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LIFSHITS TAILS FOR SQUARED POTENTIALS
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ABSTRACT. We consider Schrödinger operators with a random poten-

tial which is the square of an alloy-type potential. We investigate their

integrated density of states and prove Lifshits tails.

Our interest in this type of models is triggered by an investigation of

randomly twisted waveguides.

AMS 2010 Mathematics Subject Classification: 82B44, 35R60, 47B80,

81Q10

Keywords: Integrated density of states, Lifshits tails, Squares of random

potentials

1. INTRODUCTION

In the 1960’ies Lifshits [12] discovered that the density of states for periodic

systems and the one for random systems show very different behavior near

the bottom of their spectra. While the integrated density of states N(E) for

a d-dimnesional periodic system behaves like (E − E0)
d
2 near the ground

state energy E0, N(E) it behaves like e−C (E−E0)
−

d
2 for typical random sys-

tems.

Starting with the seminal work by Donsker and Varadhain [2] there has

been a strong interest in this type of questions in the mathematical physics

literature. For a review (as of 2006) see e.g. [8] (see also [1], [4]), some

more recent developments are [3], [10], [11] and [15].

One of the most common random potentials and the one we are dealing with

in this paper is the alloy-type potential

(1) Uω(x) =
∑

i∈Zd

qi(ω)f(x− i)

where x ∈ Rd, qi are independent, identically distributed random variables

and f is a (say) bounded measurable function decaying sufficiently fast at

infinity.

Lifshits tails for

(2) Hω = −∆+ Uω

are well known for alloy-type potentials as in (1) if both the qi and the

function f have definite sign.
1
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Recently, there has been interest in the case that qi and/or f change sign

(see e.g. [3], [10], [11]). In these models the lack of monotonicity makes it

much harder to prove Lifshits tails.

In our research on twisted waveguides [5] we came across a potential Vω

which is the square of an alloy-type potential, i.e. Vω(x) =
(

Uω(x)
)2

.

In fact, Lifshits tails for the twisted waveguide correspond to Lifshits tails

of the Schrödinger operator

(3) Hω = −∆+ Vω = −∆+ Uω
2

with an alloy-type potential Uω as in (1).

In [5] we need only the one-dimensional case of (3) but here we will deal

with this model in arbitrary dimension d ≥ 1 as this will not cause addi-

tional complications.

Obviously the potential Vω(x) = Uω(x)
2 is non-negative. We will allow,

however, that both qi and f may change sign, so that we lose monotonicity.

2. SETTING

We consider the random potential

(4) Uω(x) =
∑

i∈Zd

qi(ω)f(x− i) ; x ∈ R
d, d ≥ 1 ,

on a probability space (Ω,A,P). The expectation with respect to P will be

denoted by E.

Throughout this paper we make the following assumptions.

Assumptions.

(1) The real valued random variables qi are independent and identically

distributed. Their common distribution is denoted by P0.

(2) The support supp P0 contains more than one point, 0 ∈ supp P0 and

supp P0 ⊂ [−Q,Q] for some Q < ∞.

(3) For some K ≥ 0, C > 0 and all ε > 0 small enough

P(|qi| < ε) ≥ CεK .

(4) f is a bounded (measurable) real valued function, f 6= 0, with

|f(x)| ≤
C

(1 + |x|)α

for some C and α > d.

Finally, we set

Vω(x) =
(

Uω(x)
)2

=
(

∑

qif(x− i)
)2

.(5)

and define the operator

(6) Hω = H0 + Vω .

with H0 = −∆. Since Vω is non-negative, it is clear that σ(Hω) ⊂ [0,∞).
From general results we even have σ(Hω) = [0,∞) (see [6]. We remark
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that we made no assumption on the sign of the qi or of f . In fact, unless

otherwise stated, both may change sign.

We are interested in the integrated density of states N of Hω.

For Λ = [−L
2
, L
2
]d let HN

Λ and HD
Λ be the operator Hω restricted to L2(Λ)

with Neumann resp. Dirichlet boundary conditions. These operators have

a purely discrete spectrum. By λk(H
N
Λ ) and λk(H

D
Λ ) we denote the eigen-

values of HN
Λ respectively HD

Λ in increasing order and counted according

to multiplicity.

