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LIFSHITS TAILS FOR RANDOMLY TWISTED QUANTUM

WAVEGUIDES

WERNER KIRSCH, DAVID KREJČIŘÍK, AND GEORGI RAIKOV

Abstract. We consider the Dirichlet Laplacian Hγ on a 3D twisted waveguide with
random Anderson-type twisting γ. We introduce the integrated density of states Nγ for
the operator Hγ , and investigate the Lifshits tails of Nγ , i.e. the asymptotic behavior
of Nγ(E) as E ↓ inf supp dNγ . In particular, we study the dependence of the Lifshits
exponent on the decay rate of the single-site twisting at infinity.

AMS 2010 Mathematics Subject Classification: 82B44, 35R60, 47B80, 81Q10

Keywords: randomly twisted quantum waveguide, Dirichlet Laplacian, integrated den-
sity of states, Lifshits tails

1. Introduction

The spectral properties of quantum Hamiltonians on tubular domains (waveguides) have
been actively studied for several decades (see the monograph [10], the survey [18], and
the references cited there). Recently, there has been a particular interest in the so-
called twisted waveguides (see [9, 8, 5, 21, 4, 3, 24]), whose general setting we are going
to describe briefly below.
Let m ⊂ R

2 be a bounded domain. Set M := m×R. Let θ ∈ C1(R;R) have a bounded

derivative θ̇. Define the twisted tube

Mθ := {Rθ(x3)x, x ∈ M}

where

(1.1) Rθ(x3) :=





cos θ(x3) sin θ(x3) 0
− sin θ(x3) cos θ(x3) 0

0 0 1



 , x3 ∈ R.

Let Hθ be the self-adjoint operator generated in L2(Mθ) by the closed quadratic form

Qθ[u] :=

∫

Mθ

|∇u|2dx, u ∈ H1
0(Mθ),

where, as usual, H1
0(Mθ) is the closure of C∞

0 (Mθ) in the first-order Sobolev space
H1(Mθ). Introduce the quadratic form

Qθ̇[u] :=

∫

M

(

|∇tu|
2 + |θ̇∂τu+ ∂3u|

2
)

dx, u ∈ H1
0(M),

1
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where ∇t := (∂1, ∂2), and ∂τ := x1∂2 − x2∂1. Let Hθ̇ be the self-adjoint operator
generated in L2(M) by the closed quadratic form Qθ̇. Define the unitary operator
Uθ : L

2(Mθ) → L2(M) by

(Uθu) (x) := u (Rθ(x3) x) , x ∈ M, u ∈ L2(Mθ).

Then Hθ̇ = UθHθU
−1
θ .

If m ⊂ R
2 is a bounded domain with boundary ∂m ∈ C2, and θ ∈ C2(R;R) has bounded

first and second derivatives, then

(1.2) Hθ̇ = −∂2
1 − ∂2

2 − (θ̇∂τ + ∂3)
2, Dom(Hθ̇) = H2(M) ∩ H1

0(M),

(see [4, Corollary 2.2]).
In this article we will consider the operator Hγ with random Anderson-type twisting

θ̇ = γ (see (1.6) below). Let (Ω,F ,P) be a probability space. Assume that λk(ω), k ∈ Z,
ω ∈ Ω, are independent, identically distributed random variables. Set

λ− := ess inf
ω∈Ω

λ0(ω), λ+ := ess sup
ω∈Ω

λ0(ω).

Throughout the article we assume that

(1.3) −∞ < λ− < λ+ < ∞.

Further, introduce the single-site twisting w ∈ C(R;R) which is supposed to satisfy

(1.4) |w(s)| ≤ C(1 + |s|)−α, s ∈ R,

with some constants C ∈ (0,∞), and α ∈ (1,∞). Moreover, we assume that

(1.5) w 6≡ 0 on R.

Introduce the random twisting

(1.6) γ(s;ω) =
∑

k∈Z

λk(ω)w(s− k), s ∈ R, ω ∈ Ω.

Then γ is a Z-ergodic random field, and the operator Hγ, self-adjoint in L2(M), is
ergodic with respect to the translations Tk, defined by

(Tku)(xt, x3) = u(xt, x3 − k), k ∈ Z, (xt, x3) ∈ M, u ∈ L2(M).

By the general theory of ergodic operators (see e.g. [12, Section 4]), there exists a closed
non-random subset Σ of R such that almost surely

(1.7) σ(Hγ) = Σ.

