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We present an explicit difference operator diagonalized by the Macdonald polynomials

associated with an (arbitrary) admissible pair of irreducible reduced crystallographic

root systems. By the duality symmetry, this gives rise to an explicit Pieri formula for the

Macdonald polynomials in question. The simplest examples of our construction recover

Macdonald’s celebrated difference operators and associated Pieri formulas pertaining

to the minuscule and quasi-minuscule weights. As further by-products, explicit expan-

sions, and Littlewood–Richardson type formulas are obtained for the Macdonald poly-

nomials associated with a special class of small weights.

1 Introduction

In a landmark paper, Macdonald introduced his nowadays widespread families of

basic hypergeometric orthogonal polynomials associated with (admissible pairs of)

crystallographic root systems [10]. It has been shown with the aid of the representation

theory of double affine Hecke algebras that the polynomials in question form the joint

eigenbasis of an algebra of commuting basic hypergeometric difference operators,

which is isomorphic to the Weyl-group invariant part of the group algebra over the

weight lattice [11]. Even though for the simplest difference operators in the algebra at

issue elegant explicit expressions can already be found in Macdonald’s original work,
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2 J. F. van Diejen and E. Emsiz

to date it remains a challenging open problem to derive analogous explicit formulas

providing a complete system of generators for this algebra valid uniformly for all root

systems [11, Section 4.4].

In this paper, we present a compact explicit formula for a generalization of Mac-

donald’s celebrated difference operators from [10]. Upon specialization, this formula

gives rise to a complete system of generators in the case of all classical root systems

and to various novel explicit independent generators in the case of the exceptional root

systems. In view of the remarkable duality symmetry enjoyed by the Macdonald polyno-

mials [11], our difference operator formula also entails a new explicit Pieri-type recur-

rence formula generalizing the explicit Pieri formulas known from Macdonald’s theory

(see e.g. [8, Section 3]). One important reason motivating the quest for compact explicit

Pieri formulas is that in the special case of the type A root systems they have proved to

be a powerful tool for deriving closed formulas for the expansion coefficients of Macdon-

ald polynomials in terms of the standard bases of elementary and complete symmetric

functions [9] (see also [6, 13] for alternative methods to compute Macdonald polynomials

explicitly based on direct use of the difference equations and orthogonality relations,

respectively). Indeed, as a further spin-off we also arrive at explicit expansions and

Littlewood–Richardson-type formulas for the Macdonald polynomials associated with

a special class of small weights.

The paper is structured as follows. In Section 2, the definition of the Macdonald

polynomials is recalled. In Sections 3 and 4. we introduce our generalized Macdonald

difference operator and apply the duality symmetry to derive the corresponding Pieri

formula and its aforementioned by-products. Some of the technical aspects of the proof

of our main result (Theorem 3.1 below) are relegated to an appendix at the end of the

paper.

2 Macdonald Polynomials

Let E denote a real finite-dimensional Euclidean vector space with inner product 〈·, ·〉,
and let (R, S) be an admissible pair of irreducible reduced root systems spanning E . (So

S = R or S = R∨, where R∨ := {α∨ | α ∈ R} with α∨ := 2α/〈α, α〉.) We have a natural bijection

α �→ α∗ of R onto S given by α∗ := u−1
α α with uα := 1 if S = R and uα := 〈α, α〉/2 if S = R∨. Let

us denote the root lattice and the weight lattice of R by Q and P , respectively, and let us

write Q+ for the semigroup generated by a (fixed) choice of positive roots R+ and P + for

the corresponding cone of dominant weights. The weight lattice is partially ordered by

the dominance ordering, viz. for λ,μ ∈ P : λ ≥ μ if and only if λ − μ ∈ Q+.
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A Generalized Macdonald Operator 3

The standard basis for the group algebra C[P ] is given by formal exponentials

eλ, λ ∈ P characterized by the relations e0 = 1, eλeμ = eλ+μ. For f = ∑
λ∈P fλeλ in C[P ] we

define
∫

f := f0 and f := ∑
λ∈P fλe−λ (where fλ refers to the complex conjugate of fλ). Let

