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Abstract We present explicit Pieri formulas for Macdonald’s spherical functions (or gen-
eralized Hall-Littlewood polynomials associated with root systems) and their q-deformation
the Macdonald polynomials. For the root systems of type A, our Pieri formulas recover the
well-known Pieri formulas for the Hall-Littlewood and Macdonald symmetric functions due
to Morris and Macdonald as special cases.
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1 Introduction

Given a system of generators and a basis for a commutative ring, the corresponding Pieri
formulas describe the action of multiplication by the generators in terms of the basis and
thus completely encode the multiplicative structure of the ring in question. Formulas of
this type constitute a fundamental tool in algebraic combinatorics, where they are used to
study and prove properties of special bases of rings of symmetric functions, such as, e.g.
the Schur functions, the Hall-Littlewood polynomials, and the Macdonald polynomials [14].
Specifically, the Pieri formulas for the Macdonald polynomials give rise to a straightforward
proof of Macdonald’s normalization and principal specialization formulas [14] and have,
more recently, also been instrumental for obtaining closed expressions for the expansion
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coefficients of these polynomials in the basis of elementary symmetric functions [10]. More
classically, the Pieri formulas for the Schur functions have proven to be crucial in Schubert
calculus for establishing the link with the cohomology ring of Grassmannian varieties per-
mitting, for instance, the computation of intersection numbers of Schubert classes [17] (cf.
also [8] for recent developments concerning analogous links between the Schubert calculus
on affine Grassmannians and k-Schur functions with a prominent role played again by the
relevant Pieri formulas).

The purpose of this paper is to present an explicit Pieri formula for Macdonald’s zonal
spherical functions (on p-adic symmetric spaces) known also by the name generalized Hall-
Littlewood polynomials associated with root systems [13,15,19]. For the root system of type
An , corresponding to the group SL(n + 1), our Pieri formula contains the Pieri formulas
for the Hall-Littlewood polynomials found by Morris [18] as special cases. More generally,
for the classical root systems our Pieri formula specializes to a complete system of Pieri
formulas (i.e. corresponding to a complete system of generators) whereas for the exceptional
root systems only part of a generating system is covered. The main idea of the proof of our
Pieri formula is by degeneration from a more general Pieri formula for the q-deformation of
Macdonald’s spherical functions: the Macdonald polynomials [15,16].

Recently the study of Hall-Littlewood polynomials and, more generally, Macdonald spher-
ical functions has experienced some remarkable boosts prompting our demand for explicit
Pieri formulas. Important developments worth emphasizing in this context are the
combinatorial formulas for these polynomials [11,12,21,22] and for the corresponding
Littlewood-Richardson coefficients or structure constants [20–22], and also their linking
with the Schubert calculus of isotropic Grassmannians [24]. As an application along very
different lines, the Pieri formulas in the present paper also give rise to explicit formulas for
the commuting quantum integrals of certain discrete integrable many-particle systems whose
scattering behaviour was studied in Ref. [5].

The paper is organized as follows. In Sect. 2 we present our Pieri formula. The proof is
relegated to Sects. 3, 4 and 5. Specifically, first it is shown how the Pieri formula for the
Macdonald spherical functions arises as a (q → 0) limiting case of an analogous Pieri for-
mula for the Macdonald polynomials [15,16] (Sect. 3). The latter Pieri formula follows in
turn from a difference equation for the Macdonald polynomials upon invoking the duality
symmetry (Sect. 4). Finally, the difference equation for the Macdonald polynomials is proved
using a residue calculus for root systems (Sect. 5). Some useful properties of a special class
of small dominant weights appearing frequently throughout the paper have been collected in
a short appendix.