Let us introduce the integrated density of states (IDS) of the operator Hγ . For a finite
ℓ > 0, set Mℓ := m × (−ℓ/2, ℓ/2), and define the operator Hγ,ℓ as the self-adjoint
operator generated in L2(Mℓ) by the closed quadratic form

Qγ,ℓ[u] =

∫

Mℓ

(

|∇tu|
2 + |γ(x3;ω)∂τu+ ∂3u|

2
)

dx, u ∈ H1
0(Mℓ).
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Evidently, the spectrum of Hγ,ℓ is purely discrete. We will say that the non-increasing
left-continuous function Nγ : R → [0,∞) is an IDS for the operator Hγ if almost surely
we have

(1.8) lim
ℓ→∞

ℓ−1Tr1(−∞,E)(Hγ,ℓ) = Nγ(E)

at the points of continuity E ∈ R of Nγ. Arguing as in [12, Theorem 6, Section 7] or
[11], it is easy to show that there exists an IDS Nγ for Hγ, and supp dNγ = Σ (see (1.7)).

Our main results concern the asymptotic behavior of the IDS Nγ near Σ0 := inf Σ. This
behavior is usually characterized by a very fast decay of the IDS, and is known as a
Lifshits-tail behavior. More precisely, we show that under suitable assumptions

(1.9) lim
E↓0

ln | lnNγ(Σ0 + E)|

lnE
= −κ

with a constant κ > 0 called the Lifshits exponent, which depends, as we will see, on the
decay rate of w. Namely, if w satisfies (1.4) with α ∈ [2,∞), then κ = 1

2
(see Theorems

3.2 (i), 3.4, and 3.5 below), while if w(s) ∼ |s|−α as |s| → ∞, with α ∈ (1, 2), then
κ = 1

2(α−1)
(see Theorem 3.2 (ii)).

One of the important assumptions of geometric nature we impose in order that (1.9)
hold true, implies that the cross section m is not rotationally symmetric with respect
to the origin. Otherwise, the operator Hγ would be unitarily equivalent to H0, the IDS
Nγ would be independent of γ, and can be calculated explicitly (see (2.4) below). Note
that in this case Nγ has at Σ0 a van Hove singularity, i.e. a non smooth power-like
decay, instead of a Lifshits tail (see e.g. [6] and the references cited there for a general
discussion of the van Hove singularities).
Lifshits tails concerning various random 2D waveguides were considered in [16, 22].
Related spectral properties were studied in [1, 2].
The paper is organized as follows. In the next section we estimate Nγ(Σ0+E) with small
E > 0 in terms of the IDS for suitable 1D Schrödinger operators hγ,ǫ (see (2.7) below)
whose potential depends on the random twisting γ and on the real parameter ǫ. In
Section 3, we formulate and prove our main results on the Lifshits tails for the IDS Nγ ,
applying the estimates obtained in Section 2, as well as certain results on the Lifshits
tails for the operator hγ,ǫ. Some of these necessary results turned out to be available in
the literature (see [17, 26]) and some of them are borrowed from our companion paper
[14] where Lifshits tails for Schrödinger operators with squared Anderson-type potentials
are investigated in any dimension d ≥ 1.

2. Estimates of Nγ in terms of the IDS for 1D random Schrödinger

operators

In this section we show that if ess infω∈Ω λ0(ω)
2 = 0, then almost surely inf σ(Hγ)

coincides with µ1, the lowest eigenvalue of the transversal Dirichlet Laplacian,
and obtain suitable two-sided estimates of N(µ1 + E) for sufficiently small E > 0, in
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terms of the IDS for appropriate 1D random Schrödinger operators hγ,ǫ (see (2.7) below).

Let {µj}j∈N be the non-decreasing sequence of the eigenvalues of the transversal Dirichlet

Laplacian −∆D
t , generated in L2(m) by the closed quadratic form

∫

m

|∇tu|
2dxt, u ∈ H1

0(m),

with xt := (x1, x2). We have

(2.1) 0 < µ1 < µ2.

Let {ϕj}j∈N be an orthonormal basis in L2(m) consisting of real-valued eigenfunctions

of −∆D
t which satisfy

−∆D
t ϕj = µjϕj , j ∈ N.

It is well known that ϕ1 could be chosen so that

ϕ1(xt) > 0, xt ∈ m.

Set

(2.2) T := ‖∂τϕ1‖L2(m).

Arguing as in the proof of [5, Proposition 2.2], we can show that if ∂m ∈ C2, then the
inequality

(2.3) T 6= 0

holds true if and only if m is not rotationally symmetric with respect to the origin.
On the other hand, if m is any bounded rotationally symmetric domain, then T = 0.
Moreover, in this case the operator Hθ̇ is unitarily equivalent to H0, the spectrum

σ(Hθ̇) = [µ1,∞) is absolutely continuous, the IDS Nθ̇ = N0, independent of θ̇, is well
defined by analogy with (1.8), and we have

(2.4) N0(E) =
1

π

∞
∑

j=1

(E − µj)
1/2
+ , E ∈ R.

In particular,

(2.5) N0(µ1 + E) =
1

π
E

1/2
+ , E ∈ (−∞, µ2 − µ1).

Assume (1.3), (1.4), and

(2.6) w ∈ C1(R;R), |ẇ(s)| ≤ C(1 + |s|)−α, s ∈ R.

