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ABSTRACT. We consider the Dirichlet Laplacian H., on a 3D twisted waveguide with
random Anderson-type twisting . We introduce the integrated density of states N, for
the operator H,, and investigate the Lifshits tails of IV, i.e. the asymptotic behavior
of Ny(FE) as E | inf supp dN,. In particular, we study the dependence of the Lifshits
exponent on the decay rate of the single-site twisting at infinity.
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1. INTRODUCTION

The spectral properties of quantum Hamiltonians on tubular domains (waveguides) have
been actively studied for several decades (see the monograph [10], the survey [18], and
the references cited there). Recently, there has been a particular interest in the so-
called twisted waveguides (see [9, 8, [, 21} [ 3], 24]), whose general setting we are going
to describe briefly below.

Let m C R? be a bounded domain. Set M :=m x R. Let § € C*(R;R) have a bounded
derivative 6. Define the twisted tube

My = {Ro(z3)x, x € M}

where
cosf(x3) sinf(zs) 0
(1.1) Ro(x3) := | —sinf(x3) cosb(zs) 0 |, x3€R.
0 0 1

Let Hy be the self-adjoint operator generated in L?(My) by the closed quadratic form
Qylu] = / Vuldr, ue HY(M,).
M

where, as usual, Hj(M,) is the closure of C§°(My) in the first-order Sobolev space
H'(My). Introduce the quadratic form

Q;lu] ::/ <|Vtu|2+ |987u+83u|2> dz, wu e Hy(M),
M
1
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where V; := (01,0:), and 0, := 210y — x20,. Let Hj; be the self-adjoint operator
generated in L?(M) by the closed quadratic form Q4. Define the unitary operator
Uy : L2(My) — L2(M) by

(Upu) (7) :==u (Ry(x3)x), x€ M, u€L*(My).

Then Hé = Ug?‘[@Ue_l.

If m C R? is a bounded domain with boundary Om € C?, and 6 € C?*(R;R) has bounded
first and second derivatives, then
(1.2) Hy = —0? — 92 — (00, 4+ 05)?, Dom(H;) = H*(M) N HL(M),

(see [, Corollary 2.2]).
In this article we will consider the operator H, with random Anderson-type twisting

0 = v (see (LG) below). Let (9, F,P) be a probability space. Assume that A,(w), k € Z,
w € (2, are independent, identically distributed random variables. Set

_l’_

A7 i=essinf A\g(w), AT :=esssup Aog(w).
weN we

Throughout the article we assume that
(1.3) —00 <A <A < oo

Further, introduce the single-site twisting w € C'(R;R) which is supposed to satisfy

(1.4) lw(s)| < C(1+|s])7 seR,
with some constants C' € (0, 00), and « € (1,00). Moreover, we assume that
(1.5) w#0 on R.
Introduce the random twisting
(1.6) Ysw) =) Mlww(s—k), seR, we.
keZ

Then 7 is a Z-ergodic random field, and the operator H.,, self-adjoint in L?(M), is
ergodic with respect to the translations T}, defined by

(Tk‘u>($t7$3) = U(It,l‘:; - k)? k€ Zv (xta 1’3) < M7 CAS Lz(M)

By the general theory of ergodic operators (see e.g. [12], Section 4]), there exists a closed
non-random subset > of R such that almost surely

(1.7) o(H,) =X.

Let us introduce the integrated density of states (IDS) of the operator H.,. For a finite
¢ >0, set My := m x (—={/2,0/2), and define the operator H,, as the self-adjoint
operator generated in L?(M,) by the closed quadratic form

Q-.0[u] = / (IVeu)® + |7 (235 w)0ru + Osul’) dz,  w € Hy(M,).
M,
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Evidently, the spectrum of H, , is purely discrete. We will say that the non-increasing
left-continuous function N, : R — [0, 00) is an IDS for the operator H., if almost surely
we have

(18) Jim 7 T Loy (H ) = N, (B)

at the points of continuity £ € R of N,. Arguing as in [I2] Theorem 6, Section 7] or
[11], it is easy to show that there exists an IDS N, for H,, and supp dN,, = X (see (7).

Our main results concern the asymptotic behavior of the IDS N, near ¥ := inf 3. This
behavior is usually characterized by a very fast decay of the IDS, and is known as a
Lifshits-tail behavior. More precisely, we show that under suitable assumptions

(1.9) lim In|In N, (X + E)|
EL0 InFE

with a constant s > 0 called the Lifshits exponent, which depends, as we will see, on the
decay rate of w. Namely, if w satisfies (L) with o € [2,00), then s = § (see Theorems
3.2 (i), B4l and B.5 below), while if w(s) ~ |s|~® as |s| — oo, with a € (1,2), then
= ﬁ (see Theorem (ii)).