2 Pieri formula for Macdonald spherical functions

Let R be an irreducible reduced crystallographic root system spanning a real (finite-dimen-
sional) Euclidean vector space E with inner product 〈·, ·〉. Following standard conventions
[2], let us write Q, P , and W , respectively, for the root lattice, the weight lattice, and the
Weyl group associated with R. The semigroup of the root lattice generated by a (fixed)
choice of positive roots R+ is denoted by Q+ and we write P+ for the corresponding cone
of dominant weights. The standard basis for the group algebra C[P] is given by the formal
exponentials eλ, λ ∈ P characterized by the relations e0 = 1, eλeμ = eλ+μ. For any fixed
q ∈ (0, 1), the elements of the group algebra can be thought of as functions on E through
the evaluation homomorphism eλ(x) := q〈λ,x〉, x ∈ E . The Weyl group acts on C[P] via
weλ := ewλ,w ∈ W .
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Let ρt;R := 1
2

∑
α∈R+ logq(tα)α. Here t : R ∪ R∨ → (0, 1) (with R∨ := {α∨ | α ∈ R}

where α∨ := 2α/〈α, α〉) denotes a root multiplicity function such that twα = tα for all
w ∈ W and tα∨ = tα for all α ∈ R. The Macdonald spherical functions constitute a special
basis of the W -invariant subalgebra C[P]W ⊂ C[P] parametrized by t .

Definition 2.1 (Macdonald spherical function [13,15]) For λ ∈ P+ the Macdonald spherical
function is defined by the formula

Pλ := eλ(ρt;R∨)

W (t)

∑

w∈W

⎛

⎝ewλ
∏

α∈R+

1 − tαe−wα

1 − e−wα

⎞

⎠ (2.1a)

with

W (t) :=
∑

w∈W

∏

α∈R+
wα 	∈R+

tα =
∏

α∈R+

1 − tαeα(ρt,R∨)

1 − eα(ρt,R∨)
(2.1b)

(where the normalization is chosen such that Pλ(ρt;R∨) = 1).

The cone of dominant weights is partially ordered by the dominance ordering: for λ,μ ∈
P+, λ ≥ μ if and only if λ − μ ∈ Q+. For λ ∈ P+ we distinghuish the highest-weight
system P+

λ := {μ ∈ P+ | μ ≤ λ}, its cardinality nλ := |P+
λ |, and the monomial symmetric

function mλ;R := ∑
ν∈Wλ eν .

Definition 2.2 (Small weights) A dominant weight ω will be called small if 〈ω, α∨〉 ≤ 2 for
any positive root α.

Some relevant properties enjoyed by the small weights have been collected in Appendix A
below. For instance, a particularly important feature to bear in mind is that for ω small the
highest-weight system P+

ω forms a linear chain of small weights (cf. Lemma A.1).
For any x ∈ E , we define the stabilizer subgroup Wx := {w ∈ W | wx = x}, its

root subsystem Rx := {α ∈ R | 〈x, α〉 = 0}, the corresponding choice of positive roots
R+

x := R+ ∩ Rx , and the shortest element wx ∈ W mapping x into the (closed) dominant
chamber. With these (standard) notations we are now in the position to formulate our main
result.

Theorem 2.3 (Pieri formula for Macdonald spherical functions) Let λ, ω ∈ P+ with ω

small. Then

Eω;R Pλ =
∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1
∑

νk∈Wνk−1

(
w−1

νk−1
μk

)

k=1,...,�

Pλ+ν1

∏

1≤k≤�

Vνk ;νk−1(λ), (2.2a)

where

Eω;R :=
∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1mμ1;R

∏

1≤k≤�−1

mμk+1;Rμk

(
ρt;R∨

μk

)
(2.2b)

and

Vν;η(λ) := e−ν(ρt;R∨
η

− ρt;R∨
η ∩R∨

λ
)

×
∏

α∈Rη

〈α∨,λ〉∈{0,−1}
〈α∨,λ+ν〉>0

t−〈ν,α∨〉/2
α

(
1 − tαeα(ρt;R∨)

1 − eα(ρt;R∨)

)

. (2.2c)
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In these formulas we have adopted the convention that Rν0 := R, Wν0 := W and wν0 := Id,
so Vν1;ν0 = Vν1;0 = Vν1;− (where the dash indicates that the second argument is absent).
More generally, throughout the text indexed weights like νk and μk are understood to be
absent when the index k is not positive.

