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Abstract

Employing nonparametric methods for density estimation has become routine in Bayesian statistical
practice. Models based on discrete nonparametric priors such as Dirichlet Process Mixture (DPM) models
are very attractive choices due to their flexibility and tractability. However, a common problem in fitting
DPMs or other discrete models to data is that they tend to produce a large number of (sometimes)
redundant clusters. In this work we propose a method that produces parsimonious mixture models (i.e.
mixtures that discourage the creation of redundant clusters), without sacrificing flexibility or model fit.
This method is based on the idea of repulsion, that is, that any two mixture components are encouraged
to be well separated. We propose a family of d-dimensional probability densities whose coordinates tend
to repel each other in a smooth way. The induced probability measure has a close relation with Gibbs
measures, Graph theory and Point Processes. We investigate its global properties and explore its use
in the context of mixture models for density estimation. Computational techniques are detailed and we
illustrate its usefulness with some well-known data sets and a small simulation study.

Key Words: Gibbs measures, Graph Theory, Mixture Models, Repulsive Point Processes.

1 Introduction

Hierarchical mixture models have been very successfully employed in a myriad of applications of Bayesian

modeling. A typical formulation for such models adopts the basic form

yi|θi
ind∼ k(yi; θi), θ1, . . . , θn

iid∼
N∑
`=1

w`δφ` , φ1, . . . , φN
iid∼ G0, (1.1)

where k(y; θ) is a suitable kernel density, 1 ≤ N ≤ ∞, component weights w1, . . . , wN are nonnegative and∑N
`=1 w` = 1 with probability 1. Here N could be regarded as fixed or random and in the latter case a
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prior p(N) would need to be specified. Depending on the modeling goals and data particularities, the model

could have additional parameters and levels in the hierarchy. The generic model (1.1) includes, as special

cases, finite mixture models (Frühwirth-Schnatter 2006) and species sampling mixture models (Pitman 1996;

Quintana 2006), in turn including several well-known particular examples such as the Dirichlet process

(Ferguson 1973) and the Pitman-Yor process (Pitman and Yor 1997).

A common feature of models like (1.1) is the use of i.i.d. parameters φ1, . . . , φN . This choice seems

to have been largely motivated by the resulting tractability of the models, specially in the nonparametric

case (N = ∞). There is also a substantial body of literature concerning important properties such as wide

support, posterior consistency, and posterior convergence rates, among others. See, for instance, Ghosal and

van der Vaart (2007) and Shen et al. (2013).

While the use of i.i.d. atoms in the mixture in (1.1) is technically (and practically) convenient, a typical

summary of the induced posterior clustering will usually contain a number of very small clusters or even some

singletons. As a specific example, we considered a synthetic data set of n = 300 independent observations

simulated from the following mixture of 4 bivariate normal distributions:

y ∼ 0.2×N2(µ1,Σ1) + 0.3×N2(µ2,Σ2) + 0.3×N2(µ3,Σ3) + 0.2×N2(µ4,Σ4),

with

µ1 = (0, 0)>, µ2 = (3, 3)>, µ3 = (−3,−3)>, µ4 = (−3, 0)>

Σ1 =

(
1 0

0 1

)
, Σ2 =

(
2 1

1 1

)
, Σ3 =

(
1 1

−1 3

)
, Σ4 =

(
3 −2

−2 2

)
.

The left panel in Figure 1 shows the original data and clusters, labeled with different numbers and colors.

We fit to these data the variation of model (1.1) implemented in the function DPdensity of DPpackage (Jara

et al. 2011), which is the bivariate version of the DP-based model discussed in Escobar and West (1995). The

right panel of Figure 1 shows the same data but now displays the cluster configuration resulting from the

least squares algorithm described in Dahl (2006). The estimated partition can be thought of as a particular

yet useful summary of the posterior distribution of partitions for this model. What we observe is a common

situation in the application of models like (1.1): we find 6 clusters (the simulation truth involved 4 clusters),

one of which is a singleton. Such small clusters are very hard to interpret and a natural question arises, is

it possible to limit and ideally, avoid such occurrences?
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Figure 1: Data simulated from the mixture of 4 bivariate normal densities in (1). The left panel shows the
original n = 300 data points with colors and numbers indicating the original cluster. The right panel shows
the clustering resulting from applying Dahl’s least squares clustering algorithm to a DP mixture. See the
text for more details.

In an example like what is described above, our main motivation is not pinning down the “true” number

of simulated clusters. What we actually want to accomplish is to develop a model that encourages joining

such small clusters with other larger ones. This would certainly facilitate interpretation of the resulting

clusters. Doing so has another conceptual advantage, which is sparsity. The non-sparse behavior shown in

the right panel of Figure 1 is precisely facilitated by the fact that the atoms in the mixture are i.i.d. and

therefore, can move freely with respect to each other. Thus to achieve our desired goal, we need atoms that

mutually repel each other.

Colloquially, the concept of repulsion among a set of objects implies that the objects tend to separate

rather than congregate. This notion of repulsion has been studied in the context of point processes. For

example, Determinantal Point Processes (Lavancier et al. 2015), Strauss Point Processes (Mateu and Montes

2000; Ogata and Tanemura 1985) and Matérn-type Point Processes (Rao et al. 2016) are all able to generate

point patterns that exhibit more repulsion than that expected from a Poisson Point Process (Daley and

Vere-Jones 2002). Given a fixed number of points within a bounded (Borel) set, the Poisson Point Process

can generate point configurations such that two points can be very close together simply by chance. The

repulsion in Determinantal, Strauss and Matérn-type processes discourages such behavior and is controlled
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by a set of parameters (finite/infinite dimensional) that inform pattern configurations. Among these, to

our knowledge, only Determinantal Point Processes (DPP) have been employed to introduce the notion of

repulsion in statistical modeling (see Xu et al. 2016).

An alternative way to incorporate the notion of repulsion in modeling is to construct a multivariate prob-

ability distribution that explicitly parameterizes repulsion. Along these lines Fúquene et al. (2016) develop

a family of probability densities called non local priors (NLPs) that incorporates repulsion by penalizing

small relative distances between coordinates. Our approach to incorporating repulsion is to model coordi-

nate interactions through the potential functions (functions that describe the ability to interact) found in so

called Gibbs measures. As will be shown, this provides more control on the strength of repulsion and more

flexibility on the types of repulsion that can be considered.

Gibbs measures have been widely studied and used for describing phenomena from mechanical statistics

(Daley and Vere-Jones 2002). Essentially, they are used to model the average macroscopic behavior of par-

ticle systems through a set of probability and physical laws that are imposed over the possible microscopic

states of the system. Through the action of potentials, Gibbs measures can induce attraction or repulsion

between particles. A number of authors have approached repulsive distributions by specifying a particular

potential function in a Gibbs measures (though the connections to Gibbs measures was not explicitly stated).

For example, Petralia et al. (2012) use a Lennard-Jones type potential (Jones 1924) to introduce repulsion.

Interestingly, there is even a connection between Gibbs models and DPPs via versions of Papangelou inten-

sities (Papangelou 1974). See Georgii and Yoo (2005) for more details. It is worth noting that in each of the

works just cited, the particles (following the language in mechanical statistics) represent location parameters

in mixture models.

Similar to the works just mentioned, we focus on a particular potential specification that introduces

repulsion via a joint distribution. There are at least three benefits to employing the class of repulsive

distributions we develop for statistical modeling:

(i) The repulsion is explicitly parameterized in the model and produces a flexible and smooth repulsion

effect.

(ii) The normalizing constant and induced probability distributions have closed forms, they are (almost)

tractable and provide intuition regarding the presence of repulsion.

(iii) The computational aspects related to simulation are fairly simple to implement.

In what follows, we discuss theoretical and applied aspects of the proposed class of repulsive distributions
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and in particular we emphasize how the repulsive class of distributions achieves the three properties just

listed.

The remainder of this article will be organized as follows. In Section 2 we formally introduce the notion

of repulsion in the context of a probability distribution and discuss several resulting properties. In Section 3,

we detail how the repulsive probability distributions can be employed in hierarchical mixture modeling.

Section 4 contains results from a small simulation study that compares the repulsive mixture models we

develop to DPMs and finite mixture models. In Section 5 we apply the methodology to two well known

datasets. Section 6 provides a discussion and directions for future work. Proofs of all results are provided in

the Appendix.

2 Probability Repulsive Distributions

We start by providing contextual background and introducing notation that will be used throughout.

2.1 Background and Preliminaries

We will use the k-fold product space of Rd denoted by Rdk =
∏k
i=1 Rd and B(Rdk) =

⊗k
i=1 B(Rd) its associated

σ-algebra as the reference space on which the class of distributions we derive will be defined. Here, k ∈ N

(k ≥ 2), d ∈ N and B(Rd) is the Borel σ-algebra on Rd. Let xk,d = (x1, . . . ,xk) with x1, . . . ,xk ∈ Rd. xk,d

can be thought of as k ordered objects of dimension d jointly allocated in Rdk. We add to the measurable

space (Rdk,B(Rdk)) a σ-finite measure λkd =
⊗k

i=1 λd, that is the k-fold product of the Lebesgue measure λd

on (Rd,B(Rd)). To represent integrals with respect to λkd, we will use dxk,d instead of dλkd(xk,d). When

d = 1 we will use the common notation R1 = R, B(R1) = B(R), R1
k = Rk, B(R1

k) = B(Rk), xk,1 = xk,

λk1 = λk and λ1 = λ. Also, given two metric spaces (Ω1, d1) and (Ω2, d2) we denote by C(Ω1; Ω2) the class of

all continuous functions f : Ω1 → Ω2. In what follows we use the term “repulsive distribution” to reference

a distribution that formally incorporates the notion of repulsion.