One of the important assumptions of geometric nature we impose in order that (.9)
hold true, implies that the cross section m is not rotationally symmetric with respect
to the origin. Otherwise, the operator H, would be unitarily equivalent to H,, the IDS
N, would be independent of 7, and can be calculated explicitly (see (2.4) below). Note
that in this case N, has at >y a van Hove singularity, i.e. a non smooth power-like
decay, instead of a Lifshits tail (see e.g. [6] and the references cited there for a general
discussion of the van Hove singularities).

Lifshits tails concerning various random 2D waveguides were considered in [16, 22].
Related spectral properties were studied in [I, 2].

The paper is organized as follows. In the next section we estimate IV, (X +E) with small
E > 0 in terms of the IDS for suitable 1D Schrédinger operators h, . (see (2.17) below)
whose potential depends on the random twisting v and on the real parameter e¢. In
Section 3, we formulate and prove our main results on the Lifshits tails for the IDS N,
applying the estimates obtained in Section 2, as well as certain results on the Lifshits
tails for the operator h, .. Some of these necessary results turned out to be available in
the literature (see [I7, 26]) and some of them are borrowed from our companion paper
[14] where Lifshits tails for Schrodinger operators with squared Anderson-type potentials
are investigated in any dimension d > 1.

2. ESTIMATES OF N, IN TERMS OF THE IDS FOR 1D RANDOM SCHRODINGER
OPERATORS

In this section we show that if essinf,eq Ao(w)? = 0, then almost surely inf o(H,)
coincides with 1, the lowest eigenvalue of the transversal Dirichlet Laplacian,
and obtain suitable two-sided estimates of N(u; + E) for sufficiently small £ > 0, in



4 W. KIRSCH, D. KREJCIRIK, AND G. RAIKOV

terms of the IDS for appropriate 1D random Schrédinger operators h., . (see (271) below).

Let {y; }j <y be the non-decreasing sequence of the eigenvalues of the transversal Dirichlet
Laplacian —AP | generated in L?(m) by the closed quadratic form

/\Vtu\zd:ct, u € Hy(m),

with x; := (21, 22). We have
(2.1) 0 < p1 < pa.
Let {¢;};cy be an orthonormal basis in L?(m) consisting of real-valued eigenfunctions
of —AP which satisfy

—AY ¢ =505, jEN.
It is well known that ¢, could be chosen so that

o1(z) >0, z, €m.

Set
(2.2) T = 10re1llL2(m)-
Arguing as in the proof of [B, Proposition 2.2], we can show that if 9m € C?, then the
inequality
(2.3) T#0
holds true if and only if m is not rotationally symmetric with respect to the origin.

On the other hand, if m is any bounded rotationally symmetric domain, then 7 = 0.
Moreover, in this case the operator Hj is unitarily equivalent to Hj, the spectrum

o(H;) = [u11,00) is absolutely continuous, the IDS N; = Ny, independent of 6, is well
defined by analogy with (L), and we have

1

(2.4) No(E) = —> (B~ )", EER

j=1
In particular,

1
(2.5) No(pr + E) = ;E}rma E € (—00, piy — j11).
Assume ([[3)), (L4), and
(2.6) we CHR;R), |u(s)| <C(1+[s])™, seR.

For € € R introduce the operator h. . as the self-adjoint operator generated in L?(R) by
the closed quadratic form

Grelf] = / (1FF + (T2(s:0)* = e (siw)?) [f12) ds,  f € H'(R).

Remark: If e = 0, then we can omit assumption (26]) in the definition of the operator h. .
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Thus,

d2
ds?
is a 1D Schrodinger operator with random potential 727(s;w)?—e¥(s;w)?, s € R, w € €.
This operator is Z-ergodic, and its spectrum is almost surely independent of w € €.

Introduce the IDS for the operator h.,. as the non-decreasing function v, : R — R
which almost surely satisfies

(2.8) lm (' Tr L oo py(hyer) = v (E), E€R,

/—00

(2.7) heye = + T — e

h..c0 being the self-adjoint operator generated in L?(—¢/2,¢/2) by the closed quadratic
form

(29) gredf] = /

—t/2

02

(172 + (T29(s1)? = e5(s;0)?) £ ) ds, f € H(=£/2,¢/2).