It seems a daunting task to verify the above Pieri formula directly. In the next section we
will show, however, that it arises naturally as a degeneration of a corresponding Pieri formula
for the Macdonald polynomials associated with root systems [15,16].

If the bound 〈ω, α∨〉 = 2 in Definition 2.2 is never attained, then the weight ω (	= 0)
is usually referred to as minuscule and when the bound is attained only once it is called
quasi-minuscule [2]. Our Pieri formula then simplifies, respectively, to

mω;R Pλ =
∑

ν∈Wω
λ+ν∈P+

Vν(λ)Pλ+ν (2.3a)

if ω is minuscule, and to
(
mω;R − mω;R(ρt,R∨)

)
Pλ =

∑

ν∈Wω
λ+ν∈P+

Vν(λ) (Pλ+ν − Pλ) (2.3b)

if ω is quasi-minuscule, where

Vν(λ) := e−ν(ρt,R∨)
∏

α∈R+
λ〈α∨,ν〉>0

1 − tαeα(ρt,R∨)

1 − eα(ρt,R∨)
. (2.3c)

By varying ω over the small fundamental weights, Eω;R (2.2b) produces various algebrai-
cally independent elements in C[P]W , since the expansion on the monomial basis is of the
triangular form

Eω;R = mω;R +
∑

μ<ω

εωμ(t)mμ;R, εωμ(t) ∈ R. (2.4)

For the classical root systems all fundamental weights are small and we thus obtain a com-
plete system of generators for C[P]W this way. For the exceptional root systems some fun-
damental weights fail to be small so only part of such a generating system is recovered.
Specifically, the small fundamental weights read for the exceptional root systems R = E6:
ω1, ω2, ω3, ω5, ω6, R = E7: ω1, ω2, ω6, ω7, R = E8: ω1, ω8, R = F4: ω1, ω4, and R =
G2: ω1, where we have numbered the fundamental weight in accordance with the tables in
Bourbaki [2] (apart from the small fundamental weights the class of small weights consists of
the zero weight and all sums of two not necessarily distinct minuscule weights). For R = An

the fundamental weights are not only small but in fact minuscule and the corresponding
expressions of the type in Eqs. (2.3a), (2.3c) reproduce the well-known Pieri formulas for
the Hall-Littlewood polynomials due to Morris [18].

Remark 2.4 In the formula of Theorem 2.3 the coefficient of Pλ+ν1 vanishes when λ + ν1 	∈
P+ due to a zero in Vν1;−(λ). Indeed, in this situation there exists a simple root β ∈ R+ such
that 〈λ + ν1, β

∨〉 < 0 (whence 〈λ, β∨〉 ≤ 1 by Lemma A.1). One thus picks up a zero from
the factor 1 − tβe−β(ρt,R∨) in the numerator of Vν1;−(λ).

Remark 2.5 For R = An the polynomials Eω;R with ω fundamental amount to the elemen-
tary symmetric functions. For R = Bn the polynomials in question turn out to be particular
instances of Okounkov’s BC-type interpolation polynomials [7, Appendix C]. An alternative
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characterization elucidating the structure of the polynomials Eω;R for arbitrary R in terms
of Macdonald polynomials is given in Remark 3.4 below.

3 Pieri formula for Macdonald polynomials

Let S be either R or R∨, i.e. (R, S) constitutes an admissible pair of root systems in the sense
of Ref. [15], and let qα := quα with uα := 1 if S = R and uα := 〈α, α〉/2 if S = R∨. For a
formal series f = ∑

λ∈P fλeλ, fλ ∈ C, we define
∫

f := f0 and f̄ := ∑
λ∈P f̄λe−λ (with

f̄λ meaning the complex conjugate of fλ). The Macdonald inner product on C[P] is then
given by [15,16]

〈 f, g〉� := |W |−1
∫

f ḡ� ( f, g ∈ C[P]), (3.1)

with |W | denoting the order of W and

� :=
∏

α∈R

(eα; qα)∞
(tαeα; qα)∞

, (3.2)

where we have employed the standard notation for the q-shifted factorial (a; q)m := ∏m−1
k=0

(1 − aqk) with m nonnegative integral or ∞.

