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Abstract

We introduce a representation of the double affine Hecke algebra at the critical level q = 1 in terms of
difference-reflection operators and use it to construct an explicit integrable discrete Laplacian on the Weyl
alcove corresponding to an element in the center. The Laplacian in question is to be viewed as an integrable
discretization of the conventional Laplace operator on Euclidean space perturbed by a delta-potential sup-
ported on the reflection hyperplanes of the affine Weyl group. The Bethe Ansatz method is employed to
show that our discrete Laplacian and its commuting integrals are diagonalized by a finite-dimensional basis
of periodic Macdonald spherical functions.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

It is well-known that the spectral problem for the bosonic one-dimensional n-particle
Schrödinger operator with pairwise delta-potential interactions (the Lieb–Liniger model) can be
solved by means of the coordinate Bethe Ansatz method [36,44,4]. In this approach, the eigen-
functions of the model are expressed as a linear combination of plane waves with expansion co-
efficients that are determined from the eigenvalue equation. In the repulsive coupling-parameter
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regime, the proof of the orthogonality and completeness of these Bethe eigenfunctions hinges on
the Plancherel formula for the Fourier transform [20,21]. In the case of periodic boundary condi-
tions, i.e. with particles moving on a circle rather than along a straight line, the discretization of
the spectrum is described through a system of algebraic equations for the spectral parameter that
are commonly referred to as the Bethe Ansatz equations. In the repulsive regime the solutions of
these equations are characterized as minima of a family of strictly convex Morse functions [57]
and the orthogonality and completeness of the associated eigenfunctions were demonstrated by
means of the algebraic Bethe Ansatz formalism [15]. Previously, the algebraic Bethe Ansatz
formalism had already been applied successfully in the computation of the quadratic norms of
the Bethe eigenfunctions [32] therewith confirming a remarkable norm formula conjectured by
Gaudin [23]. For an overview of the extensive literature regarding the Bethe Ansatz solution
of the one-dimensional bosonic n-particle model with pairwise delta-potential interactions the
reader is referred to the standard texts [23,33,43,55,54]. Among important recent developments
stand out: the discovery of integrable quantum models with particles on the line interacting pair-
wise through generalized point interactions involving combinations of δ and δ′ potentials [1,
27]; ab initio approaches for the construction of the time propagator for the Lieb–Liniger model
(i.e. the fundamental solution of the time-dependent Schrödinger equation) avoiding a priori
knowledge concerning the Bethe Ansatz eigenfunctions (and their completeness) [56,50,2]; novel
methods providing an in-depth analysis of the orthogonality, normalization, and completeness of
the Bethe wave functions (i.e. the Plancherel formula) for the Lieb–Liniger model on the line in
the much harder attractive regime [16,50] simplifying previous discussions in [48] and [28].

A fundamental observation made by Gaudin revealed that Lieb and Liniger’s solution method
via a Bethe Ansatz applies to a much wider class of Schrödinger operators involving delta-
potentials that are supported on the reflection hyperplanes of crystallographic Coxeter groups
(i.e. the finite and affine Weyl groups) [22]. From this perspective, the original one-dimensional
bosonic n-particle model considered by Lieb and Liniger corresponds to the special situation
in which the Coxeter group amounts to the symmetric group in the non-periodic case and to
the affine symmetric group in the case of periodic boundary conditions. An elegant construction
in terms of integral-reflection operators due to Gutkin and Sutherland led to an explicit inter-
twining operator relating these Schrödinger operators with delta-potentials to the free Laplacian,
therewith demonstrating the integrability of the quantum models in question [26,25]. It turns out
that in the case of a finite Weyl group the integral-reflection operators of Gutkin and Suther-
land give rise to a representation of a degenerate affine Hecke algebra, a viewpoint that proved
to be useful for determining the Plancherel formula for the corresponding eigenfunction trans-
form both in the repulsive and in the attractive coupling parameter regime [28]. In the case of
affine Weyl groups the integral-reflection operators give rise to a representation of a trigonomet-
ric degenerate double affine Hecke algebra at critical level, and in both cases (finite and affine)
the Schrödinger operator and its commuting quantum integrals can be interpreted as central el-
ements of this degenerate (double) affine Hecke algebra represented alternatively in terms of
Dunkl-type differential-reflection operators (that arise as images of the directional derivatives
under the Gutkin–Sutherland intertwining operator) [18]. Even though the completeness of the
Bethe Ansatz eigenfunctions for the delta-potential models associated with affine Weyl groups
is known in the repulsive parameter regime [17], a complete proof establishing their orthog-
onality and closed norm formulae generalizing the corresponding results of Dorlas [15] and
Korepin [32], respectively, in the case of the affine symmetric group is not yet available for gen-
eral affine Weyl groups. In [17] a conjectural Gaudin-type formula for the quadratic norms of
the Bethe Ansatz eigenfunctions was formulated and in [5] the correctness of this conjecture was
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confirmed on a case by case basis for small Weyl groups (up to rank 3). The idea of this case by
case test of the norm conjecture is to reduce its proof to the verification of an elementary (but
tedious) algebraic identity, which is then readily checked by brute force for small Weyl groups
with the aid of symbolic computer algebra.

In [28] it was pointed out that the Bethe eigenfunctions of Gaudin’s delta-potential models
with finite Weyl group symmetry are degenerations of the Macdonald spherical functions that
arise in the harmonic analysis of symmetric spaces of simple Lie groups over p-adic fields [37,
38,45]. This connection was explored further in [10], where it was shown that the Macdon-
ald spherical functions themselves can be interpreted as the Bethe Ansatz eigenfunctions of a
discrete Laplacian associated with the finite Weyl group. The transition from the Macdonald
spherical functions to the Bethe eigenfunctions of the delta-potential model corresponds in this
respect to a continuum limit in which the difference step size of the discrete Laplacian tends
to zero. For the (from the point of view of mathematical physics most relevant) special case in
which the Weyl group amounts to the symmetric group, the (finite-dimensional) spectral prob-
lem of the corresponding discrete Laplacian with periodic boundary conditions (thus passing
from permutation-symmetry to affine permutation-symmetry) was studied in [11]. The periodic
discrete quantum model in question constitutes an integrable discretization of the original quan-
tum n-particle delta-potential model on the circle introduced by Lieb and Liniger and can be
solved in a similar way via the Bethe Ansatz method. This model turns out to provide a concrete
quantum-mechanical description of a class of integrable systems originating from (the crystal ba-
sis for) the quantum affine algebra Uq ŝl(n) [34, Sec. 7]. The orthogonality of the corresponding
Bethe Ansatz wave functions amounts to a novel system of finite-dimensional discrete orthogo-
nality relations for the Hall–Littlewood polynomials (as the Macdonald spherical functions are
usually referred to when the Weyl group equals the symmetric group) [12].

Recently, an explicit unitary representation of the affine Hecke algebra in terms of difference-
reflection operators was introduced for which the action of the center is diagonal on the basis
of Macdonald spherical functions [13]. The discrete Laplacian with finite Weyl-group symmetry
studied in [10] corresponds in this representation to a specific central element of the affine Hecke
algebra associated with a (quasi-)minuscule weight. In other words, in the representation of [13]
the center of the affine Hecke algebra provides a complete algebra of commuting quantum inte-
grals for the discrete Laplacian in [10]. The affine Hecke algebra representations in [13] are the
discrete counterparts of the degenerate affine Hecke algebra representations in [28,18] containing
Gaudin’s delta-potential models with finite Weyl group symmetry. The aim of the present paper
is to lift the construction in [13] from finite Weyl groups to affine Weyl groups so as to enable
dealing with periodic boundary conditions. In the very special case of the affine Weyl group of
rank one such a construction was presented recently in [14].

Specifically, we introduce a representation of the double affine Hecke algebra at the crit-
ical level q = 1 in terms of difference-reflection operators and use it to construct explicit
discrete Laplacians on the Weyl alcove corresponding to central elements associated with the
(quasi-)minuscule weights. (This algebra is not to be confused with the trigonometric degen-
erate double affine Hecke algebra represented by the Dunkl operators for the trigonometric
Calogero–Sutherland system diagonalized by the Heckman–Opdam multivariate Jacobi poly-
nomials [47,46], or with the q → 1 degenerate double affine Hecke algebra represented by the
Dunkl–Cherednik type operators for the confined rational Ruijsenaars system with hyperoctahe-
dral symmetry diagonalized by the multivariate Wilson polynomials [24,8,9].) The Bethe Ansatz
method is used to show that our Laplacians are diagonalized by a finite-dimensional basis of peri-
odic Macdonald spherical functions. When the affine Weyl group is equal to the affine symmetric
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group, this reproduces the discrete Laplacians with periodic boundary conditions introduced
in [11] together with the Bethe Ansatz solution. For arbitrary affine Weyl groups, the present
construction provides a discrete counterpart of the representations of the trigonometric degener-
ate double affine Hecke algebra at critical level in [18] governing Gaudin’s delta-potential models
with periodic boundary conditions.

It is well-known that the Macdonald spherical functions are limiting cases of the Macdonald
polynomials [40,41]. It is therefore expected that the difference-reflection representation of the
affine Hecke algebra in [13] interpolates between the Dunkl-type differential-reflection repre-
sentation of the degenerate affine Hecke algebra in [18] and Cherednik’s basic representation of
the double affine Hecke algebra containing Macdonald’s q-difference operators diagonalized by
the Macdonald polynomials [7,42]. Based on Ruijsenaars’ results in the rank-one case [52], it is
moreover plausible that the model of Lieb and Liniger with periodic boundary conditions is a lim-
iting case of the elliptic quantum Ruijsenaars–Schneider system introduced in [51]. This points
towards the expectation that in the periodic situation the difference-reflection representation of
the double affine Hecke algebra at q = 1 presented here should interpolate between the Dunkl-
type differential-reflection representation of the degenerate double affine Hecke algebra in [18]
and Cherednik’s general double affine Hecke algebra representation related to Ruijsenaars’ com-
muting difference operators with elliptic coefficients and their Weyl-group generalizations [6].

The paper is organized as follows. Section 2 first recalls some necessary preliminaries con-
cerning (double) affine Hecke algebras and their Weyl groups. Next a fundamental multiplication
relation in the double affine Hecke algebra at the critical level is formulated describing the
multiplicative action of generators on basis elements at q = 1. Sections 3 and 4 generalize,
respectively, the difference-reflection representation and the integral-reflection representation
of the affine Hecke algebra introduced in [13] to the level of the double affine Hecke algebra
at q = 1. For the construction of the double affine extension of the difference-reflection rep-
resentation, the multiplication relation from Section 2 turns out to be instrumental. Both our
representations of the double affine Hecke algebra at critical level act in the space of complex
functions over the weight lattice and are proven to be equivalent with the aid of an explicit inter-
twining operator in Section 5. The action of central elements in the double affine Hecke algebra at
q = 1 under the difference-reflection representation gives rise to an integrable system of discrete
Laplace operators described explicitly in Section 6. Section 7 employs the Bethe Ansatz method
to diagonalize the commuting Laplacians at issue by means of a basis of periodic Macdonald
spherical functions spanning the finite-dimensional subspace of periodic Weyl-group invariant
functions over the weight lattice. The paper ends in Section 8 by discussing the unitarity of the
difference-reflection representation with respect to a suitable Hilbert space structure and conse-
quent orthogonality relations for the periodic Macdonald spherical functions. Some technicalities
regarding the construction of the difference-reflection representation and the study of its unitarity
are relegated to Appendices A and B at the end of the paper.