As mentioned previously, our construction of non-i.i.d. multivariate distributions depends heavily on

Gibbs measures where dependence (and hence repulsion) between the coordinates of xk,d is introduced

via functions that model interactions between them. More formally, let R be the extended real line (i.e.,

R∪{−∞,∞}) and B(R) its associated Borel σ-algebra generated by the order topology. Consider ϕ1 : Rd → R

5



a measurable function and ϕ2 : Rd × Rd → R a measurable and symmetric function. Define

νG

( k∏
i=1

Ai

)
=

∫
∏k
i=1 Ai

exp
[
−

k∑
i=1

ϕ1(xi)−
k∑
r<s

ϕ2(xr,xs)
]
dxk,d, (2.1)

where
∏k
i=1Ai is the cartesian product of A1, . . . , Ak ∈ B(Rd). Here, ϕ1 can be thought of as a physical

force that controls the influence that the environment has on each coordinate xi while ϕ2 controls the

interaction between pairs of coordinates xr and xs. If ϕ1 and ϕ2 are selected so that νG(Rdk) is finite, then

by Caratheodory’s Theorem νG defines a unique finite measure on (Rdk,B(Rdk)). The induced probability

measure corresponding to the normalized version of (2.1), is called a (second-order) Gibbs measure. The

normalizing constant (total mass of Rdk under νG)

νG(Rdk) =

∫
Rdk

exp
[
−

k∑
i=1

ϕ1(xi)−
k∑
r<s

ϕ2(xr,xs)
]
dxk,d

is commonly known as partition function (Pathria and Beale 2011) and encapsulates important qualitative

information about the interactions and the degree of disorder present in the coordinates of xk,d. In general,

νG(Rdk) is (almost) intractable mainly because of the presence of ϕ2.

Note that symmetry of ϕ2 (i.e., ϕ2(xr,xs) = ϕ2(xs,xr)) means that νG defines a symmetric measure.

This implies that the order of coordinates is immaterial. If ϕ2 ≡ 0 then νG reduces to a structure where

coordinates do not interact and are only subject to environmental influence through ϕ1. When ϕ2 6= 0, it is

common that ϕ2(x,y) only depends on the relative distance between x and y (Daley and Vere-Jones 2002).

More formally, let ρ : Rd × Rd → R+
0 be a metric on Rd and φ : R+

0 → R a measurable function. To avoid

pathological or degenerate cases, we consider metrics that do not treat singletons as open sets in the topology

induced by ρ. Then letting ϕ2(x,y) = φ(ρ(x,y)), interactions will be smooth if, for example, φ ∈ C(R+
0 ;R).

Following this general idea, Petralia et al. (2012) use φ(r) = τ(1/r)ν with r ∈ R+
0 and τ, ν ∈ R+ to construct

repulsive probability densities, which is a particular case of the Lennard-Jones type potential (Jones 1924)

that appears in molecular dynamics. Another potential that can be used to define repulsion is the (Gibbs)

hard-core potential φ(r) =∞I[0,b](r) with b ∈ R+ (Illian et al. 2008), which is a particular case of the Strauss

potential (Strauss 1975). Here, IA(r) is the indicator function over a Borel set A ∈ B(R). This potential,

used in the context of point processes, generates disperse point patterns whose points are all separated by

a distance greater than b units. However, the threshold of separation b prevents the repulsion from being

smooth (Daley and Vere-Jones 2002). Other examples of repulsive potentials can be found in Ogata and
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Tanemura (1981, 1985). The key characteristic that differentiates the behavior of the potentials provided

above is the action near 0; the faster the potential function goes to infinity as relative distance between

coordinates goes to zero, the stronger the repulsion that the coordinates of xk,d will experiment when they

are separated by small distances. Even though Fúquene et al. (2016) do not employ a potential to model

repulsion, the repulsion that results from their model is very similar to that found in Petralia et al. (2012)

and tends to push coordinates far apart.

It is often the case that ϕ1 and ϕ2 are indexed by a set of finite-dimensional parameters which inform

the types of patterns produced. It would therefore be natural to estimate these parameters using observed

data. However, νG(Rdk) is typically a function of the unknown parameters which makes deriving closed

form expressions of νG(Rdk) practically impossible and renders Bayesian or frequentist estimation procedures

intractable. To avoid this complication, pseudo-maximum likelihood methods have been proposed to ap-

proximate νG(Rdk) when carrying out estimation (Ogata and Tanemura 1981; Penttinen 1984). We provide

details of a Bayesian approach in subsequent sections.

2.2 Repk,d(f0, C0, ρ) Distribution

As mentioned, our principal objective is to construct a family of probability densities for xk,d that relaxes

the i.i.d. assumption associated with its coordinates and we will do this by employing Gibbs measures that

include an interaction function that mutually separates the k coordinates. Of all the potentials that might

be considered in a Gibbs measure, we seek one that permits modeling repulsion flexibly so that a soft type

of repulsion is available which avoids forcing large distances among the coordinates. As noted by Daley and

Vere-Jones (2002) and Ogata and Tanemura (1981) the following potential

φ(r) = − log(1− exp{−cr2}), r ∈ R+
0 with c ∈ R+ (2.2)

produces smoother repulsion compared to other types of potentials in terms of “repelling strength” and

for this reason we employ it as an example of interaction function in a Gibbs measure. A question that

naturally arises at this point relates to the possibility of specifying a tractable class of repulsive distributions

that incorporates the features discussed above. Note first that connecting (2.2) with νG is straightforward:

if we take ϕ2(x,y) = − ln(1−C0(ρ(x,y))) for x,y ∈ Rd then νG will have a pairwise-interaction term given

by

exp
[
−

k∑
r<s

ϕ2(xr,xs)
]

=

k∏
r<s

[1− C0(ρ(xr,xs))]. (2.3)

7



The right-hand side of (2.3) induces a particular interaction structure that separates the coordinates of xk,d,

thus introducing a notion of repulsion. The degree of separation is regulated by the speed at which C0 decays

to 0. The answer to the question posed earlier can then be given by focusing on functions C0 : R+
0 → (0, 1]

that satisfy the following properties:

A1. C0 ∈ C(R+
0 ; (0, 1]).

A2. C0(0) = 1.

A3. limx→+∞ C0(x) = 0.

A4. ∀x, y ∈ R+
0 : x < y ⇒ C0(x) > C0(y).

For future reference we will call A1 to A4 the C0 − Properties. The following Lemma guarantees that the

type of repulsion induced by the C0 − Properties is smooth in terms of xk,d.

Lemma 2.1. Given a metric ρ : Rd×Rd → R+
0 such that singletons are not open sets in the topology induced

by ρ, the function RC : Rdk → [0, 1) defined by

RC(xk,d) =

k∏
r<s

[1− C0(ρ(xr,xs))] (2.4)

belongs to C(Rdk; [0, 1)) for d ≥ 1 and k ≥ 2.

Through out the article we will refer to (2.4) as the repulsion component. We finish the construction

of repulsive probability measures by specifying a distribution on (Rd,B(Rd)) that is common for all the

coordinates of xk,d. Let f0 ∈ C(Rd;R+) be a probability density function, then under ϕ1(x) = − log(f0(x)),

νG will have a base component given by

exp
[
−

k∑
i=1

ϕ1(xi)
]

=

k∏
i=1

f0(xi). (2.5)

Incorporating (2.3) and (2.5) into (2.1) we get

νG

( k∏
i=1

Ai

)
=

∫
∏k
i=1 Ai

k∏
i=1

f0(xi)RC(xk,d)dxk,d.

The following Proposition ensures that the repulsive probability measures just constructed are well defined.

8



Proposition 2.2. Let f0 ∈ C(Rd;R+) be a probability density function. The function

gk,d(xk,d) =

k∏
i=1

f0(xi)RC(xk,d) (2.6)

is measurable and integrable for d ≥ 1 and k ≥ 2.

With Proposition 2.2 it is now straightforward to construct a multivariate probability measure with the

desired repulsive structure; small relative distances are penalized in a smooth way. Notice that the support

of (2.6) is determined by the shape of the baseline distribution f0 and then subsequently distorted (i.e.

contracted) by the repulsive component. The normalized version of (2.6) defines a valid joint probability

density function which we now provide.

Definition 2.1. The probability distribution Repk,d(f0, C0, ρ) has density function

Repk,d(xk,d) =
1

ck,d

k∏
i=1

f0(xi)RC(xk,d), (2.7)

with ck,d =

∫
Rdk

k∏
i=1

f0(xi)RC(xk,d)dxk,d. (2.8)

Here xk,d ∈ Rdk, f0 ∈ C(Rd;R+) is a probability density function, C0 : R+
0 → (0, 1] is a function that satisfies

the C0−Properties and ρ : Rd×Rd → R+
0 is a metric such that singletons are not open sets in the topology

induced by it.

