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1. Introduction

It is well known that Macdonald’s spherical functions (on p-adic symmetric spaces)—also referred
to as generalized Hall–Littlewood polynomials associated with root systems—are intimately connected
with the theory of affine Hecke algebras [M1,M2,NR]. In a nutshell, the Macdonald spherical func-
tions form a canonical basis of the spherical subalgebra of the affine Hecke algebra obtained from a
monomial basis via the so-called Satake isomorphism. For an overview of these and many other facts
concerning Macdonald’s spherical functions and their relations with affine Hecke algebras we refer
the reader to the comprehensive survey [NR].
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The interplay between affine Hecke algebras and Macdonald spherical functions has proven very
fruitful. For instance, affine Hecke algebras turn out to be instrumental in obtaining explicit combina-
torial formulas for the monomial expansion and for the structure constants (or Littlewood–Richardson
type coefficients) of the Macdonald spherical functions [P,R,S]. Reversely, properties of Macdonald’s
spherical functions—in particular Macdonald’s orthogonality relations and the (generalized) Kostka–
Foulkes coefficients describing the transition between Macdonald’s spherical functions and the basis
of Weyl characters—are fundamental, respectively, in the harmonic analysis of the affine Hecke alge-
bra [O] and for the explicit computation of the Kazhdan–Lusztig basis for the spherical Hecke algebra
[NR,K].

The present paper studies the properties of a concrete difference-reflection representation of the
affine Hecke algebra and its relations to the theory of Macdonald’s spherical functions. Specifically,
we introduce an explicit unitary representation of the (extended) affine Hecke algebra in terms of
discrete difference-reflection operators acting in a Hilbert space of complex functions on the weight
lattice and show that the action of its center under this representation is diagonal on the basis of Mac-
donald spherical functions. The main technical difficulty in the diagonalization proof is the verification
of intertwining relations between our difference-reflection representation and a second auxiliary rep-
resentation (in terms of discrete integral-reflection operators) that is dual to the standard induced
polynomial representation of the affine Hecke algebra. As an application, we compute an explicit Pieri
formula for the Macdonald spherical functions generalizing the Pieri formula for the Hall–Littlewood
polynomials due to Morris (from root systems of type A to arbitrary type) [Mo].

Our results provide a link interpolating between the Hecke-algebraic techniques developed in the
spectral theory of quantum integrable particle systems [HO,EOS] and those employed in Macdon-
ald’s theory of symmetric orthogonal polynomials [M4,C]. Indeed, it is known that the Macdonald
spherical functions tend in an appropriate continuum limit to the eigenfunctions of the Laplacian
perturbed by a delta potential supported on (the hyperplanes of) the corresponding root system
[HO,D]. In this limiting situation the role of the affine Hecke algebra is played by the Drinfeld–
Lusztig graded (or degenerate) affine Hecke algebra [HO,EOS]. Specifically, our difference-reflection
representation gets replaced by a representation of the graded affine Hecke algebra built of Dunkl-
type differential-reflection operators, the discrete integral-reflection (or polynomial) representation
gets replaced by a representation of the graded affine Hecke algebra in terms of Gutkin–Sutherland
continuous integral-reflection operators, and the intertwining operator relating both representations
is given by the Gutkin–Sutherland propagation operator [GS,G,HO,EOS]. From this perspective, the
present paper lifts this construction to the level of the affine Hecke algebra corresponding to the
Macdonald spherical functions. On the other hand, it is well known that the Macdonald spherical
functions are limiting cases of the celebrated Macdonald polynomials (corresponding to q → 0) [M3].
The Macdonald polynomials in turn diagonalize a commuting algebra of Macdonald difference oper-
ators that can be constructed by means of Cherednik’s extension of the polynomial representation
of the affine Hecke algebra to the level of the double affine Hecke algebra [M4,C]. From this per-
spective, the difference-reflection representation of the affine Hecke algebra studied here provides the
corresponding concrete construction of the commuting algebra of discrete difference operators that is
diagonalized by the Macdonald spherical functions (and isomorphic to the Weyl-group invariant part
of the group algebra over the weight lattice).

The paper is organized as follows. In Section 2 notational preliminaries concerning affine Weyl
groups and affine Hecke algebras are recalled. In Section 3 our main representation of the affine
Hecke algebra in terms of difference-reflection operators is introduced. The auxiliary representation
of the affine Hecke algebra by integral-reflection operators and its relation to the standard polyno-
mial representation are described in Section 4. Section 5 introduces an intertwining operator between
the difference-reflection representation and the auxiliary integral-reflection representation, which is
then used to show that the action of the center under the difference-reflection representation is di-
agonal on the Macdonald spherical functions. In Section 6 the appropriate Hilbert space structure is
provided for which the difference-reflection representation is unitary. From this viewpoint the Mac-
donald spherical function constitutes the kernel of the Fourier transform—between the Weyl-group
invariant sector of this Hilbert space and a closure of the Weyl-group invariant part of the group
algebra of the weight lattice—diagonalizing the action of the center under our difference-reflection
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representation. Finally, in Section 7 we use the difference-reflection representation to compute the
explicit Pieri formula for the Macdonald spherical functions. Some technical details pertaining to the
proof of the braid relations in Section 3 and the intertwining relations in Section 5 are relegated to
Appendices A and B, respectively. Moreover, in Appendix C a few illuminating explicit formulas are
collected describing our principal objects of study in the important special case of a root system of
type AN−1 (i.e., with the Weyl group being equal to the permutation group SN ).

2. Preliminaries

This section sets up the notation for affine Weyl groups and their Hecke algebras and recalls briefly
some basic properties. A more thorough discussion with proofs can be found e.g. in the standard
sources [B,M4].

2.1. Affine Weyl group

Let R be a crystallographic root system spanning a real (finite-dimensional) Euclidean vector
space V with inner product 〈·,·〉. Throughout it will be assumed that R is both irreducible and re-
duced (unless explicitly stated otherwise). Following standard conventions, the dual root system is
denoted by R∨ := {α∨ | α ∈ R} with α∨ := 2α/〈α,α〉, the weight lattice by P := {λ ∈ V | 〈λ,α∨〉 ∈ Z,

∀α ∈ R}, and for a (fixed) choice of positive roots R+ we write P+ := {λ ∈ P | 〈λ,α∨〉 � 0, ∀α ∈ R+}
for the corresponding cone of dominant weights and C := {x ∈ V | 〈x,α∨〉 > 0, ∀α ∈ R+} and
A := {x ∈ V | 0 < 〈x,α∨〉 < 1, ∀α ∈ R+} for the dominant Weyl chamber and Weyl alcove, respec-
tively.

For α ∈ R+ and k ∈ Z let sα,k : V → V be the orthogonal reflection across the hyperplane Vα,k :=
{x ∈ V | 〈x,α∨〉 = k} and for λ ∈ P let tλ : V → V be the translation of the form tλ(x) := x + λ (x ∈ V ).
The (finite) Weyl group generated by the reflections sα,0, α ∈ R+ , is denoted by W0 and we write W
for the (extended) affine Weyl group generated by the elements of W0 and the translations tλ , λ ∈ P .
The length of a group element w ∈ W is defined as the cardinality �(w) := |S(w)| of the set S(w) :=
{Vα,k | Vα,k separates A and w A}. (We say that a hyperplane Vα,k separates two (subsets of) points
in V if these are contained in distinct connected components of V \ Vα,k .) A useful explicit formula
to compute the lengths of (affine) Weyl group elements is given by

�(vtλ) =
∑

α∈R+

∣∣〈λ,α∨〉 + χ(vα)
∣∣ (v ∈ W0, λ ∈ P ), (2.1)

where χ : R → {0,1} represents the characteristic function of R− := R \ R+ (so, in particular, for v ∈
W0 and λ,μ ∈ P+ one has that �(vtλ) = �(v)+�(tλ) and that �(tvμ) = �(tμ), �(tλ+μ) = �(tλ)+�(tμ)).

Let α1, . . . ,αn (n := rank(R)) be the basis of simple roots for R+ and let α0 be the positive root
such that α∨

0 is the highest root of R∨ (with respect to (R+)∨). We set s0 := sα0,1 and s j := sα j ,0
for j = 1, . . . ,n. The finite Weyl group W0 is generated by the reflections across the boundary hyper-
planes of C : s1, . . . , sn , and the affine Weyl group W is generated by the (finite, Abelian) subgroup of
elements of length zero Ω := {u ∈ W | u A = A} and the reflections across the boundary hyperplanes
of A: s0, . . . , sn .

It is instructive to detail the algebraic structure of these presentations of W0 and W somewhat
more explicitly. Let V j denote the hyperplane fixed by s j ( j = 0, . . . ,n). The finite Weyl group W0
amounts to the group generated by s1, . . . , sn subject to the relations

(s j sk)
m jk = 1, (2.2)

with π/m jk being the angle between V j and Vk if j 	= k (so, in particular, mkj = m jk) and m jk = 1
when j = k. To characterize Ω it is convenient to associate with λ ∈ P the affine Weyl group element
uλ := tλv−1

λ , where vλ refers to the shortest element of W0 mapping λ to the closure of the an-
tidominant Weyl chamber −C (which implies that uλ is the shortest element of the coset tλW0 and
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�(tλ) = �(uλ) + �(vλ)). Upon setting u0 := 1 and u j := uω j for j = 1, . . . ,n, where ω1, . . . ,ωn denote
the basis of the fundamental weights, one has explicitly

Ω = {
u j

∣∣ j = 0 or
〈
ω j,α

∨
0

〉 = 1
}
. (2.3)

It is clear from the definition that the elements of Ω permute the hyperplanes V 0, . . . , Vn . Further-
more, for u ∈ Ω with uV j = Vk one has that

uu j = u ju = uk (u j ∈ Ω) and us j = sku ( j = 0, . . . ,n). (2.4)

The affine Weyl group W can now be characterized as the group generated by s0, . . . , sn and the
elements u ∈ Ω (2.3) subject to the relations (2.2), (2.4) (with the additional caveat that in the patho-
logical case n = 1 the order m10 = m01 = ∞).

2.2. Affine Hecke algebra

Let q : W → R \ {0} be a length multiplicative function, viz. (i) qw w ′ = qwqw ′ if �(w w ′) = �(w) +
�(w ′) and (ii) qw = 1 if �(w) = 0. This implies that qs j depends only on the conjugacy class of s j
( j = 0, . . . ,n), whence the value of qw is determined by the number of reflections (in the short
roots and in the long roots, respectively) appearing in a reduced expression w = us j1 · · · s j� (with
u ∈ Ω and � = �(w)). Following customary habits, the multiplicity function associated with the length
multiplicative function will also be denoted by q. This is the function q : R+ × Z → R \ {0} such that
qα,k = qs j if Vα,k = V j (0 � j � n) and qα′,k′ = qα,k if Vα′,k′ = w Vα,k for some w ∈ W . This implies
that qα,k = qα,0 depends only on the length of α. Reversely, the length multiplicative function can be
reconstructed from the multiplicity function via the formula

qw =
∏

α∈R+,k∈Z
Vα,k∈S(w)

qα,k. (2.5)

We will write H for the (extended) affine Hecke algebra associated with W and q. This algebra can
be characterized as the complex associative algebra with basis T w , w ∈ W , satisfying the quadratic
relations

(T j − q j)
(
T j + q−1

j

) = 0, j = 0, . . . ,n, (2.6a)

where T j := Ts j and q j := qs j , and the braid relations

T w w ′ = T w T w ′ if �
(

w w ′) = �(w) + �
(

w ′). (2.6b)

The assignment T w → T ∗
w with

T ∗
w := T w−1 (2.7)

extends to an antilinear anti-involution of H thus turning the affine Hecke algebra into an involutive
or ∗-algebra. The subalgebra of H spanned by the basis T w , w ∈ W0, is referred to as the finite Hecke
algebra H0 (associated with W0 and q).