2. The double affine Hecke algebra at critical level

The primary objective of this section is to set up notation and recall some basic facts con-
cerning affine Weyl groups and their double affine Hecke algebras at the critical level q = 1.
A more complete discussion with proofs can be found in the standard literature [3,30,42,7]. Our
presentation of these preliminaries (cf. Sections 2.1 and 2.2) closely follows Macdonald’s dis-
cussion in [42]. In addition, we describe a (for our purposes) essential multiplication formula in
the double affine Hecke algebra at critical level between the basis elements of the affine Hecke
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algebra and a system of generators for the group algebra of the weight lattice (cf. Sections 2.3
and 2.4).

2.1. Affine Weyl group

Let R0 ⊂ V be an irreducible reduced crystallographic root system spanning a real finite-
dimensional vector space V with inner product 〈·, ·〉, and let R∨

0 := {α∨ | α ∈ R0} denote the
dual root system of coroots α∨ := 2α/〈α,α〉. Given a (fixed) positive constant1 c, the nontwisted
affine root system associated with R0 is R := R∨

0 + Zc. Here an affine root a = α∨ + rc ∈ R

is regarded as an affine linear function a : V → R of the form a(x) = 〈x,α∨〉 + rc (x ∈ V ,
α ∈ R0, r ∈ Z), which gives rise to an affine reflection sa : V → V across the hyperplane
Va := {x ∈ V | a(x) = 0} given by

sa(x) := x − a(x)α. (2.1)

The affine Weyl group WR is defined as the (infinite) Coxeter group generated by the affine re-
flections sa , a ∈ R. The isotropy subgroup fixing the origin, which is generated by the orthogonal
reflections sα := sα∨ , α ∈ R0, is referred to as the (finite) Weyl group W0 (associated with R0).
For y ∈ V , let us denote by ty : V → V the translation determined by the action ty(x) := x + y.
Since sα∨sα∨+rc = trcα , the elements of WR can be written as vtcλ with v ∈ W0 and λ in the
root lattice Q := SpanZ(R0), i.e. WR = W0 � t (cQ) (where t (cQ) denotes the group of trans-
lations tcλ, λ ∈ Q). By extending the lattice of translations from the root lattice Q to the weight
lattice P := {λ ∈ V | 〈λ,α∨〉 ∈ Z, ∀α ∈ R0}, one arrives at the extended affine Weyl group
W = W0 � t (cP ) consisting of group elements of the form vtcλ with v ∈ W0 and λ ∈ P .

A (fixed) choice of positive roots R+
0 , with a simple basis α1, . . . , αn, determines a set of pos-

itive affine roots R+ := R
∨,+
0 ∪ (R∨

0 +Nc) generated by a basis of simple affine roots a0, . . . , an

of the form a0 := α∨
0 +c and aj := α∨

j for j = 1, . . . , n. Here n denotes the rank of R0 (= dimV )

and α0 := −ϑ with ϑ ∈ R+
0 being the highest short root (so ϑ∨ is the highest coroot of R∨

0 ). The
action of w ∈ W on V induces a dual action on the space C(V ) of functions f : V → C given by

(wf )(x) := f
(
w−1x

) (
w ∈ W, f ∈ C(V ), x ∈ V

)
. (2.2)

The affine root system R ⊂ C(V ) is stable with respect to this dual action. For w ∈ W the length
�(w) is now defined as the cardinality #R(w) of the (finite) set

R(w) := R+ ∩ w−1(R−)
, (2.3)

with R− := −R+ = R \ R+. For w ∈ W and j ∈ {0, . . . , n} one has that

�(sjw) = �(w) + sign
(
w−1aj

)
, (2.4a)

�(wsj ) = �(w) + sign(waj ), (2.4b)

1 In most of the standard literature the constant c is normalized to have unit value; for our purposes, however, it is more
convenient to regard c instead as a positive scale parameter.
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where we have employed the short-hand sj := saj
(and with the sign function on R being defined

as sign(a) = 1 for a ∈ R+ and sign(a) = −1 for a ∈ R−). It follows inductively from Eqs. (2.4a),
(2.4b) that any w ∈ W can be decomposed (nonuniquely) as

w = usj1 · · · sj�
, (2.5)

with j1, . . . , j� ∈ {0, . . . , n}, � = �(w), and u ∈ Ω := {w ∈ W | �(w) = 0}. Such a decomposition
(with � = �(w)) is called a reduced expression for w. Given a reduced expression (2.5), one has
that

R(w) = {b1, . . . , b�} and w = usb�
· · · sb1 , (2.6a)

where

bk := sj�
· · · sjk+1ajk

(k = 1, . . . , �) (2.6b)

(so b� = aj�
).

Since R+ is stable with respect to the action of Ω (as its group elements have length zero),
it is clear that the u ∈ Ω act by permuting the elements of the simple basis a0, . . . , an. More
specifically, one has that uaj = auj

(and thus usju
−1 = suj

), where j → uj encodes the cor-
responding permutation of the indices j = 0, . . . , n. The upshot is that W = Ω � WR with WR

being normal in W , whence Ω is a finite abelian subgroup: Ω ∼= W/WR
∼= P/Q. The extended

affine Weyl group W can now be presented as the group generated by the commuting elements
from Ω and the simple reflections s0, . . . , sn, subject to the relations

usju
−1 = suj

, u ∈ Ω, j = 0, . . . , n, (2.7a)

and

(sj sk)
mjk = 1, j, k = 0, . . . , n. (2.7b)

Here mjk = 1 if j = k and mjk = π/αjk (∈ {2,3,4,6}) with αjk denoting the angle between Vaj

and Vak
if j �= k (and the provision that for n = 1 the order m10 = m01 = ∞).

Remark 2.1. While here for technical simplicity it was assumed from the start that our underly-
ing affine root system R is nontwisted and reduced, it is expected that—at the price of a fairly
amount of additional notational overhead—in principle much of the construction below can be
generalized so as to incorporate the cases of twisted and even nonreduced affine root systems.

2.2. Double affine Hecke algebra at critical level

A function τ : W → C \ {0} satisfying that (i) τww̃ = τwτw̃ if �(ww̃) = �(w) + �(w̃) and
(ii) τw = 1 if �(w) = 0 is called a length multiplicative function. Such a function is completely
determined by its values on the simple reflections and consistency demands that τsj = τsk if sj
and sk are conjugate in W (where j, k = 0, . . . , n). Let us denote by τs and τl the values of τ

on the reflections in the simple roots aj with αj short and long, respectively (with the conven-
tion that all finite roots are short when R0 is simply-laced). The value of τw is thus completely
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determined by τs and the number of reflections sjk
with αjk

short and τl and the number of re-
flections sjk

with αjk
long appearing in a reduced expression (2.5). Following customary habits,

the multiplicity function will also be denoted by τ . This is a function τ : R → C \ {0} satis-
fying that τwa = τa for all w ∈ W and a ∈ R, which means that its value is constant on the
W -orbits of affine roots. Upon compatibilizing both functions on the simple elements such that
τj := τaj

= τsj for j = 0, . . . , n, one can compute the values of the length multiplicative function
by means of the multiplicity function via the well-known formula

τw =
∏

a∈R(w)

τa. (2.8)

Throughout the paper we will always assume that neither τs nor τ� is a root of unity (unless
explicitly stated otherwise).

The double affine Hecke algebra at critical level H is now defined as the complex unital
associative algebra spanned by the basis

XλTw, λ ∈ P, w ∈ W, (2.9)

with Xλ = Tw = 1 if λ = 0 and w = 1, such that the following multiplication relations are satis-
fied (for all u ∈ Ω , j = 0, . . . , n, w ∈ W , and λ,μ ∈ P ):

TuTw = Tuw, TuX
λ = Xu′λTu, (2.10a)

TjTw = Tsj w + χ
(
w−1aj

)(
τj − τ−1

j

)
Tw, (2.10b)

TjX
λ = X

s′
j λ

Tj + (
τj − τ−1

j

)Xλ − X
s′
j λ

1 − X−αj
, (2.10c)

XλXμ = Xλ+μ. (2.10d)

Here χ : R → {0,1} denotes the characteristic function of R− and we have employed the short-
hand notations τj := τsj and Tj := Tsj . Furthermore, the prime symbols refer to the derivative
in the sense of calculus projecting W onto W0 and R onto R∨

0 . More specifically, for v ∈ W0
and λ ∈ P one has that (vtcλ)

′ = v, whence for a = α∨ + rc ∈ R this means in particular that
s′
a = sa′ with a′ = (α∨ + rc)′ = α∨. Alternatively, the relation in Eq. (2.10b) can be replaced by

the equivalent relation (cf. Eqs. (2.4a), (2.4b))

TwTj = Twsj + χ(waj )
(
τj − τ−1

j

)
Tw. (2.11)

Throughout, fractions of the type in Eq. (2.10c) involving (double) affine Hecke algebra elements
or their images under a representation are to be interpreted in terms of their terminating geometric
series:

Xλ − X
s′
j λ

1 − X−αj
:=

⎧⎪⎪⎨⎪⎪⎩
Xλ + Xλ−αj + · · · + X

s′
j λ+αj if 〈λ,α∨

j 〉 > 0,

0 if 〈λ,α∨
j 〉 = 0,

−Xλ+αj − Xλ+2αj − · · · − X
s′
j λ if 〈λ,α∨〉 < 0.

(2.12)
j



1988 J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038
The double affine Hecke algebra H contains several important subalgebras. The subalgebras
H0 ⊂ HR ⊆ H ⊂ H spanned by Tw with w ∈ W0, w ∈ WR , and w ∈ W , respectively, are re-
ferred to as the finite Hecke algebra, the affine Hecke algebra, and the extended affine Hecke
algebra (i.e. the Hecke algebras of the finite Weyl group W0, the affine Weyl group WR , and the
extended affine Weyl group W ). The defining relation in Eq. (2.10b) gives rise to the following
multiplication rule for the basis elements of these subalgebras:

TwTw̃ = Tww̃ if �(ww̃) = �(w) + �(w̃) (w, w̃ ∈ W). (2.13)

A second way in which an extended affine Hecke algebra appears inside H (explaining the name
double affine Hecke algebra) is via its Bernstein–Zelevinsky presentation as the subalgebra with
basis XλTv , λ ∈ P , v ∈ W0. This affine Hecke algebra contains a large commutative subalgebra
C[X] ⊂ H spanned by Xλ, λ ∈ P , that is isomorphic to the group algebra of the weight lattice.
It is endowed with a natural W0-action inherited from the action of the Weyl group on V re-
stricted to the stable lattice P : v(Xλ) := Xvλ (v ∈ W0, λ ∈ P ). It follows from the relations in
Eqs. (2.10a), (2.10c) that its W0-invariant subalgebra C[X]W0 spanned by the W0-invariants

mλ(X) :=
∑

μ∈W0λ

Xμ, (2.14a)

with λ in the cone of dominant weights

P + := {
λ ∈ P

∣∣ 〈
λ,α∨〉

� 0, ∀α ∈ R+
0

}
, (2.14b)

is contained in the center Z(H) of the double affine Hecke algebra at critical level:

C[X]W0 ⊂Z(H). (2.15)

It is immediate from the first relation in (2.10a) and relation (2.10b) that for any w ∈ W the
reduced expression in (2.5) gives rise to the following decomposition of the corresponding basis
element Tw:

Tw = TuTj1 · · ·Tj�
. (2.16)

In other words, the elements Tu (u ∈ Ω) and Tj (j = 0, . . . , n) generate the extended affine
Hecke algebra H . To describe an appropriate system of generators for the group algebra C[X],
let us recall that a nonzero weight ω ∈ P is called minuscule if 0 � 〈ω,α∨〉 � 1 for all α ∈ R+

0
and that it is called quasi-minuscule if 0 � 〈ω,α∨〉 � 2 for all α ∈ R+

0 with the upperbound
2 being realized only once. Together with the zero weight the minuscule weights constitute a
complete set of represententatives for P/Q, and the quasi-minuscule weight is unique and equal
to the highest short root ϑ ∈ R0. Since the orbit of short roots W0ϑ generates the root lattice Q,
together with the minuscule weights they form a generating set for the weight lattice P . Let

Pϑ := {
ν ∈ P

∣∣ ∣∣〈ν,α∨〉∣∣� 1, ∀α ∈ R0 \ {ν}} (2.17)
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(i.e., Pϑ is the smallest saturated set containing all (quasi-)minuscule weights). Then the com-
muting elements Xν (ν ∈ Pϑ ) generate C[X] and combined with the above elements generating
H this provides a (complete) system of generators for the double affine Hecke algebra H.