Definition 3.1 (Macdonald polynomials [15,16]) For λ ∈ P+, the Macdonald polynomial
is defined as the unique element in C[P]W of the form

P R,S
λ =

∑

μ≤λ

cλμ(q, t) mμ;R (3.3a)

with cλμ(q, t) ∈ C such that

cλλ(q, t) = q〈λ,ρt,R∨ 〉 ∏

α∈R+

(q
〈α∨,ρt,S〉
α ; qα)〈α∨,λ〉

(tαq
〈α∨,ρt,S〉
α ; qα)〈α∨,λ〉

(3.3b)

and

〈P R,S
λ , mμ;R〉� = 0 for all μ < λ (3.3c)

(where the normalization is chosen such that P R,S
λ (ρt;R∨) = 1).

The Pieri formula of Theorem 2.3 arises as a degeneration of the following Pieri formula for
the Macdonald polynomials.

Theorem 3.2 (Pieri Formula for Macdonald Polynomials) Let λ, ω ∈ P+ with ω small.
Then

Eω;R P R,S
λ =

∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1
∑

νk∈Wνk−1 (w−1
νk−1

μk )

k=1,...,�

P R,S
λ+ν1

∏

1≤k≤�

V R,S
νk ;νk−1

(λ + ρt;S),

(3.4a)
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with Eω;R taken from Eq. (2.2b) and

V R,S
ν;η (x) :=

∏

α∈Rη

〈α∨,ν〉>0

t−〈α∨,ν〉/2
α

(
tαq〈α∨,x〉

α ; qα

)

〈α∨,ν〉
(

q〈α∨,x〉
α ; qα

)

〈α∨,ν〉
(3.4b)

(with the conventions Rν0 = R, Wν0 = W, wν0 = Id and V R,S
ν1;ν0

= V R,S
ν1;0 = V R,S

ν1;−).

In this Pieri formula the coefficient of P R,S
λ+ν1

again vanishes when λ + ν1 	∈ P+, due

to a zero in V R,S
ν1;−(λ + ρt;S) stemming from the factor(s) in the numerator of the form

(tβq
〈−β∨,λ+ρt;S〉
β ; qβ)〈−β∨,ν1〉 with β ∈ R+ simple such that 〈λ+ν1, β

∨〉<0 (cf. Remark 2.4).

It is well-known that for q → 0 the Macdonald polynomial P R,S
λ tends to the Macdonald

spherical function Pλ (so the dependence on the choice of S disappears in the limit) [15].
Performing this limit transition at the level of the Pieri formulas readily entails Theorem 2.3
as a consequence of Theorem 3.2.

Remark 3.3 For ω (quasi)-minuscule (and S = R) the Pieri formula (3.4a), (3.4b) can be
found for instance in Ref. [5, Appendix A] and—with a more detailed derivation—in Ref.
[9]. When R = An and ω is fundamental, the formula in question reproduces the well-known
Pieri formulas for the Macdonald symmetric functions [14]. For other classical root systems
related Pieri formulas for the corresponding Macdonald polynomials can be found in Refs.
[4,9] (cf. also Ref. [6] for the case of the exceptional root system G2). Pieri-type formulas
for the nonsymmetric Macdonald polynomials were recently studied in Ref. [1].

Remark 3.4 The Macdonald polynomial associated with a small weight ω is easily computed
explicitly by means of the Pieri formula. Indeed, setting λ = 0 in Theorem 3.2 yields

Eω;R =
∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1 pR,S
μ1

∏

1≤k≤�−1

V R,S
μk+1;μk

(ρt;S), (3.5a)

where pR,S
μ := V R,S

μ;− (ρt;S)P R,S
μ = c−1

μμ(q, t)P R,S
μ . This relation is the inverse of the fol-

lowing unitriangular expansion of the (monic) Macdonald polynomial pR,S
ω in terms of the

generators Eμ;R, μ ∈ P+
ω :

pR,S
ω = Eω;R +

∑

μ<ω

Eμ;R V R,S
ω;μ (ρt;S). (3.5b)