We define

N(HN
Λ , E) := #{λk(H

N
Λ ) ≤ E} ,(7)

N(HD
Λ , E) := #{λk(H

D
Λ ) ≤ E} .(8)

The integrated density of states of Hω is the limit

N(λ) = lim
L→∞

1

Ld
N(HN

Λ , E)(9)

= lim
L→∞

1

Ld
N(HD

Λ , E) .(10)

By Lifshits tails we mean that the integrated density of states N of Hω

behaves roughly like e−C (E−E0)−γ

as E ց E0 where E0 is the bottom of

the spectrum of Hω, more precisely:

lim
EցE0

ln | lnN(E)|

lnE
= −γ(11)

γ > 0 is called the Lifshits exponent. For alloy-type potentials as in (4)

the Lifshits exponent depends on the behavior of f at infinity. If |f(x)| ≤
C|x|−(d+2) for large |x|, then γ = d

2
, the ‘classical’ value for γ. If f(x) ∼

C|x|−α for d < α < d+ 2 then γ = d
α−d

(see e.g. [9]).

3. RESULTS

In this section we state our results for the squared random potential as in

(5). As in the conventional case (i. e. for (4)) we obtain Lifshits behavior

as in (11). Again, the Lifshits exponent depends on the behavior of f at

infinity. This time, however, the threshold is α = d + 1 rather than the

‘conventional’ d+ 2.

Theorem 1. Suppose qi are independent random variables with common

distribution P0 satisfying Assumptions 2 and 3.

(1) If f satisfies Assumption 4 with some α ≥ d+ 1 then

lim
Eց0

ln | lnN(E)|

lnE
= −

d

2
.

(2) If f satisfies

C1

(1 + |x|)α
≤ f(x) ≤

C2

(1 + |x|)α
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for some d < α < d+ 1 and constants C1, C2 > 0, then

lim
Eց0

ln | lnN(E)|

lnE
= −

d

2(α− d)
.

Remarks 2.

(1) For ’non-squared’ random potentials as in (4) the critical value of α
is d+ 2, rather than d+ 1 for the squared case.

(2) We will proof Theorem 1 by proving corresponding upper and lower

bounds onN(λ). Assumption 2 is only needed for the lower bounds.

Also, the lower bound on f in part 2 of the theorem is only used for

the lower bound on N .

4. STRATEGY OF THE PROOF

We use the technique of Dirichlet-Neumann-bracketing (see [7] and [9]).

This method is based on the inequalities

1

|Λ|
E
(

N(HD
Λ , E)

)

≤ N(E) ≤
1

|Λ|
E
(

N(HN
Λ , E)

)

(12)

which are valid for any cube Λ = [−L
2
,+L

2
]d with |Λ| = Ld being the

volume of Λ.

The right hand side of (12) can further be estimated by

1

|Λ|
E
(

N(HN
Λ , E)

)

≤
N(−∆N

Λ , E)

|Λ|
P
(

λ1(H
N
Λ ) < E

)

Consequently, we have to estimate

P
(

λ1(H
N
Λ ) < E

)

(13)

from above.

To do so, we use the McDiarmid inequality which we introduce in Section

5.2. The estimate of (13) using the McDiarmid inequality is done in Section

5.

In Section 6 we estimate the left hand side of (12) for a lower bound of N .

5. UPPER BOUND

5.1. Analytic estimate.

For the upper bound we use a perturbative approach following an idea of

Stollmann [16].

We set HN
Λ (t) := −∆N

Λ + t Vω on Λ with Neumann boundary conditions.

By

E(t) = λ1(H
N
Λ (t))(14)

we denote its lowest eigenvalue and by ϕ0 is the normalized ground state of

HN
Λ (0).

E is monotone increasing for 0 ≤ t ≤ 1 and

E(0) = λ1(−∆N
Λ ) = 0 and E(1) = λ1(H

N
Λ ) .
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Moreover, E(ζ) is a holomorphic function in {ζ ∈ C | |ζ | ≤ ν} for ν
small, namely for ν ≤ CL−2 = Cλ2(H

N
Λ (0)). We have

E ′(0) = < ϕ0, Vωϕ0 > =
1

|Λ|

∫

Λ

Vω(x) dx

by the Hellmann-Feynman Theorem (see e. g. [14]).