The affine Hecke algebra H admits a simple presentation as the algebra generated by T0, . . . , Tn
and Tu , u ∈ Ω , (2.3) subject to the quadratic relations (2.6a) (cf. Eq. (2.2) with j = k), the braid
relations

T j Tk T j · · ·︸ ︷︷ ︸
m jk factors

= Tk T j Tk · · ·︸ ︷︷ ︸
m jk factors

, j 	= k (2.8)
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(cf. Eq. (2.2) with j 	= k), and the relations

Tu Tu j = Tuu j = Tuk (u j ∈ Ω) and Tu T j = Tk Tu ( j = 0, . . . ,n), (2.9)

with Vk = uV j (cf. Eq. (2.4)). The finite Hecke algebra H0 in turn amounts to the (sub)algebra gener-
ated by T1, . . . , Tn subject to the quadratic relations (2.6a) and the braid relations (2.8).

For λ ∈ P , the element

Y λ := Ttμ T −1
tν with μ,ν ∈ P+ such that λ = μ − ν (2.10)

is well defined in the sense that it does not depend on the particular choice of the decomposition
of λ as a difference of dominant weights μ and ν . Furthermore, the elements Y λ , λ ∈ P , form a basis
of a subalgebra of H isomorphic to the group algebra of the weight lattice C[P ]:

Y λY μ = Y λ+μ (λ,μ ∈ P ) and Y 0 = 1, (2.11a)

satisfying in addition the relations

T j Y
λ − Y s jλT j = (

q j − q−1
j

) Y λ − Y s jλ

1 − Y −α j
( j = 1, . . . ,n). (2.11b)

The elements T w Y λ , w ∈ W0, λ ∈ P , constitute a basis of H, which gives rise to a second (very
useful) presentation of the affine Hecke algebra (due to Bernstein, Lusztig, and Zelevinsky) as the
algebra generated by T1, . . . , Tn and Y λ , λ ∈ P , subject to the relations (2.6a), (2.8), (2.11a) and

T j Y
λ = Y λT j if

〈
λ,α∨

j

〉 = 0,

T j Y
λ = Y s jλT j + (

q j − q−1
j

)
Y λ if

〈
λ,α∨

j

〉 = 1 (2.12)

(cf. Eq. (2.11b) with λ ∈ Vα j ,0 ∪ Vα j ,1). In other words, the affine Hecke algebra H is a merger of the
finite Hecke algebra H0 and the group algebra C[P ] with the cross relations (2.12).

It can be seen with the aid of the latter presentation that the center Z of H is spanned by

mλ(Y ) :=
∑

μ∈W0λ

Y μ, λ ∈ P+ (2.13)

(and thus isomorphic to the W0-invariant part C[P ]W0 of the group algebra of the weight lattice).
Moreover, since

(
Y λ

)∗ = T wo Y −woλT −1
wo

(2.14)

(where wo denotes the longest element of W0), one has that

mλ(Y )∗ = mλ∗(Y ), with λ∗ := −woλ. (2.15)
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3. Difference-reflection operators

In this section we introduce our main representation of the affine Hecke algebra in terms of
difference-reflection operators.

The action of the affine Weyl group on P ⊂ V induces a representation of W on the space C(P ) :=
{ f | f : P → C}

(w f )(λ) := f
(

w−1λ
)

(w ∈ W , λ ∈ P ). (3.1)

We consider the following difference-reflection operators on C(P )

T̂ j := q j + χ j(s j − 1), j = 0, . . . ,n, (3.2a)

where q j and χ j act by multiplication with

χ j(λ) :=
⎧⎨⎩

q j if V j separates λ and A,

1 if λ ∈ V j,

q−1
j otherwise.

(3.2b)

Theorem 3.1 (Difference-Reflection Representation T̂ (H)). The assignment T j → T̂ j ( j = 0, . . . ,n) and
Tu → u (u ∈ Ω) extends (uniquely) to a representation h → T̂ (h) (h ∈H) of the affine Hecke algebra on C(P ).

Inferring this theorem amounts to verifying the relations

(T̂ j − q j)
(
T̂ j + q−1

j

) = 0 (0 � j � n), (3.3a)

T̂ j T̂k T̂ j · · ·︸ ︷︷ ︸
m jk factors

= T̂k T̂ j T̂k · · ·︸ ︷︷ ︸
m jk factors

(0 � j 	= k � n), (3.3b)

uT̂ j = T̂ku if uV j = Vk (u ∈ Ω, 0 � j � n). (3.3c)

The quadratic relations in Eq. (3.3a) follow from a short computation:

T̂ 2
j = q2

j + (
2q jχ j − 1 − χ2

j

)
(s j − 1)

= q2
j + (

q j − q−1
j

)
χ j(s j − 1) = (

q j − q−1
j

)
T̂ j + 1,

where we used (in the second identity) that for λ /∈ V j

2q jχ j − 1 − χ2
j = (

q j − q−1
j

)
χ j =

{
q2

j − 1 if χ j = q j,

1 − q−2
j if χ j = q−1

j ,

together with the observation that for any f ∈ C(P ) the difference (s j f )(λ) − f (λ) vanishes when
λ ∈ V j . The commutation relations in Eq. (3.3c) are in turn immediate from the definition of T̂ j and
the corresponding affine Weyl group relations in Eq. (2.4). The proof of the braid relations in Eq. (3.3b)
is a bit more intricate and hinges on two lemmas that require some additional notation. For x ∈ V
let W0,x ⊂ W0 denote the stabilizer subgroup {w ∈ W0 | wx = x}. We will consider the following
equivalence relation on V : x ∼ y iff W0,x = W0,y and both points lie on the closure of the same Weyl
chamber wC (for some w ∈ W0). The finite number of equivalence classes of V with respect to the
relation ∼ are called facets and constitute the so-called Coxeter complex C of W0.
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Lemma 3.2. Let D̂ be an operator in C〈T̂1, . . . , T̂n〉 and let λ,μ ∈ P with λ ∼ μ. Then

(D̂ f )(λ) = 0 ∀ f ∈ C(P ) �⇒ (D̂ f )(μ) = 0 ∀ f ∈ C(P ). (3.4)

Proof. Given f ∈ C(P ) and λ,μ ∈ P with λ ∼ μ, pick an f̃ ∈ C(P ) such that f̃ (wλ) = f (wμ) for all
w ∈ W0. (Such a function f̃ exists, since wλ = w ′λ ⇒ w−1 w ′ ∈ W0,λ = W0,μ ⇒ wμ = w ′μ.) From
the definition of the difference-reflection operators T̂1, . . . , T̂n it is then immediate that (D̂ f )(μ) =
(D̂ f̃ )(λ) (because wμ and wλ (w ∈ W0) cannot be separated by the hyperplanes V j , 1 � j � n, as
both weights lie on the same facet). Hence, the hypothesis on the LHS of formula (3.4) implies that
for any f ∈ C(P ): (D̂ f )(μ) = (D̂ f̃ )(λ) = 0. �
Lemma 3.3. For any affine Weyl group W , the braid relations in Eq. (3.3b) follow from the braid relations
corresponding to the finite Weyl groups W0 associated with the (not necessarily irreducible) root systems of
rank two.

Proof. Without restriction we may assume that n � 2 (as for n = 1 there is no braid relation to check
since then m01 = m10 = ∞). For any pair 1 � j 	= k � n, the reflections s j, sk generate a finite Weyl
group corresponding to the rank-two root subsystem R jk with basis α j,αk . The Weyl group in ques-
tion acts trivially on the orthogonal complement V ⊥

jk of V jk := SpanR(α j,αk) in V . It follows that the

action of T̂ j and T̂k on C(P ) extends to a decomposition of the form T̂ j(R jk) ⊗ 1 and T̂k(R jk) ⊗ 1 on
F (P jk)⊗ F (V ⊥

jk) ⊃ C(P ), where P jk denotes the image of the orthogonal projection of P onto V jk (and

F (P jk), F (V ⊥
jk) are the spaces of complex functions on P jk and V ⊥

jk , respectively). Here T̂ j(R jk) and

T̂k(R jk) refer to the corresponding operators on F (P jk) associated with the simple reflections of R jk .
(Notice in this connection that P jk amounts to the weight lattice P (R jk) associated with R jk and that
the image A jk of the alcove A under the orthogonal projection onto V jk is contained in the Weyl al-
cove A(R jk) associated with the basis α j,αk of R jk .) The upshot is that the braid relations for T̂ j and
T̂k follow from the braid relations for T̂ j(R jk) and T̂k(R jk). If one of the two indices ( j say) takes the
value 0, then the above arguments apply verbatim upon picking for R0k the translated rank-two root
system with basis −α0,αk relative to the origin at V 0k ∩ V 0 ∩ Vk (where V 0k = SpanR(α0,αk)). (Now
the projection P0k of P onto V 0k amounts rather to the weight lattice of the untranslated rank-two
root subsystem with basis −α0,αk , but this is no obstacle in view of Remark 3.4 below.) �

By Lemma 3.3, it is sufficient to verify the braid relations T̂1 T̂2 T̂1 · · · = T̂2 T̂1 T̂2 · · · (with m12 factors
on both sides) associated with the simple reflections s1 and s2 for the root systems A1 × A1, A2, B2,
and G2 (for which m12 = 2, 3, 4, and 6, respectively). Moreover by Lemma 3.2—upon acting with both
sides on an arbitrary lattice function in C(P )—it is only needed to verify these braid relations on a
finite W0-invariant set of weights representing the facets of the Coxeter complex C . This reduces the
verification of Eq. (3.3b) to a routine case-by-case computation that is somewhat tedious by hand for
the three root systems other than A1 × A1 (and particularly so for the root systems B2 and G2) but
completely straightforward to perform in all four cases with the aid of symbolic computer algebra. To
illustrate the idea of the computation in question we have outlined the details for the root system A2
in Appendix A.

Remark 3.4. The action of the affine Weyl group in Eq. (3.1) and the operators T̂ j (3.2a), (3.2b) make
in fact sense on the space F (A) of complex functions on the Coxeter complex A of the affine Weyl
group (which may also be seen as the space of functions on V that are piecewise constant on the
affine facets). (Here the affine facets are the equivalence classes of V with points being equivalent if
they belong to the closure of the same Weyl alcove w A (w ∈ W ) and have the same stabilizer inside
the affine Weyl group.) The space C(P ) can be naturally embedded into F (A) as the space of func-
tions with support in the affine facets containing a weight (since points differing by a nonzero weight
necessarily belong to distinct affine facets). With this extension of the domain, the Hecke-algebra re-
lations in Eqs. (3.3a)–(3.3c) remain valid. Indeed, Lemma 3.2 and its proof generalize verbatim from P
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to A. In other words, the representation in Theorem 3.1 extends naturally to a representation of the
affine Hecke algebra on the space F (A).

4. Integral-reflection operators

In this section we describe the auxiliary representation of the affine Hecke algebra in terms of
integral-reflection operators. The representation in question is dual to a standard polynomial repre-
sentation of the affine Hecke algebra on the group algebra of the weight lattice.

We consider the following integral-reflection operators on C(P ) associated with the simple reflec-
tions s1, . . . , sn:

I j := q js j + (
q j − q−1

j

)
J j, j = 1, . . . ,n, (4.1a)

where J j : C(P ) → C(P ) denotes a discrete integral operator which—grosso modo—integrates the lat-
tice function f (λ) over the α j -string from λ to s jλ:

( J j f )(λ) :=

⎧⎪⎨⎪⎩
− f (λ − α j) − f (λ − 2α j) − · · · − f (s jλ) if 〈λ,α∨

j 〉 > 0,

0 if 〈λ,α∨
j 〉 = 0,

f (λ) + f (λ + α j) + · · · + f (s jλ − α j) if 〈λ,α∨
j 〉 < 0.

(4.1b)

Proposition 4.1 (Integral-Reflection Representation I(H)). The assignment T j → I j ( j = 1, . . . ,n) and
Y λ → tλ (λ ∈ P ) extends (uniquely) to a representation h → I(h) (h ∈H) of the affine Hecke algebra on C(P ).