More specifically, the double affine Hecke algebra at critical level H can be presented as the
complex unital associative algebra generated by Tu (u ∈ Ω), Tj (j = 0, . . . , n) and the commut-
ing elements Xν (ν ∈ Pϑ ) (with Tu = Xν = 1 if u = 1 and ν = 0), subject to the relations

TuTũ = Tuũ and TuTj = Tuj
Tu (u, ũ ∈ Ω, 0 � j � n), (2.18a)

(Tj − τj )
(
Tj + τ−1

j

) = 0 (0 � j � n), (2.18b)

TjTkTj · · ·︸ ︷︷ ︸
mjk factors

= TkTjTk · · ·︸ ︷︷ ︸
mjk factors

(0 � j �= k � n), (2.18c)

TuX
ν = Xu′νTu (u ∈ Ω, ν ∈ Pϑ), (2.18d)

TjX
ν = X

s′
j ν

Tj + (
τj − τ−1

j

)Xν − X
s′
j ν

1 − X−αj
(0 � j � n, ν ∈ Pϑ), (2.18e)

XνXν̃ = Xν+ν̃ (ν, ν̃ ∈ Pϑ such that ν + ν̃ ∈ Pϑ) (2.18f)

(where it is understood that the number of factors mjk on both sides of the braid relation for H

in (2.18c) is the same as the order of the corresponding braid relation for W in (2.7b)). Notice
that the second term on the RHS of Eq. (2.18e) amounts to a linear expression in the generators
because of Eq. (2.12) and the property that Pϑ (2.17) is saturated (so the αj -string connecting ν

and s′
j ν belongs to Pϑ ). The characterization of the group algebra C[X] as the algebra generated

by the commuting generators Xν , ν ∈ Pϑ (2.17), subject to the relations in Eq. (2.18f) hinges in
turn on the fact that Pϑ contains a linear basis for the weight lattice with respect to which Pϑ

is path-connected in the following sense: for any ν ∈ Pϑ there exists a path 0 → ν(1) → ·· · →
ν(�) = ν of weights in Pϑ such that two subsequent weights in the path differ by an element of
the basis at issue. In other words, the commuting algebra generated by the Xν , ν ∈ Pϑ (2.17),
subject to the relations in Eq. (2.18f) is freely generated by the generators corresponding to the
basis elements and thus isomorphic to C[X]. For classical root systems it is not difficult to single
out a basis for P with the above properties by inspecting the tables in Bourbaki, whereas for
|Ω| = 1 (so Pϑ = W0ϑ ∪ {0}) one may pick any choice of simple basis for the simply-laced
subsystem W0ϑ . For the remaining exceptional types (viz. E6 and E7) a suitable basis is readily
found with the aid of a small computer calculation.

2.3. Multiplicative action of C[X] on H

The first three defining relations (2.10a)–(2.10c) for H encode the multiplicative action of
(the generators of) H on (the bases of) H and C[X]; the last defining relation (2.10d) describes
the commutative multiplication within C[X]. To complete the explicit description of the multi-
plicative structure of H we provide a helpful formula describing the multiplicative action of (the
generators of) C[X] on (the basis of) H .

Let us recall for this purpose that the Bruhat order on WR is defined as the transitive closure
of the relations w < wsa ⇔ �(w) < �(wsa) for w ∈ WR and a ∈ R+ (cf. e.g. Ref. [30, Sec. 5.9]).
This partial order is extended to W such that elements belonging to different W/WR cosets are
not comparable [42, Sec. 2.3]:
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ũw̃ � uw ⇔ ũ = u and w̃ �w (ũ,u ∈ Ω, w̃,w ∈ WR). (2.19)

Some key properties of the Bruhat order that will be used frequently are (for w̃,w ∈ W and
a ∈ R+):

w̃ � w ⇔ w̃−1 � w−1, (2.20a)

w̃ � w ⇒ w̃sa � wsa or w̃sa � w, (2.20b)

and

wsa < w ⇔ a ∈ R(w). (2.20c)

Moreover, given a reduced decomposition (2.5) for w, all elements of W smaller than w in the
Bruhat order are the ones obtained by deleting simple reflections from this reduced expression.

Theorem 2.2. For any w ∈ W and ν ∈ P 
ϑ := Pϑ \ {0} (2.17), the product TwXν expands in the

basis (2.9) as

TwXν = Xw′νTw +
∑
v∈W
v<w

(
Bν

v,w +
∑

η∈W0ν

Aη,ν
v,wXη

)
Tv, (2.21a)

with expansion coefficients A
η,ν
v,w and Bν

v,w determined by the following recurrence relations for
j ∈ {0, . . . , n} such that sjw < w:

Aη,ν
v,w =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A
s′η,ν
sv,sw + q(A

η,ν
v,sw − A

s′η,ν
v,sw) if sv > v and 〈η,α∨〉 > 0,

A
s′η,ν
sv,sw if sv > v and 〈η,α∨〉 � 0,

A
s′η,ν
sv,sw + qA

η,ν
v,sw if sv < v and 〈η,α∨〉 � 0,

A
s′η,ν
sv,sw + qA

s′η,ν
v,sw if sv < v and 〈η,α∨〉 < 0,

(2.21b)

where we have employed the short-hand notation s = sj , α = αj and q = qj := τj − τ−1
j , and

Bν
v,w = q

∑
η∈W0ν

〈η,α∨〉=2

(
Aη,ν

v,sw − As′η,ν
v,sw

) +
{

Bν
sv,sw if sv > v,

Bν
sv,sw + qBν

v,sw if sv < v,
(2.21c)

subject to the boundary conditions

Aη,ν
v,v =

{
1 if η = v′ν,

0 if η �= v′ν,
Bν

v,v = 0, (2.21d)

and

Aη,ν = Bν = 0 if v � w. (2.21e)
v,w v,w



J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038 1991
Moreover, the expansion coefficients in question comply the following invariance with respect
to the action of Ω on the indices:

Au′η,ν
uv,uw = Aη,ν

v,w, Bν
uv,uw = Bν

v,w (u ∈ Ω). (2.21f)

The proof of this theorem is by induction on the length of w; the details are relegated to the
end of this section.

For w ∈ W0, Theorem 2.2 amounts to a multiplication formula in the Bernstein–Zelevinsky
presentation of the extended affine Hecke algebra with basis XλTv , λ ∈ P , v ∈ W0. The expan-
sion for TwXν simplifies in this situation if ν ∈ P 

ϑ is dominant:

Corollary 2.3. For ω ∈ P (quasi-)minuscule and w ∈ W0, one has that

TwXω = XwωTw +
∑
v∈W0
v<w

(
Bω

v,w + Aω
v,wXvω

)
Tv, (2.22a)

where the coefficients Aω
v,w and Bω

v,w are determined by the recurrence relations (for s = sj ,
α = αj , q = qj with j ∈ {1, . . . , n} such that sjw < w):

Aω
v,w =

{
Aω

sv,sw if sv > v and 〈vω,α∨〉 = 0 or sv < v and 〈vω,α∨〉 < 0,

Aω
sv,sw + qAω

v,sw if sv > v and 〈vω,α∨〉 > 0 or sv < v and 〈vω,α∨〉 = 0,

(2.22b)

and

Bω
v,w =

{
Bω

sv,sw if sv > v

Bω
sv,sw + qBω

v,sw if sv < v
+

⎧⎪⎨⎪⎩
qAω

v,sw if v−1α = ω,

−qAω
v,sw if v−1α = −ω,

0 otherwise,

(2.22c)

subject to the boundary conditions Aω
v,v = 1, Bω

v,v = 0, and Aω
v,w = Bω

v,w = 0 if v �w.

Corollary 2.3 is immediate from Theorem 2.2 and the following lemma upon setting Aω
v,w :=

Avω,ω
v,w .

Lemma 2.4. For ω ∈ P (quasi-)minuscule and v,w ∈ W0 with v < w, the expansion coefficients
A

η,ω
v,w , η ∈ W0ω, vanish if η �= vω.

Proof. The proof is by induction on �(w) starting from the elementary case that �(w) = 1. For
w = sj (j = 1, . . . , n) it is readily deduced from Theorem 2.2 (or alternatively from Eq. (2.18e)
and the fact that ω is (quasi-)minuscule) that

TjX
ω − Xsj ωTj =

{
0 if sjω = ω,

ω
qX if sjω �= ω,
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which confirms the stated vanishing property of A
η,ω
v,w if �(w) = 1. When �(w) > 1 we pick

s = sj such that sw < w. For η �= vω the recurrence relations in Eq. (2.21b) combined with the
induction hypothesis entail that

Aη,ω
v,w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−qA

sη,ω
v,sw if sv > v and 〈η,α∨〉 > 0,

0 if sv > v and 〈η,α∨〉 � 0,

0 if sv < v and 〈η,α∨〉 � 0,

qA
sη,ω
v,sw if sv < v and 〈η,α∨〉 < 0,

(2.23)

where A
sη,ω
v,sw = 0 if sη �= vω. Since the equality sη = vω implies that 〈η,α∨〉 =

−〈v−1sη, v−1α〉 = −〈ω,v−1α〉, it is moreover clear from Eq. (2.4a) that in this situation
〈η,α∨〉 � 0 if sv > v and 〈η,α∨〉 � 0 if sv < v. In other words, the coefficient A

sη,ω
v,sw in

Eq. (2.23) vanishes (and thus so does A
η,ω
v,w). �

Remark 2.5. The recurrence relations in Theorem 2.2 and Corollary 2.3 are reminiscent of the
recurrence for the Kazhdan–Lusztig R-polynomials in the expansion of affine Hecke algebra
elements of the form T −1

w−1 (w ∈ WR) in terms of the standard basis Tv , v ∈ WR [30, Ch. 7]. In
fact, it is manifest from our recurrence relations that the coefficients A

η,ν
v,w , Bν

v,w and Aω
v,w , Bω

v,w

are themselves polynomials in the indeterminates qj = τj − τ−1
j with integral coefficients. The

boundary conditions in Eqs. (2.21d), (2.21e) imply that these expansion coefficients are actually
quite sparse. For instance, it is immediate from the recurrence that all coefficients Bν

v,w vanish
unless ν ∈ W0ϑ . Similarly, in Corollary 2.3 the coefficients Bω

v,w vanish if ω is minuscule.