The obtained expression in Eq. (3.5b) is a reduced root system counterpart of the expansion
in Ref [7, Theorem 5.1] for the case of the nonreduced root systems. Reversely, the formula
in question characterizes our polynomials Eω;R as the unique polynomials of the form in
Eq. (2.4) on which the monic Macdonald polynomials pR,S

ω expand triangularly with sim-
ple explicit factorized coefficients of the form V R,S

ω;μ (ρt;S). It is instructive to notice that for

t = 1 the coefficients V R,S
μk+1;μk

(ρt;S) are equal to 1 and pR,S
μ = mμ;R . In this case Eq. (3.5a)

amounts to Hall’s identity for the Möbius inversion of Eq. (3.5b). The case of general t boils
down to Gauss’ formula for the inverse of a unitriangular matrix.

Remark 3.5 By combining our Pieri formula with the representation of the monic Macdonald
polynomials associated with the small weights in Eq. (3.5b), one arrives at a special Little-
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wood-Richardson-type rule (or linearization formula) for the products of two Macdonald
polynomials with one of the weights being small:

P R,S
ω P R,S

λ

= cωω(q, t)
∑

μ1<···<μ�≤ω
�=1,...,nω

(−1)�−1V R,S
ω;μ�

(ρt;S)
∑

νk∈Wνk−1 (w−1
νk−1 μk )

k=1,...,�

P R,S
λ+ν1

∏

1≤k≤�

V R,S
νk ;νk−1

(λ + ρt;S).

(3.6)

The latter formula reveals that the terms in the expansion

P R,S
ω P R,S

λ =
∑

μ≤ω

∑

ν∈Wμ

λ+ν∈P+

C R,S
ω,λ (ν)P R,S

λ+ν

have completely factorized (structure) coefficients C R,S
ω,λ (ν) = cωω(q, t)V R,S

ν;− (λ + ρt;S) for

ν in the highest-weight orbit Wω, whereas the coefficients C R,S
ω,λ (ν), ν ∈ Wμ with μ < ω

are represented in contrast by (large) alternating sums of products.

4 Difference equation for Macdonald polynomials

Given the admissible pair (R, S), let us associate with α ∈ R the rescaled root α∗ := u−1
α α ∈

S. Furthermore, we will employ the notation P+(R) and P+(R∨) to distinguish the cone of
dominant weights associated with R and R∨ (endowed with the corresponding dominance
ordering stemming from R+ and (R∨)+, respectively).

Definition 4.1 (Generalized Macdonald Operator) For ω ∈ P+(S∨) small, the generalized
Macdonald operator is given by

DR,S
ω :=

∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1
∑

νk∈Wνk−1 (w−1
νk−1

μk )

k=1,...,�

⎛

⎝
∏

1≤k≤�

V̂ R,S
νk ;νk−1

⎞

⎠ Tν1 , (4.1a)

where

V̂ R,S
ν;η :=

∏

α∈Rη

〈α∗,ν〉>0

t−〈α∗,ν〉/2
α

(tαeα; qα)〈α∗,ν〉
(eα; qα)〈α∗,ν〉

(4.1b)

and Tx : C[P] → C[P], x ∈ E , denotes the translation operator determined by Tx eλ :=
q〈λ,x〉eλ, λ ∈ P .

For nonreduced root systems analogous difference operators were introduced in Ref. [3].
When ω is minuscule or quasi-minuscule, the operator DR,S

ω reduces to the Macdonald dif-
ference operators [15]

DR,S
ω = q−〈ω,ρt;S〉 ∑

ν∈Wω

⎛

⎜
⎜
⎝

∏

α∈R〈α∗,ν〉>0

1 − tαeα

1 − eα

⎞

⎟
⎟
⎠ Tν (4.2a)
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and

DR,S
ω = q−〈ω,ρt;S〉 ∑

ν∈Wω

⎛

⎜
⎜
⎝

∏

α∈R〈α∗,ν〉>0

(tαeα; qα)〈α∗,ν〉
(eα; qα)〈α∗,ν〉

⎞

⎟
⎟
⎠ (Tν − 1) , (4.2b)

respectively. The following theorem generalizes the corresponding diagonal action of DR,S
ω

(4.2a), (4.2b) on the Macdonald basis [15] to the case that ω is an arbitrary small weight in
P+(S∨).