For ǫ ∈ R introduce the operator hγ,ǫ as the self-adjoint operator generated in L2(R) by
the closed quadratic form

qγ,ǫ[f ] :=

∫

R

(

|ḟ |2 +
(

T 2γ(s;ω)2 − ǫγ̇(s;ω)2
)

|f |2
)

ds, f ∈ H1(R).

Remark: If ǫ = 0, then we can omit assumption (2.6) in the definition of the operator hγ,ǫ.
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Thus,

(2.7) hγ,ǫ = −
d2

ds2
+ T 2γ2 − ǫγ̇2

is a 1D Schrödinger operator with random potential T 2γ(s;ω)2−ǫγ̇(s;ω)2, s ∈ R, ω ∈ Ω.
This operator is Z-ergodic, and its spectrum is almost surely independent of ω ∈ Ω.
Introduce the IDS for the operator hγ,ǫ as the non-decreasing function νγ,ǫ : R → R

which almost surely satisfies

(2.8) lim
ℓ→∞

ℓ−1Tr1(−∞,E)(hγ,ǫ,ℓ) = νγ,ǫ(E), E ∈ R,

hγ,ǫ,ℓ being the self-adjoint operator generated in L2(−ℓ/2, ℓ/2) by the closed quadratic
form

(2.9) qγ,ǫ,ℓ[f ] :=

∫ ℓ/2

−ℓ/2

(

|ḟ |2 +
(

T 2γ(s;ω)2 − ǫγ̇(s;ω)2
)

|f |2
)

ds, f ∈ H1
0(−ℓ/2, ℓ/2).

The IDS νγ,ǫ exists and is continuous (see [23, Theorem 3.2]). Moreover, in the definition
(2.8) of νγ,ǫ we can replace the operator hγ,ǫ,ℓ equipped with Dirichlet boundary condi-
tions, by the operator generated by the quadratic form (2.9) with domain H1(−ℓ/2, ℓ/2),
equipped with Neumann boundary conditions. Further, it follows from (1.3) that

λ̃+ := ess sup
ω∈Ω

λ0(ω)
2 > 0.

In what follows, we assume that

(2.10) λ̃− := ess inf
ω∈Ω

λ0(ω)
2 = 0.

Note that (2.10) implies that almost surely

(2.11) σ(hγ,0) = [0,∞)

(see [13]).

Proposition 2.1. Assume (1.3), (1.4), and (2.10). Then almost surely we have

(2.12) σ(Hγ) = [µ1,∞).

Proof. We have

(2.13) inf σ(Hγ) = inf
06=u∈H1

0
(M)

Qγ[u]

‖u‖2L2(M)

.

Since

Qγ[u] ≥

∫

M

|∇tu|
2 dx, u ∈ H1

0(M),

it follows from (2.13) and

µ1 = inf
06=u∈H1

0
(M)

∫

M
|∇tu|

2 dx
∫

M
|u|2 dx

,

that

(2.14) inf σ(Hγ) ≥ µ1.
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Let us now prove the almost sure inclusion

(2.15) σ(Hγ) ⊃ [µ1,∞).

Fix E ≥ 0. Arguing along the lines of the proof of (2.11) in [13], we can construct a
sequence {fn}n∈N ⊂ C∞

0 (R), normalized to one in L2(R), such that, almost surely

(2.16) ‖ − f̈n −Efn‖L2(R) −−−→
n→∞

0 and ‖γ‖L∞(suppfn) −−−→
n→∞

0.

Notice that, by writing ‖ḟn‖
2
L2(R) = −(f̈n, fn)L2(R) ≤ ‖f̈n‖L2(R), it follows from the first

limit in (2.16) that the sequence {ḟn}n∈N is almost surely bounded in L2(R). The
sequence {un}n∈N ⊂ H1(M) defined by

un := ϕ1 ⊗ fn

is normalized to one in L2(M). By the Weyl criterion adapted to quadratic forms
(see [19, Theorem 5]), the desired inclusion (2.15) will hold if we show that, almost
surely,

(2.17) sup
06=φ∈H1

0
(M)

|Qγ(un, φ)− (µ1 + E)(un, φ)L2(M)|

‖φ‖H1(M)

−−−→
n→∞

0,

whereQγ(·, ·) is the sesquilinear form generated by the quadratic formQγ[u], u ∈ H1
0(M),

and (·, ·)L2(M) is the scalar product in L2(M).
Integrating by parts, using the normalizations of fn and ϕ1, and applying the Cauchy-
Schwarz inequality, we get

|Qγ(un, φ)− (µ1 + E)(un, φ)L2(M)| ≤ ‖φ‖L2(M) ‖ − f̈n − Efn‖L2(R)(2.18)

+ ‖∂3φ‖L2(M) ‖γ‖L∞(suppfn) T

+ ‖∂τφ‖L2(M) ‖γ‖L∞(suppfn) ‖ḟn‖L2(R)

+ ‖∂τφ‖L2(M) ‖γ
2‖L∞(suppfn) T .