2.3 Repk,d(f0, C0, ρ) Properties

In this section we will investigate a few general properties of the Repk,d(f0, C0, ρ) class. The distributional

results are provided to further understanding regarding characteristics of (2.7) from a qualitative and analytic

point of view. As a first observation, because of symmetry, Repk,d(xk,d) is an exchangeable distribution in

x1, . . . ,xk. This facilitates the study of computational techniques motivated by Repk,d(f0, C0, ρ). To simplify

notation, in what follows we will use [m] = {1, . . . ,m}, with m ∈ N.

Before proceeding it is worth noting that {Repk,d(f0, C0, ρ)}k≥2 does not induce a sample-size consistent

sequence of finite-dimensional distributions, meaning that

∫
Rd

Repk+1,d(xk+1,d)dxk+1 6= Repk,d(xk,d).

9



This makes predicting locations of new coordinates problematic. In Section 3 we address how this may be

accommodated in modeling contexts.

2.3.1 Normalizing Constant

Because RC(xk,d) is invariant under permutations of the coordinates of xk,d, an interaction’s direction is

immaterial to whether it is present or absent (i.e., xr interacts with xs if and only if xs interacts with xr).

Therefore it is sufficient to represent the interaction between xr and xs as (r, s) ∈ Ik where Ik = {(r, s) :

1 ≤ r < s ≤ k}. In this setting, Ik reflects the set of all pairwise interactions between the k coordinates of

xk,d and `k
def
= card(Ik) = k(k−1)

2 . Now, expanding (2.4) term-by-term results in

RC(xk,d) = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

∏
(r,s)∈A

C0(ρ(xr,xs)). (2.9)

The right-side of (2.9) is connected to graph theory in the following way: A ⊆ Ik can be interpreted as a

non-directed graph whose edges are (r, s) ∈ A.

Using (2.9), it can be shown that expressions (2.7) and (2.8) in Definition 2.1 have the following forms:

Repk,d(xk,d) =

k∏
i=1

f0(xi) +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

[ k∏
i=1

f0(xi)
∏

(r,s)∈A

C0(ρ(xr,xs))
]

(2.10)

ck,d = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

Ψk,d(A) (2.11)

Ψk,d(A) =

∫
Rdk

k∏
i=1

f0(xi)
∏

(r,s)∈A

C0(ρ(xr,xs))dxk,d. (2.12)

Note that representing A as a graph or Laplacian matrix can help develop intuition on how each summand

contributes to the expression (2.11). Figure 2 shows one particular case of how three of four coordinates in

Rd might interact by providing the respective Laplacian matrix together with the contribution that (2.12)

brings to calculating c4,d according to (2.11).

Equation (2.11) retains connections with the probabilistic version of the Inclusion-Exclusion Principle.
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Figure 2: The graph and Laplacian matrix for a possible interaction for n = 4 coordinates.

This result, which is very useful in enumerative combinatorics, says that in any probability space (Ω,F ,P)

P
( k⋂
i=1

Aci

)
= 1 +

k∑
l=1

(−1)l
∑
I⊆[k]

card(I)=l

P
(⋂
i∈I

Ai

)
,

with A1, . . . , Ak ∈ F and Aci denoting the complement of Ai. With this in mind, ck,d is the result of

adding/substracting all the contributions Ψk,d(A) that emerge for every A ⊆ Ik (A 6= ∅). If we think of ck,d

as an indicator of the strength of repulsion, Ψk,d(A) provides the specific contribution from the interactions

(r, s) ∈ A. Moreover, it quantifies how distant a Repk,d(f0, C0, ρ) distribution is from the extreme case of

C0 ≡ 0 (i.e., the coordinates x1, . . . ,xk are mutually independent and share a common probability law f0).

The tractability of ck,d depends heavily on the number of coordinates k since the cost of evaluating (2.12)

becomes prohibitive as it requires carrying out (at least) 2`k − 1 numerical calculations. In Subsection 3.1

we highlight a particular choice of f0, C0 and ρ that produces a closed form expression for (2.12).

3 Gaussian Mixture Models and Repk,d(f0, C0, ρ) Distribution

In this section we will briefly introduce Gaussian Mixture Models, which are very popular in the context of

density estimation (Escobar and West 1995) because of their flexibility and computational tractability. Then
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we show that repulsion can be incorporated by modeling location parameters with the repulsion distribution

described previously.

3.1 Repulsive Gaussian Mixture Models

Consider n ∈ N experimental units whose responses y1, . . . ,yn are d-dimensional and assumed to be ex-

changeable. Gaussian mixtures can be thought of as a way of grouping the n units into several clusters, say

k ∈ N, each having its own specific characteristics. In this context, the jth cluster (j ∈ [k]) is modeled through

a Gaussian density Nd( · ;θj ,Λj) with location θj ∈ Rd and scale Λj ∈ Sd. Here, Sd is the space of real, sym-

metric and positive-definite matrices of dimension d×d. For notational purpose, let θk,d = (θ1, . . . ,θk) ∈ Rdk

and Λk,d = (Λ1, . . . ,Λk) ∈ Sdk with Sdk =
∏k
i=1 Sd. Next let πk = (π1, . . . , πk)> ∈ ∆k−1, where ∆k−1 is

the (k− 1)-dimensional simplex (∆0 = {1}) denote a set of weights that reflect the probability of allocating

yi : i ∈ [n] to a cluster. Then the standard Gaussian mixture model is

yi|πk,θk,d,Λk,d
iid∼

k∑
j=1

πjNd(yi;θj ,Λj). (3.1)

It is common to restate (3.1) by introducing latent cluster membership indicators z1, . . . , zn ∈ [k] such

that yi is drawn from the jth mixture componnent if and only if zi = j:

yi|zi,θk,d,Λk,d
ind∼ Nd(yi;θzi ,Λzi) (3.2)

zi|πk
iid∼ Mult(1,πk). (3.3)

after marginalizing over the zi indicators. The model is typically completed with conjugate-style priors for

all parameters.

It is also possible to consider a prior distribution on k ∈ N. For example, Dirichlet Process Mixture

(DPM) models by construction induce a prior distribution on the number of clusters k. Alternatively,

setting a prior specifically on k leads to transdimensional MCMC approaches, such as Reversible Jumps

(Green 1995; Richardson and Green 1997) or Birth-Death chains (Stephens 2000). These methodologies

allow the number of clusters to change by way of specific movements between parametric spaces indexed by

k. In this paper we will use a case-specific upper bound for k.

In the above mixture model, the location parameters associated with each mixture component are typ-

ically assumed to be independent a priori. This is precisely the assumption that facilitates the presence of
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redundant mixture components. In contrast, our work focuses on employing Repk,d(f0, C0, ρ) as a model

for location parameters in (3.1) which promotes reducing redundant mixture components without sacrificing

goodness-of-fit, i.e, more parsimony relative to alternatives with independent locations. Moreover, the re-

sponses will be allocated to a few well-separated clusters. This desired behavior can be easily incorporated

in the mixture model by assuming

θk,d ∼ Repk,d(f0, C0, ρ)

f0(x) = Nd(x;µ,Σ) : µ ∈ Rd,Σ ∈ Sd (3.4)

C0(r) = exp(−0.5τ−1r2) : τ ∈ R+ (3.5)

ρ(x,y) = {(x− y)>Σ−1(x− y)}1/2. (3.6)

The specific forms of f0, C0 and ρ are admissible according to Definition 2.1. The repulsive distribution

parameterized by (3.4) - (3.6) will be denoted by NRepk,d(µ,Σ, τ). Because NRepk,d(µ,Σ, τ) introduces

dependence a priori (in particular, repulsion) between the coordinates of θk,d, they are no longer conditionally

independent given (yn,d, zn,Λk,d), with yn,d = (y1, . . . ,yn) ∈ Rdn and zn = (z1, . . . , zn)> ∈ [k]n. The

parameter τ in (3.5) controls the strength of repulsion associated with coordinates in θk,d via (3.6): as τ

approaches 0, the repulsion becomes weaker. The selection of (3.4) reduces to the usual i.i.d. multivariate

normal assumption when τ = 0.