0 < q < 1 and let t : R ∪ R∨ → (0, 1) denote a root multiplicity function such that tα∨ = tα

and twα = tα for all w in the Weyl group W. We will use the notation qα := quα and (a; q)m :=∏m−1
k=0 (1 − aqk) with m nonnegative integral or ∞. For f, g ∈ C[P ] the Macdonald inner

product is now defined as [10, 11]

〈 f, g〉Δ = |W|−1
∫

fgΔ, (2.1a)

where |W| refers to the order of W and

Δ :=
∏
α∈R

(eα; qα)∞
(tαeα; qα)∞

. (2.1b)

In general (i.e., when tα is not a positive integral power of qα), the product Δ (2.1b) is not

an element of C[P ], however, it follows from Macdonald’s theory that the right-hand side

of (2.1a) still makes sense as the constant term of a formal power series and, moreover,

thus defined provides a nondegenerate positive inner product on C[P ] [11, Section 5.1].

Definition (Macdonald polynomials [10, 11]). For λ ∈ P + let mλ := ∑
η∈Wλ eη (where the

sum is meant over the W orbit of λ). The Macdonald polynomials pλ, λ ∈ P + (associated

with the pair (R, S)) are defined as the unique polynomials in C[P ] of the form

pλ = mλ +
∑

μ∈P +,μ<λ

aλμ(q, t)mμ (2.2a)

with expansion coefficients aλμ(q, t) such that

〈pλ, mμ〉Δ = 0 for all μ ∈ P + with μ < λ. (2.2b)

�

It is immediate from the definition that the Macdonald polynomials are orthog-

onal for distinct dominant weights that are comparable in the dominance ordering.

Remarkably, one has in fact that [10]

〈pλ, pμ〉Δ = 0 for all λ,μ ∈ P + with λ = μ. (2.3)
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4 J. F. van Diejen and E. Emsiz

In other words, the Macdonald polynomials pλ, λ ∈ P + constitute an orthogonal basis of

the W-invariant subalgebra C[P ]W of the group algebra with respect to the Macdonald

inner product (2.1a) and (2.1b) (where the Weyl group acts on C[P ] via weλ := ewλ, w ∈ W).

3 The Generalized Macdonald Operator

Definition (Small weight). A dominant weight ω of a root system will be called small if

〈ω, α∨〉 ≤ 2 for any positive root α. �

Well-known special cases of the small weights are the minuscule weights, that

is, dominant weights ω such that 〈ω, α∨〉 ≤ 1 for any positive root α, and the quasi-

minuscule weight, that is, the weight ω = α0 with α∨
0 being the maximal root of the dual

root system (in which case, the maximum 〈ω, α∨〉 = 2 is assumed only once, viz. when

α = α0) [2]. More generally, a weight ω is small if either: ω = 0, or ω is the sum of two (not

necessarily distinct) minuscule weights, or ω is a small fundamental weight (cf. Table 1).

In this section, we will introduce—for any small weight ω of S∨— a difference operator

Dω : C[P ]W → C[P ]W acting diagonally on the Macdonald basis.

Let Λ denote the weight lattice of S∨ and let Λ+ ⊂ Λ be the dominant cone (corre-

sponding to our fixed choice of the positive roots). For ω ∈ Λ+ we define the saturated set

Λω :=
⋃

μ∈Λ+,μ≤ω

Wμ ⊂ Λ (3.1)

(where the comparison of μ and ω is with respect to the dominance order of S∨) and for

x ∈ E we define the translation operator Tx : C[P ] → C[P ] by Tx(eλ) := q〈λ,x〉eλ. For ω small,

our generalized Macdonald operator is now given by

Dω :=
∑
ν∈Λω

∑
η∈Wν (w−1

ν ω)

Uν,ηVνTν, (3.2a)

where wν ∈ W is such that wνν ∈ Λ+, Wν := {w ∈ W | wν = ν}, and

Vν :=
∏
α∈R〈α∗,ν〉>0

vα(eα)
∏
α∈R〈α∗,ν〉=2

vα(qαeα), (3.2b)