Thus, (2.18) and (2.16) imply (2.17), and hence (2.15).
Now (2.12) follows from (2.14) and (2.15). �

Further, we need several notations which will allow us to formulate certain assumptions
of geometric nature. Assume (1.3), (1.4), and set

D1 := ess sup
ω∈Ω

sup
s∈R

(5γ(s;ω)2 + 1).

Then D1 < ∞.
Further, assume (1.3), (1.4), (2.6), and (2.3). Suppose in addition that the logarithmic
derivative γ̇/γ is well defined and

(2.19) ess sup
ω∈Ω

sup
s∈R

∣

∣

∣

∣

γ̇(s;ω)

γ(s, ω)

∣

∣

∣

∣

< ∞.

Set

D2 := ess sup
ω∈Ω

sup
s∈R

(

6γ(s;ω)2 +
2γ̇(s;ω)2

T 2γ(s;ω)2

)

.
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Then D2 < ∞.

Remark: Assumption (2.19) holds true if w does not vanish at any s ∈ R and admits a
regular power-like decay at infinity, but it is false if w has a compact support.

Finally, put

a := sup
xt∈m

|xt|.

Theorem 2.2. Assume (1.3) and (1.4).
(i) We have

(2.20) νγ,0(E) ≤ Nγ(µ1 + E), E ∈ R.

(ii) Let δ0 ∈ (0, 1). Suppose in addition that (2.6) holds true, and

(2.21) a2
(

1−
µ1

µ2

)−1

D1 < δ0.

Then we have

(2.22) Nγ(µ1 + E) ≤ νγ,δ/(1−δ)−1 ((1− δ)−1E)

for any δ ∈

(

a2
(

1− µ1

µ2

)−1

D1, δ0

)

and E ∈ (0, µ2(1− δ−1D1a
2)− µ1).

(iii) Suppose in addition that (2.6), (2.3), and (2.19) hold true, and

(2.23) a2
(

1−
µ1

µ2

)−1

D2 < 1.

Then we have

(2.24) Nγ(µ1 + E) ≤ νγ,0((1− δ)−1E)

for any δ ∈

(

a2
(

1− µ1

µ2

)−1

D1, 1

)

and E ∈ (0, µ2(1− δ−1D2a
2)− µ1).

Remark: If γ is fixed and D1 < ∞ (resp., D2 < ∞), then (2.21) (resp., (2.23)) holds
true if a is small enough. Note that it follows from the results of [7, 20] that the
operator Hγ − µ1 converges in an appropriate sense to hγ,0 as a ↓ 0 .

Proof of Theorem 2.2. If we restrict the quadratic form Qγ,ℓ to functions of the form

u1 = ϕ1 ⊗ f, f ∈ H1
0(−ℓ/2, ℓ/2),

then

(2.25) Qγ,ℓ[u1] = qγ,0,ℓ[f ] + µ1‖f‖
2
L2(−ℓ/2,ℓ/2), ‖u1‖

2
L2(M) = ‖f‖2L2(R),

the quadratic form qγ,ǫ,ℓ being defined in (2.9). Hence, the mini-max principle implies

(2.26) Tr1(−∞,µ1+E)(Hγ,ℓ) ≥ Tr1(−∞,E)(hγ,0,ℓ), E ∈ R.
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Combining (1.8), (2.8), and (2.26), we get (2.20).
Next, set

D1 :=
{

u1 = ϕ1 ⊗ f | f ∈ H1
0(−ℓ/2, ℓ/2)

}

,

D2 :=

{

u2 ∈ H1
0(Mℓ) |

∫

Mℓ

u2(x)u1(x)dx = 0, ∀u1 ∈ D1)

}

.

Then, for u = u1 + u2 with u1 = ϕ1 ⊗ f ∈ D1 and u2 ∈ D2, we have

‖u‖2L2(Mℓ)
= ‖u1 + u2‖

2
L2(Mℓ)

= ‖f‖2L2(−ℓ/2,ℓ/2) + ‖u2‖
2
L2(Mℓ)

.

Moreover, integrating by parts, we get

Qγ,ℓ[u] = Qγ,ℓ[u1 + u2] =

Qγ,ℓ[u1] +Qγ,ℓ[u2] + 2Re

∫

Mℓ

(

γ2∂τu1∂τu2 + γ∂3u1∂τu2 + γ∂τu1∂3u2

)

dx =

(2.27) Qγ,ℓ[u1] +Qγ,ℓ[u2] + 2Re

∫

Mℓ

(

γ2∂τu1 + 2γ∂3u1 + γ̇u1

)

∂τu2 dx.