Theorem 4.2 (Difference equation) Let ω ∈ P+(S∨) be small. Then for any λ ∈ P+(R)

DR,S
ω P R,S

λ = Eω;S∨(λ + ρt;S)P R,S
λ . (4.3)

The Pieri formula in Theorem 3.2 follows from the difference equation in Theorem 4.2
by a standard argument (see e.g. Refs. [14,16,4,6,9]) involving the Duality Symmetry [16,
Sec. 5.3]

P R,S
λ (μ + ρt;R∨) = P S∨,R∨

μ (λ + ρt;S) (4.4)

for all λ ∈ P+(R), μ ∈ P+(S∨). Indeed, evaluating the Pieri formula (3.4a), (3.4b) at
μ + ρt;R∨ , μ ∈ P+(S∨) and applying the duality symmetry to both sides entails the differ-
ence equation DS∨,R∨

ω P S∨,R∨
μ = Eω;R(μ + ρt;R∨)P S∨,R∨

μ evaluated at x = λ + ρt;S (since

V R,S
ν;η (x) = V̂ S∨,R∨

ν;η (x)). Invoking of Theorem 4.2 thus verifies the Pieri formula, first for

x = μ + ρt;R∨ , μ ∈ P+(S∨) and then as an identity in C[P]W by the polynomiality of both
sides.

Remark 4.3 The generalized Macdonald operator is W -invariant: wDR,S
ω w−1 = DR,S

ω for
all w ∈ W . This invariance hinges on the relations wV̂ R,S

ν;η = V̂ R,S
wν;wη

and wTνw
−1 = Twν

upon invoking the stability properties of small weights in Lemma A.2.

5 Proof of the difference equation

The proof of the difference equation in Theorem 4.2 is based on the following three properties
of the generalized Macdonald operator DR,S

ω (4.1a), (4.1b) with ω ∈ P+(S∨) small.

Proposition 5.1 The operator DR,S
ω maps C[P]W into itself.

Proposition 5.2 The action of DR,S
ω in C[P]W is triangular with respect to the monomial

basis:

DR,S
ω mλ;R = Eω;S∨(λ + ρt,S)mλ;R +

∑

μ<λ

bλμ(q, t)mμ;R, ∀λ ∈ P+(R),

with bλμ(q, t) ∈ C.

Proposition 5.3 The operator DR,S
ω is symmetric with respect to Macdonald’s inner product

〈·, ·〉� (3.1), (3.2):
〈
DR,S

ω f, g
〉

�
=

〈
f, DR,S

ω g
〉

�
, ∀ f, g ∈ C[P]W .

It is evident from Propositions 5.1–5.3 that for generic ε ∈ R the expression (Eω;S∨(λ +
ρt,S) + ε)−1(DR,S

ω + ε)P R,S
λ satisfies the defining properties in Eqs. (3.3a)–(3.3c) of the

Macdonald polynomial P R,S
λ , which proves the difference equation.
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5.1 Proof of Proposition 5.1

Let f ∈ C[P]W . To infer that DR,S
ω f ∈ C[P]W it is enough to show that DR,S

ω f ∈ C[P]
in view of Remark 4.3 above. To this end we will check that the evaluated expression
(DR,S

ω f )(x) is regular as a function of x in (the complexification of) E . The expression
in question is obtained from

∑

μ1<···<μ�=ω
�=1,...,nω

(−1)�−1 f (x + μ1)
∏

1≤k≤�

V̂ R,S
μk ;μk−1

(x)

by symmetrization in x with respect to the action of the Weyl group. In the term associ-
ated with a fixed ascending chain μ1 < · · · < μ� = ω the factor V̂ R,S

μk ;μk−1
, 1 ≤ k ≤ �,

gives rise to poles caused by its factors in the denominator of the form (eα; qα)〈α∗,μk 〉, α ∈
R+