To facilitate later reference we state the repulsive mixture model in its entirety:

yi|zi,θk,d,Λk,d
ind∼ Nd(yi;θzi ,Λzi) (3.7)

zi|πk
iid∼ Mult(1,πk) (3.8)

together with the following mutually independent prior distributions:

πk ∼ Dir(α) : α ∈ R+
k (3.9)

θk,d ∼ NRepk,d(µ,Σ, τ) : µ ∈ Rd,Σ ∈ Sd, τ ∈ R+ (3.10)

Λj
iid∼ IWd(Ψ, ν) : Ψ ∈ Sd, ν ∈ R+. (3.11)

In what follows we will refer to the model in (3.7) - (3.11) as the (Bayesian) Repulsive Gaussian Mixture

Model (RGMM).
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3.1.1 Parameter Calibration

Treating (µ,Σ, τ) of the RGMM as unknowns and assigning them hyperprior distributions is very costly

computationally. Even more problematic, it can be shown using (2.11), (2.12) and the Gaussian integral

that the normalizing constant of NRepk,d(µ,Σ,Ω) is

ck,d = 1 +

`k∑
l=1

(−1)l
∑
A⊆Ik

card(A)=l

det(Ik ⊗ Id + LA ⊗ τ−1Id)−1/2,

where Ik, Id are the k×k and d×d identity matrices respectively, LA denotes the Laplacian matrix associated

to the set of interactions A ⊆ Ik (see Subsection 2.3.1) and ⊗ is the matrix Kronecker product making it

a function of τ . Because of this, the induced full conditional distribution for τ turns out to be doubly-

intractable (Murray et al. 2006) and standard MCMC algorithms do not apply. Finally, (µ,Σ) acts as a

location/scale parameter: if Σ = CC> is the corresponding Cholesky decomposition for Σ, then

θk,d ∼ NRepk,d(0d, Id, τ)⇒ 1k ⊗ µ+ (Ik ⊗C)θk,d ∼ NRepk,d(µ,Σ, τ),

where 0d,1d ∈ Rd are d-dimensional vectors of zeroes and ones, respectively. Although a Normal hyperprior

for µ is a reasonable candidate (the full conditional distribution is also Normal), it is not straightforward how

to select hyperparameters. To avoid these problems, we briefly outline a strategy that leads to a reasonable

selection of hyperparameter values in the RGMM.

To facilitate hyperparameter selection we standardize the yi’s (a common practice in mixture models

see, e.g. Gelman et al. 2014). Upon standardizing the response, it is reasonable to assume that µ = 0d

and Σ = Id. Further Gelman et al. (2014) argue that setting α = (1/k)1d produces a weakly informative

prior for πk. Selecting ν and Ψ is particularly important as they can dominate the repulsion effect. Setting

ν = d + 4 and Ψ = 3ψId with ψ ∈ R+ guarantees that each scale matrix Λj is centered on ψId and that

their entries possess finite variances. The value of ψ can be set to a value that accommodates the desired

variability.

To calibrate τ , we follow the strategy outlined in Fúquene et al. (2016). Their approach consists of first

specifying the probability that the coordinates of θk,d are separated by a certain distance u and then set τ

to the value that achieves the desired probability. To formalize this idea, suppose first that θ1, . . . ,θk
iid∼

Nd(0d, Id). To favor separation among these random vectors we can use (3.5) and (3.6) with Σ = Id to
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choose τ such that

∀ r 6= s ∈ [k], P
(
1− exp{−0.5τ−1(θr − θs)>(θr − θs)} ≤ u

)
= p,

for fixed values u, p ∈ (0, 1). Letting w(u) = − log(1 − u) for u ∈ (0, 1), standard properties of the Normal

distribution guarantee that the previous relation is equivalent to

P(G ≤ w(u)τ) = p, with G =
1

2
(θr − θs)>(θr − θs) ∼ G(d/2, 1/2). (3.12)

Creating a grid of points in R+ it is straightforward to find a τ that fulfills criterion (3.12). This criterion

allows the repulsion to be small (according to u), while at the same time preventing it with probability p

from being too strong. This has the added effect of avoiding degeneracy of (3.10), thus making computation

numerically more stable. In practice, we apply the procedure outlined above to the vectors coming from the

repulsive distribution (3.10), treating them as if they were sampled from a multivariate normal distribution.

This gives us a simple procedure to approximately achieve the desired goal of prior separation with a pre-

specified probability.

3.2 Theoretical Properties

In this section we explore properties associated with the support and posterior consistency of (3.1) under

(3.9), (3.10) and (3.11). These results are based on derivations found in Petralia et al. (2012). However, we

highlight extensions and generalizations that we develop here. Consider for k ∈ N the family of probability

densities Fk = {f( · ; ξk) : ξk ∈ Θk}, where ξk = πk × θk × {λ}, Θk = ∆k−1 × Rk × R+ and

f( · ; ξk) =

k∑
j=1

πjN( · ; θj , λ).

Let Bp(x, r) with x ∈ Rk and r ∈ R+ denote an open ball centered on x, and with radius r, and Bp(x, r)

its closure relative to the Euclidean Lp-metric (p ≥ 1) on Rk.

The following four conditions will be assumed to prove the results stated afterwards.

B1. The true data generating density f0( · ; ξ0k0) belongs to Fk0 for some fixed k0 ≥ 2, where ξ0k0 =

π0
k0
× θ0k0 × {λ0} = (π0

1 , . . . , π
0
k0

)> × (θ01, . . . , θ
0
k0

)> × {λ0}.

B2. The true locations θ01, . . . , θ0k0 satisfy min{|θ0r − θ0s | : r 6= s ∈ [k0]} ≥ v for some v > 0.
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B3. The number of components k ∈ N follows a discrete distribution κ on the measurable space (N, 2N)

such that κ({k0}) > 0.

B4. For k ≥ 2 we have ξk ∼ Dir((1/k)1k) × NRepk,1(µ, σ2, τ) × IG(a, b). In the case that k = 1, ξk ∼

δ1 ×N(µ, σ2)× IG(a, b) with δ1 a Dirac measure centred on 1.

Condition B2 requires that the true locations are separated by a minimum (euclidian) distance v, which

favors disperse mixture component centroids within the range of the response. For condition B4, the sequence

{ξk : k ∈ N} can be constructed (via the Kolmogorov’s Extension Theorem) in a way that the elements are

mutually independent upon adding to each Θk an appropriate σ-algebra. This guarantees the existence

of a prior distribution Π defined on F =
⋃∞
k=1 Fk which correspondingly connects the elements of F with

ξ =
∏∞
k=1 ξk. To calculate probabilities with respect to Π, the following stochastic representation will be

useful

ξ|K = k ∼ ξk, K ∼ κ. (3.13)

Our study of the support of Π employs the Kullback-Leibler (KL) divergence to measure the similarity

between probability distributions. We will say that f0 ∈ Fk0 belongs to the KL support with respect to Π if

∀ε > 0 : Π

({
f ∈ F :

∫
R

log

[
f0(x; ξ0k0)

f(x; ξ?)

]
f0(x; ξ0k0)dx < ε

})
> 0, (3.14)

where ξ? ∈
⋃∞
k=1 Θk. Condition (3.14) can be understood as Π’s ability to assign positive mass to arbitrarily

small neighborhoods around the true density f0. A fundamental step to proving that f0 lies in the KL support

of Π is based on the following Lemmas.

Lemma 3.1. Under condition B1, let ε > 0. Then there exists δ > 0 such that

∀ ξk0 ∈ B1(θ0k0 , δ)×B1(π0
k0 , δ)× (λ0 − δ, λ0 + δ) :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε.

Lemma 3.2. Assume condition B2 and let θk0 ∼ NRepk0,1(µ, σ2, τ). Then there exists δ0 > 0 such that

∀ δ ∈ (0, δ0] : P
(
θk0 ∈ B1(θ0k0 , δ)

)
> 0.

This result remains valid even when replacing B1(θ0k0 , δ) with B1(θ0k0 , δ).

Using these two Lemmas we are able to prove the following Proposition.
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Proposition 3.3. Assume that conditions B1 through B4 hold. Then f0 belongs to the KL support of Π.

We next study the rate of convergence of the posterior distribution corresponding to a particular prior

distribution (under suitable regularity conditions). To do this, we will use arguments that are similar to

those employed in Theorem 3.1 of Scricciolo (2011), to show that the posterior rates derived there are the

same here when considering univariate Gaussian mixture models and cluster-location parameters that follow

condition B4. First, we need the following two Lemmas.

Lemma 3.4. For each k ≥ 2 the coordinates of θk ∼ NRepk,1(µ, σ2, τ) share the same functional form.

Moreover, there exists γ ∈ R+ such that

∀ t ≥ γ : P(|θi| > t) ≤ 2

(2π)1/2
ck−1
ck

(
σ

|µ|+ 1

)
exp

{
− t2

4σ2

}
,

with ck = ck,1 the normalizing constant of NRepk,1(µ, σ2, τ) and c1 = 1.

Lemma 3.5. The sequence {ck : k ∈ N} defined in Lemma 3.4 satisfies

∀ k ≥ 2 : 0 <
ck−1
ck
≤ A exp{ak},

for some constants a,A ∈ R+.

Essentially, these results permit us to adapt certain arguments found in Scricciolo (2011) that are ap-

plicable when the location parameters of each mixture component are independent and follow a common

distribution that is absolutely continuous with respect to the Lebesgue measure, whose support is R and

with tails that decay exponentially. Using the previous Lemmas, we now state the following:

Proposition 3.6. Assume that conditions B1, B2 and B4 hold. Replace condition B3 with:

B3′. There exists B ∈ R+ such that ∀ k ∈ N, 0 < κ({k}) ≤ B exp{−bk}, where b > a and a ∈ R+ is given

by Lemma 3.5.

Then, the posterior rate of convergence relative to the Hellinger metric is εn = n−1/2 log(n).

3.3 Sampling From NRepk,d(µ,Σ, τ)

Upon introducing component labels, sampling marginally from the posterior distribution of (θk,d,Λk,d,πk, z)

can be done with a very straightforward Gibbs sampler save for θk,d. In the Appendix we detail the entire
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MCMC algorithm, but here we focus on the nonstandard aspects of the algorithm and describe how to

sample from NRepk,d(µ,Σ, τ). Notice that the full conditionals of each coordinate of θk,d are not conjugate

but they are all functionally similar. Because of this, evaluating these densities is computationally cheap

making it straightforward to carry out sampling via a Metropolis-Hastings step inside the Gibbs sampling

scheme.