In the remainder of this section the proposition is proved by exploiting that I(H) may be seen
as the dual of a standard representation of the affine Hecke algebra in terms of Demazure–Lusztig
operators.

Let us denote by eλ , λ ∈ P , the standard basis of the group algebra C[P ] (so eλeμ = eλ+μ and
e0 = 1) and consider the following nondegenerate sesquilinear pairing (·,·) : C(P ) ×C[P ] →C

( f , p) := (p̄ f )(0)
(

f ∈ C(P ), p ∈C[P ]), (4.2)

where p̄ refers to the complex conjugate
∑

λ c̄λeλ of p = ∑
λ cλeλ (cλ ∈ C), and the action of C[P ]

on f is determined by eλ f := tλ f (so, in particular, ( f , eλ) = (tλ f )(0) = f (−λ)). We will use the no-
tational convention (p, f ) := ( f , p). The action of W on P lifts to an action of the affine Weyl group
on C[P ] via weλ := ewλ (w ∈ W , λ ∈ P ). Notice that with these conventions (vtλ f , p) = ( f , tλv−1 p)

(v ∈ W0, λ ∈ P , f ∈ C(P ), p ∈C[P ]), i.e. the action of W0 is ‘unitary’ and the action of P is ‘symmet-
ric’ with respect to the above pairing.

It is well known (cf. e.g. Ref. [M4]) that the trivial one-dimensional representation T j → q j ( j =
1, . . . ,n) of H0 on C immediately induces a representation of the finite Hecke algebra on the group
algebra through the relations in Eq. (2.11b). Indeed, the latter representation h → Ť (h) of H0 on C[P ]
is generated by the Demazure–Lusztig operators:

Ť j := q j s j + (
q j − q−1

j

)(
1 − e−α j

)−1
(1 − s j), j = 1, . . . ,n. (4.3)

Proposition 4.1 is now a direct consequence of the two subsequent lemmas and the Bernstein–
Lusztig–Zelevinsky presentation of the affine Hecke algebra with the relations in Eq. (2.12).

Lemma 4.2. The assignment T j → I j ( j = 1, . . . ,n) extends (uniquely) to a representation h → I(h) (h ∈H0)
of the finite Hecke algebra on C(P ), i.e.
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(I j − q j)
(

I j + q−1
j

) = 0 (1 � j � n), (4.4a)

I j Ik I j · · ·︸ ︷︷ ︸
m jk factors

= Ik I j Ik · · ·︸ ︷︷ ︸
m jk factors

(1 � j 	= k � n). (4.4b)

Proof. By acting with the Demazure–Lusztig operator Ť j (4.3) on the basis element eλ it is seen that

Ť je
λ = q je

s jλ + (
q j − q−1

j

)eλ − eλ−〈λ,α∨
j 〉α j

1 − e−α j

= q je
s jλ + (

q j − q−1
j

) ×

⎧⎪⎨⎪⎩
eλ + eλ−α j + · · · + es jλ+α j if 〈λ,α∨

j 〉 > 0,

0 if 〈λ,α∨
j 〉 = 0,

−eλ+α j − eλ+2α j − · · · − es jλ if 〈λ,α∨
j 〉 < 0,

whence (I j f , eλ) = ( f , Ť jeλ) ( f ∈ C(P ), λ ∈ P ). The quadratic relations and braid relations for
I1, . . . , In thus follow from those for Ť1, . . . , Ťn (and (I(h) f , p) = ( f , Ť (h∗)p), h ∈ H0, f ∈ C(P ),
p ∈ C[P ]). �
Lemma 4.3. The operators I j ( j = 1, . . . ,n) and tλ (λ ∈ P ) on C(P ) satisfy the cross relations

I jtλ = tλ I j if
〈
λ,α∨

j

〉 = 0,

I jtλ = ts jλ I j + (
q j − q−1

j

)
tλ if

〈
λ,α∨

j

〉 = 1. (4.5)

Proof. Since s jtλ = ts jλs j , it is sufficient to infer that J jtλ = tλ J j if 〈λ,α∨
j 〉 = 0 and that J jtλ =

ts jλ J j + tλ if 〈λ,α∨
j 〉 = 1. Both identities are seen to hold manifestly upon acting on an arbitrary func-

tion in C(P ) and comparing the terms on both sides (taking into account that s jλ = λ−〈λ,α∨
j 〉α j ). �

Remark 4.4. By Eqs. (2.11a), (2.11b), the Demazure–Lusztig operators Ť j ( j = 1, . . . ,n) together with
the multiplicative action of the basis elements eλ (λ ∈ P ) in fact determine a representation h → Ť (h)

(h ∈ H) of the affine Hecke algebra on C[P ] (extending the assignment T j → Ť j ( j = 1, . . . ,n),
Y λ → eλ (λ ∈ P )). Furthermore, the mapping T w Y λ → Y λT w−1 (w ∈ W0, λ ∈ P ) extends to an an-
tilinear anti-involution 
 of H (agreeing with the previous ∗-anti-involution on the subalgebra H0).
With respect to the new 
-anti-involution and the pairing in Eq. (4.2) the integral-reflection rep-
resentation in Proposition 4.1 is dual to the polynomial representation Ť (H) in the sense that
(I(h) f , p) = ( f , Ť (h
)p) (h ∈H, f ∈ C(P ), p ∈C[P ]).

Remark 4.5. The integral-reflection operators I j (4.1a), (4.1b) constitute a discrete counterpart of
integral-reflection operators introduced by Gutkin and Sutherland in the context of their study of
the spectral problem for the Laplacian perturbed by a delta potential supported on the reflection hy-
perplanes of the root system R [GS,G]. Proposition 4.1 is the corresponding analog of the observation
in Ref. [HO] that these Gutkin–Sutherland integral-reflection operators determine a representation of
the Drinfeld–Lusztig graded affine Hecke algebra.

5. Diagonalization of ̂T (Z)

In this section we diagonalize the action of the center of H under our difference-reflection repre-
sentation by means of Macdonald’s spherical functions. Our main tool is an intertwining operator
relating the difference-reflection representation to the auxiliary integral-reflection (or polynomial)
representation.
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We will employ the shorthand notation T̂ w := T̂ (T w) and I w := I(T w) (w ∈ W ).

5.1. Intertwining operator

Let J : C(P ) → C(P ) be the operator defined by

(J f )(λ) := qūλ

(
I−1
ūλ

f ,1
) (

f ∈ C(P ), λ ∈ P
)
, (5.1)

where ūλ := wouwoλwo = tλw−1
λ with

wλ := wo v woλwo = v−λ

(i.e. wλ is the shortest element of W0 mapping λ into the dominant cone P+) and (·,·) refers to the
pairing in Eq. (4.2). Notice that

(J f )(λ) = qtλqwλ

(
I−1

w−1
λ

f
)
(λ+) with λ+ := wλλ. (5.2)

So in particular, on the dominant cone J acts simply as a multiplication operator: (J f )(λ) = qtλ f (λ)

for λ ∈ P+ .

Theorem 5.1 (Intertwining Property). The operator J : C(P ) → C(P ) (5.1) enjoys the following intertwining
property, connecting the difference-reflection representation T̂ (H) with the integral-reflection representa-
tion I(H)

T̂ wJ = J I w (5.3)

(for all w ∈ W ).

For w ∈ W0, the intertwining property in Eq. (5.3) is an immediate consequence of the next
lemma, whose proof boils down to some straightforward computations based on the well-known
elementary Hecke algebra relations (cf. e.g. [M4, (4.1.2)])

T j T w = Ts j w + χ
(

w−1α j
)(

q j − q−1
j

)
T w , (5.4a)

T −1
w T −1

j = T −1
s j w − χ

(
w−1α j

)(
q j − q−1

j

)
T −1

w , (5.4b)

j = 1, . . . ,n (where χ is in accordance with Eq. (2.1) and the second relation follows from the first one
by applying the anti-involution T w → T −1

w , q → q−1) together with the observation that for w, w ′ ∈
W0 and λ dominant

qw
(

I−1
w f

)
(λ) = qw ′

(
I−1

w ′ f
)
(λ) if w−1 w ′ ∈ W0,λ (5.5)

(which is readily seen by induction on �(w−1 w ′)).

Lemma 5.2. The representations T̂ (H0) and I(H0) satisfy the finite intertwining relations

T̂ jJ = J I j ( j = 1, . . . ,n). (5.6)
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Proof. Let f ∈ C(P ). Elementary manipulations reveal that

q−1
tλ

(
T̂ −1

j J f
)
(λ)

(5.5)= q−1
j qwλ

(
I−1

w−1
λ

f
)
(λ+)

+ q
− sign(wλα j)

j

(
qwλs j

(
I−1

s j w−1
λ

f
)
(λ+) − qwλ

(
I−1

w−1
λ

f
)
(λ+)

)
= qwλ

((
I−1

s j w−1
λ

f
)
(λ+) − χ(wλα j)

(
q j − q−1

j

)(
I−1

w−1
λ

f
)
(λ+)

)
(5.4b)= qwλ

(
I−1

w−1
λ

I−1
j f

)
(λ+) = q−1

tλ

(
J I−1

j f
)
(λ),

whence T̂ −1
j J =J I−1

j . �
The extension of the intertwining property in Eq. (5.3) from W0 to W hinges on a second lemma,

whose proof in contrast is technically somewhat more involved and therefore being relegated to Ap-
pendix B.

Lemma 5.3. The representation T̂ (H) and I(H) satisfy the affine intertwining relations

T̂0J = J I0 (I0 := Is0), (5.7a)

uJ = J Iu (u ∈ Ω). (5.7b)

Remark 5.4. By the duality in Remark 4.4, the action of the intertwining operator can be rewritten in
terms of the polynomial representation Ť (H) as

(J f )(λ) = qūλ

(
f ,

(
Ť 


ūλ

)−1
1
) (

f ∈ C(P ), λ ∈ P
)
, (5.8)

where we have used the shorthand notation Ť 

w := Ť (T 


w).

Remark 5.5. The intertwining operator J (5.1) is a discrete counterpart of the Gutkin–Sutherland
propagation operator, which relates the spectral problem for the Laplacian with a delta potential in
Remark 4.5 to that of the free Laplacian [GS,G]. From this perspective, Theorem 5.1 yields the corre-
sponding generalization of the fact that the propagation operator in question intertwines the integral-
reflection representation and the Dunkl-type differential-reflection representation of the Drinfeld–
Lusztig graded affine Hecke algebra of Refs. [HO] and [EOS], respectively. In fact, our difference-
reflection representation T̂ (H), which was obtained by pushing the integral-reflection representa-
tion I(H) through the intertwining operator J , provides us with the Dunkl-type difference-reflection
operators for a discretization of the Laplacian with a delta potential on root hyperplanes that was
introduced and studied in Ref. [D] (cf. also Remark 7.6 below).

5.2. Bijectivity of the intertwining operator

We will now show that the intertwining operator J : C(P ) → C(P ) is bijective. The existence of
this bijection intertwining the difference-reflection representation T̂ (H) and the integral-reflection
representation I(H) reveals that these two representations of the affine Hecke algebra in C(P ) are in
fact equivalent. Moreover, it provides an alternative (indirect) proof of Theorem 3.1 as a consequence
of Proposition 4.1. Indeed, Lemmas 5.2 and 5.3—together with the bijectivity of J —disclose that the
affine Hecke-algebra relations in Eqs. (3.3a)–(3.3c) may be seen as a consequence of the corresponding
relations for I0, . . . , In and Iu , u ∈ Ω (which follow in turn from Proposition 4.1).
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To prove now the bijectivity in question some further notation is needed. Let � represent the
dominance order on the cone of dominant weights P+ and let � denote the Bruhat order on the finite
Weyl group W0 [B,M4]. Specifically,

∀λ,μ ∈ P+: μ� λ iff λ − μ ∈ Q +

with Q + := SpanZ�0
(R+), and ∀v, v ′ ∈ W0: v ′ � v iff v ′ = si1 · · · sip for a certain subsequence

(i1, . . . , ip) of ( j1, . . . , j�) with v = s j1 · · · s j� a reduced expression (i.e. � = �(v)). The dominance
order can be conveniently extended from P+ to P with the aid of the Bruhat order (cf. Ref. [M4,
Sec. 2.1])

∀λ,μ ∈ P : μ� λ iff

⎧⎨⎩
μ+ ≺ λ+ (i),
or
μ+ = λ+ and wμ � wλ (ii).