Uν,η :=
∏
α∈Rν〈α∗,η〉>0

vα(eα)
∏
α∈Rν〈α∗,η〉=2

vα(q−1
α e−α), (3.2c)
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A Generalized Macdonald Operator 5

Table 1. Ordered chains of small fundamental weights, numbered in accordance with the con-

ventions of the tables in Bourbaki [2] (The comparison with the zero weight indicates that the

lowest fundamental weight in the chain is quasi-minuscule rather than minuscule. By [ n−1
2 ] and

[ n
2 ], we refer to the integral parts obtained by truncation.)

R Small fundamental weights # weights # chains

An ω1, ω2, . . . , ωn n n

Bn (0 <)ω1 < ω2 < · · · < ωn−1, ωn n 2

Cn ω1 < ω3 < · · · < ω2[ n−1
2 ]+1 n 2

(0 <)ω2 < ω4 < · · · < ω2[ n
2 ]

Dn ω1 < ω3 < · · · < ω2[ n−1
2 ]−1 n 4

(0 <)ω2 < ω4 < · · · < ω2[ n
2 ]−2

ωn−1, ωn

E6 ω1 < ω5, (0 <)ω2, ω6 < ω3 5 3

E7 (0 <)ω1 < ω6, ω7 < ω2 4 2

E8 (0 <)ω8 < ω1 2 1

F4 (0 <)ω4 < ω1 2 1

G2 (0 <)ω1 1 1

with vα(z) := t−1/2
α (1 − tαz)/(1 − z). Here, we have employed the notation Rx := {α ∈ R |

〈α, x〉 = 0} for the subsystem of R corresponding to the stabilizer Wx of x ∈ E .

For x ∈ E and a full lattice L ⊂ E (in our case L = P or L = Λ), we define the eval-

uation homomorphism from C[L] into C by eλ(x) := q〈λ,x〉, λ ∈ L. The main result of this

paper is the following theorem.

Theorem 3.1 (Diagonalization). For ω ∈ Λ+ small and λ ∈ P +, one has that

Dω pλ = E S
ω(λ + ρt,S)pλ, (3.3a)

where

E S
ω :=

∑
μ∈Λ+, μ≤ω

εω,μmμ ∈ C[Λ], (3.3b)

εω,μ :=
∑

η∈Wμω

∏
α∈S+

μ

|〈α,η〉|=1

t〈α,η〉
α (3.3c)
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6 J. F. van Diejen and E. Emsiz

(S+
μ := {α ∈ S+ | 〈α,μ〉 = 0}), and

ρt,S := 1

2

∑
α∈S+

logq(tα)α. (3.3d)

�

Proof. Once stated the result, its proof is relatively straightforward following the orig-

inal ideas of Macdonald from [10]. Specifically, the verification consists of three tech-

nical steps: (i) to check that the generalized Macdonald operator Dω maps the space

C[P ]W into itself, (ii) to check that the operator in question is triangular with respect to

the basis of symmetric monomials mλ, λ ∈ P + with corresponding eigenvalues given by

E S
ω(λ + ρt,S), λ ∈ P +, and finally, (iii) to check that Dω is symmetric with respect to the

inner product (2.1a) and (2.1b). An outline of the details involved in the verification of

each step is provided in the appendix at the end of the paper. From (i)–(iii) it follows that

E S
ω(λ + ρt,S)

−1 Dω pλ satisfies the defining properties (2.2a) and (2.2b) of the Macdonald

polynomial pλ, which proves the theorem. �

The operator Dω maps C[P ] into its quotient field. However, it is immediate from

its diagonal action on the Macdonald basis that the operator maps the subalgebra C[P ]W

into itself (cf. the first step of the above proof). The simultaneous diagonalization by

the Macdonald basis moreover implies the commutativity of the operators Dω : C[P ]W →
C[P ]W corresponding to distinct choices of the small weight ω.