To begin, the distribution (θk,d| · · · ) is given by

(θk,d| · · · ) ∝
n∏
i=1

Nd(yi;θzi ,Λzi)×
k∏
j=1

Nd(θj ;µ,Σ)

k∏
r<s

[1− exp{−0.5τ−1(θr − θs)>Σ−1(θr − θs)}]

=

k∏
j=1

Nd(θj ;µj ,Σj)

k∏
r<s

[1− exp{−0.5τ−1(θr − θs)>Σ−1(θr − θs)}]

where µj = Σj(Σ
−1µ + Λ−1j sj), sj =

∑n
i=1 I{j}(zi)yi, Σj = (Σ−1 + njΛ

−1
j )−1 and nj = card({i ∈ [n] :

zi = j}). Now, the complete conditional distributions (θj |θ−j , · · · ) for j ∈ [k] and θ−j = (θl : l 6= j) ∈ Rdk−1,

have the following form

f(θj |θ−j , · · · ) ∝ Nd(θj ;µj ,Σj)

k∏
l 6=j

[1− exp{−0.5τ−1(θj − θl)>Σ−1(θj − θl)}].

The following pseudo-code describes how to sample from f(θk,d| · · · ) by way of f(θj |θ−j , · · · ) via a

random walk Metropolis Hastings step within a Gibbs sampler:

1. Let θ(0)k,d = (θ
(0)
1 , . . . ,θ

(0)
k ) ∈ Rdk be the actual state for θk,d.

2. For j = 1, . . . , k:

(a) Generate a candidate θ(1)j from Nd(θ
(0)
j ,Γj) : Γj ∈ Sd.

(b) Set θ(0)j = θ
(1)
j with probability

min

1,
Nd(θ

(1)
j ;µj ,Σj)

Nd(θ
(0)
j ;µj ,Σj)

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(1)
j − θ

(0)
l )>Σ−1(θ

(1)
j − θ

(0)
l )}

1− exp{−0.5τ−1(θ
(0)
j − θ

(0)
l )>Σ−1(θ

(0)
j − θ

(0)
l )}

] .

The selection of Γj can be carried out using adaptive MCMC methods (Roberts and Rosenthal 2009)

so that the acceptance rate of the Metropolis-Hastings algorithm is approximately 50% within the burn-in
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period for each j ∈ [k]. One approach that works well for the RGMM is to take

Γj =
1

B

B∑
t=1

(Σ−1 + n
(t)
j (Λ

(t)
j )−1)−1 : n

(t)
j = card({i ∈ [n] : z

(t)
i = j}), (3.15)

where t ∈ [B] is the tth iteration of the burn-in period with length B ∈ N. As mentioned, in the Appendix we

provide pseudo-code that details how the algorithm just described can be incorporated in a Gibbs sampler

to generate realizations from joint posterior associated with the parameters found in RGMM. We will refer

to the algorithm in the Appendix as Algorithm RGMM.

4 Simulation Study

To provide context regarding the proposed method’s performance in density estimation, we conduct a small

simulation study. In the simulation we compare density estimates from the RGMM to what is obtained using

an i.i.d. mixture model and a DPM. This is done by treating the following as a data generating mechanism:

y ∼ f0(x) = 0.3×N(x;−5, 1.02)+0.05×N(x; 0, 0.32)+0.25×N(x; 1, 0.32)+0.4×N(x; 4, 0.82), x ∈ R. (4.1)

Using (4.1) we simulate 100 data sets with sample sizes 500, 1000 y 5000. For each of these scenarios, we

compare the following 4 models (abbreviated by M1, M2, M3 y M4) to estimate f0:

M1. Mixture of normals with prior distributions given by the regular mixture model that follows by assuming

τ = 0 in the RGMM, with

• k = 10, d = 1, α = (1/10)110, µ = 0, Σ = 1, Ψ = 0.06 and ν = 5.

We collected 10000 MCMC iterates after discarding the first 1000 as burn-in and thinning by 10.

M2. RGMM with τ = 5.45. This value came from employing the calibration criterion from Section 3.1.1

and setting u = 0.5 and p = 0.95. The remaining prior parameters are:

• k = 10, d = 1, α = (1/10)110, µ = 0, Σ = 1, τ = 5.45, Ψ = 0.06 and ν = 5.

We collected 10000 MCMC iterates after discarding the first 5000 as burn-in and thinning by 20.

M3. RGMM with τ = 17.17. This value came from employing the calibration criterion from Section 3.1.1

and setting u = 0.2 and p = 0.95. Since τ is bigger here than in M2, M3 has more repulsion than M2.

The remaining prior parameters are the same as in M2:
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• k = 10, d = 1, α = (1/10)110, µ = 0, Σ = 1, τ = 17.17, Ψ = 0.06 and ν = 5.

We collected 10000 MCMC iterates after discarding the first 5000 as burn-in and thinning by 20.

M4. DPM given by:

yi|µi,Σi
ind∼ Nd(µi,Σi) (4.2)

(µi,Σi)|H
iid∼ H (4.3)

H|α,H0 ∼ DP(αH0) (4.4)

where the baseline distribution H0 is the conjugate Normal-Inverse Wishart

H0(µ,Σ) = Nd(µ;m1, (1/k0)Σ)× IWd(Σ; ν1,Ψ1) : ν1 ∈ R+. (4.5)

To complete the model specification given by (4.2) through (4.5), the following independent hyperpriors are

assumed:

α|a0, b0 ∼ G(a0, b0) (4.6)

m1|m2,S2 ∼ Nd(m2,S2) (4.7)

k0|τ1, τ2 ∼ G(τ1/2, τ2/2) (4.8)

Ψ1|ν2,Ψ2 ∼ IWd(ν2,Ψ2) (4.9)

In the simulation study we set d = 1. The selection of hyperparameters found in (4.6) - (4.9) was based on

similar strategies as outlined in Escobar and West (1995) which produced:

• a0 = 2, b0 = 5, ν1 = 4, ν2 = 4, m2 = 0, S2 = 1, Ψ2 = 1, τ1 = 2.01 and τ2 = 1.01.

We collected 10000 MCMC iterates after discarding the first 1000 as burn-in and thinning by 10.

Models M2 and M3 were fit using the Algorithm RGMM which was implemented in Fortran (see the

Appendix). For model M4, density estimates were obtained using the function DPdensity which is available

in the DPpackage of R (Jara et al. 2011).

To compare density estimation associated with the four procedures just detailed we employ the following

metrics.
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• Log Pseudo Marginal Likelihood (LPML) (Christensen et al. 2011) which is a model fit metric that

takes into account model complexity. This was computed by first estimating all the corresponding

conditional predictive ordinates (Gelfand et al. 1992) using the method in Chen et al. (2000).

• Mean Square Error (MSE).

• L1-metric between the estimated posterior predictive density and f0.

Additionally, to explore how the repulsion influences model parsimony in terms of the number of “active”

mixture components, we include the following numeric indicators:

• Posterior average number of occupied components, i.e. nj = card({i ∈ [n] : zi = j}) > 0.

• Standard deviation of the posterior average number of occupied components.
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Figure 3: Boxplots that resume the behavior of LPML for each model.

Figures 3, 4 and 5 contain side-by-side boxplots of the LPML, MSE and L1-metric respectively. Notice

that for LPML and L1-metric the two repulsion models (M2,M3) fit practically as well as the i.i.d. fit

(M1) and the DPM fit (M4). In other words, very little model fit was sacrificed for the sake of parsimony.

Regarding the MSE, M1 did the best (which is to be expected since it is the data generating mechanism)

and M4 was next. That said, differences between the procedures tend to get small as the sample size grows.

The overall take home message is that M2 and M3 are very competitive to M1 and M4 in terms of model fit.

Figures 6 and 7 show side-by-side boxplots of average number of occupied components and standard

deviations associated with the number of occupied mixture components. Notice that the average number of
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Figure 4: Boxplots that resume the behavior of MSE for each model.
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Figure 5: Boxplots that resume the behavior of L1-metric for each model.

active components is much smaller for M2 and M3 relative to M1 and M4. This pattern persists (possibly

becomes more obvious) as the number of observations grows. The number of active components for M2

and M3 are also highly concentrated around {3, 4, 5} (recall that the data were generated using a mixture

of four components). Conversely, M1 and M4 require many more active components to achieve the same

goodness-of-fit, a trend that persists when the sample size grows.
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Figure 6: Side-by-side boxplots of the average number of occupied mixture components for each procedure.
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Figure 7: Side-by-side boxplots that display the average standard deviation associated with the distribution
of occupied mixture components for each of the four procedures.