Theorem 5.6 (Automorphism). The operator J (5.1) constitutes a linear automorphism of the space C(P ).

Corollary 5.7 (Equivalence). The difference-reflection representation T̂ (H) and the integral-reflection repre-
sentation I(H) of the affine Hecke algebra in C(P ) are equivalent:

T̂ (h) = J I(h)J−1 ∀h ∈ H.

Proof. It is clear that the intertwining property in Theorem 5.1 and the invertibility of J ensure that
T̂ (H) and I(H) are equivalent representations of the affine Hecke algebra in C(P ), i.e. the corollary
is in effect a direct consequence of the theorem. The proof of the theorem—which amounts to show-
ing that the linear operator J : C(P ) → C(P ) is bijective—is in turn immediate from the following
triangularity property:

(
I−1

w−1
λ

f
)
(λ+) = q−1

wλ
f (λ) +

∑
μ∈P ,μ≺λ

∗ f (μ)
(

f ∈ C(P ), λ ∈ P
)
. (5.9)

Here and below the star symbols ∗ refer to the expansion coefficients of lower terms (with respect
to the partial order �) whose precise values are not relevant for the argument of the proof. Indeed,
it is clear from the triangularity in Eq. (5.9) that for any g ∈ C(P ) the linear equation (J f )(λ) = g(λ)

(λ ∈ P ) can be uniquely solved inductively in λ with respect to the partial order �.
The triangularity in Eq. (5.9) hinges on well-known saturation properties of the convex hull of the

orbit of a weight with respect to the action of the finite Weyl group [B,M4]. For our purposes it is
enough to recall that for any λ ∈ P the weights in the convex hull of W0λ are given by the saturated
set P (λ) := {μ ∈ P | μ+ � λ+}. For λ,μ ∈ P one has that: (i) if μ � λ then μ ∈ P (λ), and (ii) if
μ ∈ P (λ) then [μ, sαμ] ⊂ P (λ) for any α ∈ R , where sα := sα,0 and [μ, sαμ] refers to the α-string
from μ to sαμ, i.e. [μ, sαμ] := {μ − kα | k = 0, . . . , 〈μ,α∨〉}.

After these preliminaries we are now in a position to prove the triangularity in question by in-
duction on �(wλ) starting from the straightforward case that �(wλ) � 1. (The case �(wλ) = 0 is in
fact trivial since then λ ∈ P+ and (I−1

w−1
λ

f )(λ+) = f (λ).) It is manifest from the explicit formula for

the action of I j (cf. Eqs. (4.1a), (4.1b)) and the above properties of the saturated set P (λ) that for
j = 1, . . . ,n:

(
I−1

j f
)
(λ) =

{
q−1

j f (s jλ) + ∑
μ∈P ,μ≺s jλ

∗ f (μ) if s jλ � λ,∑
μ∈P ,μ�s λ ∗ f (μ) if s jλ� λ,

(5.10)

j
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which implies Eq. (5.9) for λ ∈ P such that �(wλ) = 1. Upon picking λ ∈ P such that the triangularity
in Eq. (5.9) holds for all μ ∈ P with �(wμ) � �(wλ), it is readily seen that for any j ∈ {1, . . . ,n} such
that λ ≺ s jλ (or equivalently �(ws jλ) = �(wλ) + 1) one has that

(
I−1

w−1
s jλ

f
)(

(s jλ)+
) (i)= (

I−1
w−1

λ

I−1
j f

)
(λ+),

(ii)= q−1
wλ

(
I−1

j f
)
(λ) +

∑
ν∈P , ν≺λ

∗(
I−1

j f
)
(ν),

(iii)= q−1
ws jλ

f (s jλ) +
∑

μ∈P ,μ≺s jλ

∗ f (μ) (5.11)

(thus completing the induction). Here step (i) of the derivation exploits that ws jλ = wλs j (with
�(wλs j) = �(wλ) + 1) and step (ii) relies on invoking of the induction hypothesis that the triangu-
larity holds for wλ . Step (iii) follows in turn upon applying Eq. (5.10) to all terms on the second
line of Eq. (5.11). Indeed, if ν ≺ λ ≺ s jλ then s jν ≺ s jλ (which is immediate from the definitions if
ν+ ≺ λ+ and which follows from the elementary estimates ws jν � wν s j < wλs j = ws jλ if ν+ = λ+
and wν < wλ). �
5.3. Macdonald spherical functions

Let ξ ∈ V . By eiξ ∈ C(P ) we denote the plane wave eiξ (λ) := ei〈λ,ξ〉 = (eiξ , e−λ) = (eλ, eiξ ), λ ∈ P .
By definition, the Macdonald spherical function Φξ , ξ ∈ V , is the function in C(P ) of the form

Φξ := J φξ with φξ := I(10)eiξ , (5.12a)

where

10 :=
∑

w∈W0

qw T w . (5.12b)

The Macdonald spherical function is W0-invariant in the sense that

Φξ ∈ C(P )W0 := {
f ∈ C(P )

∣∣ w f = f , w ∈ W0
}

= {
f ∈ C(P )

∣∣ T̂ w f = qw f , w ∈ W0
}
.

Indeed, since T j10 = q j10 for 1 � j � n in view of Eq. (5.4a), it is clear that T̂ jΦξ = T̂ jJ φξ =J I jφξ =
J q jφξ = q jΦξ , j = 1, . . . ,n.

The symmetric monomials mλ := ∑
μ∈W0λ eμ , λ ∈ P+ , form a basis of C[P ]W0 . For p =∑

λ∈P+ cλmλ ∈ C[P ]W0 (cλ ∈ C), we define p̂(Y ) := T̂ (p(Y )) where p(Y ) := ∑
λ∈P+ cλmλ(Y ). The cen-

ter of the affine Hecke algebra is then given by Z = {p(Y ) | p ∈C[P ]W0 } and moreover T̂ (Z) = {p̂(Y ) |
p ∈ C[P ]W0}. Clearly the space C(P )W0 is stable under the action of T̂ (Z).

Theorem 5.8 (Diagonalization). The commuting subalgebra T̂ (Z) ⊂ T̂ (H) is diagonalized by the Macdonald
spherical function:

p̂(Y )Φξ = E p(ξ)Φξ with E p(ξ) = (
p, e−iξ ), (5.13)

for ξ ∈ V and p ∈ C[P ]W0 .
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The proof of this theorem hinges on the intertwining operator and an explicit formula for φξ =
I(10)eiξ following from the work of Macdonald [M1,M2].

Proposition 5.9. The function φξ (5.12a), (5.12b) is given explicitly by

φξ (λ) = (
eiξ , Pλ

)
, λ ∈ P , (5.14a)

where

Pλ :=
∑

w∈W0

e−wλ
∏

α∈R+

1 − q2
αewα

1 − ewα
(5.14b)

and qα := qα,0 .

Proof. Let us recall from Remark 4.4 that (I(h) f , p) = ( f , Ť (h∗)p) for h ∈ H0, f ∈ C(P ), p ∈ C[P ],
where Ť (H0) refers to the standard polynomial representation of the finite Hecke algebra generated
by the Demazure–Lusztig operators in Eq. (4.3). The lemma is now an immediate consequence of
Macdonald’s celebrated formula 10Y −λ10 = Pλ(Y )10 (λ ∈ P ) [M1, Thm. 1] and (with more details)
[M2, (4.1.2)] (see also e.g. [NR, Thm. 2.9(a)] and [P, Thm. 6.9]). Indeed, Macdonald’s formula implies
that Ť (10)e−λ = Pλ , whence φξ (λ) = (φξ , e−λ) = (I(10)eiξ , e−λ) = (eiξ , Ť (10)e−λ) = (eiξ , Pλ). �

Proposition 5.9 reveals that φξ decomposes as a linear combination of plane waves eiwξ , w ∈ W0

(with coefficients
∏

α∈R+
1−q2

αe−i〈wξ,α〉
1−e−i〈wξ,α〉 ). With this information the proof of Theorem 5.8 reduces to an

elementary computation:

p̂(Y )Φξ = p̂(Y )J φξ = J I
(

p(Y )
)
φξ = J pφξ = J

(
p, e−iξ )φξ = (

p, e−iξ )Φξ ,

where we have used that peiwξ = (p, e−iξ )eiwξ for w ∈ W0, since p ∈ C[P ]W0 and eλeiξ = tλeiξ =
e−i〈λ,ξ〉eiξ = (eλ, e−iξ )eiξ .

Remark 5.10. It is immediate from Proposition 5.9 and the W0-invariance of the Macdonald spherical
function Φξ that

Φξ(λ) = qtλ

∑
w∈W0

ei〈wξ,λ+〉 ∏
α∈R+

1 − q2
αe−i〈wξ,α〉

1 − e−i〈wξ,α〉 , λ ∈ P . (5.15)

6. Unitarity

In this section we describe a Hilbert space structure for which our difference-reflection represen-
tation becomes unitary.

Here it is always assumed that q : W → (0,1). We will employ the shorthand notation X(q2) :=∑
w∈X q2

w for X ⊂ W0. So in particular, W0(q2) and W0,x(q2) (x ∈ V ) represent the (generalized)
Poincaré series of W0 and W0,x associated with q2, respectively. Let l2(P , δ) be the Hilbert space of
functions { f ∈ C(P ) | 〈 f , f 〉δ < ∞}, where

〈 f , g〉δ :=
∑

f (λ)g(λ)δλ

(
f , g ∈ l2(P , δ)

)
, (6.1a)
λ∈P
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with

δλ := N−1
0 q−2

uλ
= N−1

0

∏
α∈R+,k∈Z
Vα,k∈S(λ)

q−2
α,k, N0 := W0

(
q2) (6.1b)

and S(λ) := S(uλ) = {Vα,k | Vα,k separates λ and A} (cf. [M4, (2.4.8)]).