The IDS v, exists and is continuous (see [23], Theorem 3.2]). Moreover, in the definition
(2.8)) of v, . we can replace the operator h, ., equipped with Dirichlet boundary condi-
tions, by the operator generated by the quadratic form (23] with domain H(—¢/2,(/2),
equipped with Neumann boundary conditions. Further, it follows from (3] that

AT = esssup Ao(w)? > 0.
weN

In what follows, we assume that
Y o ; 2 _
(2.10) AT = eiselélf Ao(w)* = 0.

Note that (ZI0) implies that almost surely
(2.11) 0(hy0) = [0,00)
(see [13]).
Proposition 2.1. Assume ([[L3)), (L4)), and 2I0). Then almost surely we have
(2.12) o(H,) = [, 00).
Proof. We have
(2.13) inf o(H,) = inf Q+M
0Fu€Hg (M) ||u||L2(M)
Since
Q,lu] > / Vol dr, ueHY(M),
it follows from (2Z.I3]) and "
' Vu|? dx
= OyéuéII}IE(M) %Ttlx’
that
(2.14) inf o(H,) > 1.
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Let us now prove the almost sure inclusion
(2.15) o(H,) D [p1,00).

Fix £ > 0. Arguing along the lines of the proof of (2.I1]) in [13], we can construct a
sequence { f, tneny C C5°(R), normalized to one in L?(R), such that, almost surely

(216) || — fn — EanL2(IR) —)n_)oo 0 and HVHLOO(suppfn) n_)oo‘> 0.

Notice that, by writing || fn||iz(R) = —(fa, fo)ewy < || fn||L2(R)> it follows from the first
limit in (ZI6) that the sequence {f,}nen is almost surely bounded in L2(R). The
sequence {uy, }neny C HY (M) defined by

Un = L1 ® .fn

is normalized to one in L?(M). By the Weyl criterion adapted to quadratic forms
(see [19, Theorem 5]), the desired inclusion (2I5) will hold if we show that, almost
surely,

ns - +E ns
(2.17) sup 1 9alm O = G ¥ B)(un, Dizan]
0£$€H (M) ||¢||H1(M) n—oo

where Q. (-, ) is the sesquilinear form generated by the quadratic form Q. [u], u € H(M),
and (-, -)12(a) 1s the scalar product in L*(M).

Integrating by parts, using the normalizations of f,, and ¢, and applying the Cauchy-
Schwarz inequality, we get

(2.18)  |Qy(tn, @) — (1 + E)(un, ®)rzan| < |Sllzan | = fu — Efullze)

+ ||83¢||L2(M) ||7||L°°(SUprn) T
| fullo )
+ 110-0 L2y 17 [l (supp ) T

Thus, 2I8) and (ZI6) imply ([2I7), and hence [2.I5).
Now (212) follows from (2I4) and (213]). O

Further, we need several notations which will allow us to formulate certain assumptions
of geometric nature. Assume (L3), (4), and set

Dy := esssup sup(5y(s;w)* + 1).
we  seR

+ [[0-0|L2(ary [|V]| oo (supp £)

Then Dy < oc.
Further, assume (L3]), (L4), ([26), and (23). Suppose in addition that the logarithmic
derivative 4//v is well defined and

(2.19) ess sup sup A(siw)
we)  seR 7(37("})

< 00.

Set

29(s;w)? )
Dy :=esssupsup | 67(s;w)* + —————— | .
? wEQp seﬂlﬁ) ( 7( ) Tsz(Su w)2
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Then Dy < o0.

Remark: Assumption (2.I9) holds true if w does not vanish at any s € R and admits a
regular power-like decay at infinity, but it is false if w has a compact support.

Finally, put

a = sup |zy|.
TrteEm

Theorem 2.2. Assume ([LL3) and (L4]).

(i) We have
(2.20) vyo(E) < Ny(uu + E), E€R.
(i) Let 0p € (0,1). Suppose in addition that (2.0 holds true, and
-1
(2.21) a? (1 — ﬂ) Dy < 6.
M2
Then we have
(2.22) N, (1 + E) S vy 5/0-5-1((1 = 6)7'E)

—1
for any 0 € <a2 <1 — %) D1,50) and E € (0, u2(1 — 671 Dya®) — p).
(iii) Suppose in addition that ([26), (23), and 2I9) hold true, and

-1
(2.23) a2 (1 - %) Dy < 1.
2
Then we have
(2.24) N, (1 + E) < v,0((1 = 0)7'E)

p2

1
for any 0 € <a2 <1 — ﬂ) Dy, 1) and E € (0, pa(1 — 67 Dqya®) — py).