μk−1
\R+

μk
. The poles stemming from the factors of the form (1 − eα) manifestly can-

cel in (DR,S
ω f )(x) due to the Weyl-group invariance. Poles caused by factors of the form

(1 − qαeα), however, require a more careful analysis. The latter poles occur for α ∈ R+
μk−1

when 〈α∗, μk〉 = 2. In this situation we may exploit the W -invariance of (DR,S
ω f )(x) and

assume that μk > μk − α∨∗ ≥ μk−1 in view of Lemma A.3 below. We will now show that
the pole of interest cancels pairwise against a corresponding pole in the term associated with
the chain obtained from μ1 < · · · < μ� = ω by inserting or extracting μk −α∨∗ into or from
the chain depending on whether μk − α∨∗ > μk−1 or μk − α∨∗ = μk−1, respectively (with
the convention that we perform an insertion if k = 1). Indeed, by Property (i) of Lemma
A.2 it is clear that α ∈ R+

μk−2
, which ensures that the presence of the pole is stable with

respect to such insertion/extraction operations. Furthermore, since these operations on the
chain determine an involution we may assume without restriction that we are dealing with the
(insertion) case μk − α∨∗ > μk−1. After dividing out the common factor

∏
1≤ j≤�

j 	=k
V̂ R,S

μ j ;μ j−1
,

we see that the residue of the generically simple poles at the hyperplane 〈α∗, x〉 = −1
in the terms associated with the chains μ1 < · · · < μk−1 < μk < · · · < μ� = ω and
μ1 < · · · < μk−1 < μk − α∨∗ < μk < · · · < μ� = ω cancel pairwise, since

Res〈α∗,x〉=−1

[
V̂ R,S

μk ;μk−1
(x)

]
= Res〈α∗,x〉=−1

[
V̂ R,S

μk ;μk−α∨∗
(x)V̂ R,S

μk−α∨∗ ;μk−1
(x)

]

and if k = 1 moreover

f (x + μ1)
∣
∣〈α∗,x〉=−1 = f (x + μ1 − α∨∗ )

∣
∣〈α∗,x〉=−1 .

The equality of the evaluations is immediate from the W -invariance of f because x + μ1 −
α∨∗ = rα(x + μ1) for x in the hyperplane 〈α∗, x〉 = −1 (where rα : E → E refers to the
orthogonal reflection across the hyperplane perpendicular to α). The equality of the residues
follows from a case-by-case check, varying μk over the list of small weights and picking α

as in Part (ii) of Lemma A.3 (taking—without sacrificing generality—Rμk−1 = R).
The upshot is that in the W -invariant expression (DR,S

ω f )(x) all poles cancel out to pro-
duce a regular expression in x .

5.2 Proof of Proposition 5.2

By Proposition 5.1, DR,S
ω mλ;R expands as a finite linear combination of monomials mμ;R, μ ∈

P+(R). For x growing to infinity in such a way that 〈x, α〉 → −∞ for all α ∈ R+, clearly
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V̂ R,S
ν;η (x) = q〈ν,ρt;Sη 〉

(1 + o(1)) and mλ;R(x) = q〈λ,x〉(1 + o(1)), which entails that

(
DR,S

ω mλ;R

)
(x) = Eω;S∨(λ + ρt;S)q〈λ,x〉 (1 + o(1))

(since
∑

ν∈Wη(w−1
η μ)

q〈ν,ρt;Sη 〉 = mμ;S∨
wηη

(ρt;Swηη
)). From this asymptotics deep in the anti-

dominant Weyl chamber it is immediate that the monomial expansion of DR,S
ω mλ;R is of the

form stated in the proposition.