Theorem 6.1 (Unitarity of T̂ (H)). The difference-reflection representation h → T̂ (h) (h ∈H) on C(P ) restricts
to a unitary representation of the affine Hecke algebra into the space of bounded operators on l2(P , δ), i.e.〈̂

T (h) f , g
〉
δ
= 〈

f , T̂
(
h∗)g

〉
δ

(
h ∈ H, f , g ∈ l2(P , δ)

)
. (6.2)

Proof. Let f , g ∈ l2(P , δ). It suffices to show that the actions of T̂ j (0 � j � n) and u (u ∈ Ω) deter-
mine bounded operators on l2(P , δ) satisfying (i) 〈T̂ j f , g〉δ = 〈 f , T̂ j g〉δ and (ii) 〈u f , g〉δ = 〈 f , u−1 g〉δ .
Property (ii) follows by performing the change of coordinates λ → uλ to the (discrete) integral
〈u f , g〉δ . Indeed, invoking of the symmetry δuλ = δλ (as S(uλ) = S(λ)) then produces the inte-
gral 〈 f , u−1 g〉δ . Property (i) follows in turn by performing the change of coordinates λ → s jλ

to the integral 〈χ j s j f , g〉δ , which entails the integral 〈 f ,χ j s j g〉δ . Here one uses the symmetries
s jχ j = χ−1

j s j and δs jλ = χ2
j (λ)δλ (as S(s jλ) = S(λ) \ {V j} if V j ∈ S(λ), S(s jλ) = S(λ) if λ ∈ V j , and

S(s jλ) = S(λ) ∪ {V j} otherwise). The computations in question also reveal that the actions of u and
s j (and thus that of T̂ j ) are indeed bounded in l2(P , δ) (as 〈u f , u f 〉δ = 〈 f , f 〉δ and 〈s j f , s j f 〉δ =
〈χ j s j f ,χ−1

j s j f 〉δ = 〈 f ,χ j s jχ
−1
j s j f 〉δ = 〈 f ,χ2

j f 〉δ , and χ j is a bounded function on P ). �
Since P+ is a fundamental domain for the action of W0 on P , the symmetric subspace

l2(P , δ)W0 := l2(P , δ) ∩ C(P )W0 can be identified with the Hilbert space l2(P+,�) of functions
{ f : P+ →C | 〈 f , f 〉� < ∞}, where

〈 f , g〉� :=
∑

λ∈P+
f (λ)g(λ)�λ

(
f , g ∈ l2

(
P+,�

))
, (6.3a)

with

�λ :=
∑

μ∈W0λ

δμ = q−2
tλ

W λ
0 (q2)

W0(q2)
= q−2

tλ

W0,λ(q2)

(
λ ∈ P+)

(6.3b)

and W λ
0 := {wμ | μ ∈ W0λ}. The first equality in Eq. (6.3b) follows from the relations quμ = qtμq−1

vμ
=

qtμ+ q−1
vμ

and qvμ = qw woμ (μ ∈ P ); the second equality is readily inferred upon observing that the

mapping (w, w ′) → w w ′ determines a bijection of W0,λ × W λ
0 onto W0 satisfying �(w w ′) = �(w) +

�(w ′), whence qw w ′ = qwqw ′ and thus W0(q2) = W0,λ(q2)W λ
0 (q2).

The following adjointess relations for the basis elements m̂λ(Y ) are an immediate consequence of
the unitarity in Theorem 6.1 (recall in this connection also the last paragraph of Section 2).

Corollary 6.2 (Adjointness Relations in T̂ (Z)). The basis operators m̂λ(Y ), λ ∈ P+ , spanning T̂ (Z) satisfy the
adjointness relations 〈

m̂λ(Y ) f , g
〉
�

= 〈
f ,m̂λ∗(Y )g

〉
�

(
λ ∈ P+, f , g ∈ l2

(
P+,�

))
. (6.4)

In particular, it is evident from Corollary 6.2 that the symmetrized operators (m̂λ(Y ) + m̂λ∗(Y ))

and i(m̂λ(Y ) − m̂λ∗ (Y )) are self-adjoint in l2(P+,�).
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Remark 6.3. Let

eq(λ) :=
∏

α∈R+
q〈λ,α∨〉
α , λ ∈ P .

It is instructive to recall to mind that qtλ and W0,λ(q2) can be conveniently written explicitly in terms
of the multiplicity function via the evaluation formula qtλ = eq(λ+) (by Eq. (6.1b) with the symmetries
qtλ = qtwo (λ+)

= quwo (λ+)
, qα,k = qα ) and Macdonald’s classic product formula

W0,λ

(
q2) =

∏
α∈R+

〈λ,α∨〉=0

1 − q2
αeq(α)

1 − eq(α)
, (6.5)

respectively. In particular, evaluation of the RHS of � (6.3b) produces

�λ = eq(−2λ)
∏

α∈R+
〈λ,α∨〉=0

1 − eq(α)

1 − q2
αeq(α)

(
λ ∈ P+)

. (6.6)

Remark 6.4. Let Vol(A) := ∫
A dξ , where dξ denotes the Lebesgue measure on V , and let

�̆(ξ) := N̆−1
0

∏
α∈R+

∣∣∣∣ 1 − ei〈α,ξ 〉

1 − q2
αei〈α,ξ 〉

∣∣∣∣2

, N̆0 := (2π)n|W0|Vol(A). (6.7)

For f̆ , ğ in the Hilbert space L2(2π A, �̆(ξ)dξ), their inner product is written as

〈 f̆ , ğ〉�̆ :=
∫

2π A

f̆ (ξ)ğ(ξ)�̆(ξ)dξ. (6.8)

It is well known from Macdonald’s theory [M1,M2] (cf. also [M3, §10]) that the measure � (6.6) turns
the Fourier–Macdonald pairing

f = Fq( f̆ ) := 〈
f̆ ,Φ(·)〉

�̆
=

∫
2π A

f̆ (ξ)Φξ (·)�̆(ξ)dξ, (6.9a)

with the kernel function (cf. Remark 5.10)

Φξ(λ) = eq(λ)
(
eiξ , Pλ

) = eq(λ)
∑

w∈W0

ei〈wξ,λ〉 ∏
α∈R+

1 − q2
αe−i〈wξ,α〉

1 − e−i〈wξ,α〉 (6.9b)

(ξ ∈ 2π A, λ ∈ P+), into a Hilbert space isomorphism Fq : L2(2π A, �̆(ξ)dξ) → l2(P+,�) with the
inversion formula given by

f̆ = F−1
q ( f ) = 〈 f ,Φ·〉� =

∑
λ∈P+

f (λ)Φ·(λ)�λ (6.9c)

(where the dot · refers to the suppressed argument). From this perspective, Theorem 5.8 (with
ξ ∈ 2π A) provides the spectral decomposition Fq ◦ E p ◦ F−1

q of the bounded normal discrete differ-

ence operator p̂(Y ) in the Hilbert space l2(P+,�) ∼= l2(P , δ)W0 (where E p refers to the multiplication
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operator (E p f̆ )(ξ) := E p(ξ) f̆ (ξ) on L2(2π A, �̆(ξ)dξ)). For ω a (quasi-)minuscule weight, the explicit

action of the corresponding difference operator m̂ω(Y ) in l2(P+,�) is provided by Corollary 7.2 below.

7. The explicit action of m̂ω(Y ) and associated Pieri formulas

Throughout this section it will be assumed that ω ∈ P+ is (quasi-)minuscule (cf. Appendix B be-
low). By computing the action of m̂ω(Y ) on C(P ) in closed form, Theorem 5.8 gives rise to an explicit
Pieri formula for the Macdonald spherical functions. To describe the action in question let us intro-
duce a similarity transformation ε : C(P ) → C(P ) and a difference operator Mω : C(P ) → C(P ) of the
form (ε f )(λ) := qtλ f (woλ) ( f ∈ C(P ), λ ∈ P ) and

(Mω f )(λ) :=
∑

ν∈W0ω

(
aλ,ν f (λ − ν) + bλ,ν f (λ)

) (
f ∈ C(P ), λ ∈ P

)
, (7.1a)

with

aλ,ν := qw wλ(λ−ν)
qw wλ(λ−ν) wλq−1

wλ
and bλ,ν := ελ,ν

(
1 − q−2

0

)
eq(wλν), (7.1b)

where eq(·) is as defined in Remark 6.3,

ελ,ν :=
{

θ(wλ(λ − ν)) if (λ − ν)+ 	= λ+,

χ(ν) if (λ − ν)+ = λ+,
(7.1c)

θ(μ) := 〈μ+ − μ,ρ∨〉 − �(wμ), and ρ∨ := 1
2

∑
α∈R+ α∨ .

Theorem 7.1. One has that m̂ω(Y ) = εMωε−1 .

Corollary 7.2. The restriction of the action of m̂ω(Y ) to C(P )W0 ∼= C(P+) is given by(
m̂ω(Y ) f

)
(λ) = Uλ,−ω

(
q2) f (λ) +

∑
ν∈W0ω
λ−ν∈P+

Vλ,−ν

(
q2) f (λ − ν)

(
f ∈ C

(
P+)

, λ ∈ P+)
, (7.2a)

with

Vλ,ν

(
q2) := eq(−ν)

∏
α∈R+

〈λ,α∨〉=0
〈ν,α∨〉>0

1 − q2
αeq(α)

1 − eq(α)
(7.2b)

and

Uλ,μ

(
q2) :=

{
0 for μ+ minuscule,∑

ν∈W0μ
eq(ν) − ∑

ν∈W0μ
λ+ν∈P+

Vλ,ν(q2) for μ+ quasi-minuscule. (7.2c)

The diagonalization Theorem 5.8 combined with the symmetric reduction (Corollary 7.2) of the
explicit action of m̂ω(Y ) (Theorem 7.1), immediately produces the following Pieri formula expressing
the multiplicative action of mω in C[P ]W0 in terms of the Macdonald spherical basis pλ := eq(λ)Pλ∗ ,
λ ∈ P+ .
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Corollary 7.3 (Pieri formula). One has that

mω pλ = Uλ,ω

(
q2)pλ +

∑
ν∈W0ω
λ+ν∈P+

Vλ,ν

(
q2)pλ+ν

(
λ ∈ P+)

. (7.3)

The Pieri formula in Corollary 7.3 is a special case of Pieri formulas for the Macdonald spherical
functions obtained via degeneration descending from the level of the Macdonald polynomials [DE].
For root systems of type A and ω minuscule the Pieri formula under consideration amounts to a
classic Pieri formula for the Hall–Littlewood polynomials due to Morris [Mo] (cf. Appendix C below).

Remark 7.4. The factor ελ,ν in the coefficients of Mω (7.1a), (7.1c) takes values in {0,1}. For ω minus-
cule the factor in question vanishes (so bλ,ν = 0) and the coefficient aλ,ν simplifies to q2

w wλ(λ−ν)
.

Remark 7.5. It is manifest from the relations in Corollary 6.2 that the adjoint of m̂ω(Y ) (7.2a)–(7.2c)
in the Hilbert space �2(P+,�) is given by the action of m̂ω∗ (Y ) on �2(P+,�). More generally, it
follows from the unitarity in Theorem 6.1 that the adjoint of m̂ω(Y ) (7.1a), (7.1c) in the Hilbert space
�2(P , δ) is given by the action of m̂ω∗ (Y ) on �2(P , δ). Since ω∗ is (quasi-)minuscule if (and only if) ω
is (quasi-)minuscule, this means that these adjoints are given by the same formulas of Corollary 7.2
and Theorem 7.1, respectively, with ω being replaced by ω∗ . In particular, for ω quasi-minuscule the
operators in question are self-adjoint (as in this situation ω∗ = ω).

Remark 7.6. Corollary 7.2 provides an explicit formula for the discretization of the Laplacian with
delta potential associated with R from Ref. [D] (cf. Remark 5.5).

Remark 7.7. The standard polynomial representation of the affine Hecke algebra in terms of
Demazure–Lusztig operators (dual to our integral-reflection representation I(H)) was extended by
Cherednik to a representation of the double affine Hecke algebra [C,M4]. The representation in ques-
tion contains Dunkl-type q-difference-reflection operators that were used for the construction of
Macdonald’s commuting q-difference operators diagonalized by the Macdonald polynomials [C,M4].
Since Macdonald’s polynomials are a q-deformation of the Macdonald spherical functions [M3], our
difference-reflection representation T̂ (H) is expected to correspond to a suitable degeneration of
Cherednik’s representation of the double affine Hecke algebra (therewith linking the latter represen-
tation to the differential-reflection representation of the graded affine Hecke algebra in Ref. [EOS]).

7.1. Proof of Theorem 7.1

Since �(wo w) = �(wo)− �(w) for any w ∈ W0, it follows that qwo w−1 = qwo q−1
w and T −1

wo w−1 T wo =
T w , whence

qwo w−1

(
I−1

wo w−1 I wo f
)
(λ) = qwo q−1

w (I w f )(λ)
(

f ∈ C(P ), λ ∈ P , w ∈ W0
)
. (7.4)

Combined with Eq. (5.5), this yields the following stability property for w, w ′ ∈ W0 and λ ∈ P+

q−1
w (I w f )(λ) = q−1

w ′ (I w ′ f )(λ) if w
(

w ′)−1 ∈ W0,λ. (7.5)

Let us now abbreviate I(mω(Y )) = ∑
ν∈W0ω

tν as mω(t). In view of the intertwining relations (The-
orem 5.1) and the bijectivity of the intertwining operator J (Theorem 5.6), it is sufficient for proving
the theorem to show that

Jmω(t) = εMωε−1J ,
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or equivalently (since mω(Y ) ∈Z(H)), that

ε−1J I wo mω(t) = Mωε−1J I wo .