Remark: 1If ~ is fixed and D; < oo (resp., Dy < o00), then (221 (resp., (2.23])) holds
true if a is small enough. Note that it follows from the results of [7, 20] that the
operator H., — p1; converges in an appropriate sense to h, g as a ] 0 .

Proof of Theorem[2.2. If we restrict the quadratic form @), ¢ to functions of the form
w=p®f, feH(~1/20/2),

then

(2.25) Qrelun] = qyo.lf1+ 1l F 2 epaesay Nwllfzany = 1 F 122y,

the quadratic form ¢, ., being defined in (2.9). Hence, the mini-max principle implies

(2.26) Tr ]].(_oo7u1+E)(H.y7g) >Tr ]].(_OOE)(h%Q,g), EeR.
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Combining (L8)), (Z8)), and (Z26]), we get ([2.20).
Next, set
Di:={ui=pi® f|feHy(—£/2,0/2)},

Dy = {UQ S H(l)(Mg) ‘ u2(x)u1(x)d:c = O, Yu; € Dl)} .
M,
Then, for u = u; + us with uy = 1 ® f € D; and uy € Dy, we have

HUHIQ_,Z(M‘;) = [Jus + “2H123(Me) = Hf||i2(—é/2,é/2) + HU2H12JZ(MZ)-

Moreover, integrating by parts, we get

Q'y,f[u] = Q%Z[Ul + U2] =

Qn,elur] + Qyeluz] + 2Re / (72@”187”2 + Y0311 0, us + ’Y&Tulaguz) dz =

M,

(227) Q%z[ul] + Q%g[uﬂ + 2Re / (fyzaTul + 2783u1 + ”yul) &-Ug dx.

M,

-1
Assume (2.21)) and pick § € (a2 <1 — “—1> Dy, 50). We have

H2

2Re / (Y20rus + 2905u; + Y1) Oruz dr >
M,

—5/ (’)/2‘87—U1|2 + |83U1‘2 + ")/2|U1|2) dr — 5_1/ (5”)/2 -+ 1)|87—U2‘2d.§(7 =
M, M,

0/2
03 o [ (e (T ) ey =0 [ o i
/2 My
Then, (225), (Z21), and [228]) easily imply
(2.29) Qqe[u] > (1= 8)qy.5/0-8lf] + 1l FIT2(—ej/2) + Qrelua]
where .
Qv e[ug] ==

/ (|th2|2 — 5_1(5’72 + 1)|07U2|2 + |’}/87-UQ + 03UQ|2) d!L’, U € Dg.
M,

Let f[w be the operator generated by the closed quadratic form Q%g in the Hilbert
space Di, the orthogonal complement of D; in L?(M;). Then the mini-max principle
implies
(2.30)

Tr ]]-(—oo,ul—i-E)(H’y,f) <Tr ]]-(—oo7E)((1 — 5)}1%5/(1_5)7() + Tr ]].(_OO7M1+E)(H%5), E eR.

Since |Orus| < |x||Viug|, we have

(231) Q%g[UQ] Z 2 (1 - 5_1a2D1) / ‘UQPdZL’.

M,
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Therefore, if E € (0, pa (1 — 5 'a?Dy) — p11), we have

Tr ]]-(—oo,,u1+E) (ny,5> = Ov

and by (Z30),
(2.32)

Tr Loy rm) (Hyr) S Tr L oo my((1 = 0)hy5/0-5)0) = Tr Lo 1-6)-1) (P5/(1-5).0)-

Now (L), €3, and €I, imply @22
-1
Finally, assume (2.23]) and pick 0 € <a2 <1 — %) Do, 1). Similarly to (Z28), we have

2Re / (7207u1 + 2vy03u;1 + 7U1) O uy dax >
M,

2 2.2 2
Y 2 o, T 2 1 2 2y 2
_5/ (—&u + [O5uq|” + u )d:c—é / (6 + )&u dr =
e 2\ 17+ |05 5 |1 | e g T2 |Orus)|

_5/5/2 <|f|2+7'272|f‘2> dl’3 _5—1/ (6’)/2+ 2”)/2 ) ‘8 U2|2dl’.
£/2 M, T2y2 !