Corollary 3.2 (Commutativity). Let ω and ω̃ be small weights of S∨. Then the corre-

sponding generalized Macdonald operators Dω : C[P ]W → C[P ]W and Dω̃ : C[P ]W → C[P ]W

commute. �

It is well known that this type of commutativity in fact carries over to the com-

mutativity of the difference operators in question viewed as operators in the quotient

field of C[P ].

When ω is minuscule Λω = Wω. The operator Dω reduces in this case to Macdon-

ald’s difference operator [10, Section 5]

Dω =
∑

ν∈Wω

VνTν . (3.4a)

When ω is quasi-minuscule Λω = Wω ∪ {0}. The operator Dω then reduces to

Dω =
∑

ν∈Wω

(VνTν + U0,ν), (3.4b)
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A Generalized Macdonald Operator 7

which differs from Macdonald’s difference operator [10, Section 6] by an additive con-

stant of the form
∑

ν∈Wω(Vν + U0,ν) = εω,0 + mω(ρt,S) (as Macdonald’s operator in [10,

Section 6] annihilates the constant polynomial p0 = 1).

By varying ω over the small weights of S∨, our formula Dω (3.2a)–(3.2c) provides

various explicit generators for the algebra of commuting difference operators diagonal-

ized by the Macdonald polynomials [11]. To avoid algebraic dependencies it is enough

to consider only the generators corresponding to the small fundamental weights of S∨.

The following lemma clarifies the structure of the saturated set Λω (3.1) in this situation.

Lemma 3.3. Let ω be a small weight and let μ be a dominant weight such that μ ≤ ω.

Then μ is small. Furthermore, if ω is moreover fundamental then μ is fundamental or

μ = 0. �

The first part of this lemma is straightforward as 〈μ, α∨〉 ≤ 〈μ, α∨
0 〉 ≤ 〈ω, α∨

0 〉 ≤ 2

for any positive root α. The second part of the lemma is readily verified on a case-by-

case basis by listing the small weights for all irreducible reduced root systems (but it

would nevertheless be interesting to find a uniform classification-free proof of this fact

in the spirit of [12]). Table 1 provides a list of all small fundamental weights ordered

by the dominance ordering. With the information in this table the construction of the

generators by means of our formula for Dω (3.2a)–(3.2c) becomes completely explicit.

The number of independent generators found this way is given by the number of small

fundamental weights. For the classical root systems all fundamental weights are small,

so we cover a complete system of n:= Rank(R) generators. The number of explicit inde-

pendent generators that our formula fails to cover for the exceptional root systems is,

respectively: 1 (R= E6), 3 (R= E7), 6 (R= E8), 2 (R= F4), and 1 (R= G2). For completeness

the table also displays the number of ordered chains, which corresponds to the number

of previously known explicit generators covered by Macdonald’s difference operators

associated with the minuscule and quasi-minuscule weights. Only for the root system

R= G2 no progress is made, as in this case the only nontrivial small weight is actually

the quasi-minuscule one. Fortunately, in this situation the missing explicit formula for

a second independent generator (violating the structure of Dω) is already known [5].

4 Associated Pieri Formula

It is well known that difference equations for the Macdonald polynomials immediately

give rise to Pieri-type recurrence relations by the remarkable duality symmetry [11]. In
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8 J. F. van Diejen and E. Emsiz

order to exhibit the Pieri formulas associated with the difference equations of Theorem

3.1 explicitly, it will be convenient at this point to make the dependence of the construc-

tion on the admissible pair (R, S) manifest by attaching it to all relevant objects. With

this convention, the renormalized Macdonald polynomial

P (R,S)
λ := c(R,S)

λ p(R,S)
λ , (4.1a)

with

c(R,S)
λ := q〈λ,ρt,R∨ 〉 ∏

α∈R+

(q〈α∨,ρt,S〉
α ; qα)〈α∨,λ〉

(tαq〈α∨,ρt,S〉
α ; qα)〈α∨,λ〉

, (4.1b)

satisfies the duality symmetry [11, Section 5.3]

P (R,S)
λ (μ + ρt,R∨) = P (S∨,R∨)

μ (λ + ρt,S) for any λ ∈ P +, μ ∈ Λ+ (4.2)

(so P (R,S)
λ (ρt,R∨) = 1 in this normalization).