By analytic pertubation theory:

Lemma 3. (Stollmann [17] Lemma 2.1.2.) For 0 ≤ t ≤ C1L
−2 we have

|E(t)− tE
′

(0)| ≤ C2L
2t2 .

So, for t ≤ C1L
−2

(15) P(E(t) ≤ bL−2) ≤ P(E
′

(0) ≤ C2L
2t+ btL−2) .

The choice t = t0 ∼ L−2 makes the right hand side of (15) smaller than

P(E
′

(0) ≤ C̃) where C̃ > 0 can be made small if b is chosen appropriately.

We obtain

P(λ1(HΛ) ≤ bL−2) ≤ P(E(t0) ≤ bL−2)

≤ P(E
′

(0) ≤ C̃)

≤ P(|E
′

(0)− E(E
′

(0))| > λ)

by choosing C̃ small and λ appropriate. Thus, we are left with a large

deviation estimate. For this estimate we employ the McDiarmid inequality

which we introduce in the following section.

5.2. McDiarmid inequality.

To estimate P( 1
|Λ|

∫

Λ
Vω(x) dx < λ) from above we will use a concentration

inequality due to McDiarmid in a slightly extended form.

Theorem 4. (Mc Diarmid) Suppose {Xn}n∈Z is a sequence of independent

real valued random variables such that Xn takes values in Rn ⊂ R.

Let F :
∏

n∈Z Rn → R be a measurable function (with respect to the prod-

uct σ-algebra) with the following property:

Suppose X = {Xn}, X
′

= {X
′

n} ∈
∏

Rn differ only in the j-component,

i.e. Xn = X
′

n for n 6= j, then

(16) |F (X)− F (X
′

)| ≤ σj .

uniformly in X,X
′

. Set σ2 :=
∑

σ2
j .

If
∑

σj < ∞, then for all λ > 0

P(|F (X)− E(F (X))| > λ) ≤ 2e−2λ2

σ2

Proof: This theorem original from [13] can be found in various sources,

for example in [18], but only for finite collections {Xi}
M
i=1 of random vari-

ables.

The ’limit M → ∞’ can be taken in the following way:
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Consider the vector XM = (X1, · · · , XM) of random variables and the non

random vector

Y M := (YM+1, YM+2, · · · ) ∈
∞
∏

n≤M+1

Rn

Set FM(X) := F (X1, · · · , XM , YM+1, · · · ) and EM = E(FM (X)).
(Both FM and EM depend on Y M .)

By (16)

|F (X)− FM(X)| ≤

∞
∑

n=M+1

σn → 0

and

|E
(

F (X)
)

− EM | ≤
∞
∑

n=M+1

σn → 0

uniformly in Y M .

Now,

P

(

|F (X)− E(F (X))| > λ
)

≤ P

(

|F (X)− FN (X)|+ |FM(X)−EM |+ |EM − E(F (X)) > λ
)

≤ P

(

|FM(X)− EM | > λ− 2

∞
∑

n=M+1

σN

)

= (♮)

FM(X) depends only on finitely many random variables (namely X1, · · · , XM ),

so we may apply (the known version of) the McDiarmid inequality to ob-

tain:

(♮) ≤ 2e
−

2(λ−2
∑∞

i=M+1 σi)
2

∑M
i=1 σ

2
i ≤ 2e

− 2λ2
∑∞

i=1 σ
2
i .

�

5.3. Probabilistic estimate.

Now, we estimate the probability that F (qi) :=
∫

Λ
(
∑

qif(x − i))2 dx is

small.
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First, we compute E(F (qi)): Let C0 = [−1
2
, 1
2
]d

E

(

∫

C0

(

∑

qif(x− i)
)2

dx
)

=
∑

i,j

E(qiqj)

∫

C0

f(x− i)f(x− j) dx

=
∑

i

V(qi)

∫

C0

f(x− i)2 dx+
∑

i,j

E(qi)E(qj)

∫

C0

f(x− i)f(x− j) dx

= V(q0)||f ||
2
2 + E(q0)

2

∫

C0

(

∑

f(x− i)
)2

dx

=: ρ where ‖f‖22 :=

∫

R

|f(x)|2 d x .