Hence, by analogy with (2.29)) and (2.31), we have

Qypelu] =

(1= 6)qy.0.0lf]+ 1l FlIE2(_/2/2)+

242
/ <|Vtu2|2 —o6! (672 + 3 2) 0-us|? + |yO0ruy + 83u2|2) dx >
M, T2y

(1= 0)gyo0.elf] + pall T2 ejaesey + 12 (1 — 67 a*Dy) /M |ug|*du.
A

Therefore, if E € (0, pa (1 — 5 'a?Dy) — p11), we have
(233) TI" ]]-(—oo,u1+E)(H'y,é) S TI" ]].(_007(1_5)715;)(}1%074).
Now (L), @), and (€, imply @20,

3. LIFSHITS TAILS FOR THE OPERATOR H,

In this section we formulate and prove our main results concerning the asymptotic
behavior of N, (y1 + E) as £ | 0. In Subsection Bl we consider single-site twisting w of
power-like decay while in Subsection we handle the case of compactly supported w.
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3.1. Single-site twisting w of power-like decay. The following proposition contains
results from [14] on the Lifshits tails for 1D Schrédinger operators with squared random
Anderson-type potentials.

Proposition 3.1 ([14, Theorem 1]). Assume [Z3). Suppose that w satisfies (L)) with
a € (1,00), and ([LA), while Ao satisfies (L3) and ZI0). Suppose moreover that

(3.1) P({w € Q[ [Ao(w)| < e}) = Ce¥,

for some k >0, C' > 0, and any sufficiently small € > 0.
(i) If a« > 2, then

(i) Let 1 < o < 2. Assume that
(3.3) w(s) >C(1+|[s|)™ seR, C>0,
and
(3.4) A" =0.
Then
lim In|Inv,o(E)| 1 .
EL0 InE 2(a—1)

Remark:  Evidently, we may replace the assumptions @B3) and (B4), by
w(s) < =C(1+ |s])7, s € R, with C > 0, and AT = 0 respectively. A similar
remark applies to Theorems (i) and B35l

Combining Theorem 2.2l with Proposition B.I], we obtain the following theorem concern-
ing the Lifshits tails of the IDS N, for the randomly twisted waveguide:

Theorem 3.2. Let m C R? be a bounded domain such that T # 0. Assume that:
o w € CYR;R) does not vanish identically on R and satisfies the upper bound
(C4A) with a € (1,00);
o )\ satisfies (L3), I0), and BI);

e the logarithmic derivative /v satisfies the boundedness condition (219);
e the waveguide satisfies “the thinness condition” ([223).

(i) Let a € [2,00). Then we have

. In|InN, (1 + E)| 1
. 1 J =——.
(35) Elli% InFE 2

(ii) Let o € (1,2). Suppose moreover that the lower bounds [B3) and [B.4) hold true.
Then we have

In|In N, (1 + E)| 1
im =— :
EL0 InFE 2(a—1)
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Remark: If T =0, then

1
vy0(E) = no(E) = ;Ei/z, F eR.
Therefore, (2.20) implies

In|In V. E
lim inf n | N, (g + Bl >0,
EJ0 InFE

i.e. N, does not exhibit a Lifshits tail near ;. As mentioned in Section 2, if dm € C?,
then 7 = 0 is equivalent to the fact that m is rotationally invariant with respect to the
origin, and (2.4) and (23] hold true, i.e. H., exhibits near p; a van Hove singularity
instead of a Lifshits tail. A similar remark applies to Theorems [3.4] and below.

3.2. Single-site twisting w of compact support. In this subsection we assume that
(LH) holds true, and

(3.6) w € CY(R;R), suppw C [-5/2,5/2],

with 3 € (0, 00).
First, we consider the case where the support of w is small, i.e. ([3.6) holds with 5 € (0, 1].
Then the multiplier by 727(s;w)? — e¥(s;w)? coincides with the multiplier by

Z Me(W)ve(s — k), s€ER,

keZ
where
(3.7) ve(s) := T?w(s)* — e (s)?, s€R.
For € € R denote by £*(€) the lowest eigenvalue of the operator
(3.8) ht = _ + 2
‘ ds? “

acting in L?(—1/2,1/2), and equipped with Neumann boundary conditions. If ([2.I0) is
fulfilled, then, evidently,

(3.9) E(e)=0, eeR.
Put
(3.10) €0 :=sup {e e R|ET(e) > 0}.

It follows from (LH) and (L3) that if (23)) is valid, then €y > 0 since £1(0) > 0, and
ET is a continuous (as a matter of fact, real analytic) non-increasing function of € € R.
Thus,

(3.11) Ef(e) >0, €€ (—00,¢€).
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Proposition 3.3. Assume that w satisfies (LH), B6) with 5 € (0, 1], while A satisfies
(@3) and @I0). Let € € (—o0,€).