Combination of Theorem 3.1 with Equation (4.2) entails the following recurrence

relation.

Theorem 4.1 (Pieri formula). For λ, ω ∈ P + with ω small, one has that

E R∨
ω P (R,S)

λ =
∑
ν∈Pω

λ+ν∈P +

∑
η∈Wν (w−1

ν ω)

U (S∨,R∨)
ν,η (λ + ρt,S)V

(S∨,R∨)
ν (λ + ρt,S)P (R,S)

λ+ν , (4.3)

where Pω := ⋃
μ∈P +,μ≤ω Wμ ⊂ P , and E R∨

, V (S∨,R∨)
ν , and U (S∨,R∨)

ν,η are of the form in

Theorem 3.1 (with the pair (R, S) replaced by (S∨, R∨)). �

Proof. Because the stated Pieri formula (4.3) is a polynomial identity, it suffices to check

that it is valid when evaluated at the points x = μ + ρt,R∨ for all μ ∈ Λ+. Upon evaluation

at such a point and application of the duality symmetry in Equation (4.2), the left-hand

side goes over into E R∨
ω (μ + ρt,R∨)P (S∨,R∨)

μ (λ + ρt,S) and on the right-hand side P (R,S)
λ+ν gets

replaced by P (S∨,R∨)
μ (λ + ν + ρt,S). We can now freely eliminate the restriction λ + ν ∈ P + in

the first sum on the right-hand side as the coefficient V (S∨,R∨)
ν (λ + ρt,S) vanishes when this

condition is not met. Indeed, this vanishing is caused by the zero stemming from a factor

of the type vβ(e−β) (if 〈β∗, ν〉 = −1) or vβ(e−β)vβ(qβe−β) (if 〈β∗, ν〉 = −2), with β a simple root

of S∨ such that 〈β∗, λ + ν〉 < 0 (so eβ(λ + ρt,S) = tβ or eβ(λ + ρt,S) ∈ {tβ, qβtβ}, respectively).
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A Generalized Macdonald Operator 9

We thus end up with the evaluation at x = λ + ρt,S of the equation E R∨
ω (μ + ρt,R∨)P (S∨,R∨)

μ =
D(S∨,R∨)

ω P (S∨,R∨)
μ , which holds by Theorem 3.1. �

For ν ∈ Wω the coefficients in the Pieri formula (4.3) (i.e., the coefficients cor-

responding to the highest-weight orbit) already follow from analogous computations

in the context of the double affine Hecke algebra [11, Section 5.3]. In particular, for ω

minuscule and for ω quasi-minuscule Theorem 4.1 recovers the Pieri formulas associ-

ated with the difference eigenvalue equations for the Macdonald operators (3.4a) and

(3.4b), respectively (cf. also [8, Section 3]):

mω P (R,S)
λ =

∑
ν∈Wω

λ+ν∈P +

V (S∨,R∨)
ν (λ + ρt,S)P (R,S)

λ+ν (4.4a)

for ω ∈ P + minuscule, and

(mω − mω(ρt,R∨)
)
P (R,S)

λ =
∑

ν∈Wω
λ+ν∈P +

V (S∨,R∨)
ν (λ + ρt,S)(P (R,S)

λ+ν − P (R,S)
λ ) (4.4b)

for ω ∈ P + quasi-minuscule.

With the aid of the Pieri formula, it is not difficult to compute the Macdonald

polynomials explicitly for small weights.