Remark 2.6. For �(w) = 0 and �(w) = 1 the formula in Theorem 2.2 reproduces the relations in
Eqs. (2.18d) and (2.18e) (in the form of Eq. (2.25a) below), respectively. In principle the expan-
sion coefficients A

η,ν
v,w , Bν

v,w (v < w) can be computed inductively from the recurrence relations
in explicit form for any w ∈ W , but the expressions soon tend to become quite cumbersome. In
the very special case that R0 is the root system of rank one and ν = ±ω, with ω denoting the
minuscule weight, then it is not hard arrive in this manner at the following explicit expansion
formula [14]:

TwXε = Xε(−1)�(w)+r

Tw

+ ε
(
�(ws) − �(w)

)
X(�(ws)−�(w))(−1)�(w)+r ∑

v∈W,v<w

A
(
�(w) − �(v)

)
Tv,

where ε ∈ {1,−1}, X := Xω, s := s1,

A(k) := 1 − τ 2

1 + τ 2

(
τ−k + (−1)k+1τ k

)
, r :=

{
0 if w ∈ WR,

1 if w ∈ W \ WR,

and τ := τ1.
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2.4. Proof of Theorem 2.2

We need to show that the product TwXν expands on the basis XλTv (λ ∈ P , v ∈ W ) as

TwXν =
∑
v∈W
v�w

(
Bν

v,w +
∑

η∈W0ν

Aη,ν
v,wXη

)
Tv, (2.24)

with expansion coefficients A
η,ν
v,w , Bν

v,w governed by the recurrence relations and boundary con-
ditions stated by the theorem. For �(w) = 0 the expansion in question reduces to Eq. (2.18d).
For �(w) > 0, we pick s := sj (j = 0, . . . , n) such that w̃ := sw < w and perform induction with
respect to the length of w:

TwXν = TsTw̃Xν =
∑
v�w̃

(
Bν

v,w̃TsTv +
∑

η∈W0ν

A
η,ν

v,w̃
TsX

ηTv

)
.

Invoking of the commutation relation (cf. Eq. (2.18e))

TsX
η = Xs′ηTs +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qXη + q if 〈η,α∨〉 = 2 (⇔ η = α),

qXη if 〈η,α∨〉 = 1,

0 if 〈η,α∨〉 = 0,

−qXs′η if 〈η,α∨〉 = −1,

−qXs′η − q if 〈η,α∨〉 = −2 (⇔ η = −α)

(2.25a)

(where α = αj ) followed by the multiplication rule (cf. Eqs. (2.4a), (2.10b))

TsTv =
{

Tsv if sv > v,

Tsv + qTv if sv < v,
(2.25b)

entails that:

TwXν =
∑
v�w̃

(
Bν

v,w̃ +
∑

η∈W0ν

A
η,ν

v,w̃
Xs′η

)
Tsv + q

∑
v�w̃
sv<v

(
Bν

v,w̃ +
∑

η∈W0ν

A
η,ν

v,w̃
Xs′η

)
Tv

+ q
∑
v�w̃

( ∑
η∈W0ν

〈η,α∨〉>0

A
η,ν

v,w̃
Xη −

∑
η∈W0ν

〈η,α∨〉<0

A
η,ν

v,w̃
Xs′η

)
Tv

+ q
∑
v�w̃

( ∑
η∈W0ν

〈η,α∨〉=2

A
η,ν

v,w̃
−

∑
η∈W0ν

〈η,α∨〉=−2

A
η,ν

v,w̃

)
Tv. (2.26)

Upon substituting w̃ = sw, exploiting that v � w if sv � w̃ or v � w̃ (in view of Eqs. (2.20a),
(2.20b)), and recalling that A

η,ν = Bν = 0 if v � w̃ (by the induction hypothesis), it is not

v,w̃ v,w̃
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difficult to rewrite the expansion in Eq. (2.26)—by collecting the coefficients of the basis ele-
ments (2.9)—in the form of Eq. (2.24), with coefficients A

η,ν
v,w and Bν

v,w given by Eqs. (2.21b)
and (2.21c), respectively.

This proves that the product TwXν expands as in Eq. (2.24) with coefficients A
η,ν
v,w and Bν

v,w

satisfying the recurrence relations in Eqs. (2.21b), (2.21c) together with the boundary condition
in Eq. (2.21e). The invariance of these coefficients with respect to the action of Ω in Eq. (2.21f)
is then clear from the following elementary computation (and the linear independence of the
basis elements (2.9)):

∑
v�uw

(
Bν

v,uw +
∑

η∈W0ν

Aη,ν
v,uwXη

)
Tv = TuwXν = TuTwXν

=
∑
v�w

(
Bν

v,w +
∑

η∈W0ν

Aη,ν
v,wXu′η

)
Tuv

=
∑

v�uw

(
Bν

u−1v,w
+

∑
η∈W0ν

A
u′ −1η,ν

u−1v,w
Xη

)
Tv.

Finally, it is immediate from the recurrence and Eq. (2.21e) that A
η,ν
w,w = A

s′η,ν

w̃,w̃
and Bν

w,w =
Bν

w̃,w̃
, which together with Eq. (2.18d) implies Eq. (2.21d).

3. Difference-reflection operators

When our positive scale parameter c is integral-valued, the weight lattice P ⊂ V is stable with
respect to the action of W . Unless explicitly stated otherwise, from now onwards we will always
consider an integral-valued scale parameter c > 1:

c ∈ N>1. (3.1)

For this situation, we introduce in this section a representation of H given by difference-reflection
operators acting in the space C(P ) of complex functions f : P → C. Our starting point is an
analogous difference-reflection representation of H on C(P ) taken from Ref. [13].

3.1. Difference-reflection representation T̂ (H)

For any affine root a, let us define the following difference-reflection operator on C(V )

T̂a := τa + χa(sa − 1) (a ∈ R), (3.2a)

where τa and χa act by multiplication and

χa(x) =
⎧⎨⎩

τa if a(x) > 0,

1 if a(x) = 0,

τ−1
a if a(x) < 0.

(3.2b)

More explicitly, T̂a acts on f : V → C as
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(T̂af )(x) =
⎧⎨⎩

τaf (sax) if a(x) > 0,

τaf (x) if a(x) = 0,

τ−1
a f (sax) + (τa − τ−1

a )f (x) if a(x) < 0.

(3.3)

It is instructive to realize oneself that the difference-reflection operator T̂a maps continuous func-
tions to continuous functions and that its action can be restricted to a discrete difference-reflection
operator in C(P ) thanks to our integrality condition for c (cf. Eq. (3.1)). The following proposi-
tion is a straightforward consequence of [13, Thm. 3.1].

Proposition 3.1. The assignment Tj �→ T̂j := T̂aj
(j = 0, . . . , n) and Tu �→ u (u ∈ Ω) extends

(uniquely) to a representation h �→ T̂ (h) (h ∈ H ) of the extended affine Hecke algebra on C(V ).

Proof. It was shown in [13, Sec. 3] that for c = 1 the assignment

Tj �→ τj + χ−1
aj

(sj − 1) (j = 0, . . . , n)

extends to a representation of the affine Hecke algebra HR on C(P ). Moreover, the proof of this
result in [13] extends verbatim from C(P ) to C(V ) (cf. also [13, Rem. 3.4]), first for c = 1 and
then for general (not necessarily integral) c > 0 upon rescaling. In other words, the assignment
Tj �→ T̂−aj

(j = 0, . . . , n) extends to a representation of HR on C(V ). By flipping the sign of

the choice of positive roots it follows in turn that the assignment T0 �→ T̂α∨
0 −c, Tj �→ T̂j (j =

1, . . . , n) extends to a representation of HR on C(V ). We will now modify the action associated
with the affine generator T0 following a translation argument borrowed from the proof of [19,
Thm. 4.11]. Specifically, from the translation txsat−x = stxa = sa−a′(x) (x ∈ cP , a ∈ R) and the
definition of the difference-reflection operators it is immediate that

tx T̂α∨+rct−x = T̂α∨+(rc−〈x,α∨〉) (x ∈ cP, α ∈ R0, r ∈ Z).

Hence, if one picks—for a given j ∈ {1, . . . , n}—a point x ∈ cP belonging to the intersection
of the hyperplanes 〈x,α∨

0 〉 + 2c = 0 and 〈x,α∨
j 〉 = 0, then tx T̂α∨

0 −ct−x = T̂0 and tx T̂j t−x = T̂j .

The quadratic relation for T̂0 follows therefore from the quadratic relation for T̂α∨
0 −c and the

braid relation between T̂0 and T̂j follows from the braid relation between T̂α∨
0 −c and T̂j . We thus

conclude that the assignment Tj �→ T̂j (j = 0, . . . , n) extends to a representation of HR on C(V ).
The further extension of this representation from HR to H as stated by the proposition follows
from the conjugation relation uT̂ju

−1 = T̂uj
(u ∈ Ω , j = 0, . . . , n), which is in turn immediate

from Eq. (2.7a) (and the definition of the difference-reflection operators). �
3.2. Action of T̂ (H) on C(P )

A fundamental domain for the action of WR on V is given by the (closed) dominant Weyl
alcove

Ac := {
x ∈ V

∣∣ a(x) � 0, ∀a ∈ R+}
= {

x ∈ V
∣∣ 0 �

〈
x,α∨〉

� c, ∀α ∈ R+}
. (3.4)
0
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Since R+ is stable with respect to the action of Ω , so is Ac:

Ω = {w ∈ W | wAc = Ac}. (3.5)

Moreover, it is readily seen by induction with respect to the length that for any w ∈ W and
f ∈ C(V )

(T̂wf )(x) = τwf
(
w−1x

)
if x ∈ Ac, (3.6)

where T̂w := T̂ (Tw). Indeed, for �(w) = 0 Eq. (3.6) is immediate from the action of Ω ⊂ W

on C(V ) (cf. Eq. (2.2)), whereas for �(w) > 0 picking j ∈ {0, . . . , n} such that wsj < w entails
inductively that

(T̂wf )(x) = (T̂wsj T̂sj f )(x) = τwsj (T̂sj f )
(
sjw

−1x
) = τwf

(
w−1x

)
,

where the last equality hinges on Eq. (3.3) together with the observation that aj (sjw
−1x) =

−(waj )(x) � 0 (since waj ∈ R− by Eq. (2.4b)).
We will now exploit the integrality of c to restrict the difference-reflection representation

T̂ (H) of Proposition 3.1 to a (c-dependent) representation of the extended affine Hecke algebra
on C(P ). This representation turns out to be faithful when the intersection of the weight lattice
with the fundamental alcove

P +
c := P ∩ Ac (3.7)

contains a W -regular weight (i.e. a weight with a trivial stabilizer), which is the case when c is
larger than the Coxeter number

h(R0) := 〈
ρ,ϑ∨〉 + 1 with ρ := 1

2

∑
α∈R+

0

α = ω1 + · · · + ωn. (3.8)

Here ω1, . . . ,ωn denotes the basis of fundamental weights:

〈
ωj ,α

∨
k

〉 = {
1 if j = k,

0 if j �= k.
(3.9)

Proposition 3.2. For c > h(R0), the action of the representation T̂ (H) on C(P ) is faithful.