Relation (7.4) and stability properties in Eqs. (5.5), (7.5) imply that(
ε−1J I wo f

)
(λ) = qwo q−1

wλ
(I wλ f )(λ+)

(
f ∈ C(P ), λ ∈ P

)
, (7.6)

and thus (using again that mω(Y ) ∈Z(H))(
ε−1J I wo mω(t) f

)
(λ) = qwo q−1

wλ

∑
ν∈W0ω

(I wλ f )
(

wλ(λ − ν)
)
.

That this expression is equal to (Mωε−1J I wo f )(λ) hinges on the identity

aλ,ν

(
ε−1J I wo f

)
(λ − ν) = qwo q−1

wλ

(
(I wλ f )

(
wλ(λ − ν)

) − ελ,ν

(
1 − q−2

0

)
eq(wλν)(I wλ f )(λ+)

)
(7.7)

(combined with Eq. (7.6)). To infer the identity in Eq. (7.7) the following lemmas are instrumental.

Lemma 7.8. For λ ∈ P+ and ν ∈ W0ω, we are in either one of the following two situations: (i) if (λ−ν)+ 	= λ

then wλ−ν ∈ W0,λ and

θ(λ − ν) =
{

1 for ν ∈ R(wλ−ν),

0 for ν /∈ R(wλ−ν),
where R(w) := R+ ∩ w−1(R−)

,

or (ii) if (λ − ν)+ = λ then wλ−νν = −α j for some j ∈ {1, . . . ,n}, moreover, s j wλ−ν ∈ W0,λ , θ(λ − ν) = 0,
R(wλ−ν) = R(s j wλ−ν) ∪ {ν} and q j = q0 .

Before embarking on the proof of this lemma, let us first highlight some crucial (though elemen-
tary) observations. For any λ ∈ P the set R(wλ) is given by

R(wλ) = {
α ∈ R+ ∣∣ 〈

λ,α∨〉
< 0

}
(cf. [M4, Eq. (2.4.4)]) and for any simple root α j ∈ R(wλ) we have that wλs j = ws jλ with �(ws jλ) =
�(wλ) − 1. Given λ ∈ P+ , ν ∈ W0ω and μ = s j(λ − ν) with α j ∈ R(wλ−ν), we are in one of the
following three cases:

(A) 〈λ,α∨
j 〉 = 0 and 〈ν,α∨

j 〉 = 1. Then μ = λ − s jν ∈ λ − W0ω and θ(λ − ν) = θ(μ). (Notice that
s j ∈ W0,λ .)

(B) 〈λ,α∨
j 〉 = 0 and 〈ν,α∨

j 〉 = 2. Then μ = λ − s jν = λ + α j ∈ λ − W0ω and θ(λ − ν) = θ(μ) + 1.
(Notice that s j ∈ W0,λ and ν = α j .)

(C) 〈λ,α∨
j 〉 = 1 and 〈ν,α∨

j 〉 = 2. Then μ = λ and θ(λ − ν) = θ(μ) = 0. (Notice that wλ−ν = s j and
ν = α j .)

It is moreover evident that in the cases (B) and (C), which occur only when ω is quasi-minuscule,
one has that q j = q0 (since α j ∈ W0ω with ω = α0).

Proof of Lemma 7.8. It is sufficient to restrict attention to the case that λ− ν /∈ P+ (as for λ− ν ∈ P+
the lemma is trivial). For a reduced decomposition wλ−ν = s j� · · · s j1 with � = �(wλ−ν) � 1, we write

νk := s jk · · · s j1ν for k = 0, . . . , �
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and

βk := s j1 · · · s jkα jk+1 for k = 0, . . . , � − 1

(with the conventions that ν0 := ν and β0 := α j1 ). This means that

R(wλ−ν) = {β0, . . . , β�−1}

(cf. [M4, (2.2.9)]). It is immediate from the observations (A)–(C) above that the minimal sequence of
weights taking λ − ν to (λ − ν)+ by successive application of the simple reflections in our reduced
decomposition of wλ−ν is either of the form (situation (i)):

λ − ν = λ − ν0
s j1−−→ λ − ν1

s j2−−→ · · · s j�−1−−−→ λ − ν�−1
s j�−→ λ − ν� = (λ − ν)+, (7.8)

or of the form (situation (ii)):

λ − ν = λ − ν0
s j1−−→ λ − ν1

s j2−−→ · · · s j�−1−−−→ λ − ν�−1
s j�−→ λ = (λ − ν)+, (7.9)

because case (C) can at most occur at the last step: λ − ν�−1
s j�−−→ −→(λ − ν)+ (as this case takes us

back to P+). In situation (i) (i.e. case (C) does not occur at the last step) we have that

wλ−ν ∈ W0,λ and (λ − ν)+ 	= λ,

whereas in situation (ii) (i.e. case (C) does occur at the last step) we have that

s j� wλ−ν = s j�−1 · · · s j1 ∈ W0,λ, q j� = q0 and (λ − ν)+ = λ.

Moreover, in the latter situation ν�−1 = α j� , i.e. wλ−νν = −α j� and

ν = (s j� wλ−ν)−1α j� = s j1 · · · s j�−1α j� = β�−1 ∈ R(wλ−ν) \ R(s j� wλ−ν).

It remains to compute θ(λ − ν). Since θ((λ − ν)+) = 0, it is clear from the observations (A)–(C) that
θ(λ − ν) is equal to the number of times case (B) occurs in the above sequences, i.e. the number of
times that 〈

νk,α
∨
jk+1

〉 = 2 for k = 0, . . . , �′ − 1,

with �′ = � in situation (i) and �′ = � − 1 in situation (ii). Since for k = 0, . . . , �′ − 1:〈
νk,α

∨
jk+1

〉 = 2 ⇔ 〈
ν,β∨

k

〉 = 2 ⇔ ν = βk,

it is clear that in situation (i) θ(λ − ν) is equal to 0 or 1 depending whether ν /∈ R(wλ−ν) or ν ∈
R(wλ−ν), respectively, and in situation (ii) θ(λ − ν) = 0 (because now ν = β�′ ). �
Lemma 7.9. For λ ∈ P+ and ν ∈ W0ω, the following explicit formula holds

qwλ−ν (I wλ−ν f )
(
(λ − ν)+

) = f (λ − ν) − θ(λ − ν)
(
1 − q−2

0

)
eq(ν) f (λ). (7.10)
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The proof exploits the elementary identities (for f ∈ C(P ), λ ∈ P , j = 1, . . . ,n)

q j(I j f )(λ) =
{

f (s jλ) = f (λ − α j) if 〈λ,α∨
j 〉 = 1,

f (λ − 2α j) + (1 − q2
j ) f (λ − α j) if 〈λ,α∨

j 〉 = 2
(7.11)

and q−1
j (I j)(s jλ) = f (λ) if 〈λ,α∨

j 〉 = 0 (cf. Eq. (7.5)).

Proof of Lemma 7.9. The proof of the lemma employs induction on �(wλ−ν) starting from the trivial
base λ − ν ∈ P+ . Let �(wλ−ν) > 1 and s j (1 � j � n) be such that

�(wλ−ν s j) = �(wλ−ν) − 1

(i.e. α j ∈ R(wλ−ν)). From the observations following the statement of Lemma 7.8 it is clear that
wλ−ν s j = ws j(λ−ν) with either s j(λ − ν) = λ − s jν (cases (A) and (B)) or s j(λ − ν) = λ(∈ P+)

(case (C)). In the latter case wλ−ν = s j and the statement of the lemma reduces to the first case
of Eq. (7.11) (with λ replaced by λ − ν). Moreover, in the cases (A) and (B) invoking of the induction
hypothesis yields

qwλ−ν (I wλ−ν f )
(
(λ − ν)+

) = qwλ−s jν
q j(I wλ−s jν

I j f )
(
(λ − s jν)+

)
= q j(I j f )(λ − s jν)

− q jθ(λ − s jν)
(
1 − q−2

0

)
eq(s jν)(I j f )(λ) (7.12)

(where we have used that (λ − s jν)+ = (λ − ν)+). In case (A), one has that

q j(I j f )(λ − s jν) = f (λ − ν)

(by the first case of Eq. (7.11) with λ replaced by λ − s jν) and

(I j f )(λ) = q j f (λ)

(as s j ∈ W0,λ), which completes the induction step for this situation upon observing that θ(λ− s jν) =
θ(λ − ν), eq(s jν) = eq(ν)q

−2〈ν,α∨
j 〉

j = eq(ν)q−2
j . In case (B) we have that θ(λ − s j v) = 0 (since 0 �

θ(λ − s j v) < θ(λ − ν) � 1 (cf. Lemma 7.8)) and

q j(I j f )(λ − s jν) = f (λ − ν) − q2
0

(
1 − q−2

0

)
f (λ)

(by the second case of Eq. (7.11) with λ replaced by λ − s jν and the fact that q j = q0), which com-
pletes the induction step for this situation upon observing that θ(λ − ν) = 1 and eq(ν) = eq(α j) =
q2

j = q2
0 (as eq(α j) = eq(−α j)q

2〈α j ,α
∨
j 〉

j = eq(−α j)q4
j ). �

We are now in a position to verify Eq. (7.7) by making the action of the operator on the LHS
explicit:

(
ε−1J I wo f

)
(λ − ν)

Eq. (7.6)= qwo q−1
wλ−ν

(I wλ−ν f )
(
(λ − ν)+

)
Eq. (7.5)= qwo q−1

w w (I w w (λ−ν) wλ f )
(
(λ − ν)+

)
.

wλ(λ−ν) λ λ
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For (λ − ν)+ 	= λ+ , Lemma 7.8 (with λ and ν replaced by λ+ and wλν) ensures that w wλ(λ−ν) ∈
W0,λ+ , whence

�(w wλ(λ−ν)wλ) = �(w wλ(λ−ν)) + �(wλ)

and we may rewrite the expression in question as

qwo q−1
w wλ(λ−ν) wλ

(I w wλ(λ−ν)
I wλ f )

(
(λ − ν)+

)
Lem. 7.9= a−1

λ,νqwo q−1
wλ

(
(I wλ f )

(
wλ(λ − ν)

) − θ
(

wλ(λ − ν)
)(

1 − q−2
0

)
eq(wλν)(I wλ f )(λ+)

)
,

which proves Eq. (7.7) when (λ − ν)+ 	= λ+ . Similarly, for (λ − ν)+ = λ+ we rewrite the expression
under consideration as

qwo q−1
w wλ(λ−ν) wλ

(I w wλ(λ−ν) wλ f )(λ+)

Eq. (5.4a)= qwo q−1
w wλ(λ−ν) wλ

(
(I j Is j w wλ(λ−ν) wλ f )(λ+)

− χ
(
(s j w wλ(λ−ν)wλ)

−1α j
)(

q j − q−1
j

)
(Is j w wλ(λ−ν) wλ f )(λ+)

)
= a−1

λ,νqwo q−1
wλ

(
(I wλ f )

(
wλ(λ − ν)

) − χ(ν)
(
1 − q−2

0

)
q2

w wλ(λ−ν)
(I wλ f )(λ+)

)
.

In the last step it was used that for j chosen as in Lemma 7.8 (with λ and ν replaced by λ+ and
wλν), one has that

(s j w wλ(λ−ν)wλ)
−1α j = ν, s j w wλ(λ−ν) ∈ W0,λ+ , θ

(
wλ(λ − ν)

) = 0,

and q j = q0. It thus follows for the first term that

(I j Is j w wλ(λ−ν) wλ f )(λ+) = (I w wλ(λ−ν)
I wλ f )

(
(λ − ν)+

) Lem. 7.9= q−1
w wλ(λ−ν)

(I wλ f )
(

wλ(λ − ν)
)

and for the second term that

(Is j w wλ(λ−ν) wλ f )(λ+)
Eq. (7.5)= qw wλ(λ−ν)

q−1
0 (I wλ f )(λ+),

where we have exploited that

�(s j w wλ(λ−ν)wλ) = �(s j w wλ(λ−ν)) + �(wλ) = �(w wλ(λ−ν)) + �(wλ) − 1.