Theorem 4.2 (Macdonald polynomials for small weights). For ω ∈ P + small, the

(monic) Macdonald polynomial is given by

p(R,S)
ω =

∑
μ1<···<μ�=ω

�=1,...,nω

(−1)�−1 E R∨
μ1

∏
1≤k≤�−1

U (S∨,R∨)
μk,μk+1

(ρt,S), (4.5)

with nω := |Pω ∩ P +| and where the summation is meant over (all strictly ascending

chains of) the dominant weights only. �

Proof. For λ = 0 the Pieri formula (4.3) reduces to

E R∨
ω =

∑
μ∈P +, μ≤ω

U (S∨,R∨)
μ,ω (ρt,S)p(R,S)

μ ,
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10 J. F. van Diejen and E. Emsiz

where it was used that V (S∨,R∨)
μ (ρt,S)P (R,S)

μ = p(R,S)
μ for μ small and that the factor

U (S∨,R∨)
μ,η (ρt,S) with η ∈ Wμ(ω) vanishes unless η = ω (cf. the proof of Theorem 4.1). The

stated result now follows upon a unitriangular matrix inversion. �

For the nonreduced root systems a related expansion formula was obtained in [7,

Theorem 5.1] and Pieri formulas can be found in [3, Section 6]. Combination of Theorems

4.1 and 4.2 immediately entails a Littlewood–Richardson type linearization formula for

the product of two Macdonald polynomials with one of the weights being small.

Theorem 4.3 (Littlewood–Richardson type rule). For λ, ω ∈ P + with ω small, the prod-

uct of the corresponding Macdonald polynomials expands as

P (R,S)
ω P (R,S)

λ = c(R,S)
ω

∑
μ1<···<μ�=ω

�=1,...,nω

(−1)�−1
∏

1≤k≤�−1

U (S∨,R∨)
μk,μk+1

(ρt,S)

×
∑

ν∈Pμ1
λ+ν∈P +

∑
η∈Wν (w−1

ν μ1)

U (S∨,R∨)
ν,η (λ + ρt,S)V

(S∨,R∨)
ν (λ + ρt,S)P (R,S)

λ+ν (4.6)

(adopting the notational conventions of Theorem 4.2). �

Much less compact Pieri formulas, explicit representations, and Littlewood–

Richardson type rules for the Macdonald polynomials have surfaced recently in the

context of work on explicit Pieri formulas for Macdonald’s spherical functions [4]. Fur-

thermore, for the classical root systems of type C (inverse) Pieri formulas expressing the

products of two one-row Macdonald polynomials in terms of two-row Macdonald poly-

nomials (and vice versa) were presented in [8], whereas in [1] a start was made with the

study of Pieri formulas for the nonsymmetric Macdonald polynomials associated with

the root systems of type A.
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Appendix A. The Diagonalization of Dω: Technicalities

In this appendix, we outline the technical details of the three principal steps underlying

the proof of Theorem 3.1.

A.1 Step (i): Polynomiality

Our proof of the fact that Dω maps C[P ]W into itself hinges on the following lemmas.

Lemma A.1. Let ν, ω ∈ Λ+ be small with ν ≤ ω and let β ∈ R+ such that 〈β∗, ν〉 = 2. Then

one has that:

(a) the set {α ∈ R+ | 〈ν, α∗〉 = 2, 〈α, α〉 = 〈β, β〉} is given by the orbit Wν,ω(β) (where

Wν,ω := Wν ∩ Wω);

(b) there exists a unique root α ∈ Wν,ω(β) ⊂ R+ such that ν := ν − α∨
∗ is dominant

(and thus ν is small by Lemma 3.3). �

Lemma A.2. Let ν, ω ∈ Λ+ be small with ν < ω and let β ∈ R+
ν such that 〈β∗, ω〉 = 2. Then

one has that:

(a) the set {α ∈ R+
ν | 〈ω, α∗〉 = 2, 〈α, α〉 = 〈β, β〉} is given by the orbit Wν,ω(β);

(b) there exists a unique root α ∈ Wν,ω(β) ⊂ R+
ν such that ν̄ := ν + α∨

∗ is dominant

(and moreover ν̄ ≤ ω so ν̄ is small by Lemma 3.3). �

We verified these lemmas on a case-by-case basis through a list of the small

weights for all irreducible reduced root systems R (without loss of generality one may

assume for this check that S = R∨). Nevertheless, in part (b) of Lemma A.1 the existence of

a positive root α such that ν − α∨
∗ is dominant is already immediate from [12, Corollary

2.7] and it looks in fact promising to try to pursue a classification-free proof of these

lemmas by building on the analysis in [12].