(i) We have almost surely
(3.12) inf o (h. ) = 0.
(ii) Moreover,

, In|lnv, (£)| 1
(3.13) hnéfoup o E < 5
Idea of the proof of Proposition[3.3: Taking into account (ZI0), (3.9), and BII), we
find that (3.I12) follows from [I7, Proposition 0.1]. Note that the hypotheses of [17]
Proposition 0.1] contain also the condition that v, be an even function of s € R. However,
this condition is needed to guarantee that the eigenfunction of the operator h_ is even,
which in our setting is immediately implied by (2I0).
Further, bearing in mind (812)), (39), and ([BI1), we easily conclude that ([3I3) follows
from [I7, Theorem 0.1].
It should be noted here that the assumptions of Proposition 0.1 and Theorem 0.1 of [I7]
require that suppv. C (—1/2,1/2) which may formally exclude the case § =1 in (B.0).
A careful analysis of the proofs of Proposition 0.1 and Theorem 0.1 of [17] however
shows that these proofs extend without any problem to the case suppv. C [—1/2,1/2].

]

Remarks: (i) PropositionB.3lalso follows from the results of the article [26] which extends
[T7]. More precisely, [B12) follows from [26] Theorem 1.1}, while (B13]) follows from [26],
Theorem 1.2].
(ii) If e < 0 and hence v, does not change sign, (3.12)) and (3.13)) have been known since
long ago (see [13] and [15] respectively). However, the case € < 0 is not appropriate for
our purposes.

Theorem 3.4. Let m C R? be a bounded domain such that T # 0. Assume that:

e w does not vanish identically on R and satisfies [B.6]) with B € (0, 1];
o\ satisfies (L3), I0), and BI);
o the waveguide satisfies “the thinness condition” ([2211) with dy = Ties €0 being
defined in (B.10).
Then [B3) is valid again.

Proof. 1f § < {£%-, then 6/(1—09) < €. Therefore, ([.0) follows from [2.20), 2.22), 3.2)
and (B.13). O

Further, we consider the case where the support of w may be large, i.e. ([H), and
B4) with 5 € (1,00) hold true; then the supports of the translates of w may have a
substantial overlap. Without any loss of generality, we assume that § = 2p + 1 with
p€N. Set J :={-p,...,p}, and

1 1
jlzz{j€j|w§é0 0n[—§+j,§+j]},
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1 1

ng ‘= #jk, k= 1,2.

Evidently, Jo C J1, and ny > ny > 1. By analogy with (87), set
(3.14)
’Uj@(S) = (TQ’UJ(S —|—j)2 — ngeu')(s —|—j)2) ]].[_1/271/2)(8), S € R, € C R, j - j,

so that supp v C [—1/2,1/2]. By analogy with (3.8]), for e € R, consider the Neumann
realization of the operators
2

ds?

restricted on (—1/2,1/2). Denote by Sji(e), J € Ji, the lowest eigenvalue of the operator
h.. Put
J,€

(3.15) hi, = +m ., jET,

e ;reli%sup {eeR|Ef(e) > 0},

By analogy with ([3.9]), we have

(3.16) E(e)=0, eeR, je,
if (210) holds true. Moreover, if (LH), (I3), and [23)) are valid, we have e > 0, and
(3.17) Ef(e) >0, ec (—o0, ™), j e T,

by analogy with (B11).
Theorem 3.5. Let m C R? be a bounded domain such that T # 0. Assume that:

e w does not vanish identically on R, and satisfies [B.0) with 5 =2p+ 1, p € N,
and

(3.18) w(s) 20, seR,
o )\ satisfies (L3), (ZI0), BI), and BA), .
e the waveguide satisfies “the thinness condition” [Z21I) with 6y = lf):;m.
Then, again, we have (3.3]).

For the proof of Theorem Bl we will need Lemma below. Let us recall that by
(21), ho is simply the operator —j—;, self-adjoint in L*(R), while kg is the Dirichlet
realization of its restriction onto (—¢/2,€/2), ¢ € (0,00).

Lemma 3.6. Letn € N, V; : RxQ =R, j =1,...,n, be almost surely bounded ergodic
potentials. Let p; be the IDS for the operator hoo+nV;, 7 =1,...,n, and p be the IDS
for the operator hoo + > 7_, V. Then we have

(3.19) p(E) < ipj(E), E eR.
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Remark: Lemma admits an immediate extension to general multi-dimensional er-
godic Schrodinger operators. The above formulation of the lemma is both convenient
and sufficient for our purposes.