The case (λ−ν)+ = λ+ of the identity in Eq. (7.7) now follows from the fact that q2
w wλ(λ−ν)

= eq(wλν).

Indeed, for any w ∈ W0 and μ ∈ P one has that〈
w−1μ,ρ∨〉 = 〈

μ,ρ∨〉 + ∑
α∈R(w)

〈
w−1μ,α∨〉

(7.13a)

and

eq
(

w−1μ
) = eq(μ)

∏
α∈R(w)

q2〈w−1μ,α∨〉
α (7.13b)
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(cf. [M4, Eq. (1.5.3)]), and

qw =
∏

α∈R(w)

qα (7.14)

(cf. Eq. (2.5)). Lemma 7.8 (with λ and ν replaced by λ+ and wλν) and properties (7.13a), (7.13b) with
μ = α j = −w wλ(λ−ν)wλν and w = s j w wλ(λ−ν) entail that

eq(wλν) = q2
0

∏
α∈R(s j w wλ(λ−ν))

q2〈wλν,α∨〉
α (7.15)

and

�(w wλ(λ−ν))
θ
(

wλ(λ−ν)
)=0= 〈

wλν,ρ∨〉
= 1 +

∑
α∈R(s j w wλ(λ−ν))

〈
wλν,α∨〉 = 1 + �(s j w wλ(λ−ν)). (7.16)

Since 〈wλν,α∨〉 � 1 for α ∈ R(s j w wλ(λ−ν)) in view of Lemma 7.8, it follows from Eq. (7.16) that in
fact 〈wλν,α∨〉 = 1 for α ∈ R(s j w wλ(λ−ν)). We thus conclude from Eq. (7.15) that

eq(wλν) = q2
0

∏
α∈R(s j w wλ(λ−ν))

q2
α

Lem. 7.8=
∏

α∈R(w wλ(λ−ν))

q2
α

Eq. (7.14)= q2
w wλ(λ−ν)

.

7.2. Proof of Corollary 7.2

It is immediate from Theorem 7.1 that the action of m̂ω(Y ) reduces to an action on C(P )W0 ∼=
C(P+) of the form in Eq. (7.2a) with

Vλ,−ν

(
q2) = qtλq−1

tλ−ν

∑
ν ′∈W0ω

(λ−ν ′)+=λ−ν

q2
wλ−ν′

Lem. 7.8= eq(ν)
∑

μ∈W0,λ(λ−ν)

q2
wμ

= eq(ν)W λ−ν
0,λ

(
q2) = eq(ν)W0,λ

(
q2)/(W0,λ ∩ W0,λ−ν)

(
q2) (7.17)

and

Uλ,−ω

(
q2) =

∑
ν∈W0ω

(λ−ν)+=λ

q2
wλ−ν

+ (
1 − q−2

0

) ∑
ν∈W0ω

ελ,νeq(ν)

Lem. 7.8=
∑

ν∈W0ω
(λ−ν)+=λ

q2
wλ−ν

+ (
1 − q−2

0

) ∑
ν∈W0ω

wλ−νλ=λ

θ(λ − ν)eq(ν). (7.18)

This proves Corollary 7.2 with Vλ,−ν(q2) and Uλ,−ω(q2) given by Eqs. (7.17) and (7.18), respec-
tively. The coefficient Vλ,ν(q2) can be recasted in the form given by Eq. (7.2b) upon invoking
Macdonald’s product formula (6.5) and the coefficient Uλ,ω(q2) can be rewritten in the form given
by Eq. (7.2c) upon comparing the corresponding Pieri formula of the form in Corollary 7.3 with
[DE, Eqs. (2.3a)–(2.3c)].
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Appendix A. Braid relation for A2

In this appendix we verify the braid relation (3.3b) for the root system A2 via a direct computation.
For the root systems B2 and G2 the corresponding computation is analogous (though increasingly
tedious).

For R = A2 the braid relation reads:

T̂1 T̂2 T̂1 = T̂2 T̂1 T̂2, (A.1a)

with

T̂1 = q + χ1(s1 − 1), T̂2 = q + χ2(s2 − 1). (A.1b)

Multiplication of the product

T̂1 T̂2 = q2 + qχ1(s1 − 1) + qχ2(s2 − 1) + χ1(s1 − 1)χ2(s2 − 1)

from the right by T̂1 produces

T̂1 T̂2 T̂1 = q3 + 2q2χ1(s1 − 1) + q2χ2(s2 − 1) + χ1(s1 − 1)χ2(s2 − 1)χ1(s1 − 1)

+ qχ1(s1 − 1)χ1(s1 − 1) + qχ1(s1 − 1)χ2(s2 − 1) + qχ2(s2 − 1)χ1(s1 − 1).

Swapping the indices 1 and 2 yields a corresponding formula for the product T̂2 T̂1 T̂2. By comparing
both formulas it is seen that the braid relation (A.1a) amounts to the following identity:

q2χ1(s1 − 1) + qχ1(s1 − 1)χ1(s1 − 1) + χ1(s1 − 1)χ2(s2 − 1)χ1(s1 − 1)

= q2χ2(s2 − 1) + qχ2(s2 − 1)χ2(s2 − 1) + χ2(s2 − 1)χ1(s1 − 1)χ2(s2 − 1). (A.2)

Upon acting with both sides of Eq. (A.2) on an arbitrary function f : P → C, it is sufficient to verify
the resulting equality evaluated at the points of a finite W0-invariant set of weights representing the
facets of the Coxeter complex for W0 (in view of Lemma 3.2). A convenient choice for such a set of
facet representatives is displayed in Fig. 1 and the corresponding values confirming the equality of
both sides of the identity at these points are collected in Fig. 2, where

f0 := f (ω1 + ω2) + f (ω1 − 2ω2) + f (−2ω1 + ω2)

− f (−ω1 − ω2) − f (−ω1 + 2ω2) − f (2ω1 − ω2). (A.3)

Appendix B. Affine intertwining relations

In this appendix we prove the affine intertwining relations in Lemma 5.3 (therewith completing
the proof of the intertwining property in Theorem 5.1).
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Fig. 1. The set W0{0,ω1,ω2,ω1 +ω2} consisting of 13 weights representing the facets of the Coxeter complex of W0 for R = A2.

λ LHS = RHS

0,±ω1,±ω2,±(ω1 − ω2) 0
ω1 + ω2 −q−3 f0

−ω1 − ω2 q3 f0

ω1 − 2ω2, −2ω1 + ω2 −qf0

−ω1 + 2ω2, 2ω1 − ω2 q−1 f0

Fig. 2. Values of both sides of Eq. (A.2) upon acting on an arbitrary function f : P → C and evaluation at the points λ of
W0{0,ω1,ω2,ω1 + ω2}. (Here f0 is given by Eq. (A.3).)

B.1. Preparations: some properties related to (quasi-)minuscule weights

The proof of the affine intertwining relations is based on properties of certain special elements
in W and H associated with the minuscule and quasi-minuscule weights. Let us recall in this
connection that the minuscule weights ω are characterized by the property that 0 � 〈ω,α∨〉 � 1
for all α ∈ R+ , whereas the quasi-minuscule weight ω = α0 is characterized by the property that
0 � 〈ω,α∨〉 � 2 for all α ∈ R+ with the upper bound 2 being reached only once (viz. for α = α0).

Lemma B.1. Let μ ∈ P .

(i) If ω ∈ P+ is minuscule, then μ+ + wμω ∈ P+ .
(iia) If μ+ + wμα0 /∈ P+ , then wμα0 = −α j for some 1 � j � n and moreover 〈μ+,α∨

j 〉 = 1.

(iib) If μ+ + wμα0 ∈ P+ with wμα0 ∈ R− , then 〈μ+, wμα∨
0 〉� −2.

Proof. (i) For any 1 � j � n, one has that 〈μ+ + wμω,α∨
j 〉 � 〈μ+,α∨

j 〉 − 1 � −1. The statement
now amounts to the observation that lower bound −1 cannot be reached. Indeed, if 〈μ+,α∨

j 〉 = 0

then s j ∈ Wμ+ , whence �(s j wμ) = �(wμ) + 1, i.e. w−1
μ α j ∈ R+ , and thus 〈μ+ + wμω,α∨

j 〉 �
〈wμω,α∨

j 〉� 0.
(iia) By definition the assumption implies that 〈μ+ + wμα0,α

∨
j 〉 < 0 for some 1 � j � n. Hence

〈wμα0,α
∨
j 〉 = −2 with 0 � 〈μ+,α∨

j 〉 � 1 or 〈wμα0,α
∨
j 〉 = −1 with 〈μ+,α∨

j 〉 = 0. By repeating the
argument of part (i), it is seen that 〈μ+,α∨

j 〉 cannot be zero. It thus follows that 〈μ+,α∨
j 〉 = 1 and

that 〈wμα0,α
∨
j 〉 = −2, i.e. wμα0 = −α j .

(iib) Immediate from the estimate 〈μ+, wμα∨
0 〉 = 〈μ+ + wμα0, wμα∨

0 〉 − 2 �−2. �
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Lemma B.2. (See [M4].) Let w ∈ W0 .

(i) If ω ∈ P+ is minuscule, then

T −1
w Y ωT −1

vω
= Y w−1ωT −1

vω w .

(ii) If s = sα0,0 , then

T −1
w T sign(w−1α0)

0 = Y w−1α0 T −1
sw .

Proof. Both relations are a consequence of [M4, (3.3.2)]. More specifically, (i) and (ii) amount to [M4]
(3.3.3) and (3.3.6), respectively. �
B.2. Proof of uJ =J Iu

It is sufficient to verify the intertwining relation for u = uω with ω ∈ P+ minuscule (cf. Eq. (2.3)).
Let f ∈ C(P ) and let μ,ω ∈ P with ω minuscule. By definition, we have that

(uωJ f )(woμ) = qtν qwν

(
I−1

w−1
ν

f
)
(ν+) with ν := u−1

ω woμ.

Upon setting w̃ := wμwo v−1
ω , it is readily seen that w̃ν = μ+ + wμω∗ = ν+ in view of Lemma B.1

part (i). Hence, invoking of Eq. (5.5) infers that

(uωJ f )(woμ) = qtν qw̃
(

I−1
w̃−1 f

)
(ν+).