Assume (2.21) and pick δ ∈

(

a2
(

1− µ1

µ2

)−1

D1, δ0

)

. We have

2Re

∫

Mℓ

(

γ2∂τu1 + 2γ∂3u1 + γ̇u1

)

∂τu2 dx ≥

−δ

∫

Mℓ

(

γ2|∂τu1|
2 + |∂3u1|

2 + γ̇2|u1|
2
)

dx− δ−1

∫

Mℓ

(5γ2 + 1)|∂τu2|
2dx =

(2.28) − δ

∫ ℓ/2

−ℓ/2

(

|ḟ |2 + (T 2γ2 + γ̇2)|f |2
)

dx3 − δ−1

∫

Mℓ

(5γ2 + 1)|∂τu2|
2dx.

Then, (2.25), (2.27), and (2.28) easily imply

(2.29) Qγ,ℓ[u] ≥ (1− δ)qγ,δ/(1−δ),ℓ[f ] + µ1‖f‖
2
L2(−ℓ/2,ℓ/2) + Q̃γ,ℓ[u2]

where
Q̃γ,ℓ[u2] :=

∫

Mℓ

(

|∇tu2|
2 − δ−1(5γ2 + 1)|∂τu2|

2 + |γ∂τu2 + ∂3u2|
2
)

dx, u2 ∈ D2.

Let H̃γ,ℓ be the operator generated by the closed quadratic form Q̃γ,ℓ in the Hilbert
space D⊥

1 , the orthogonal complement of D1 in L2(Mℓ). Then the mini-max principle
implies
(2.30)
Tr1(−∞,µ1+E)(Hγ,ℓ) ≤ Tr1(−∞,E)((1− δ)hγ,δ/(1−δ),ℓ) + Tr1(−∞,µ1+E)(H̃γ,ℓ), E ∈ R.

Since |∂τu2| ≤ |xt||∇tu2|, we have

(2.31) Q̃γ,ℓ[u2] ≥ µ2

(

1− δ−1a2D1

)

∫

Mℓ

|u2|
2dx.
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Therefore, if E ∈ (0, µ2 (1− δ−1a2D1)− µ1), we have

Tr1(−∞,µ1+E)(H̃γ,ℓ) = 0,

and by (2.30),
(2.32)
Tr1(−∞,µ1+E)(Hγ,ℓ) ≤ Tr1(−∞,E)((1− δ)hγ,δ/(1−δ),ℓ) = Tr1(−∞,(1−δ)−1E)(hγ,δ/(1−δ),ℓ).

Now (1.8), (2.8), and (2.32), imply (2.22).

Finally, assume (2.23) and pick δ ∈

(

a2
(

1− µ1

µ2

)−1

D2, 1

)

. Similarly to (2.28), we have

2Re

∫

Mℓ

(

γ2∂τu1 + 2γ∂3u1 + γ̇u1

)

∂τu2 dx ≥

−δ

∫

Mℓ

(

γ2

2
|∂τu1|

2 + |∂3u1|
2 +

T 2γ2

2
|u1|

2

)

dx− δ−1

∫

Mℓ

(

6γ2 +
2γ̇2

T 2γ2

)

|∂τu2|
2dx =

−δ

∫ ℓ/2

−ℓ/2

(

|ḟ |2 + T 2γ2|f |2
)

dx3 − δ−1

∫

Mℓ

(

6γ2 +
2γ̇2

T 2γ2

)

|∂τu2|
2dx.

Hence, by analogy with (2.29) and (2.31), we have

Qγ,ℓ[u] ≥

(1− δ)qγ,0,ℓ[f ] + µ1‖f‖
2
L2(−ℓ/2,ℓ/2)+

∫

Mℓ

(

|∇tu2|
2 − δ−1

(

6γ2 +
2γ̇2

T 2γ2

)

|∂τu2|
2 + |γ∂τu2 + ∂3u2|

2

)

dx ≥

(1− δ)qγ,0,ℓ[f ] + µ1‖f‖
2
L2(−ℓ/2,ℓ/2) + µ2

(

1− δ−1a2D2

)

∫

Mℓ

|u2|
2dx.

Therefore, if E ∈ (0, µ2 (1− δ−1a2D2)− µ1), we have

(2.33) Tr1(−∞,µ1+E)(Hγ,ℓ) ≤ Tr1(−∞,(1−δ)−1E)(hγ,0,ℓ).

Now (1.8), (2.8), and (2.33), imply (2.24).
�

3. Lifshits tails for the operator Hγ

In this section we formulate and prove our main results concerning the asymptotic
behavior of Nγ(µ1+E) as E ↓ 0. In Subsection 3.1 we consider single-site twisting w of
power-like decay while in Subsection 3.2 we handle the case of compactly supported w.
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3.1. Single-site twisting w of power-like decay. The following proposition contains
results from [14] on the Lifshits tails for 1D Schrödinger operators with squared random
Anderson-type potentials.