5.3 Proof of Proposition 5.3

Let us momentarily assume that tα is an integral power ≥ 2 of qα . This parameter
restriction guarantees that all terms of �DR,S

ω f lie in C[P]. The proposition is now
immediate (upon symmetrization with respect to the action of the Weyl group) from the
following adjointness relations associated to any chain of small weights in P+(S∨) of the
form μ1 < μ2 < · · · < μ�:

〈

V̂ R,S
ν1;−

∏

1≤k≤�−1

V̂ R,S
νk+1;νk

Tν1 f, g

〉

�

=
〈

f, V̂ R,S
ν1;−

∏

1≤k≤�−1

V̂ R,S
w0(Rνk )νk+1;νk

Tν1 g

〉

�

,

where νk ∈ Wνk−1(w
−1
νk−1

μk), k = 1, . . . , � (so, in particular, the weights ν1, . . . , ν� all lie in
the same Weyl chamber) and w0(Rη) denotes the longest element in the Weyl group Wη of
Rη. These adjointness relations follow in turn from the elementary properties

∫
Tx ( f )g =

∫
f Tx (g) for x ∈ E, V̂ R,S

ν;η = V̂ R,S
−ν;η = V̂ R,S

w0(Rη)ν;η and Tν V̂ R,S
−ν;−� = V̂ R,S

ν;− � for ν in the

Weyl orbit of a small weight, together with the observation that the factors V̂ R,S
νk+1;νk

, k =
1, . . . , � − 1, commute with Tν1 (by Property (i) of Lemma A.2).

Finally, our temporary technical restriction on the values of multiplicity function t is
removed by exploiting that the Macdonald polynomials—and thus both sides of the eigen-
value equation in Theorem 4.2—are rational expressions in tα (which allows to remove
this restriction from Theorem 4.2) and that the Macdonald polynomials moreover form an
orthogonal basis of C[P]W with inner product 〈·, ·〉� (by which one subsequently concludes
that Proposition 5.3 also holds for general t since DR,S

ω is thus unitarily equivalent to a real
multiplication operator) [15,16].

Acknowledgments We thank the referee for some helpful suggestions improving our presentation.

Appendix A: Key properties of small weights

The following properties are readily seen from a straightforward case-by-case analysis upon
listing the small weights for all irreducible reduced root systems.

Lemma A.1 For ω small, the highest-weight system P+
ω constitutes a linear chain of small

weights.

Lemma A.2 For any pair of small weights μa < μb:

(i) α ∈ Rμa \Rμb ⇒ α ∈ ⋂
μ≤μa

Rμ,

(ii) (
⋂

μ≤μa
Wμ)(μb) = Wμa (μb).
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Lemma A.3 If μa < μb is a pair of small weights with β ∈ R+
μa

such that 〈μb, β
∨〉 = 2,

then
(i) (Wμa ∩ Wμb )(β) = {α ∈ R+

μa
| 〈μb, α

∨〉 = 2, 〈α, α〉 = 〈β, β〉},
(ii) moreover, there exists a unique root α ∈ (Wμa ∩ Wμb )(β) such that μb − α ≥ μa.

Remark A.4 (i) In Lemma A.1 it is immediate that any μ ∈ P+
ω is a small weight as the

highest root α∨
0 of R∨ is situated in the dominant Weyl chamber {x ∈ E | 〈x, α〉 ≥

0, ∀α ∈ R+}, so 〈μ, α∨〉 ≤ 〈μ, α∨
0 〉 ≤ 〈ω, α∨

0 〉 ≤ 2 for all α ∈ R+.
(ii) In Lemma A.2 Part (ii) follows from Part (i). Indeed, since

⋂
μ≤μa

Wμ ⊂ Wμa are
the Weyl groups of the root systems

⋂
μ≤μa

Rμ ⊂ Rμa , respectively, a count of the
size of the Weyl orbits on both sizes of Part (ii) with the aid of the general formulas
|W (μ)| = |W |/|Wμ| and |W | = ∏

α∈R+(1 + ht(α))/ht(α) (where ht(α) refers to the
height of α with respect to the basis of simple roots) reveals that Part (i) implies that
(the size of) both orbits must be equal.

(iii) When checking Lemma A.3 it is enough to consider the case μa = 0. Furthermore,
in Part (ii) the weight μb − α is the predecessor of μb if (and only if) α is short (cf.
[23, Theorem 2.6]).
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