Similarly, we have that

(J Iuω f )(woμ) = (
J tω I−1

vω
f
)
(woμ)

= qtwoμqw woμ

(
I−1

w−1
woμ

tω I−1
vω

f
)
(μ+)

= qtμqwμ wo

(
I−1

wo w−1
μ

tω I−1
vω

f
)
(μ+)

(where in the last step we have again applied Eq. (5.5)). The stated equality now follows because

qtν qw̃ = qtμ++wμω∗ qvω wo w−1
μ

(i)= qtμ+ qwo w−1
μ

= qtμqwμ wo

and

(
I−1

w̃−1 f
)
(ν+) = (

twμwoω I−1
vω wo w−1

μ
f
)
(μ+)

(ii)= (
I−1

wo w−1
μ

tω I−1
vω

f
)
(μ+),

where in steps (i) and (ii) we relied on the relation

vω wo w−1
μ tμ++wμω∗ = u−1

ω wo w−1
μ tμ+

(with uω ∈ Ω) and Lemma B.2 part (i) with w = wo w−1
μ , respectively.
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B.3. Proof of T̂0J =J I0

Let f ∈ C(P ) and let μ ∈ P . By definition (and application of Eq. (5.5)) it is immediate that

(T̂0J f )(woμ) = q0qtμqwμ wo

(
I−1

wo w−1
μ

f
)
(μ+)

+ χ0(woμ)
(
qtν qwν

(
I−1

w−1
ν

f
)
(ν+) − qtμqwμ wo

(
I−1

wo w−1
μ

f
)
(μ+)

)
(B.1)

and

(J I0 f )(woμ) = qtμqwμ wo

(
I−1

wo w−1
μ

I0 f
)
(μ+)

(= qtμqwμ wo (I−1
wo w−1

μ
tα0 I−1

s f )(μ+)), with ν := s0 woμ = swo(μ + α0) and s := sα0,0, respectively. We

will distinguish three disjoint situations.
Case (A): μ+ + wμα0 /∈ P+ . By Lemma B.1 part (iia) we have in this case that wμα0 = −α j with

〈μ+,α∨
j 〉 = 1 for some 1 � j � n. But then q0 = q j and woμ ∈ V 0, i.e. s0(woμ) = woμ, χ0(woμ) = 1,

ν+ = μ+ . The stated equality thus reduces to(
I−1

wo w−1
μ

I0 f
)
(μ+) = q0

(
I−1

wo w−1
μ

f
)
(μ+)

(because the terms within the bracket on the second line of Eq. (B.1) now cancel each other
by Eq. (5.5)). In view of Lemma B.2 part (ii) (with w = wo w−1

μ ) this amounts to the equation

(tα j I−1
swo w−1

μ
f )(μ+) = q0(I−1

wo w−1
μ

f )(μ+). Since swo w−1
μ = wo w−1

μ s j , �(wo w−1
μ s j) = �(wo w−1

μ )+1, and

q0 = q j , the latter equation can be rewritten as(
tα j I−1

j g
)
(μ+) = q j g(μ+) with g := I−1

wo w−1
μ

f .

This last equality is immediate (for any g ∈ C(P )) from the quadratic relation I−1
j = I j − (q j − q−1

j )

together with the definition of I j (taking into account that s jμ+ = t−1
α j

μ+).

From now on we will assume that μ+ + wμα0 ∈ P+ (i.e. we are not in case (A)). Then—upon
setting w̃ := wμwos—it is clear that w̃ν = μ+ + wμα0 = ν+ . Hence, application of Eq. (5.5) allows us
to rewrite qwν (I−1

w−1
ν

f )(ν+) as

qw̃
(

I−1
w̃−1 f

)
(ν+) = qw̃

(
twμ woα0 I−1

swo w−1
μ

f
)
(μ+).

Combining this with the relation

qw̃qtν = qwμ wo qtμq
sign(wμα0)

0 (B.2)

(proven below) and division by common factors turns Eq. (B.1) into

q−1
tμ q−1

wμ wo
(T̂0J f )(woμ)

= q0
(

I−1
wo w−1

μ
f
)
(μ+) + χ0(woμ)

(
q

sign(wμα0)

0

(
twμwoα0 I−1

swo w−1
μ

f
)
(μ+) − (

I−1
wo w−1

μ
f
)
(μ+)

)
, (B.3)

which must now be shown to coincide with (I−1
sw w−1 I0 f )(μ+).
o μ
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Case (B): wμα0 ∈ R− (and μ+ + wμα0 ∈ P+). By Lemma B.1 part (iib) we have in this case that
〈μ+, wμα∨

0 〉 � −2, whence χ0(woμ) = q0. The stated equality therefore reduces to

(
twμ woα0 I−1

swo w−1
μ

f
)
(μ+) = (

I−1
wo w−1

μ
I0 f

)
(μ+),

which follows from Lemma B.2 part (ii) (with w = wo w−1
μ ).

Case (C): wμα0 ∈ R+ (and μ+ + wμα0 ∈ P+). Now χ0(woμ) = q−1
0 , whence the stated equality

becomes (
q0 − q−1

0

)(
I−1

wo w−1
μ

f
)
(μ+) + (

twμ woα0 I−1
swo w−1

μ
f
)
(μ+) = (

I−1
wo w−1

μ
I0 f

)
(μ+).

Applying the quadratic relation I0 = I−1
0 + (q0 − q−1

0 ) rewrites this as

(
twμwoα0 I−1

swo w−1
μ

f
)
(μ+) = (

I−1
wo w−1

μ
I−1
0 f

)
(μ+),

which again follows by Lemma B.2 part (ii) (with w = wo w−1
μ ).

It remains to verify the above relation in Eq. (B.2) for the length multiplicative function. Indeed,
straightforward manipulations reveal that

qw̃qtν = qswo w−1
μ

qtμ++wμα0

(i)= qs0 wo w−1
μ tμ+

(ii)= qwo w−1
μ

qtμ+ q
sign(wμα0)

0 = qwμ wo qtμq
sign(wμα0)

0 ,

where in steps (i) and (ii) we relied on the elementary relations

s0 wo w−1
μ tμ+ = swo w−1

μ tμ++wμα0

and

�
(
s0 wo w−1

μ tμ+
) = �

(
wo w−1

μ tμ+
) + sign(wμα0),

respectively.

Appendix C. Explicit formulas for R = AN−1

In this appendix we exhibit explicit formulas describing the differential-reflection representation
and the integral-reflection representation for the root system AN−1, as well as the corresponding
discrete difference operators diagonalized by the Hall-Littlewood polynomials. To facilitate their direct
use in the theory of symmetric functions it will be convenient to employ a central extension of the
AN−1-type extended affine Weyl group and its Hecke algebra (associated with GLN rather than SLN ).

C.1. Affine permutation group

For R = AN−1 the finite Weyl group amounts to the permutation group SN and the corresponding
extended affine Weyl group is given by the affine permutation group W = S N �ZN , which acts on RN

by permuting the elements of the standard basis e1, . . . , eN and translating over vectors in the integral
lattice, i.e. for w ∈ SN , λ = (λ1, . . . , λN ) ∈ ZN and x = (x1, . . . , xN ) ∈RN :
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wx = (xw−1(1), . . . , xw−1(N)), (C.1a)

tλx = (x1 + λ1, . . . , xN + λN). (C.1b)

The group W is generated by the finite transpositions

s j x = (x1, . . . , x j−1, x j+1, x j, x j+2, . . . , xN ) (1 � j < N) (C.2a)

and the affine generator

ux = (xN + 1, x1, . . . , xN−1) (C.2b)

(so uN = te1+···+en lies in the center of W ). The translations over the vectors of the standard basis can
be expressed in terms of these generators as:

te j = s j−1 · · · s2s1usN−1sN−2 · · · s j (1 � j � N). (C.3)

C.2. Affine Hecke algebra

The extended affine Hecke algebra H associated with W is the complex associative algebra gener-
ated by the invertible elements T1, . . . , T N−1 and Tu subject to the relations:

(T j − q)
(
T j + q−1) = 0 (1 � j < N), (C.4a)

T j Tk = Tk T j (1 � j < k − 1 < N − 1), (C.4b)

T j T j+1T j+1 = T j+1T j T j+1 (1 � j < N − 1), (C.4c)

Tu T j = T j+1Tu (1 � j < N − 1), (C.4d)

T N
u T j = T j T

N
u (1 � j < N). (C.4e)

The Bernstein–Lusztig–Zelevinsky basis for H is in this situation of the form T w Y λ (w ∈ SN ,
λ ∈ ZN ), where T w := Ts j1

· · · Ts j�
for w = s j1 · · · s j� a reduced expression (� = �(w)) and Y λ :=

Y λ1
1 . . . Y λN

N with (cf. Eq. (C.3))

Y j := T −1
j−1 · · · T −1

2 T −1
1 Tu T N−1T N−2 · · · T j+1T j (1 � j � N) (C.5)

pairwise commutative.

C.3. Difference-reflection representation

For 1 � j < N , let T̂ j : C(ZN ) → C(ZN ) be defined as

(T̂ j f )(λ) =
⎧⎨⎩ (q − q−1) f (λ) + q−1 f (s jλ) if λ j > λ j+1,

qf (λ) if λ j = λ j+1,

qf (s jλ) if λ j < λ j+1

(C.6)

( f ∈ C(ZN ), λ ∈ ZN ). The difference-reflection representation h �→ T̂ (h) (h ∈H) of the extended affine
Hecke algebra on C(ZN ) is determined by the assignment T j �→ T̂ j (1 � j < N) and Tu �→ u.
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C.4. Integral-reflection representation

For 1 � j < N , let I j : C(ZN ) → C(ZN ) be defined as

(I j f )(λ) = qf (s jλ) + (
q − q−1)

×

⎧⎪⎨⎪⎩
−∑λ j−λ j+1

l=1 f (λ1, . . . , λ j − l, λ j+1 + l, . . . , λN) if λ j > λ j+1,

0 if λ j = λ j+1,∑λ j+1−λ j−1
l=0 f (λ1, . . . , λ j + l, λ j+1 − l, . . . , λN) if λ j < λ j+1

(C.7)

( f ∈ C(ZN ), λ ∈ ZN ). The integral-reflection representation h �→ I(h) (h ∈ H) of the extended affine
Hecke algebra on C(ZN ) is determined by the assignment T j �→ I j (1 � j < N) and Y λ �→ tλ (λ ∈ ZN ).

C.5. Central difference operators

The elementary symmetric polynomials

mr(Y ) :=
∑

J⊂{1,...,N}
| J |=r

∏
j∈ J

Y j (r = 1, . . . , N) (C.8)

lie in the center of H. The explicit action in C(ZN ) of the corresponding operators m̂1(Y ), . . . ,m̂N(Y )

under the difference-reflection representation is of the form:

m̂r(Y ) = εMrε
−1 (r = 1, . . . , N), (C.9a)

with ε : C(ZN ) → C(ZN ) and Mr : C(ZN ) → C(ZN ) given by

(ε f )(λ1, . . . , λN) = q2〈ρ,λ+〉 f (λN , λN−1, . . . , λ1), (C.9b)

(Mr f )(λ) =
∑

J⊂{1,2,...,N}
| J |=r

q2�(w wλ(λ−e J )) f (λ − e J ) (C.9c)

( f ∈ C(ZN ), λ ∈ ZN ). Here ρ := 1
2 (N − 1, N − 3, . . . ,3 − N,1 − N), λ+ is obtained from λ by reorder-

ing the components of λ in (weakly) decreasing order, wλ denotes the shortest permutation in SN

taking λ to λ+ , and e J := ∑
j∈ J e j .

The restriction of the action of m̂r(Y ) to C(ZN )SN � C(ZN
�) with

ZN
� := {

λ ∈ ZN
∣∣ λ1 � · · ·� λN

}
is given by

(
m̂r(Y ) f

)
(λ) =

∑
J⊂{1,2,...,N}, | J |=r

λ−e J ∈ZN
�

Vλ, J c
(
q2) f (λ − e J )

(
f ∈ C

(
ZN
�

)
, λ ∈ ZN

�
)
, (C.10a)
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where J c := {1, . . . , N}\ J and

Vλ, J
(
q2) := q−2〈ρ,e J 〉 ∏

1�k<l�N
k∈ J ,l∈ J c

λk=λl

1 − q2(l−k+1)

1 − q2(l−k)
. (C.10b)

The diagonal action of m̂r(Y ) on the Hall–Littlewood basis entails the following Pieri formula:

mr pλ =
∑

J⊂{1,2,...,N}, | J |=r
λ+e J ∈ZN

�

Vλ, J
(
q2)pλ+e J (r = 1, . . . , N) (C.11)

for the Hall–Littlewood polynomials

pλ = q2〈ρ,λ〉 ∑
w∈S N

xwλ
∏

1�k<l�N

xwk − q2xwl

xwk − xwl

(
λ ∈ ZN

�
)
, (C.12)

where xμ := xμ1
1 · · · xμN

N (μ ∈ ZN ). This Pieri formula amounts to a classic Pieri formula for the Hall-
Littlewood polynomials due to Morris [Mo].
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