Proof of Lemmal3.8. Let E € R. Then
(3.20) pi(E) = Jim (' Te oo my(hooe +1V5), j=1,...,n,
—00

(3.21) p(E) = lim T 1w p) (ho,o,z + Z VJ> .

{—00
j=1
On the other hand, a suitable version of the Weyl inequalities (see e.g. [25 Eq.(125)])

implies

Tril o p) <ho,0,z + Z V]> =Trl w0 (Z (gho,o,e + V- 5E>) <

j=1 =
(3.22) > Trlw) ~hooe+Vi——F | = > Trloo,m) (hoo +1V).
i=1 =1

Combining (320), (B:21)), and ([B22)), we arrive at (319). O
Proof of Theorem[3.4. By (2.20)) and ([B.2)), we immediately get
In|In N, (1 + E)| 1

' . >_1
(3.23) hrgilonf W 2 —5
Let us obtain the corresponding upper bound. By ([B.I8) and (B4]), we have
(3.24) Y(sw)® =Y Me(w)w(s — k)%, seR.

keZ

Applying the Cauchy-Schwarz inequality, we easily find that

)% = (Z A (W)t (s — k:)) =
(3.25)

:<Z)\k(w) Z]l[ 1/2,1/2)(5 — —]) <n22)\k 2i(s — k)?, s€ER.

kEZ JET2 kEZ
Putting together (3:24) and (B:20]), we find that if € > 0, then
(3.26) T2y(s;w)? — ey(s;w)? > Z A(w)? (TPw(s — k)* — naer(s — k)*), sER.
keZ
Introduce the operator

A,E:—h00+z>\k 2 (TPw(s — k)? — naetv(s — k)?)

keZ
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self-adjoint and Z-ergodic in L?*(R), and denote by o, its IDS. Then (3.26) implies

(3.27) vye(E) <1v,.(E), E€R, €>0.

Next,

(3.28)
Z Ae(w)? (TPw(s — k)* — naer(s — k)*) = Z Z Mej(W)?vje(s — k), s €ER,
kez JET k€L

15

the potentials v;. being defined in ([B14). Denote by 7, .;, j € Ji, the IDS for the

operator

hoo—l—Z)\k] vjes—k:),

keZ

self-adjoint and Z-ergodic in L*(R). By (3:28)), and Lemma [3.6]

(3.29) 7y e(B) <Y ine(E), E€R, €€R.

JEI

Arguing as in the proof of ([B.I3), we can show that 2I0), (.16, and B.I1), imply

, In|lnw,,;(E) . min
(3.30) llrrgfglp lnﬁ/E] < —5 JE€ Ji, e <e™.
Combining (222)), (3:27), (3:29), and (3.30), we get
, In|In N, (1, + E)| 1
31 1 - < —.
330 AP T s <)

Putting together ([B.23)) and (831]), we arrive at (3.5).

U

Acknowledgements. The authors gratefully acknowledge the partial support of the

Chilean Scientific Foundation Fondecyt under Grants 1130591 and 1170816.

A considerable part of this work has been done during W. Kirsch’s visits to the
Pontificia Universidad Catholica de Chile in 2015 and 2016. He thanks this university

for hospitality.

Another substantial part of this work has been done during G. Raikov’s visits to
the University of Hagen, Germany, the Czech Academy of Sciences, Prague, and the
Institute of Mathematics, Bulgarian Academy of Sciences, Sofia. He thanks these

institutions for financial support and hospitality.



16

1]

W. KIRSCH, D. KREJCIRIK, AND G. RAIKOV

REFERENCES

D. Borisov, I. VESELIC, Low lying spectrum of weak-disorder quantum waveguides, J. Stat.
Phys. 142 (2011), 58-77.

D. Borisov, I. VESELIC, Low lying eigenvalues of randomly curved quantum waveguides, J.
Funct. Anal. 265 (2013), 2877-2909.

PH. BRIET, H. HAMMEDI, D. KREJCIRIK, Hardy inequalities in globally twisted wavequides, Lett.
Math. Phys. 105 (2015), 939-958.

PH. BrRIET, H. KOVARIK, G. RAIKOV, Scattering in twisted wavequides, J. Funct. Anal. 266
(2014), 1-35.

PH. BRIET, H. KOVARIK, G. RAIKOV, E. Soccorsl, Figenvalue asymptotics in a twisted waveg-
uide, Comm. Partial Differential Equations 34 (2009), 818-836.

Y. CoLIN DE VERDIERE, Sur les singularités de van Hove génériques, In: Analyse globale et
physique mathématique (Lyon, 1989). Mém. Soc. Math. France 46 (1991), 99-110.