Proof. Clearly the (strictly dominant) weight ρ (3.8) lies in the interior of Ac (3.4) provided c >

h(R0)−1. For S ⊂ W finite and a linear combination of the basis elements h = ∑
w∈S awTw ∈ H

that lies in the kernel of T̂ , i.e. with
∑

w∈S awT̂w = 0, it thus follows—upon acting on an arbitrary
function f ∈ C(P ) and evaluation at ρ with the aid of Eq. (3.6)—that∑

awτwf
(
w−1ρ

) = 0
(∀f ∈ C(P )

)
.

w∈S
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The weights w−1ρ, w ∈ W are all distinct if ρ is W -regular. Hence, picking f equal to the indi-
cator function of an arbitrary point w−1ρ (w ∈ S) reveals that in this situation the corresponding
coefficients aw must vanish, i.e. the kernel of T̂ is necessarily trivial in H . It remains to infer that
the condition c > h(R0) effectively guarantees that the weight ρ is W -regular. Given that ρ lies
in the interior of Ac, we only need to check that it is Ω-regular (cf. Eq. (3.5)). Moreover, since
for any u ∈ Ω and j ∈ {0, . . . , n}

aj

(
u−1ρ

) = (uaj )(ρ) = auj
(ρ) =

{
a0(ρ) if uj = 0,

1 if uj > 0,

one readily deduces that for u ∈ Ω \ {1} (whence u0 > 0)

uρ =
∑

1�j�n
j �=u0

ωj + a0(ρ)ωu0 �= ρ,

because a0(ρ) = c − 〈ρ,ϑ∨〉 = c + 1 − h(R0) > 1. �
3.3. The extension T̂ (H) → T̂ (H)

Our primary concern is to extend T̂ (H) to a difference-reflection representation T̂ (H) of the
double affine Hecke algebra at critical level on C(P ). To this end some further notation is needed.
For x ∈ V , let us write wx ∈ WR for the (unique) shortest affine Weyl group element such that

x+ := wxx ∈ Ac (3.10)

and let WR,x denote the stabilizer subgroup

WR,x := {w ∈ WR | wx = x}. (3.11)

The element wx is a minimal left-coset representative of WR,x and a minimal right-coset repre-
sentative of WR,x+ :

�(wxv) = �(wx) + �(v), ∀v ∈ WR,x, (3.12a)

�(vwx) = �(wx) + �(v), ∀v ∈ WR,x+ . (3.12b)

The length of wx is given by the number of affine root hyperplanes Va separating x from (the
interior of) Ac:

R(wx) = {
a ∈ R+ ∣∣ a(x) < 0

}
. (3.13)

To a weight ν ∈ P 
ϑ (2.17), we now associate the operator X̂ν :C(P ) → C(P ) acting on

f :P → C via
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(
X̂νf

)
(λ) := aλ,νf (λ − ν) + bλ,ν

(
1 − τ−2

0

)
f (λ) + τ−1

wλ

∑
v<wλ
η∈W0ν

Aη,ν
v,wλ

τ 2
wλ+−η

(T̂vf )(λ+ − η)

+ τ−1
wλ

∑
v<wλ

τv

(
Bν

v,wλ
+ (

1 − τ−2
0

) ∑
η∈W0ν

cλ+,ηA
η,ν
v,wλ

)
f

(
v−1λ+

)
(λ ∈ P),

(3.14a)

where A
η,ν
v,w and Bν

v,w refer to the expansion coefficients in Theorem 2.2, and the coefficients
aλ,ν , bλ,ν and cλ,η are given by

aλ,ν := τwwλ(λ−ν)
τwwλ(λ−ν)wλτ

−1
wλ

, (3.14b)

bλ,ν :=
{

cλ+,w′
λν if (λ − ν)+ �= λ+,

τ 2
wwλ(λ−ν)

χ(ν∨ + (1 − 〈λ, ν∨〉)) if (λ − ν)+ = λ+,
(3.14c)

and

cλ,η := θ(λ − η)e∨
τ (η)

(
h∨

τ

)− sign(〈λ,η∨〉) (3.14d)

(with the convention that sign(0) := 0). Here θ : P → N∪ {0} denotes the function

θ(λ) := ∣∣{b ∈ R(wλ)
∣∣ b(λ) = −2

}∣∣, (3.14e)

h∨
τ := τ 2

0 e∨
τ (ϑ) with e∨

τ (η) :=
∏

α∈R+
0

τ
〈η,α∨〉
α∨ , (3.14f)

and—recall—χ : R → {0,1} refers to the characteristic function of R− (cf. Remark A.3 at the
end of Appendix A). This definition of X̂ν is trivially extended to all ν ∈ Pϑ via the convention
that the operator in question is equal to the identity operator in C(P ) when ν = 0.

Theorem 3.3. The assignment Tj �→ T̂j (j = 0, . . . , n), Tu �→ u (u ∈ Ω), and Xν �→ X̂ν (ν ∈ Pϑ )
extends (uniquely) to a representation h �→ T̂ (h) (h ∈ H) of the double affine Hecke algebra at
critical level on C(P ).

The proof of this theorem is relegated to Section 5 below. It consists of showing that the
difference-reflection representation T̂ (H) in Theorem 3.3 arises from an equivalent representa-
tion of the double affine Hecke algebra at critical level in terms of integral-reflection operators to
be introduced in the next section.

Remark 3.4. In the equal label case, i.e. when τa = τ , ∀a ∈ R, one has that

τw = τ �(w) and h∨
τ = τ 2h∨(R∨

0 ). (3.15a)

Here h∨(·) refers to the dual Coxeter number:
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h∨(R0) := 〈
ρ,ϕ∨〉 + 1, (3.15b)

with ϕ denoting the highest root of R0 (so h∨(R∨
0 ) = 〈ρ∨, ϑ〉 + 1 with ρ∨ := 1

2

∑
α∈R+

0
α∨).

Remark 3.5. For ν ∈ W0ω with ω ∈ P + minuscule the action of X̂ν (3.14a)–(3.14f) on f ∈ C(P )

simplifies to(
X̂νf

)
(λ) = τ 2

wwλ(λ−ν)
f (λ − ν) + τ−1

wλ

∑
v<wλ
η∈W0ν

Aη,ν
v,wλ

τ 2
wλ+−η

(T̂vf )(λ+ − η). (3.16)

Indeed, invoking of Lemma A.1 from Appendix A (below) reveals that for λ ∈ P and ν ∈ P 
ϑ :

wwλ(λ−ν) ∈ WR,λ+ if (λ − ν)+ �= λ+ (3.17a)

and

ν ∈ W0ϑ if (λ − ν)+ = λ+ or θ(λ+ − ν) > 0 (3.17b)

(where we have used that wλ(λ − ν) = λ+ − w′
λν). Hence, for ν ∈ W0ω with ω minuscule one

has that (λ − ν)+ �= λ+ and θ(λ+ − ν) = 0 (by Eq. (3.17b)). We thus conclude that in this
situation aλ,ν = τ 2

wwλ(λ−ν)
(because �(wwλ(λ−ν)wλ) = �(wwλ(λ−ν)) + �(wλ) by Eq. (3.17a)) and,

furthermore, that bλ,ν = cλ+,η = 0 for all η ∈ W0ν. The simplification of the action in Eq. (3.16)
is now evident upon recalling that the relevant coefficients Bν

v,w vanish in view of Remark 2.5.

4. Integral-reflection operators

In this section we formulate a representation of H on C(P ) in terms of integral-reflection op-
erators. This extends an analogous integral-reflection representation of the affine Hecke algebra
introduced in Ref. [13].

4.1. Integral-reflection representation I (H)

For any affine root a = α∨ + rc ∈ R, we define a corresponding discrete integral-reflection
operator of the form

Ia := τasa + (
τa − τ−1

a

)
Ja. (4.1a)

Here Ja : C(P ) → C(P ) denotes a discrete integral operator that integrates the lattice function
f (λ) over the α-string from λ to saλ, where an endpoint in the negative half-space

Ha := {
x ∈ V

∣∣ a(x) < 0
}

(4.1b)

is included and the endpoint(s) in the nonnegative half-space V \ Ha are excluded:

(Jaf )(λ) :=
⎧⎨⎩

−f (λ − α) − f (λ − 2α) − · · · − f (saλ) if a(λ) > 0,

0 if a(λ) = 0, (4.1c)
f (λ) + f (λ + α) + · · · + f (saλ − α) if a(λ) < 0.
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As usual, the operators corresponding to the simple basis will be abbreviated by Ij := Iaj
, j =

0, . . . , n.

Theorem 4.1. The assignment Tj → Ij (j = 0, . . . , n), Tu �→ u (u ∈ Ω), and Xλ → tλ (λ ∈ P )
extends (uniquely) to a representation h → I (h) (h ∈ H) of the double affine Hecke algebra at
critical level H on C(P ).

The integral-reflection representation I (H) is a double affine extension of [13, Prop. 4.1],
where it was demonstrated—by exploiting a duality relating to the standard polynomial represen-
tation of the affine Hecke algebra in terms of Demazure–Lusztig operators—that the assignment
Tj → Ij (j = 1, . . . , n) and Xλ → tλ (λ ∈ P ) extends to a representation of the extended affine
Hecke algebra with Bernstein–Zelevinsky basis XλTv , λ ∈ P , v ∈ W0. Hence, to prove Theo-
rem 4.1 it only remains to infer the following relations (for u ∈ Ω , λ ∈ P , ν ∈ Pϑ ):

utλu
−1 = tu′λ, uIju

−1 = Iuj
(j = 0, . . . , n), (4.2a)

(I0 − τ0)
(
I0 + τ−1

0

) = 1, (4.2b)

I0Ij I0 · · ·︸ ︷︷ ︸
m0j factors

= Ij I0Ij · · ·︸ ︷︷ ︸
m0j factors

(j = 1, . . . , n), (4.2c)

and

I0tν = ts′
0ν

I0 + (
τ0 − τ−1

0

) tν − ts′
0ν

1 − t−α0

(4.2d)

(cf. Eq. (2.12)).

4.2. Proof of Theorem 4.1

Eq. (4.2a) is an immediate consequence of the following elementary relations upon special-
ization:

wtxw
−1 = tw′x and wIaw

−1 = Iwa (w ∈ W, x ∈ V, a ∈ R). (4.3)

The first of these relations is manifest from the fact that w acts as an affine linear transformation
in V and the second relation follows from the conjugation relations

wsaw
−1 = swa and wJaw

−1 = Jwa (4.4)

(the former of which is obvious since w ∈ W acts in fact as an affine orthogonal transformation
in the Euclidean vector space V and the latter conjugation is readily verified from the first and
the definition of Ja by acting with both sides on an arbitrary function f : P → C). To verify
Eqs. (4.2b)–(4.2d) it is convenient to proceed along the lines of the proof of Proposition 3.1. For
this purpose we prepare two lemmas. The first formulates an auxiliary representation of HR fol-
lowing from [13, Prop. 4.1] and the second highlights the commutativity of the integral-reflection
operators associated with perpendicular reflection hyperplanes.
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Lemma 4.2. The assignment Tj �→ Iα∨
j

(j = 0, . . . , n) extends (uniquely) to a representation of

the affine Hecke algebra HR on C(P ).

Proof. From Proposition 4.1 of Ref. [13] cited above, it is immediate that the assignment Tj �→
Ij = Iα∨

j
(j = 1, . . . , n) extends (uniquely) to an integral-reflection representation of the finite

Hecke algebra H0 on C(P ). To further extend this representation from H0 to HR as stated by
the lemma, it suffices to verify the quadratic relation (4.2b) and the braid relations (4.2c) with
I0 replaced by Iα∨

0
. When acting with both sides of these relations on an arbitrary function f ∈

C(P ), equality follows by relying once more on the integral-reflection representation of the finite
Hecke algebra H0. Indeed, the quadratic relation for Iα∨

0
follows from the quadratic relation for

the integral-reflection representation of the finite Hecke algebra corresponding to the rank-one
root system with simple basis α0 and the braid relation between Iα∨

0
and Iα∨

j
, j ∈ {1, . . . , n},

hinges on the braid relation for the integral-reflection representation of the finite Hecke algebra
corresponding to the rank-two root system with simple basis α0, αj . (Notice in this connection
that 〈α0, α

∨
j 〉 � 0 because −α0 = ϑ ∈ P +, i.e. α0 and αj form the basis of a rank-two root

system; moreover, the orthogonal projections of λ ∈ P onto the line spanned by α0 and onto the
plane spanned by α0 and αj , respectively, belong to the weight lattices of the corresponding root
systems of rank one and rank two.) �
Lemma 4.3. For a = α∨ + rc and b = β∨ + lc in R with 〈α,β∨〉 = 0, one has that

[Ia, Ib] := IaIb − IbIa = 0.