Proposition 3.1 ([14, Theorem 1]). Assume (2.3). Suppose that w satisfies (1.4) with
α ∈ (1,∞), and (1.5), while λ0 satisfies (1.3) and (2.10). Suppose moreover that

(3.1) P({ω ∈ Ω | |λ0(ω)| < ε}) ≥ Cεκ,

for some κ > 0, C > 0, and any sufficiently small ε > 0.
(i) If α ≥ 2, then

(3.2) lim
E↓0

ln | ln νγ,0(E)|

lnE
= −

1

2
.

(ii) Let 1 < α < 2. Assume that

(3.3) w(s) ≥ C(1 + |s|)−α, s ∈ R, C > 0,

and

(3.4) λ− = 0.

Then

lim
E↓0

ln | ln νγ,0(E)|

lnE
= −

1

2(α− 1)
.

Remark: Evidently, we may replace the assumptions (3.3) and (3.4), by
w(s) ≤ −C(1 + |s|)−α, s ∈ R, with C > 0, and λ+ = 0 respectively. A similar
remark applies to Theorems 3.2 (ii) and 3.5.

Combining Theorem 2.2 with Proposition 3.1, we obtain the following theorem concern-
ing the Lifshits tails of the IDS Nγ for the randomly twisted waveguide:

Theorem 3.2. Let m ⊂ R
2 be a bounded domain such that T 6= 0. Assume that:

• w ∈ C1(R;R) does not vanish identically on R and satisfies the upper bound

(1.4) with α ∈ (1,∞);
• λ0 satisfies (1.3), (2.10), and (3.1);
• the logarithmic derivative γ̇/γ satisfies the boundedness condition (2.19);
• the waveguide satisfies “the thinness condition” (2.23).

(i) Let α ∈ [2,∞). Then we have

(3.5) lim
E↓0

ln | lnNγ(µ1 + E)|

lnE
= −

1

2
.

(ii) Let α ∈ (1, 2). Suppose moreover that the lower bounds (3.3) and (3.4) hold true.

Then we have

lim
E↓0

ln | lnNγ(µ1 + E)|

lnE
= −

1

2(α− 1)
.
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Remark: If T = 0, then

νγ,0(E) = ν0,0(E) =
1

π
E

1/2
+ , E ∈ R.

Therefore, (2.20) implies

lim inf
E↓0

ln | lnNγ(µ1 + E)|

lnE
≥ 0,

i.e. Nγ does not exhibit a Lifshits tail near µ1. As mentioned in Section 2, if ∂m ∈ C2,
then T = 0 is equivalent to the fact that m is rotationally invariant with respect to the
origin, and (2.4) and (2.5) hold true, i.e. Hγ exhibits near µ1 a van Hove singularity
instead of a Lifshits tail. A similar remark applies to Theorems 3.4 and 3.5 below.

3.2. Single-site twisting w of compact support. In this subsection we assume that
(1.5) holds true, and

(3.6) w ∈ C1(R;R), suppw ⊂ [−β/2, β/2],

with β ∈ (0,∞).
First, we consider the case where the support of w is small, i.e. (3.6) holds with β ∈ (0, 1].
Then the multiplier by T 2γ(s;ω)2 − ǫγ̇(s;ω)2 coincides with the multiplier by

∑

k∈Z

λk(ω)
2vǫ(s− k), s ∈ R,

where

(3.7) vǫ(s) := T 2w(s)2 − ǫẇ(s)2, s ∈ R.

For ǫ ∈ R denote by E±(ǫ) the lowest eigenvalue of the operator

(3.8) h±
ǫ := −

d2

ds2
+ λ̃±vǫ,

acting in L2(−1/2, 1/2), and equipped with Neumann boundary conditions. If (2.10) is
fulfilled, then, evidently,

(3.9) E−(ǫ) = 0, ǫ ∈ R.

Put

(3.10) ǫ0 := sup {ǫ ∈ R | E+(ǫ) > 0}.

It follows from (1.5) and (1.3) that if (2.3) is valid, then ǫ0 > 0 since E+(0) > 0, and
E+ is a continuous (as a matter of fact, real analytic) non-increasing function of ǫ ∈ R.
Thus,

(3.11) E+(ǫ) > 0, ǫ ∈ (−∞, ǫ0).
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Proposition 3.3. Assume that w satisfies (1.5), (3.6) with β ∈ (0, 1], while λ0 satisfies

(1.3) and (2.10). Let ǫ ∈ (−∞, ǫ0).
(i) We have almost surely

(3.12) inf σ(hγ,ǫ) = 0.

(ii) Moreover,

(3.13) lim sup
E↓0

ln | ln νγ,ǫ(E)|

lnE
≤ −

1

2
.

