragraph of the proof of Proposition 3.2.

Let X̃ be the elliptic surface obtained as the quotient Ỹ /σ.

Corollary 4.11. The minimal resolution X̃ of X is a (4, 4)-Dolgachev surface, and the
(−4)-curve E is a 4-section. The involution τ fixes the two multiple fibres pointwise, and
E is invariant under τ , with two fixed points at the intersection with the multiple fibres.
The quotient X̃/τ is a nodal Enriques surface with a (−2)-curve which is a 2-section of
the elliptic fibration, and four A1-singularities lying on distinct fibres.

Proof. The two σ-invariant fibres Fi on Ỹ give rise to two fibres of multiplicity 4 on
the quotient X̃. From Proposition 4.9, these two fibres are pointwise fixed by τ , and so
their multiplicity on X/τ drops to two. The image of E is a (−2)-curve because E is
τ -invariant.

Corollary 4.12. For general Y in Ys with a 1
4
(1, 1) singularity, the quotient surface Y/τ

is a nodal K3 surface with four A1 singularities. The ramification curve breaks into two
components, each of which passes through all four A1 singularities.

Proof. The fact that the quotient is an intersection of three quadrics is similar to Corollary
4.6, starting from the description of Y in Lemma 4.7.

The singularities are again induced by the σ-orbit Q1 on Y , but this time Q1 comprises
four 1

4
(1, 1) singularities. The local orbifold coordinates near a 1

4
(1, 1) point P of Q1 are

u1, u3, and the action of τ on these coordinates is 1
4
(1, 3). Thus the invariant monomials of

the composite action are w1 = u41, w2 = u21u
2
3, and w3 = u43 with single relation w1w3 = w2

2,
and the image of P on Y/τ is an A1 singularity.

4.3 Stable rational Z/4-Godeaux surfaces

Following the strategy explained in Section 3.3, we look for stable Z/4-Godeaux surfaces

X̃ with an elliptic fibration where the multiple fibres become nodal. As in Section 3.3,
this behaviour is induced by Y having a single σ-fixed point in the hyperplane (x1 = 0)
(or (x3 = 0)). Such a fixed point must be an A3 singularity or worse. This condition is
independent of the presence of 1

4
(1, 1) singularities.

Lemma 4.13. The following divisors B1,B3 ⊂M defined by

B1 : no x41 monomial in q0

B3 : no x43 monomial in q0

parametrise surfaces Y with an A3 singularity at P1 = (1, 0, 0, 0, 0) (respectively P3 =
(0, 0, 1, 0, 0)) which is fixed under the action of σ. Moreover, the quotient X = Y/σ of a
general surface in Bi is a Godeaux surface with a 1

16
(1, 3) singularity.
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Proof. Consider a general surface Y in B1. Since q0 does not contain the monomial x41,
the coordinate point P = Px1 is contained in Y . Ignoring coefficients, the leading terms
of q0, q2 at P are

y1y3 + x2y1 + x23 + h.o.t., x3 + x22 + h.o.t.

Thus eliminating x3 with x22 and a coordinates change shows that Y has an A3 singularity
at P , and clearly P is fixed under the action of σ. Computing with local coordinates near
P , we see that the action of σ on (y1, y3, x2) is (−iy1, iy3, ix2) and so P induces a 1

16
(1, 3)

point on X.

Lemma 4.14. All intersections between Y, B1 and B3 are transversal.

Proof. The proof is similar to that of Lemma 3.12, and we do not give full details. We only
remark that a surface Y in Y∩B1 is realised as a complete intersection Y8,8 ⊂ P(1, 1, 4, 4, 4)
for which q0 does not contain the monomial u81. The Q-Gorenstein smoothing of the
1
4
(1, 1) point is in Lemma 4.7, and the 1

16
(1, 3) point is smoothed by allowing u81 to appear

again.

In this case, the A3 singularities on Y are fixed under τ , so it is not true that Bsi =
(B1 ∩ B3)s here, unlike Section 3.3.

Let X1 be the stable Godeaux surface with one 1
16

(1, 3), X2 with singularities 1
4
(1, 1)

and 1
16

(1, 3), and X3 with one 1
4
(1, 1) and two 1

16
(1, 3) singularities. Let Yi be the cor-

responding cyclic cover of Xi. According to Lemma 4.14, the surfaces are related under
Q-Gorenstein degenerations as shown in Figure 5.

Figure 5: Stable Z/4-degenerations of Y and X

Proposition 4.15. The surfaces Xi are rational for i = 2, 3.

Proof. This is the same proof as in the Z/3 case, Proposition 3.13.

Proposition 4.16. The surface X1 is rational.
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Proof. Let us consider a Q-Gorenstein deformation X1  X2 over a disk D, so that the
deformation around the singularity 1

16
(1, 3) is constant. Then we resolve it simultane-

ously (and minimally) to obtain a Q-Gorenstein smoothing X ′1  X ′2. By the previous
proposition, in the central fibre X ′2 we have a (−1)-curve between the (−6)-curve and the
last (−2)-curve of the exceptional divisor. This (−1)-curve intersects the (−4)-curve of

the exceptional divisor of X̃2 → X2 at one point and transversally. Therefore, we can
apply the flip used in Proposition 3.9. After the flip, the deformation X ′1  X ′2 becomes
smooth, and so the Kodaira dimension is preserved. By the previous proposition, the
surface X2 is rational, and so X1 is rational as well.

Remark 4.17. We know of one other involution on the Z/4-Godeaux surface, from [10,
§4.2]. The automorphism τ : (x1, x2, x3, y1, y3) 7→ (x3, x2, x1, y3, y1) acts on a subfamily of
M, and the group generated by σ and τ is D4. The fixed curve is genus 1 and there are
five isolated fixed points. According to [2, §8.7], the quotient X/τ is a double plane of
du Val type. It would be interesting to study the corresponding degenerations for this
involution, and understand the behaviour of the double plane.
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[19] A. Stern, G. Urzúa, KSBA surfaces with elliptic quotient singularities, π1 = 1, pg = 0,
and K2 = 1, 2, Israel Journal of Mathematics 214(2016), 651-673.
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