5 Data Illustrations

We now turn our attention to two well known data sets. The first is the Galaxy data set (Roeder 1990),

and the second is bivariate Air Quality (Chambers 1983). Both are publicly available in R. For the second

data set we removed 42 observations that were incomplete. We compare density estimates available from the

DPM of Normal distributions (DPM-N) to those from the RGMM. For each procedure we report the LPML

as a measure of goodness-of-fit, a brief summary regarding the average number of occupied components, and

posterior distribution associated with the number of clusters. It is worth noting that both data sets were

standardized prior to model fit. We now provide more details on the two model specifications.
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1. DPM-N: We employed the R function DPdensity available in DPpackage (Jara et al. 2011). Decisions

on hyperprior parameter values for both data sets were again guided by Escobar and West (1995). In

both cases the model is specified by (4.2) - (4.9). We collected 10000 MCMC iterates after discarding

the first 1000 (5000) as burn-in for Galaxy (Air Quality) data and thinning by 10. Specific details

associated with prior parameter values are now provided:

(a) Galaxy: d = 1, a0 = 2, b0 = 2, ν1 = 4, ν2 = 4, m2 = 0, S2 = 1, Ψ2 = 0.15, τ1 = 2.01 and

τ2 = 1.01.

(b) Air Quality: d = 2, a0 = 1, b0 = 3, ν1 = 4, ν2 = 4, m2 = 02, S2 = I2, Ψ2 = I2, τ1 = 2.01 and

τ2 = 1.01.

2. RGMM: We coded Algorithm RGMM in Fortran to generate posterior draws for this model. For both

data sets, we collected 10000 MCMC iterates after discarding the first 5000 as burn-in and thinning by

50. The values of τ were selected using the procedure outlined in Subsection 3.1.1: (u, p) = (0.5, 0.95)

and (u, p) = (0.05, 0.95) for Galaxy and Air Quality data respectively. Parameter selection for model

components (3.9), (3.10) and (3.11) were carried out according to the methods in Subsection 3.1.1.

Specific details now follow:

(a) Galaxy: k = 10, d = 1, α = (1/10)110, µ = 0, Σ = 1, τ = 5.45, Ψ = 0.15 and ν = 5.

(b) Air Quality: k = 10, d = 2, α = (1/10)110, µ = 02, Σ = I2, τ = 116.76, Ψ = 3I2 and ν = 6.

Results of the fits are provided in Table 1. Notice that the fit associated with RGMM is better relative

to the DPM-N, which corroborates the argument that RGMM sacrifices no appreciable model fit for the

sake of model parsimony. Figure 8 further reinforces the idea that RGMM is more parsimonious relative to

DPM-N. This can be seen as the posterior distribution of the number of clusters (or non-empty components)

for RGMM concentrates on values that are smaller relative to the DPM. Graphs of the estimated densities

(provided in Figure 9) show that the cost of parsimony is negligible as density estimates are practically the

same.

6 Discussion and Future Work

We have created a class of probability models that explicitly parametrizes repulsion in a smooth way. In

addition to providing pertinent theoretical properties, we demonstrated how this class of repulsive distri-

butions can be employed to make hierarchical mixture models more parsimonious. A compelling result is
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Data LPML Mean (Clusters) SD (Clusters)
Galaxy (DPM-N) -48.16 8.38 2.64
Galaxy (RGMM) -36.68 5.37 0.91

Air Quality (DPM-N) -274.82 2.83 1.11
Air Quality (RGMM) -274.58 2.30 0.51

Table 1: Summary statistics related to model fit and the number of clusters for Galaxy and Air Quality data
based on DPM-N/RGMM.
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Figure 8: Posterior distribution for the active number of clusters in (a) Galaxy and (b) Air Quality. Black
(gray) bars correspond to RGMM (DPM-N).

that this added parsimony comes at essentially no goodness-of-fit cost. We studied properties of the models,

adapting the theory developed in Petralia et al. (2012) to accommodate the potential function we considered.

Moreover, we generalized the results to include not only Gaussian mixtures of location but of also of scale

(though the scale is constrained to be equal in each mixture component).

Our approach shares the same modeling spirit (presence of repulsion) as in Petralia et al. (2012), Xu

et al. (2016) and Fúquene et al. (2016). However, the specific mechanism we propose to model repulsion

differs from these works. Petralia et al. (2012) employ a potential (based on Lennard-Jones type potential)

that introduces a stronger repulsion than our case, in the sense that in their model, locations are encouraged

to be further apart. Xu et al. (2016) is based on Determinantal Point Processes, which introduces repulsion

through the determinant of a matrix driven by a Gaussian covariance kernel. By nature of the point

process, this approach allows a random number of mixture components (similar to DPM models) something
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Figure 9: Posterior predictive densities for (a) Galaxy and (b) Air Quality data. Solid black (dotted gray)
curves correspond to RGMM (DPM-N).

that our approach lacks. However, our approach allows a direct modeling of the repulsion that is easier

to conceptualize. Finally, the work by Fúquene et al. (2016) defines a family of probability densities that

promotes well-separated location parameters through a penalization function, that cannot be re-expressed as

a (pure) repulsive potential. However, for small relative distances, the penalization function can be identified

as an interaction potential that produces repulsion similar to that found in Petralia et al. (2012).

Presently we are pursuing a few directions of continued research. First, Proposition 3.3 was established

for dimension d = 1. Extending results to the general d dimensional case would be a natural progression. In

terms of modeling, we are exploring the possibility of relaxing the assumption that all mixture components

in the Gaussian mixture models have the same variance. In terms of theory, we are exploring the possibility

of relaxing the assumption of constant variance and adapting theoretical results to a larger class of potential

functions. Rousseau and Mengersen (2011) developed some very interesting results that explore statistical

properties associated with mixtures when k is chosen to be conservatively large (overfitted mixtures) with

decaying weights associated with these extra mixture components. They did so using a framework that is

an alternative to what we developed here. Under some restrictions on the prior and regularity conditions

for the mixture component densities, the asymptotic behavior of the posterior distribution on the weights

tends to empty the extra mixture components. We are currently exploring connections between these two
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approaches.
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A Algorithm RGMM
In what follows we describe the Gibbs sampler for the RGMM model. Let B,S, T ∈ N be the total number
of iterations during the burn-in, the number of collected iterates, and the thinning, respectively.

• (Start) Choose initial values z(0)i : i ∈ [n], π(0)
k and θ(0)j ,Λ

(0)
j : j ∈ [k]. Set Γj = Od : j ∈ [k], where

Od is the null matrix of dimension d× d.

• (Burn-in phase) For t = 0, . . . , B − 1:

1. (z
(t+1)
i | · · · ) ind∼ Mult(1,π

(t)
i,k) : i ∈ [n], where π(t)

i,k = (π
(t)
i,1 , . . . , π

(t)
i,k)> ∈ ∆k−1 is given by

π
(t)
i,j =

[ k∑
l=1

π
(t)
l Nd(yi;θ

(t)
l ,Λ

(t)
l )
]−1

π
(t)
j Nd(yi;θ

(t)
j ,Λ

(t)
j ) : j ∈ [k].

2. (π
(t+1)
k | · · · ) ∼ Dir(α(t)), where

α(t) = (α1 + n
(t+1)
1 , . . . , αk + n

(t+1)
k )> ∈ R+

k : n
(t+1)
j = card({i ∈ [n] : z

(t+1)
i = j}).

3. For j = 1, . . . , k:

3.1. Generate a candidate θ(?)j from Nd(θ
(t)
j ,Ω

(t)
j ), where

Ω
(t)
j = (Σ−1 + n

(t+1)
j (Λ

(t)
j )−1)−1.

3.2. Update θ(t)j → θ
(t+1)
j = θ

(?)
j with probability

min

1,
Nd(θ

(?)
j ;µ

(t)
j ,Σ

(t)
j )

Nd(θ
(t)
j ;µ

(t)
j ,Σ

(t)
j )

k∏
l 6=j

[
1− exp{−0.5τ−1(θ

(?)
j − θ

(t)
l )>Σ−1(θ

(?)
j − θ

(t)
l )}

1− exp{−0.5τ−1(θ
(t)
j − θ

(t)
l )>Σ−1(θ

(t)
j − θ

(t)
l )}

]
where Σ

(t)
j = (Σ−1 + n

(t+1)
j (Λ

(t)
j )−1)−1 and

µ
(t)
j = Σ

(t)
j (Σ−1µ+ (Λ

(t)
j )−1s

(t)
j ) : s

(t)
j =

n∑
i=1

I{j}(z
(t+1)
i )yi

Otherwise, set θ(t+1)
j = θ

(t)
j .

3.3. Update Γj → Γj + 1
BΩ

(t)
j .

4. (Λ
(t+1)
j | · · · ) ind∼ IWd(Ψ

(t)
j , ν

(t)
j ) : j ∈ [k], where ν(t)j = ν + n

(t+1)
j and

Ψ
(t)
j = Ψ +

n∑
i=1

I{j}(z
(t+1)
i )(yi − θ(t+1)

j )(yi − θ(t+1)
j )>.

• (Save samples) For t = B, . . . , ST + B − 1: Repeat steps 1, 2 and 4 of the burn-in phase. As for step
3 ignore 3.3, maintain 3.2 and replace 3.1 with

3.1. Generate a candidate θ(?)j from Nd(θ
(t)
j ,Γj).

Finally, save the generated samples every T th iteration.
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B Proof of Lemma 2.1.
Assign to Rdk and [0, 1) the metrics d1(xk,d,yk,d) = max{ρ(xi,yi) : i ∈ [k]} and d2(x, y) = |x − y|, res-
pectively. Continuity of RC : Rdk → [0, 1) follows from condition A1 of C0 − Properties and the following
inequality:

|ρ(xr,xs)− ρ(yr,ys)| < 2d1(xk,d,yk,d).