Proposition A.3. For ω ∈ Λ+ small and any λ ∈ P +, one has that

Dωmλ ∈ C[P ]W. �
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12 J. F. van Diejen and E. Emsiz

Proof. Clearly Dωmλ constitutes a Weyl-group invariant element in the quotient field

of C[P ]. To demonstrate that this element lies in fact in the group algebra itself, we will

check that (Dωmλ)(x) is regular as a function of x (in the complexification of E ). Indeed,

in the terms of the corresponding evaluated expression

(Dωmλ)(x) =
∑
ν∈Λω

∑
η∈Wν (w−1

ν ω)

Uν,η(x)Vν(x)mλ(x + ν)

generically simple poles appear at hyperplanes congruent to 〈x, β∗〉 = 0 or 1 + 〈x, β∗〉 = 0

for some β ∈ R (due to the zero in the denominator of vβ(z) at z= 1). The Weyl-group sym-

metry ensures that residues of the poles congruent to 〈x, β∗〉 = 0 cancel out in (Dωmλ)(x)

and that, moreover, for the poles congruent to 1 + 〈x, β∗〉 = 0 it is sufficient to check the

vanishing of the residues originating from terms with ν dominant and η = ω. For such

ν and η the relevant poles in the corresponding term Uν,ω(x)Vν(x)mλ(x + ν) arise (i) in

Vν(x) at 1 + 〈x, β∗〉 = 0 with β ∈ R+ such that 〈β∗, ν〉 = 2 and (ii) in Uν,ω(x) at 1 + 〈x, β∗〉 = 0

with β ∈ R+
ν such that 〈β∗, ω〉 = 2. (In particular, type (i) poles only occur when ν is not

minimal and type (ii) poles only occur when ν < ω.) We will now show that in (Dωmλ)(x)

residues of the type (i) cancel pairwise against residues of the type (ii). Indeed, exploit-

ing the invariance of the term in question with respect to the stabilizer Wν,ω we restrict

attention to the type (i) pole(s) corresponding the α ∈ R+ with ν := ν − α∨
∗ dominant (cf.

Lemma A.1) and to the type (ii) pole(s) corresponding to the α ∈ R+
ν with ν := ν + α∨

∗ ≤ ω

dominant (cf. Lemma A.2). The type (i) residue in Uν,ω(x)Vν(x)mλ(x + ν) at 1 + 〈x, α∗〉 = 0

cancels against the corresponding type (ii) residue in Uν,ω(x)Vν(x)mλ(x + ν), because

mλ(x + ν) |〈x,α∗〉=−1= mλ(x + ν) |〈x,α∗〉=−1

by the Weyl-group invariance and furthermore

Res

⎡
⎢⎢⎣

∏
β∈R+

〈β∗,ν〉>0

vβ(eβ)
∏

β∈R+
〈β∗,ν〉=2

vβ(qβeβ)
∏

β∈R+
ν〈β∗,ω〉>0

vβ(eβ)
∏

β∈R+
ν〈β∗,ω〉=2

vβ(q−1
β e−β)

⎤
⎥⎥⎦

〈x,α∗〉=−1
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A Generalized Macdonald Operator 13

equals

−Res

⎡
⎢⎢⎣

∏
β∈R+

〈β∗,ν〉>0

vβ(eβ)
∏

β∈R+
〈β∗,ν〉=2

vβ(qβeβ)
∏

β∈R+
ν

〈β∗,ω〉>0

vβ(eβ)
∏

β∈R+
ν

〈β∗,ω〉=2

vβ(q−1
β e−β)