Idea of the proof of Proposition 3.3: Taking into account (2.10), (3.9), and (3.11), we
find that (3.12) follows from [17, Proposition 0.1]. Note that the hypotheses of [17,
Proposition 0.1] contain also the condition that vǫ be an even function of s ∈ R. However,
this condition is needed to guarantee that the eigenfunction of the operator h−

ǫ is even,
which in our setting is immediately implied by (2.10).
Further, bearing in mind (3.12), (3.9), and (3.11), we easily conclude that (3.13) follows
from [17, Theorem 0.1].
It should be noted here that the assumptions of Proposition 0.1 and Theorem 0.1 of [17]
require that supp vǫ ⊂ (−1/2, 1/2) which may formally exclude the case β = 1 in (3.6).
A careful analysis of the proofs of Proposition 0.1 and Theorem 0.1 of [17] however
shows that these proofs extend without any problem to the case supp vǫ ⊂ [−1/2, 1/2].

�

Remarks: (i) Proposition 3.3 also follows from the results of the article [26] which extends
[17]. More precisely, (3.12) follows from [26, Theorem 1.1], while (3.13) follows from [26,
Theorem 1.2].
(ii) If ǫ ≤ 0 and hence vǫ does not change sign, (3.12) and (3.13) have been known since
long ago (see [13] and [15] respectively). However, the case ǫ ≤ 0 is not appropriate for
our purposes.

Theorem 3.4. Let m ⊂ R
2 be a bounded domain such that T 6= 0. Assume that:

• w does not vanish identically on R and satisfies (3.6) with β ∈ (0, 1];
• λ0 satisfies (1.3), (2.10), and (3.1);
• the waveguide satisfies “the thinness condition” (2.21) with δ0 = ǫ0

1+ǫ0
, ǫ0 being

defined in (3.10).

Then (3.5) is valid again.

Proof. If δ < ǫ0
1+ǫ0

, then δ/(1−δ) < ǫ0. Therefore, (3.5) follows from (2.20), (2.22), (3.2)

and (3.13). �

Further, we consider the case where the support of w may be large, i.e. (1.5), and
(3.6) with β ∈ (1,∞) hold true; then the supports of the translates of w may have a
substantial overlap. Without any loss of generality, we assume that β = 2p + 1 with
p ∈ N. Set J := {−p, . . . , p}, and

J1 :=

{

j ∈ J |w 6≡ 0 on

[

−
1

2
+ j,

1

2
+ j

]}

,
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J2 :=

{

j ∈ J | ẇ 6≡ 0 on

[

−
1

2
+ j,

1

2
+ j

]}

.

nk := #Jk, k = 1, 2.

Evidently, J2 ⊂ J1, and n1 ≥ n2 ≥ 1. By analogy with (3.7), set
(3.14)

vj,ǫ(s) :=
(

T 2w(s+ j)2 − n2ǫẇ(s+ j)2
)

1[−1/2,1/2)(s), s ∈ R, ǫ ∈ R, j ∈ J ,

so that supp vj,ǫ ⊂ [−1/2, 1/2]. By analogy with (3.8), for ǫ ∈ R, consider the Neumann
realization of the operators

(3.15) h±
j,ǫ := −

d2

ds2
+ n1λ̃

±vj,ǫ, j ∈ J1,

restricted on (−1/2, 1/2). Denote by E±
j (ǫ), j ∈ J1, the lowest eigenvalue of the operator

h±
j,ǫ. Put

ǫmin
0 := min

j∈J1

sup
{

ǫ ∈ R | E+
j (ǫ) > 0

}

.

By analogy with (3.9), we have

(3.16) E−
j (ǫ) = 0, ǫ ∈ R, j ∈ J1,

if (2.10) holds true. Moreover, if (1.5), (1.3), and (2.3) are valid, we have ǫmin
0 > 0, and

(3.17) E+
j (ǫ) > 0, ǫ ∈ (−∞, ǫmin

0 ), j ∈ J1,

by analogy with (3.11).

Theorem 3.5. Let m ⊂ R
2 be a bounded domain such that T 6= 0. Assume that:

• w does not vanish identically on R, and satisfies (3.6) with β = 2p + 1, p ∈ N,

and

(3.18) w(s) ≥ 0, s ∈ R,

• λ0 satisfies (1.3), (2.10), (3.1), and (3.4);

• the waveguide satisfies “the thinness condition” (2.21) with δ0 =
ǫmin

0

1+ǫmin

0

.

Then, again, we have (3.5).

For the proof of Theorem 3.5, we will need Lemma 3.6 below. Let us recall that by
(2.7), h0,0 is simply the operator − d2

ds2
, self-adjoint in L2(R), while h0,0,ℓ is the Dirichlet

realization of its restriction onto (−ℓ/2, ℓ/2), ℓ ∈ (0,∞).