Consequently, for integer L

E

(

∫

Λ

V (x) dx
)

= ρ|Λ| .

To apply Mc Diarmid’s inequality we have to compute the σj’s.

Q = {qi}, Q
′

= {q
′

i} with qi = q
′

i, for i 6= j qj = a q
′

j = b.

|F (Q
′

)− F (Q)| ≤

∫

Λ

∣

∣

∣

(

∑

q
′

if(x− i)
)2

−
(

∑

qif(x− i)
)2
∣

∣

∣
dx

=

∫

Λ

|(b− a)f(x− j)| |
∑

(q
′

i + qi)f(x− i)| dx

≤ C

∫

Λ

|f(x− j)| dx

where C = 4
(

sup supp(P0)
)2

sup
x∈R

∑

|f(x− i)|.

So, we got to estimate
∫

Λ
|f(x− j)| dx.

Case 1: |j| ≤ ML with M ≥ 3 to be chosen later.

Then we estimate
∫

Λ

|f(x− j)| dx ≤

∫

Rd

|f(x)| dx = ||f ||1 =: σj .

Case 2: |j| > ML, so dist (j,Λ) ≥ (M − 1)L.

Then
∫

Λ

|f(x− j)| dx ≤ C

∫

Λ

1

|x− j|α
dx

≤ CLd 1

inf
x∈Λ

|x− j|α
≤ C

′ Lα

|j|α
.

So
∑

i

σ2
i ≤ C1

(

∑

|i|≤ML

||f ||21 +
∑

|i|≥ML

( Lα

|j|α
)2
)

≤ C2L
d(1 + LdL−2α+d) ≤ C3L

d as α > d .
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Thus
∑

i σ
2
i ≤ CLd, so Mc Diarmid’s inequality gives:

P

(
∣

∣

∣

∫

Λ

V (x) dx− E
(

∫

Λ

V (x) dx
)

∣

∣

∣
≥ λLd

)

≤C
′

e
−C

′′ λ2L2d
∑

σ2
i ≤ C

′

e−C
′′′

λ2Ld

.

In particular

P
( 1

Ld

∫

Λ

V (x) dx < ε
)

≤ Ce−C̃Ld

whenever ε < E(
∫

C0

V (x) dx).

5.4. Upper Bound 2.

The general upper bound turns out to be correct (i.e. to agree with the lower

bound) in the case α ≥ d+ 1. For the long range case (d < α < d+ 1) we

need another estimate and stronger assumptions.What we need (at least for

our proof) is that both qi and f have a definite sign.

For definiteness, we assume supp P0 ⊂ [0, Q] and:

c1(1 + |x|)−α ≤ f(x) ≤ c2(1 + |x|)−α

with d < α < d+ 1 and c1, c2 > 0. We estimate:

P
(

λ1(H
N
Λ ) < λ

)

≤ P
(

inf
x∈Λ

Vω(x) < λ
)

≤ P
(

inf
x∈Λ

Uω(x) < λ
1

2

)

.(17)

An estimate for (17) can be found in [9]. For the reader’s convenience we

give here an alternative proof using Mc Diarmid’s inequality.

So, we estimate

P
(

inf
x∈Λ

∑

qif(x− i) < ρ
)

≤ P
(

C
∑

qi
1

1 + sup
x∈Λ

|x− i|α
< ρ

)

≤ P
(

C ′
∑

qi
1

(L+ |i|)α
)

.

We apply McDiarmid’s inequality to
∑

qi
1

(L+|i|)α
, then

σj = 2Q
1

(L+ |j|)α
≤

{

C
Lα for |j| ≤ ML ,
C
|j|α

for |j| > ML .
(18)

So
∑

σ2
j ≤ C

′

Ld−2α .(19)

Moreover,

E
(

∑

qi
1

(L+ |i|)α
)

= C
∑ 1

(L+ |i|)α
∼ Ld−α .
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So we have to take ρ ∼ Ld−α.