C Proof of Proposition 2.2.
Notice that gk,d is a C(Rdk;R+)-class function by construction (see Lemma 2.1). Because of the continuity,
measurability follows. Using conditions A1 to A4 of C0 − Properties it follows that ∀x ∈ R+

0 : 1− C0(x) ∈
[0, 1). By Tonelli’s Theorem ∫

Rdk
gk,d(xk,d)dxk,d ≤

(∫
Rd
f0(x)dx

)k
= 1.

The upper bound only proves that gk,d is integrable. However, this does not guarantee that gk,d is well
defined, i.e. λkd({gk,d > 0}) = 0. For this, it is sufficient to show that∫

Rdk
gk,d(xk,d)dxk,d > 0

because ∀xk,d ∈ Rdk : gk,d(xk,d) ≥ 0 by construction. To prove the above inequality, fix x0
k,d ∈ Rdk such

that x0
r 6= x0

s for r 6= s ∈ [k]. Then gk,d(x
0
k,d) > 0. Because gk,d is a continuous function on Rdk, there

exists r0 ∈ R+ such that ∀xk,d ∈ B(x0
k,d, r0) : gk,d(xk,d) > 0, where B(x0

k,d, r0) =
∏k
i=1B2(x0

i , r0). Further,
B(x0

k,d, r0) ∈ B(Rdk) and λkd(B(x0
k,d, r0)) = (πkd/2rkd0 )Γ(1 + d/2)−k ∈ R+ by the volume formula. Thus∫

Rdk
gk,d(xk,d)dxk,d ≥

∫
B(x0

k,d,r0)

gk,d(xk,d)dxk,d > 0.

D Proof of Lemma 3.1.
For any x ∈ R we have that

|f0(x; ξ0k0)− f(x; ξk0)| ≤
||π0

k0
− πk0 ||1√
2πλ0

+
||θ0k0 − θk0 ||1√

2π exp(1)λ0
+ u(λ,θk0 ;x, λ0)|λ− λ0|

u(λ,θk0 ;x, λ0) =
1√
2π

[ k0

λ
√
λ0 + λ0

√
λ

+

√
λ0

2λλ20

k0∑
j=1

(x− θj)2
]

: (λ,θk0) ∈ R+ × Rk0 ,

with || · ||1 being the Euclidean L1-norm in Rk0 . Because u(λ,θk0 ;x, λ0) is continuous at (λ0,θ
0
k0

),

f(x; ξk0)→ f0(x; ξ0k0)

pointwise in x when ξk0 → ξ0k0 . The last statement is equivalent to the condition that

| log[f(x; ξk0)]− log[f0(x; ξ0k0)]|f0(x; ξ0k0)→ 0

pointwise in x when ξk0 → ξ0k0 .
By condition B2, we can assume that θ01 < · · · < θ0k0 (possibly after an appropriate relabeling). Choose

t01, t
0
2 ∈ R and l01, l02 ∈ R+ such that ∀ j ∈ [k0] : θj ∈ (t01, t

0
2), f0(x; ξ0k0) < 1 : x ∈ (−∞, t01) ∪ (t02,+∞) and
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λ0 ∈ [l01, l
0
2]. Since | log[f0(x; ξ0k0)]|f0(x; ξ0k0) is uniformly continuous for x ∈ [t01, t

0
2],

I1 =

∫
[t01,t

0
2]

| log[f0(x; ξ0k0)]|f0(x; ξ0k0)dx ∈ R+.

Fix δ1 ∈ (0, 1), δ2 = 1
2 min{t02 − θ0k0 , θ

0
1 − t01} and define V0 = B1(π0

k0
, δ1)×B1(θ0k0 , δ2)× [l01, l

0
2]. Notice that

M(x, ξk0) = | log[f(x; ξk0)]| is uniformly continuous for (x, ξk0) ∈ [t01, t
0
2]× V0. Then M0 = max{M(x, ξk0) :

(x, ξk0) ∈ [t01, t
0
2]× V0} ∈ R+ and∫

[t01,t
0
2]

| log[f(x; ξk0)]|f0(x; ξ0k0)dx ≤ I2 =

∫
[t01,t

0
2]

M0f0(x; ξ0k0)dx ∈ R+.

By the triangle inequality∫
[t01,t

0
2]

| log[f0(x; ξ0k0)]− log[f(x; ξk0)]|f0(x; ξ0k0)dx ≤ I1 + I2 ∈ R+.

On the other hand, define the following continuous functions:

h1(x) = 0.5| log(2πλ0)|+ 0.5λ−10 (x− θ0k0)2 : x ∈ (−∞, t01)

h2(x) = 0.5| log(2πl01)|+ (2l01)−1(x− δ2 − θ0k0)2 : x ∈ (−∞, t01)

h3(x) = 0.5| log(2πλ0)|+ 0.5λ−10 (x− θ01)2 : x ∈ (t02,+∞)

h4(x) = 0.5| log(2πl01)|+ (2l01)−1(x+ δ2 − θ01)2 : x ∈ (t02,+∞).

Using the initial assumptions

| log[f(x; ξ0k0)]| ≤ h1(x) : x ∈ (−∞, t01)

| log[f(x; ξk0)]| ≤ h2(x) : (x, ξk0) ∈ (−∞, t01)× V0
| log[f(x; ξ0k0)]| ≤ h3(x) : x ∈ (t02,+∞)

| log[f(x; ξk0)]| ≤ h4(x) : (x, ξk0) ∈ (t02,+∞)× V0.

Taking into account the existence of second order moments of a Normal distribution

I3 =

∫
(−∞,t01)

[h1(x) + h2(x)]f0(x; ξ0k0)dx ∈ R+

I4 =

∫
(t02,+∞)

[h3(x) + h4(x)]f0(x; ξ0k0)dx ∈ R+.

Again, using the triangle inequality∫
(−∞,t01)∪(t02,+∞)

| log[f0(x; ξ0k0)]− log[f(x; ξk0)]|f0(x; ξ0k0)dx ≤ I3 + I4 ∈ R+.

The previous arguments show that | log[f0(x; ξ0k0)] − log[f(x; ξk0)]|f0(x; ξ0k0) : (x, ξk0) ∈ R × V0 is bounded
above by a positive and integrable function that depends only in x ∈ R. As a consequence of Lebegue’s
Dominated Convergence Theorem

lim
ξk0→ξ

0
k0

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx = 0.
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In other words, for all ε > 0 there exists δ > 0 such that

∀ ξk0 ∈ B1(θ0k0 , δ)×B1(π0
k0 , δ)× (λ0 − δ, λ0 + δ) :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε.

E Proof of Lemma 3.2.
Set δ00 = vk0

4 with v > 0 specified by condition B2. Notice that

∀ δ ∈ (0, δ00] : θk0 ∈ Bδ =

k0∏
i=1

(
θ0i −

δ

k0
, θ0i +

δ

k0

)
⊆ B1(θ0k0 , δ).

Using the definition of NRepk0,1(µ, σ2, τ) and denoting ck0 = ck0,1 the associated normalizing constant, we
have that

∀ δ ∈ (0, δ00] : P(θk0 ∈ B1(θ0k0 , δ)) ≥
1

ck0

∫
Bδ

k0∏
i=1

N(θi;µ, σ
2)

k0∏
r<s

[
1− exp

{
− (θr − θs)2

2τσ2

}]
dθk0 .

Now

∀θk0 ∈ Bδ :

k0∏
r<s

[
1− exp

{
− (θr − θs)2

2τσ2

}]
≥
[
1− exp

{
− v0

2τσ2

}]`k0
= R0 > 0

with v0 = (v − 2δ00
k0

)2 and `k0 = k0(k0−1)
2 . Using this information and Fubini’s Theorem

∀ δ ∈ (0, δ00] : P(θk0 ∈ B1(θ0k0 , δ)) ≥
R0

ck0

k0∏
i=1

[
Φ
(θ0i − µ

σ
+

δ

k0σ

)
− Φ

(θ0i − µ
σ

− δ

k0σ

)]
.

Because

lim
δ→0+

1

δ

[
Φ
(θ0i − µ

σ
+

δ

k0σ

)
− Φ

(θ0i − µ
σ

− δ

k0σ

)]
=

2

k0σ
N
(θ0i − µ

σ
; 0, 1

)
= S0

i ∈ R+

for each i ∈ [k0], there exists δ0i > 0 such that

∀ δ ∈ (0, δ0i] :
[
Φ
(θ0i − µ

σ
+

δ

k0σ

)
− Φ

(θ0i − µ
σ

− δ

k0σ

)]
≥ S0

i

2
.

Finally, choose δ0 = min{δ0j : j ∈ {0} ∪ [k0]} to conclude that

∀ δ ∈ (0, δ0] : P(θk0 ∈ B1(θ0k0 , δ)) ≥
R0

ck0

( k0∏
i=1

S0
i

2

)
exp

{
− k0 log

(1

δ

)}
∈ R+.

Remark: The previous inequality also applies replacing B1(θ0k0 , δ) by B1(θ0k0 , δ).