Lemma 3.6. Let n ∈ N, Vj : R×Ω → R, j = 1, . . . , n, be almost surely bounded ergodic

potentials. Let ρj be the IDS for the operator h0,0 + nVj, j = 1, . . . , n, and ρ be the IDS

for the operator h0,0 +
∑n

j=1 Vj. Then we have

(3.19) ρ(E) ≤

n
∑

j=1

ρj(E), E ∈ R.
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Remark: Lemma 3.6 admits an immediate extension to general multi-dimensional er-
godic Schrödinger operators. The above formulation of the lemma is both convenient
and sufficient for our purposes.

Proof of Lemma 3.6. Let E ∈ R. Then

(3.20) ρj(E) = lim
ℓ→∞

ℓ−1Tr1(−∞,E)(h0,0,ℓ + nVj), j = 1, . . . , n,

(3.21) ρ(E) = lim
ℓ→∞

ℓ−1Tr1(−∞,E)

(

h0,0,ℓ +
n
∑

j=1

Vj

)

.

On the other hand, a suitable version of the Weyl inequalities (see e.g. [25, Eq.(125)])
implies

Tr1(−∞,E)

(

h0,0,ℓ +
n
∑

j=1

Vj

)

= Tr1(−∞,0)

(

n
∑

j=1

(

1

n
h0,0,ℓ + Vj −

1

n
E

)

)

≤

(3.22)
n
∑

j=1

Tr1(−∞,0)

(

1

n
h0,0,ℓ + Vj −

1

n
E

)

=
n
∑

j=1

Tr1(−∞,E) (h0,0,ℓ + nVj) .

Combining (3.20), (3.21), and (3.22), we arrive at (3.19). �

Proof of Theorem 3.5. By (2.20) and (3.2), we immediately get

(3.23) lim inf
E↓0

ln | lnNγ(µ1 + E)|

lnE
≥ −

1

2
.

Let us obtain the corresponding upper bound. By (3.18) and (3.4), we have

(3.24) γ(s;ω)2 ≥
∑

k∈Z

λk(ω)
2w(s− k)2, s ∈ R.

Applying the Cauchy-Schwarz inequality, we easily find that

γ̇(s;ω)2 =

(

∑

k∈Z

λk(ω)ẇ(s− k)

)2

=

(3.25)

=

(

∑

k∈Z

λk(ω)ẇ(s− k)
∑

j∈J2

1[−1/2,1/2)(s− k − j)

)2

≤ n2

∑

k∈Z

λk(ω)
2ẇ(s− k)2, s ∈ R.

Putting together (3.24) and (3.25), we find that if ǫ ≥ 0, then

(3.26) T 2γ(s;ω)2 − ǫγ̇(s;ω)2 ≥
∑

k∈Z

λk(ω)
2
(

T 2w(s− k)2 − n2ǫẇ(s− k)2
)

, s ∈ R.

Introduce the operator

h̃γ,ǫ := h0,0 +
∑

k∈Z

λk(ω)
2
(

T 2w(s− k)2 − n2ǫẇ(s− k)2
)

,
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self-adjoint and Z-ergodic in L2(R), and denote by ν̃γ,ǫ its IDS. Then (3.26) implies

(3.27) νγ,ǫ(E) ≤ ν̃γ,ǫ(E), E ∈ R, ǫ ≥ 0.

Next,
(3.28)
∑

k∈Z

λk(ω)
2
(

T 2w(s− k)2 − n2ǫẇ(s− k)2
)

=
∑

j∈J1

∑

k∈Z

λk−j(ω)
2vj,ǫ(s− k), s ∈ R,

the potentials vj,ǫ being defined in (3.14). Denote by ν̃γ,ǫ.j, j ∈ J1, the IDS for the
operator

h0,0 +
∑

k∈Z

λk−j(ω)
2vj,ǫ(s− k),

self-adjoint and Z-ergodic in L2(R). By (3.28), and Lemma 3.6,

(3.29) ν̃γ,ǫ(E) ≤
∑

j∈J1

ν̃γ,ǫ,j(E), E ∈ R, ǫ ∈ R.

Arguing as in the proof of (3.13), we can show that (2.10), (3.16), and (3.17), imply

(3.30) lim sup
E↓0

ln | ln ν̃γ,ǫ,j(E)|

lnE
≤ −

1

2
, j ∈ J1, ǫ < ǫmin

0 .

Combining (2.22), (3.27), (3.29), and (3.30), we get

(3.31) lim sup
E↓0

ln | lnNγ(µ1 + E)|

lnE
≤ −

1

2
.

Putting together (3.23) and (3.31), we arrive at (3.5).
�
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Av. Vicuña Mackenna 4860
Santiago de Chile
E-mail: graikov@mat.uc.cl


	1. Introduction
	2. Estimates of N in terms of the IDS for 1D random Schrödinger operators
	3. Lifshits tails for the operator H
	3.1. Single-site twisting w of power-like decay
	3.2. Single-site twisting w of compact support

	References