With this choice, McDiarmid’s inequality gives

P
(

∑

qi
1

(L+ |i|)α
< CLd−α

)

≤ e−C
′

Ld

≤ e−C
′′

ρ
−

d

α−d

= e−C
′′

λ
−

d

2(α−d)

.(20)

This estimate is better than the general estimate (λ− d
2 ) if

2(α− d) < 2 i.e. α < d+ 1 .

6. LOWER BOUND

We assume that P(|qi| ≤ ε) ≥ CεK for some C > 0 and K and all ε > 0
small enough.

Now, we consider HD
Λ with Dirichlet boundary conditions.

The ground state energy λ0 of −∆|DΛ is given by:

λ0 = d(
π

L
)2

and the ground state is

ϕ0(x) =
( 2

L

)
d
2

d
∏

i=1

cos(
π

L
xi) .

We consider the set Ωε
L ⊂ Ω with

Ωε
L = {ε | |qi| ≤ ε for |i| ≤ L+R}, R ≥ L

We choose R later, namely as R = Lβ, β ≥ 1. Then

P(Ωε
L) ≥ (εK)(L+R)d = eK(ln ε)(L+R)d .

We will show that λ1(H
D
Λ ) is small on Ωε

L. We have

λ1(H
D
Λ ) ≤ < ϕ0, H

D
Λ ϕ0 > = λ0 +

∫

Λ

V ϕ2
0 dx

≤ λ0 +
C

|Λ′|

∫

Λ

V (x) dx

where λ0 = λ1(H0|
D
Λ ) ≈ L−2.
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Now for w ∈ Ωε
L

1

|Λ|

∫

Λ

V (x) dx

≤
1

|Λ|

∫

Λ

(

ε
∑

|i|≤L+R

f(x− i) +Q
∑

|i|>L+R

1

|x− i|α

)2

dx

≤
2ε

|Λ|

∫

Λ

(

∑

|i|≤L+R

f(x− i)
)2

dx+
2Q

|Λ|

∫

Λ

(

∑

|i|>L+R

1

|x− i|α
)2

dx

≤ C
(

ε+ sup
x∈Λ

(

∑

|i|>L+R

1

|x− i|α
)2
)

≤ C
′
(

ε+ (
∑

|i|>L+R

1

|i|α
)2
)

≤ C
′′
(

ε+R−2α+2d
)

.

Let us choose R = Lβ.

If α ≥ d+ 1 we take β = 1, then

1

|Λ|

∫

Λ

V dx ≤ C
′′
(

ε+ L−2α+2d
)

≤ C
′′

ε+ L−2

thus for ω ∈ ΩL−2

L we have

λ1(H
D
Λ ) ≤ CL−2 .

So

P
(

λ1(H
D
Λ ) ≤ CL−2

)

≥ P(ΩL−2

L )

≥ e+C(lnL−2)Ld

and, with λ = L−2,

ln P
(

λ1(H
D
Λ ) ≤ Cλ

)

≥ −C(lnλ)λ− d
2 ,

and

ln | ln P(λ1(H
D
Λ ) ≤ Cλ)|

lnλ
≥ −

d

2
+

ln | lnλ|

lnλ
+

ln C

ln λ

→ −
d

2
.

Now, we turn to the case d < α < d+1. In this case we take β = 1
α−d

> 1.

Then again

λ1(H
D
Λ ) ≤ C̃L−2 ( for ω ∈ ΩL−2

L )

and so

P(λ1(H
D
Λ ) ≤ C̃L−2) ≥ P (ΩL−2

L )

≥ e+C(lnL−2)Rd

≤ e+C
′

(lnL−2)L
d

α−d

.
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With λ = L−2 we get again

P(λ1(H
D
Λ ) ≤ C̃λ) ≥ e+C

′

(ln λ)λ
d

2(α−d)

.
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[4] Werner Kirsch. An invitation to random Schrödinger operators. In Random

Schrödinger operators, volume 25 of Panor. Synthèses, pages 1–119. Soc. Math.
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Physics. Birkhäuser Boston, Inc., Boston, MA, 2001. Bound states in random me-

dia.

[18] Terence Tao. Topics in random matrix theory, volume 132 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 2012.



LIFSHITS TAILS FOR SQUARED POTENTIALS 13

WERNER KIRSCH

Fakultät für Mathematik und Informatik

FernUniversität in Hagen
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