Proof. Since [Ia, Ib] is equal to

τaτb[sa, sb] + τa

(
τb − τ−1

b

)[sa, Jb] + τb

(
τa − τ−1

a

)[Ja, sb] + (
τa − τ−1

a

)(
τb − τ−1

b

)[Ja, Jb],
it is sufficient to verify that

[sa, sb] = 0, [sb, Ja] = 0, [sa, Jb] = 0, [Ja, Jb] = 0.

The vanishing of the first three brackets is plain from the second relation in Eq. (4.3) and the
first relation in Eq. (4.4). Moreover, acting with JaJb on an arbitrary function f ∈ C(P ) and
evaluation at λ ∈ P manifestly produces that (JaJbf )(λ) = 0 if a(λ)b(λ) = 0, whereas for
a(λ)b(λ) �= 0 it yields a sum of the form

(JaJbf )(λ) = sign
(
a(λ)b(λ)

) ∑
μ∈Xab;λ

f (μ).

Here Xab;λ ⊂ P denotes the intersection of λ+Q and the rectangle with vertices λ, saλ, sbλ, and
sasbλ, leaving out the weights on the (boundary) α-string and β-string intersecting at the vertex
that belongs to the positive quadrant {x ∈ V | a(x) > 0, b(x) > 0} (which means, in particular,
that the only vertex actually contained in Xab;λ is the one belonging to the negative quadrant
{x ∈ V | a(x) < 0, b(x) < 0}). Since Xab;λ is clearly symmetric in a and b so is the value of
(JaJbf )(λ), whence [Ja, Jb] = 0. �

After these preparations, we are now in the position to finish the proof of Eqs. (4.2b)–(4.2d).
We will need the decomposition of ϑ∨ in the simple basis of R∨:
0
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ϑ∨ = m1α
∨
1 + · · · + mnα

∨
n . (4.5)

Given a concrete root system R0, the corresponding values of the strictly positive integers
m1, . . . ,mn can be read-off from the tables in Bourbaki [3].

Proof of Eq. (4.2b). One readily infers with the aid of Bourbaki’s tables that the GCD of
m1, . . . ,mn is equal to 1. In other words, there exists a μ ∈ P such that 〈μ,ϑ∨〉 = 1. From the
second conjugation relation in Eq. (4.3) we now deduce that tcμIα∨

0
t−cμ = Itcμα∨

0
= I0. Hence,

the quadratic relation for Iα∨
0

following from Lemma 4.2 implies the quadratic relation for I0.
Proof of Eq. (4.2c). Let J be the subset of indices j ∈ {1, . . . , n} such that GCD(m1, . . . , m̂j ,

. . . ,mn) = 1 (where the hat indicates that the corresponding value mj is omitted). From the
tables in Bourbaki it is seen that |J | = n for the (simply laced) root systems of type ADE, |J | =
n − 1 for the root systems of type BCF , and |J | = 0 for the root system of type G. For j ∈ J ,
there exists a μ ∈ P such that 〈μ,ϑ∨〉 = 1 and 〈μ,α∨

j 〉 = 0. In this situation Eq. (4.3) implies
that tcμIα∨

0
t−cμ = Itcμα∨

0
= I0 and tcμIα∨

j
t−cμ = Itcμα∨

j
= Iα∨

j
= Ij , whence the braid relation

between I0 and Ij is then a consequence of the braid relation between Iα∨
0

and Iα∨
j

following
from Lemma 4.2. Inspection of the tables in Bourbaki reveals moreover that for j ∈ {1, . . . , n}\J

one has that 〈α0, α
∨
j 〉 = 0, except when αj amounts to the short simple root of the root system

of type G. When 〈α0, α
∨
j 〉 = 0, the order m0j of s0sj is equal to 2. The braid relation reduces in

this situation to the commutativity I0Ij = Ij I0, which follows in turn from Lemma 4.3. When
αj is equal to the short simple root of the root system of type G, then τj = τ0 and, furthermore,
the roots α0 and αj form the simple basis of a type A root system of rank two centered at the
intersection of the lines a0(x) = 0 and aj (x) = 0. Since the affine roots a0 and aj take integral
values on P , this lattice is contained in the weight lattice of our translated rank-two root system
of type A. The upshot is that in this situation the braid relation between I0 and Ij follows from
that of type A.

Proof of Eq. (4.2d). For any j ∈ {1, . . . , n}, the integral-reflection operator Ij satisfies the
relation

Ij tλ = tsj λIj + (
τj − τ−1

j

) tλ − tsj λ

1 − t−αj

, λ ∈ P

(by [13, Prop. 4.1]). By picking αj short (so W0αj = W0α0 and τj = τ0) and applying the second
conjugation relation in Eq. (4.3) with an appropriate element w ∈ W0 such that wαj = α0, we
arrive at Eq. (4.2d) with I0 replaced by Iα∨

0
. The translation employed in the proof of Eq. (4.2b)

above now transforms the relation in question into the one for I0.

5. Equivalence of T̂ (HHH) and I (HHH)

In this section it is shown that the difference-reflection representation T̂ (H) arises from the
integral-reflection representation I (H) by means of an explicit intertwining operator.

5.1. Intertwining operator

Let J : C(P ) → C(P ) be the operator determined by the following action on f ∈ C(P ):

(J f )(λ) := τ−1(Iwλf )(λ+) (λ ∈ P). (5.1)
wλ
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It is clear from this definition that J acts trivially on lattice functions with support inside the
fundamental alcove: (J f )(λ) = f (λ) if λ ∈ P +

c . Moreover, in the definition of J one may
actually replace wλ by any w ∈ WR such that wλ = λ+. This hinges on the following useful
invariance property for the action of Iw on f ∈ C(P ): for any w, w̃ ∈ WR and μ ∈ P +

c one has
that

τ−1
w (Iwf )(μ) = τ−1

w̃
(Iw̃f )(μ) if w−1μ = w̃−1μ. (5.2)

Indeed, from the decomposition w = vμww−1μ with vμ ∈ WR,μ (so �(w) = �(vμ) + �(ww−1μ)

by Eq. (3.12b)) it is readily seen—via a reduced decomposition of vμ—that τ−1
w (Iwf )(μ) =

(J f )(w−1μ). Notice in this connection that (Ijf )(μ) = τjf (μ) for any simple reflection
sj ∈ WR,μ.

Proposition 5.1. The operator J (5.1) constitutes a linear automorphism of C(P ).

To demonstrate the bijectivity of J : C(P ) → C(P ) it will be shown below that the operator
in question is triangular with respect to a suitable partial order on P that is inherited from the
Bruhat order on WR . Next we will verify that the following intertwining relations associated with
the generators of H are satisfied:

J Ij = T̂jJ (j = 0, . . . , n), (5.3a)

J u = uJ (u ∈ Ω), (5.3b)

J tν = X̂νJ (ν ∈ Pϑ). (5.3c)

These intertwining relations imply—in combination with the bijectivity of J (5.1)—that The-
orem 3.3 follows as a direct consequence of Theorem 4.1, i.e. the difference-reflection rep-
resentation T̂ (H) arises from the integral-reflection representation I (H) in Theorem 4.1 upon
intertwining with J :

J I (h) = T̂ (h)J (∀h ∈H). (5.4)

5.2. Triangularity

Our starting point for the triangularity proof for J (5.1) is the following (very rough) partial
order on V stemming from the Bruhat order:

∀x, y ∈ V : x � y iff (i) x+ = y+ and (ii) wx � wy. (5.5)

By definition, this order only compares points belonging to the same WR-orbit. For x, y ∈ V ,
we denote by [x, y] the interval {z ∈ V | x � z � y} (so [x, y] = ∅ if x � y). Since a nonempty
interval [x, y] contains only a finite number of points, its convex hull Conv[x, y] is a compact
polytope in V . We will now employ the convex polytope generated by the interval [x+, x] ⊂ WRx

of all points smaller or equal to a given point x ∈ V to refine the partial order in Eq. (5.5) (so as
to permit comparing points belonging to different WR-orbits).
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Lemma 5.2. For any x, y ∈ V , one has that:

i) Conv[y+, y] ⊆ Conv(W0y),
ii) Conv[x+, x] = Conv[y+, y] ⇒ x = y,

iii) x ∈ Conv[y+, y] ⇒ Conv[x+, x] ⊆ Conv[y+, y].

Proof. i) It is sufficient to verify that [y+, y] ⊆ Conv(W0y). To this end we perform downward
induction with respect to the partial order in Eq. (5.5) starting from the (trivial) maximal point y

(∈ [y+, y] ∩ Conv(W0y)). Assuming that x ∈ (y+, y] := [y+, y] \ {y+} belongs to Conv(W0y),
let s = sa , a ∈ R+, denote any reflection such that wxs < wx (so sx ∈ [y+, y] with sx < x since
(sx)+ = x+ = y+ and wsx � wxs < wx � wy ). We then have that

Conv{x, sx} ⊆ Conv
{
x, s′x

} ⊆ Conv(W0y),

where Conv{x, sx} denotes to the line segment connecting x and sx and—recall—s′ ∈ W0 refers
to the derivative of s. The first inclusion hinges on Eq. (2.1) and the observation that a′(x) �
a(x) < 0 (cf. Eqs. (2.20c), (3.13)) and the second inclusion follows from the fact that the convex
polytope Conv(W0y) is W0-invariant. We thus conclude that the point sx ∈ [y+, y] belongs to
Conv(W0y), which completes the induction step.

ii) Since all points on the orbit W0y are vertices of Conv(W0y), part i) implies in particular
that the point y is a vertex of the Conv[y+, y]. Moreover, since all vertices of the latter polytope
are contained in the generating set [y+, y], it follows that the point y can be characterized as the
unique vertex of the convex polytope Conv[y+, y] that is maximal with respect to the order in
Eq. (5.5).

iii) It is sufficient to verify that [x+, x] ⊆ Conv[y+, y] when x ∈ Conv[y+, y], which will
again be done by downward induction with respect to the order in Eq. (5.5) starting from the
maximal point x. Assuming that x̃ ∈ (x+, x] belongs to Conv[y+, y], let s = sa , a ∈ R+, denote
any reflection such that wx̃s < wx̃ (so sx̃ ∈ [x+, x] with sx̃ < x̃). To complete the induction
step it remains to show that sx̃ ∈ Conv[y+, y]. To this end we note that the convex polytope
cut out by the intersection of Conv[y+, y] with the nonpositive half-space Ha = Ha ∪ Va (cf.
Eq. (4.1b)) contains x̃ (because of Eqs. (2.20c), (3.13)) and it is finitely generated by the points
of [y+, y] ∩ Ha and the vertices of the boundary facet Conv[y+, y] ∩ Va . Since s([y+, y] ∩
Ha) ⊆ [y+, y] (again by Eqs. (2.20c), (3.13)) and s(Conv[y+, y] ∩ Va) = Conv[y+, y] ∩ Va ⊆
Conv[y+, y] (because the points of Va are fixed by s), it follows that sx̃ ∈ s(Conv[y+, y]∩Ha) ⊆
Conv[y+, y]. �

It is immediate from part ii) of Lemma 5.2 that the inclusion relation

Conv[x+, x] ⊆ Conv[y+, y] (x, y ∈ V )

defines a partial order on V . This partial order refines the order in Eq. (5.5):

x � y ⇔ x ∈ [y+, y] ⇔ [x+, x] ⊆ [y+, y] ⇒ Conv[x+, x] ⊆ Conv[y+, y].
We will now weaken the order in question to the following partial order � on the weight lattice:

∀μ,λ ∈ P μ � λ iff (i) λ − μ ∈ Q and (ii) Conv[μ+,μ] ⊆ Conv[λ+, λ]. (5.6a)
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It is obvious from this definition and part iii) of Lemma 5.2 that the set of weights smaller or
equal to a given weight λ ∈ P consists of the finite intersection

{μ ∈ P | μ� λ} = Conv[λ+, λ] ∩ (λ + Q). (5.6b)

Proposition 5.3. The operator J (5.1) is triangular with respect to the ordering in Eq. (5.6a) in
the sense that for all f ∈ C(P ) and λ ∈ P :

(J f )(λ) =
∑

μ∈P,μ�λ

Jλ,μf (μ), with Jλ,λ = τ−2
wλ

, (5.7)

and with the expansion coefficients Jλ,μ, μ ≺ λ being Laurent polynomials in the indeterminates
τj with integral coefficients.