F Proof of Proposition 3.3.
We will follow the proof of Lemma 1 in Petralia et al. (2012) with a few variations. For this, let ε > 0 and
define

BKL(f0, ε) =
{
f ∈ F :

∫
R

log
[f0(x; ξ0k0)

f(x; ξ?)

]
f0(x; ξ0k0)dx < ε

}
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with ξ? ∈
⋃∞
k=1 Θk. Using the stochastic representation (3.13),

Π(BKL(f0, ε)) ≥ κ({k0})P
({
ξk0 ∈ Θk0 :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε

})
.

By condition B3, κ({k0}) > 0. In this case, to guarantee (3.14) it is sufficient to show that

P
({
ξk0 ∈ Θk0 :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε

})
> 0.

Lemma 3.1 guaranties the existence of δ1 > 0 such that

∀ ξk0 ∈ B1(θ0k0 , δ1)×B1(π0
k0 , δ1)× (λ0 − δ1, λ0 + δ1) :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε.

Choose δ = min{δ0, δ1} where δ0 > 0 is given by Lemma 3.2. Now p1 = P(θk0 ∈ B1(θ0k0 , δ)) > 0. The same
holds for p2 = P(πk0 ∈ B1(π0

k0
, δ)) and p3 = P(λ ∈ (λ0 − δ, λ0 + δ)). Thus, independence between πk0 , θk0

and λ implies

P
({
ξk0 ∈ Θk0 :

∫
R

log
[f0(x; ξ0k0)

f(x; ξk0)

]
f0(x; ξ0k0)dx < ε

})
≥ p1p2p3 > 0.

G Proof of Lemma 3.4.
As already mentioned at the beginning of Subsection 2.3, θk ∼ NRepk,1(µ, σ2, τ) is an exchangeable distri-
bution in θ1, . . . , θk for k ≥ 2. This implies that the probability laws of each θi : i ∈ [k] are the same. To
prove the desired inequality, observe that

∀ t ∈ R+ : P(|θi| > t) ≤ ck−1
ck

∫
At

N(x;µ, σ2)dx =
ck−1
ck

∫
Bt

N(s; 0, 1)ds.

where At = {x ∈ R : |x| > t} and Bt = {s ∈ R : |µ+ σs| > t}. Now

Bt ⊆ {s ∈ R : |µ|+ σ|s| > t} =
{
s ∈ R : |s| > t− |µ|

σ

}
= Ct.

Set γ = max{2|µ|+ 1, (2 +
√

2)|µ|} ∈ R+. By Mill’s Inequality

∀ t ≥ γ :

∫
Ct

N(s; 0, 1)ds ≤ 2

(2π)1/2

( σ

t− |µ|

)
exp

{
− (t− |µ|)2

2σ2

}
≤ 2

(2π)1/2

( σ

|µ|+ 1

)
exp

{
− t2

4σ2

}
.

Using the previous information

∀ t ≥ γ : P(|θi| > t) ≤ 2

(2π)1/2
ck−1
ck

( σ

|µ|+ 1

)
exp

{
− t2

4σ2

}
.
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H Proof of Lemma 3.5.
By the Change of Variables Theorem and Fubini’s Theorem, it can be shown that

∀ k ≥ 2 : ck =

∫
Rk−1

Fk−1(θ−1)

k∏
i=2

N(θi; 0, 1)
∏

2≤r<s≤k

[
1− exp

{
− (θr − θs)2

2τ

}]
dθ−1

where θ−1 = (θi : i 6= 1)> ∈ Rk−1 and Fk−1 : Rk−1 → (0, 1) is given by

Fk−1(θ−1) =

∫
R

N(θ1; 0, 1)

k∏
j=2

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1.

Notice that Fk−1 is a C∞(Rk−1; (0, 1))-class positive function (as a consequence of Lebesgue’s Dominated
Convergence Theorem) and Fk−1(θ−1)→ 1 as ||θ−1|| → +∞. By Jensen’s Inequality

∀θ−1 ∈ Rk−1 : log[Fk−1(θ−1)] ≥
k∑
j=2

∫
R

N(θ1; 0, 1) log
[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1.

Now ∣∣∣ ∫
R

N(θ1; 0, 1) log
[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1

∣∣∣ ≤ −2

√
τ

π

∫
R+

log[1− exp{−θ21}]dθ1.

Using the substitution θ1(z) =
√
z : z ∈ R+ and then integrating by parts∫

R+

log[1− exp{−θ21}]dθ1 =
1

2

∫
R+

log[1− exp{−z}]z−1/21 dz

= −
∫
R+

z3/2−1

exp{z} − 1
dz

= −Γ
(3

2

)
ζ
(3

2

)
∈ R−

where Γ( · ) and ζ( · ) are the Gamma and Riemann Zeta functions, respectively. The previous information
implies that∣∣∣ ∫

R
N(θ1; 0, 1) log

[
1− exp

{
− (θ1 − θj)2

2τ

}]
dθ1

∣∣∣ ≤ 2

√
τ

π
Γ
(3

2

)
ζ
(3

2

)
≤ 2.6124

√
τ ∈ R+.

With this bound, defining a = 2.6124
√
τ and A−1 = exp{a} the following holds:

∀θ−1 ∈ Rk−1 : log[Fk−1(θ−1)] ≥ −(k − 1)a⇒ Fk−1(θ−1) ≥ A−1 exp{−ak}.

To conclude the proof

ck−1 =

∫
Rk−1

k∏
i=2

N(θi; 0, 1)
∏

2≤r<s≤k

[
1− exp

{
− (θr − θs)2

2τ

}]
dθ−1 ⇒ ck ≥ A−1 exp{−ak}ck−1.

Finally
∀ k ≥ 2 : 0 <

ck−1
ck
≤ A exp{ak}.
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I Proof of Proposition 3.6.
Following Theorem 3.1 in Scricciolo (2011) p = 2 induce a (finite) Gaussian Mixture Model, λ ∼ IG(a, b) :
a, b ∈ R+ satisfy (i) and πk ∼ Dir((1/k)1k) satisfy (iii). Condition B3′ is equivalent to (ii). However, (iv)
does not apply because the cluster-location parameters are not i.i.d. in our framework.

Along the proof of Theorem 3.1 we identified those steps that can be adapted by the assumption θk ∼
NRepk,1(µ, σ2, τ). It is important to mention that Theorem 3.1 appeals to conditions (A.1), (A.2) and (A.3)
in Theorem A.1 (Appendix of Scricciolo’s paper) which is a powerful result given by Ghosal and van der
Vaart (2001). We will check that (A.1) to (A.3) are satisfied:

(A.1) The proof is the same as the arguments presented at page 277 and the first paragraph in page 278.
The reason for this is that it only depends on the structure of the mixture, leaving aside the prior
distributions for all the involved parameters.

(A.2) What needs to be modified on the first inequality found on page 278 is the term E[K]Π([−an, an]c).
This quantity is part of the chain of inequalities

kn∑
i=1

ρ(i)

i∑
j=1

P(|θj | > an) =

kn∑
i=1

iρ(i)Π([−an, an]c) ≤ E[K]Π([−an, an]c) . exp{−caϑn}

under the conditions (ii) and (iv). In our case, ρ(i) = κ({i}) : i ∈ N. By way of Lemma 3.4

i∑
j=1

P(|θj | > an) ≤ 2i

(2π)1/2
ci−1
ci

( σ

|µ|+ 1

)
exp

{
− a2n

4σ2

}
under the convention that c0 = 1 and n ∈ N is big enough. Thus,

kn∑
i=1

ρ(i)

i∑
j=1

P(|θj | > an) ≤ 2

(2π)1/2

( σ

|µ|+ 1

)
exp

{
− a2n

4σ2

} kn∑
i=1

iρ(i)
ci−1
ci

and by Lemma 3.5

kn∑
i=1

iρ(i)
ci−1
ci
≤ AB

kn∑
i=1

i exp{−(b− a)i} ≤ AB
∞∑
i=1

i exp{−(b− a)i} ∈ R+.

Finally, we obtain the following upper bound (in order), which is analogous to that obtain in Scricciolo
(2011):

kn∑
i=1

ρ(i)

i∑
j=1

P(|θj | > an) . exp{−(4σ2)−1a2n}.

(A.3) We only need to adapt the following inequality found on page 279, whose validity is deduced from (iv):

P(θk0 ∈ B(θ0k0 ; ε)) = Π⊗k0(B(θ0k0 ; ε)) ≥
k0∏
i=1

Π
([
θ0j −

ε

k0
, θ0j +

ε

k0

])
& exp

{
− d1k0 log

(1

ε

)}
In our case, B(θ0k0 ; ε) = B1(θ0k0 , ε). At the end of the proof of Lemma 3.2 it is shown that for every
ε ∈ (0, δ0]

P(θk0 ∈ B1(θ0k0 , ε)) ≥
R0

ck0

( k0∏
i=1

S0
i

2

)
exp

{
− k0 log

(1

ε

)}
.
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With this information, we obtain a lower bound (in order) analogous to that obtained in Scricciolo
(2011):

P(θk0 ∈ B(θ0k0 ; ε)) & exp
{
− k0 log

(1

ε

)}
.
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