⎤
⎥⎥⎦

〈x,α∗〉=−1

(where the argument x was suppressed for typographical reasons). To infer the above

equality of the monomial symmetric function evaluations it is enough to observe that

x + ν = rα(x + ν) when x lies on the hyperplane 1 + 〈x, α∗〉 = 0 (where rα denotes the

orthogonal reflection in the hyperplane 〈x, α〉 = 0). Furthermore, to verify the corre-

sponding relation between the residues it is convenient to divide both products and

cancel common factors in the numerator and denominator upon exploiting the hyper-

plane relation 1 + 〈x, α∗〉 = 0. It thus follows after straightforward but somewhat tedious

computations (performed on a case-by-case basis for all admissible pairs (R, S) and

all nonzero small weights ν and ω with ν ≤ ω) that on the hyperplane in question the

quotient collapses to −1 (as an equality between rational functions). (Note in this con-

nection that Res vα(qαz) |z=1/qα
= −Res vα(q−1

α z−1) |z=1/qα
.) Reversely, the type (ii) residue in

Uν,ω(x)Vν(x)mλ(x + ν) at 1 + 〈x, α∗〉 = 0 cancels against the corresponding type (i) residue

in Uν,ω(x)Vν(x)mλ(x + ν) (by the same residue formula with ν and ν being replaced by ν

and ν, respectively). �

A.2 Step (ii): Triangularity and eigenvalues

Proposition A.4. For ω ∈ Λ+ small and any λ ∈ P +, one has that

Dωmλ =
∑

μ∈P +,μ≤λ

bλμ(q, t)mμ,

with the leading expansion coefficient (i.e., the corresponding eigenvalue) given by

bλλ(q, t) = E S
ω(λ + ρt,S). �

Proof. By Proposition A.3, Dωmλ expands as a finite linear combination of symmet-

ric monomials mμ, μ ∈ P +. Since limz→0 vα(z) = t−1/2
α and limz→∞ vα(z) = t1/2

α , it readily

follows that the asymptotics deep in the anti-dominant Weyl chamber is of the form:

(Dωmλ)(x) = E S
ω(λ + ρt,S)q〈λ,x〉(1 + o(1)) as x grows away from the walls in such a way

that 〈x, α〉 → −∞ for all α ∈ R+. Hence, in the expansion of Dωmλ only monomials mμ,
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14 J. F. van Diejen and E. Emsiz

μ ∈ P + with μ ≤ λ appear, and the coefficient of the leading monomial mλ is given by

E S
ω(λ + ρt,S). �

A.3 Step (iii): Symmetry

Proposition A.5. For ω ∈ Λ+ small and any λ,μ ∈ P +, one has that

〈Dωmλ, mμ〉Δ = 〈mλ, Dωmμ〉Δ. �

Proof. Let us for the moment assume that our root multiplicity function t is such that

tα is an integral power ≥ 2 of qα. In this situation, all terms of (Dωmλ)Δ lie in C[P ], and

it is moreover seen that

〈Dωmλ, mμ〉Δ = |W|−1
∑
ν∈Λω

∑
η∈Wν (w−1

ν ω)

∫
Uν,ηVν(Tνmλ)mμΔ

(∗)= |W|−1
∑
ν∈Λω

∑
η∈Wν (w−1

ν ω)

∫
mλ(TνUν,−ηV−νmμΔ)

(∗∗)= |W|−1
∑
ν∈Λω

∑
η∈Wν (w−1

ν ω)

∫
mλUν,ηVν(Tνmμ)Δ

= 〈mλ, Dωmμ〉Δ.

Here, we have used in Step (*) that Vν = V−ν , Uν,η = Uν,−η, Δ = Δ, and
∫
(Tν f)g = ∫

f(Tνg) for

all f, g ∈ C[P ], and in Step (**) that TνV−νΔ = VνΔ, TνUν,−η = Uν,−η, and

∑
η∈Wν (w−1

ν ω)

Uν,−η =
∑

η∈Wν (w−1
ν ω)

Uν,woη =
∑

η∈Wν (w−1
ν ω)

Uν,η,

where wo refers to the longest element of the Weyl group Wν . This completes the proof of

the proposition (and thus that of Theorem 3.1) for tα an integral power more than or equal

to 2 of qα. Since both sides of the eigenvalue equation (3.3a) are rational expressions in

tα (cf. [10, Section 4]), this is in fact sufficient to conclude that Theorem 3.1 (and thus the

present proposition) holds for general root multiplicity functions t. �
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