Proof. The proof is by induction on the length of wλ, starting from the trivial situation that
�(wλ) = 0 (i.e. λ ∈ P +

c ) in which case (J f )(λ) = f (λ). For �(wλ) > 0, we pick j ∈ {0, . . . , n}
such that wλsj < wλ, whence wλ = wsj λsj with �(wλ) = �(wsj λ) + 1 (i.e. sjλ < λ). Elementary
manipulations now reveal that:

(J f )(λ) = τ−1
wλ

(Iwλf )(λ+) = τ−1
j τ−1

wsj λ
(Iwsj λIj f )

(
(sjλ)+

)
(i)= τ−1

j

∑
μ∈P,μ�sj λ

Jsj λ,μ(Ijf )(μ)
(ii)=

∑
μ∈P,μ�λ

Jλ,μf (μ), (5.8)

where the equality (i) relies on the induction hypothesis, and the equality (ii) hinges—upon re-
calling that (Ijf )(μ) involves a linear combination of function values supported on the αj string
from μ to sjμ—on the observation that the convex hull of Conv[λ+, sj λ] and sj (Conv[λ+, sj λ])
is contained in Conv[λ+, λ] (because [λ+, sj λ] ∪ sj ([λ+, sj λ]) ⊆ [λ+, λ]). It is manifest from
the definition of the integral-reflection operators that the expansion coefficients Jμ,λ are Laurent
polynomials in the indeterminates τj with integral coefficients. It remains to verify that the value
of the diagonal coefficient Jλ,λ pans out as stated in Eq. (5.7). Indeed, since λ is the unique max-
imal vertex of the polytope Conv[λ+, λ] with respect to � (cf. part ii) of Lemma 5.2), it follows
that in Eq. (5.8) the only contribution to the diagonal on the LHS of equality (ii) stems from the
term corresponding to μ = sjλ. Moreover, one reads-off from the explicit action of Ij that the
coefficient of f (λ) in (Ijf )(sjλ) is given by τ−1

j if sjλ < λ (so aj (λ) < 0). A comparison of the

coefficients of f (λ) on both sides of equality (ii) thus entails that Jλ,λ = τ−2
j Jsj λ,sj λ, whence the

stated value of Jλ,λ follows from the induction. �
The triangularity in Eq. (5.7) implies that f ∈ C(P ) can be uniquely solved from the linear

equation (J f )(λ) = g(λ) for any g ∈ C(P ), by performing induction in λ with respect to the
order in Eq. (5.6a). In other words, the intertwining operator J : C(P ) → C(P ) is a bijection.

5.3. Intertwining relations

We will now verify the intertwining relations in Eqs. (5.3a)–(5.3c). The proof of the first two
relations hinges on some short computations analogous to those in the proofs of [13, Lem. 5.2]
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and [14, Prop. 4.2]. They are included here merely to keep the presentation self-contained. The
proof of the last relation is more intricate and some of the harder details are hidden away in
Appendix A at the end of the paper. In all three cases the idea of the proof is to act with the
operator at the LHS of the relation on an arbitrary function f ∈ C(P ) and then pull the action
of the integral-reflection representation through the intertwining operator so as to recover the
operator at the RHS.

5.3.1. Proof of Eq. (5.3a)
For any j ∈ {0, . . . , n}:

(J Ijf )(λ) = τ−1
wλ

(IwλIjf )(λ+)

Eq. (2.11)= τ−1
wλ

(
(Iwλsj f )(λ+) + χ(wλaj )

(
τj − τ−1

j

)
(Iwλf )(λ+)

)
= τj τ

−1
wλ

(Iwλf )(λ+) + τ
sign(wλaj )

j

(
τ−1
wλsj

(Iwλsj f )(λ+) − τ−1
wλ

(Iwλf )(λ+)
)

Eq. (5.2)= (T̂jJ f )(λ).

5.3.2. Proof of Eq. (5.3b)
For any u ∈ Ω :

(J uf )(λ) = τ−1
wλ

(Iwλuf )(λ+) = τ−1
wλ

(
u−1Iwλuf

)(
u−1λ+

)
= τ−1

w
u−1λ

(Iw
u−1λ

f )
((

u−1λ
)
+
) = (J f )

(
u−1λ

) = (uJ f )(λ)

(where it was used that u−1Iwλu = Iu−1wλu and u−1wλu = wu−1λ, cf. Eq. (4.3)).

5.3.3. Proof of Eq. (5.3c)
For ν = 0 Eq. (5.3c) is trivial whereas for any ν ∈ P 

ϑ :

(J tνf )(λ) = τ−1
wλ

(Iwλtνf )(λ+)

Thm. 2.2= τ−1
wλ

(tw′
λνIwλf )(λ+)

+ τ−1
wλ

∑
v∈WR
v<wλ

(
Bν

v,wλ
(Ivf )(λ+) +

∑
η∈W0ν

Aη,ν
v,wλ

(tηIvf )(λ+)

)
. (5.9)

The first term may be rewritten as

τ−1
wλ

(tw′
λνIwλf )(λ+) = τ−1

wλ
(Iwλf )

(
wλ(λ − ν)

)
Eq. (A.1)= aλ,ν(J f )(λ − ν) + bλ,ν

(
1 − τ−2

0

)
(J f )(λ),

with aλ,ν and bλ,ν as in Eqs. (3.14a)–(3.14f). Furthermore, invoking of the stability property in
Eq. (5.2) allows to recast the term with coefficient Bν

v,wλ
as

(Ivf )(λ+) = τv(J f )
(
v−1λ+

)
.
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Finally, for the term with coefficient A
η,ν
v,wλ we obtain

(tηIvf )(λ+) = (Ivf )(λ+ − η)

(i)= τ 2
wλ+−η

(J Ivf )(λ+ − η) + cλ+,η

(
1 − τ−2

0

)
(Ivf )(λ+)

(ii)= τ 2
wλ+−η

(T̂vJ f )(λ+ − η) + τvcλ+,η

(
1 − τ−2

0

)
(J f )

(
v−1λ+

)
,

with cλ,η given by Eqs. (3.14d)–(3.14f). Here we used (i) Lemma A.2 in the form

f (λ+ − η) = τ 2
wλ+−η

(J f )(λ+ − η) + cλ+,η

(
1 − τ−2

0

)
f (λ+)

with f replaced by Ivf and (ii) Eq. (5.3a) in combination with Proposition 3.1 and Theorem 4.1
for the first term and Eq. (5.2) for the second term. Substitution in the RHS of Eq. (5.9) now
entails that

(J tνf )(λ) = aλ,ν(J f )(λ − ν) + bλ,ν

(
1 − τ−2

0

)
(J f )(λ)

+ τ−1
wλ

∑
v<wλ
η∈W0ν

Aη,ν
v,wλ

τ 2
wλ+−η

(T̂vJ f )(λ+ − η)

+ τ−1
wλ

∑
v<wλ

τv

(
Bν

v,wλ
+ (

1 − τ−2
0

) ∑
η∈W0ν

cλ+,ηA
η,ν
v,wλ

)
(J f )

(
v−1λ+

)
= (

X̂νJ f
)
(λ).

Remark 5.4. The intertwining property in Eq. (5.4) constitutes a discrete analog of the
intertwining property in [18, Thm. 5.3] between the integral-reflection and the Dunkl-type
differential-reflection representation of the degenerate double affine Hecke algebra at critical
level. In particular, the intertwining relation in Eq. (5.3c) producing the operator X̂ν as the im-
age of the translation operator tν is the discrete counterpart of the intertwining relation in [18,
Eq. (5.10)], where the directional derivative gets mapped onto the corresponding Dunkl-type
differential-reflection operator. In other words, the operators X̂ν , ν ∈ P ∗

ϑ , should be viewed as
the discrete Dunkl-type operators associated with the present construction. From this perspec-
tive, our proof of Eq. (5.3c) based on the multiplication formula in Theorem 2.2 corresponds to
a discrete counterpart of the proof of [18, Eq. (5.10)] based on the multiplication formula [18,
Eq. (5.11)].

6. Integrable discrete Laplacians

The images of the center under representations of (degenerate) affine Hecke algebras provide
a fruitful framework for describing quantum integrable systems, cf. e.g. Refs. [28,7,42,13] for
examples of integrable systems arising in this manner. In the present setup quantum integrable
systems are obtained similarly via the image of the commutative subalgebra C[X]W0 ⊂Z(H), in
the spirit of [18] where the quantum integrals for the Schrödinger operator with a delta potential
on the affine root system arise from the algebra of W0-invariant polynomials contained in the
center of the degenerate double affine Hecke algebra at critical level. For our integral-reflection
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representation, the quantum integrable system at issue consists merely of (linear combinations
of) free discrete Laplace operators in C(P ) of the form

mω(t) := I
(
mω(X)

) =
∑

ν∈W0ω

tν
(
ω ∈ P +)

. (6.1)

The difference-reflection representation on the other hand produces a nontrivial integrable
τ -deformation of these Laplace operators (cf. Remark 6.5 below). In this section we compute
the simplest of these (deformed) Laplacians explicitly.

6.1. Laplacians associated with the (quasi-)minuscule weights

To any symmetric polynomial p ∈ C[X]W0 , we associate a (deformed) discrete Laplace oper-
ator Lp : C(P ) → C(P ) defined by

Lp = p(X̂) := T̂
(
p(X)

) (
p ∈ C[X]W0

)
. (6.2)

Since the symmetric subalgebra C[X]W0 ⊂ H is commutative, the associated Laplacians Lp ,
p ∈ C[X]W0 , form a quantum integrable system:

[Lp,Lp̃] = 0
(∀p, p̃ ∈C[X]W0

)
. (6.3)

The next theorem makes the action of Lp on C(P ) explicit for p = mω with ω (quasi-)minuscule.

Theorem 6.1. For ω ∈ P + (quasi-)minuscule, the Laplacian Lω := Lmω = ∑
ν∈W0ω

X̂ν acts on
C(P ) via

(Lωf )(λ) =
∑

ν∈W0ω

(
aλ,νf (λ − ν) + bλ,ν

(
1 − τ−2

0

)
f (λ)

) (
f ∈ C(P ), λ ∈ P

)
, (6.4)

where aλ,ν and bλ,ν are given by Eqs. (3.14b)–(3.14f).

Proof. Acting with LωJ on an arbitrary function f ∈ C(P ) entails that (for all λ ∈ P ):

(LωJ f )(λ)
Eq. (5.4)= (

Jmω(t)f
)
(λ)

Eq. (5.1)= τ−1
wλ

(
Iwλmω(t)f

)
(λ+)

Eq. (2.15)= τ−1
wλ

(
mω(t)Iwλf

)
(λ+) = τ−1

wλ

∑
ν∈W0ω

(Iwλf )
(
wλ(λ − ν)

)
Eq. (A.1)=

∑
ν∈W0ω

aλ,ν(J f )(λ − ν) + bλ,ν

(
1 − τ−2

0

)
(J f )(λ),

whence the theorem follows from the bijectivity of J . �
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6.2. WR-invariant reduction

The WR-invariant subspace

C(P )WR := {
f ∈ C(P )

∣∣ wf = f, w ∈ WR

}
(6.5)

consists of the functions f : C(P ) → C that are symmetric with respect to the action of W0 and
periodic with respect to the lattice of translations t (cQ).