C. DE OLIVEIRA, Quantum singular operator limits of thin Dirichlet tubes via T'-convergence,
Rep. Math. Phys. 67 (2011), 1-32.

T. ExaorLM, H. KovaRrik, D. KREICIRIK, A Hardy inequality in twisted wavequides, Arch.
Ration. Mech. Anal. 188 (2008), 245-264.

P. EXNER, H. KOVARIK, Spectrum of the Schrodinger operator in a perturbed periodically twisted
tube, Lett. Math. Phys. 73 (2005), 183-192.

P. EXNER, H. KOVARIK, Quantum Waveguides, Theoretical and Mathematical Physics, Springer,
Cham, 2015.

T. HUPFER, H. LESCHKE, P. MULLER, S. WARZEL, FEzistence and uniqueness of the integrated
density of states for Schradinger operators with magnetic fields and unbounded random potentials,
Rev. Math. Phys. 13 (2001), 1547-1581.

W. KIRSCH, Random Schrédinger Operators. A Course, In: Schrodinger operators (Sgnderborg,
1988), 264-370, Lecture Notes in Phys., 345, Springer, Berlin, 1989.

W. KIRSCH, F. MARTINELLI, On the spectrum of Schrédinger operators with a random potential,
Comm. Math. Phys. 85 (1982), 329-350.

W. KirscH, G. RAIKOV, Lifshits tails for squared potentials, Preprint: arXiv:1704.01435 (2017).
W. KIRSCH, B. SIMON, Lifshitz tails for periodic plus random potentials, J. Statist. Phys. 42
(1986), 799-808.

F. KLEESPIES, P. STOLLMANN, Lifshitz asymptotics and localization for random quantum waveg-
uides, Rev. Math. Phys. 12 (2000), 1345-1365.

F. Kroprp, S. NAKAMURA, Spectral extrema and Lifshitz tails for non-monotonous alloy type
models, Comm. Math. Phys. 287 (2009), 1133-1143.

D. KREJCIRIK, Twisting versus bending in quantum wavequides. Analysis on graphs and its ap-
plications, 617-637, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008.
D. KREICIRIK, Z. LU, Location of the essential spectrum in curved quantum layers, J. Math.
Phys. 55 (2014), 083520.

D. KREJCIRIK, H. SEDIVAKOVA, The effective Hamiltonian in curved quantum wavequides under
mild reqularity assumptions, Rev. Math. Phys. 24 (2012), 1250018, 39 pp.

D. KREJCIRIK, E. ZUAZUA, The Hardy inequality and the heat equation in twisted tubes, J. Math.
Pures Appl. 94 (2010), 277-303.

H. NAJAR, Lifshitz tails for acoustic waves in random quantum waveguide, J. Stat. Phys. 128
(2007), 1093-1112.

L. PASTUR, A. FI1COTIN, Spectra of Random and Almost-Periodic Operators, Grundlehren der
Mathematischen Wissenschaften 297 Springer-Verlag, Berlin, 1992.

G. RAIKOV, Spectral asymptotics for waveguides with perturbed periodic twisting, J. Spectr. The-
ory 6 (2016), 331-372.

M. REED, B. SIMON, Methods of Modern Mathematical Physics IV: Analysis of Operators, Aca-
demic Press, 1978.

Z. SHEN, Lifshitz tails for Anderson models with sign-indefinite single-site potentials, Math.
Nachr. 288 (2015), 1538-1563.


http://arxiv.org/abs/1704.01435

LIFSHITS TAILS FOR RANDOM QUANTUM WAVEGUIDES

WERNER KIRSCH

Fakultat fiir Mathematik und Informatik
FernUniversitat in Hagen
Universitatsstrasse 1

D-58097 Hagen, Germany

E-mail: werner.kirsch@fernuni-hagen.de

DaviD KREJCIRIK

Department of Mathematics

Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

Trojanova 13

12000 Prague 2, Czech Republic

E-mail: david.krejcirik@fjfi.cvut.cz

GEORGI RAIKOV

Facultad de Matematicas

Pontificia Universidad Catdlica de Chile
Av. Vicuna Mackenna 4860

Santiago de Chile

E-mail: graikov@mat.uc.cl

17



	1. Introduction
	2. Estimates of N in terms of the IDS for 1D random Schrödinger operators
	3. Lifshits tails for the operator H
	3.1. Single-site twisting w of power-like decay
	3.2. Single-site twisting w of compact support

	References