Proposition 6.2. The WR-invariant subspace C(P )WR is stable with respect to the action of Lp ,
p ∈C[X]W0 .

Proof. Since the relations sjf = f and T̂j f = τjf for j ∈ {0, . . . , n} are equivalent, one may
alternatively characterize the space of WR-invariant functions as

C(P )WR = {
f ∈ C(P )

∣∣ T̂wf = τwf, w ∈ WR

}
. (6.6)

The proposition thus follows from the fact that the Laplacians Lp , p ∈ C[X]W0 , commute with
the operators T̂w , w ∈ WR (cf. Eq. (2.15)). �

The finite intersection P +
c (3.7) constitutes a fundamental domain for the action of WR on P .

Hence, we may identify the space C(P )WR with the finite-dimensional space C(P +
c ) of functions

f : P +
c → C. The following theorem describes the restriction of the action of the operator Lω

in Theorem 6.1 to C(P +
c ). The proof hinges on Macdonald’s celebrated product formula for the

generalized Poincaré series of the Coxeter group associated with the length multiplicative func-
tion τ [39]. For the stabilizer WR,λ of λ ∈ P +

c , Macdonald’s formula for the Poincaré polynomial
in question becomes:

WR,λ

(
τ 2) :=

∑
w∈WR,λ

τ 2
w =

∏
a∈R+

λ

1 − τ 2
a τ

2 hts (a)
s τ

2 htl (a)
l

1 − τ
2 hts (a)
s τ

2 htl (a)
l

=
∏

α∈R+
0

〈λ,α∨〉=0

1 − τ 2
α∨eτ (α

∨)

1 − eτ (α∨)

∏
α∈R+

0
〈λ,α∨〉=c

1 − τ 2
α∨hτ eτ (−α∨)

1 − hτ eτ (−α∨)
, (6.7a)

where

hτ := τ 2
0 eτ

(
ϑ∨)

and eτ (η) :=
∏

α∈R+
0

τ
〈η,α〉
α∨

(
η ∈ P ∨)

(6.7b)

(with P ∨ denoting the lattice of coweights). Here we used the notation R+
λ := {a ∈ R+ |

a(λ) = 0} and the heights hts(a) and htl(a) of a = k0a0 + · · · + knan ∈ R+ are defined as

hts(a) :=
∑

0�j�n
αj short

kj and htl (a) :=
∑

1�j�n
αj long

kj (6.7c)

(with—recall—the convention that all finite roots are short if R0 is simply-laced).
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Theorem 6.3. For ω ∈ P + (quasi-)minuscule, the restriction of the action of Lω to C(P +
c ) �

C(P )WR is given by

(Lωf )(λ) = Uλ,ω

(
τ 2)f (λ) +

∑
ν∈W0ω

λ−ν∈P+
c

Vλ,ν

(
τ 2)f (λ − ν) (6.8a)

(f ∈ C(P +
c ), λ ∈ P +

c ), with

Vλ,ν

(
τ 2) :=

∏
a∈R+

λ \R+
λ−ν

1 − τ 2
a τ

2 hts (a)
s τ

2 htl (a)
l

1 − τ
2 hts (a)
s τ

2 htl (a)
l

=
∏

α∈R+
0

〈λ,α∨〉=0
〈ν,α∨〉<0

1 − τ 2
α∨eτ (α

∨)

1 − eτ (α∨)

∏
α∈R+

0
〈λ,α∨〉=c
〈ν,α∨〉>0

1 − τ 2
α∨hτ eτ (−α∨)

1 − hτ eτ (−α∨)
(6.8b)

and

Uλ,ω

(
τ 2) :=

∑
ν∈W0ω

(λ−ν)+=λ

τ 2
wλ−ν

+ (
1 − τ−2

0

) ∑
ν∈W0ω

wλ−νλ=λ

cλ,ν, (6.8c)

where the coefficients cλ,ν are of the form in Eqs. (3.14d)–(3.14f).

Proof. It is immediate from Theorem 6.1 that the action of Lω reduces to an action on C(P +
c ) ∼=

C(P )WR of the form in Eq. (6.8a) with

Vλ,ν

(
τ 2) =

∑
η∈W0ω

(λ−η)+=λ−ν

aλ,η
(i)=

∑
η∈W0ω

(λ−η)+=λ−ν

τ 2
wλ−η

(ii)=
∑

μ∈WR,λ(λ−ν)

τ 2
wμ

= WR,λ

(
τ 2)/(WR,λ ∩ WR,λ−ν)

(
τ 2)

and

Uλ,ω

(
τ 2) =

∑
ν∈W0ω

(λ−ν)+=λ

aλ,ν + (
1 − τ−2

0

) ∑
ν∈W0ω

bλ,ν

(i),(ii),(iii)=
∑

ν∈W0ω
(λ−ν)+=λ

τ 2
wλ−ν

+ (
1 − τ−2

0

) ∑
ν∈W0ω

wλ−νλ=λ

cλ,ν .

Here we used that for any λ ∈ P +
c and ν ∈ W0ω: (i) aλ,ν = τ 2

wλ−ν
, (ii) (λ − ν)+ �= λ iff wλ−ν ∈

WR,λ (by part i) of Lemma A.1), and (iii) ν∨ + (1 − 〈λ, ν∨〉) ∈ R+ if (λ − ν)+ = λ (by part ii)
of Lemma A.1), whence bλ,ν = 0 in this situation. Finally, by plugging in Macdonald’s product
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formula for the Poincaré polynomial in Eq. (6.7a) the coefficient Vλ,ν(τ
2) is rewritten in the form

given by Eq. (6.8b). �
Remark 6.4. For ω minuscule, the actions of Lω in Theorems 6.1 and 6.3 reduce to (cf. Re-
mark 3.5)

(Lωf )(λ) =
∑

ν∈W0ω

τ 2
wwλ(λ−ν)

f (λ − ν)
(
f ∈ C(P ), λ ∈ P

)
(6.9a)

and

(Lωf )(λ) =
∑

ν∈W0ω

λ−ν∈P+
c

Vλ,ν

(
τ 2)f (λ − ν)

(
f ∈ C

(
P +

c

)
, λ ∈ P +

c

)
, (6.9b)

respectively. For the root systems of type A, i.e. with the (affine) Weyl group being equal to the
(affine) permutation group, the operator Lω (6.9b) was previously found in [11, Prop. 2.2]. From
this perspective, our present construction provides a Hecke-algebraic framework for the discrete
integrable Laplacians in Ref. [11] permitting their generalization from the affine permutation
group to an arbitrary affine Weyl group.

Remark 6.5. For τ → 1, the intertwining operator J (5.1) becomes trivial:

(J f )(λ)
τ→1= f (λ)

(
f ∈ C(P ), λ ∈ P

)
. (6.10)

The action of Lω on C(P ) reduces in this situation therefore to that of mω(t) (6.1), viz.

(Lωf )(λ)
τ→1=

∑
ν∈W0ω

f (λ − ν). (6.11)

This amounts to the action of a conventional Laplacian on C(P ) (shifted by an additive constant
such that the diagonal term vanishes).

7. Diagonalization: periodic Macdonald spherical functions

In this section we diagonalize the commuting Laplacians Lp , p ∈ C[X]W0 , in C(P +
c ) with the

aid of a basis of periodic Macdonald spherical functions. In the remaining of the paper, we will
restrict attention to the following (repulsive) parameter regime

−1 < τ 2 < 1. (7.1)

(Actually this parameter restriction is relevant only from Section 7.3 onwards.)
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7.1. Affine Macdonald spherical functions

For a spectral parameter ξ ∈ V , the affine Macdonald spherical function Φξ ∈ C(P ) is defined
as

Φξ := J φξ with φξ := I (10)e
iξ , (7.2a)

where eiξ ∈ C(P ) denotes the plane wave function eiξ (λ) := ei〈λ,ξ〉 (λ ∈ P ) and

10 :=
∑
v∈W0

τvTv. (7.2b)

For our purposes it is sufficient to restrict attention to affine Macdonald spherical functions cor-
responding to a regular spectral parameter ξ taken from

Vreg := {
ξ ∈ V

∣∣ 〈ξ,α〉 /∈ 2πZ, ∀α ∈ R+
0

}
. (7.3)

A celebrated formula for the affine Hecke algebra element 10X
λ10, λ ∈ P , originating from the

work of Macdonald (see e.g. Refs. [37, Thm. 1], [38, (4.1.2)] and Refs. [45, Thm. 2.9(a)], [49,
Thm. 6.9]) implies that the function φξ , ξ ∈ Vreg, decomposes as the following linear combination
of plane waves [13, Prop. 5.9]

φξ =
∑
v∈W0

C(vξ)eivξ (ξ ∈ Vreg), (7.4a)

where

C(ξ) :=
∏

α∈R+
0

1 − τ 2
α∨e−i〈ξ,α〉

1 − e−i〈ξ,α〉 . (7.4b)

The plane waves eiξ , ξ ∈ V/2πQ∨ are the characters of the weight lattice P . It is therefore
clear that the plane waves eiξ1, . . . , eiξm are linearly independent in C(P ) iff they belong to dis-
tinct wave vectors ξ1, . . . , ξm on the compact torus V/2πQ∨. In particular, for ξ ∈ Vreg the plane
waves eivξ , v ∈ W0, are linearly independent, because the stabilizer of ξ ∈ Vreg inside the affine
Weyl group W

R̂
= W0 � t (2πQ∨) of R̂ := R0 +2πZ is trivial. As a consequence, one concludes

from the explicit plane-wave expansion in Eqs. (7.4a), (7.4b) that for a regular spectral parameter
the affine Macdonald spherical functions Φξ1, . . . ,Φξm are linearly independent in C(P ) iff the
corresponding spectral values ξ1, . . . , ξm belong to distinct W

R̂
orbits of Vreg. In other words,

a complete domain of regular spectral values parametrizing the affine Macdonald spherical func-
tions in Eqs. (7.4a), (7.4b) is given by the fundamental domain 2πA∨ of Vreg with respect to the
action of W

R̂
, where A∨ refers to the open alcove

A∨ := {
ξ ∈ V

∣∣ 0 < 〈ξ,α〉 < 1, ∀α ∈ R+
0

}
. (7.5)
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7.2. Periodicity

Since Tj 10 = τj 10 for j = 1, . . . , n, it is clear that the affine Macdonald spherical function is
W0-invariant:

T̂jΦξ = T̂jJ φξ = J Ijφξ = J τjφξ = τjΦξ , (7.6)

so sjΦξ = Φξ for j = 1, . . . , n. The following proposition provides additional constraints on
spectral parameter ξ guaranteeing the affine Macdonald spherical function to be periodic with
respect to translations in t (cQ).

Proposition 7.1. For ξ ∈ Vreg (7.3), the affine Macdonald spherical function Φξ (7.2a), (7.2b)
lies in the WR-invariant subspace C(P )WR (6.5) provided the spectral parameter satisfies the
following algebraic system of equations of Bethe type

eic〈ξ,ν〉 =
∏

α∈R+
0

(
1 − τ 2

α∨ei〈ξ,α〉

τ 2
α∨ − ei〈ξ,α〉

)〈ν,α∨〉
, ∀ν ∈ Q. (7.7)

Proof. One deduces from Eqs. (6.6) and (7.6) that the affine Macdonald spherical function
is WR-invariant provided T̂0Φξ = τ0Φξ , or equivalently: I0φξ = τ0φξ . For ξ ∈ Vreg (7.3), the
plane wave decomposition in Eq. (7.4a) combined with the explicit action of τ0I0 on eiξ (cf.
Eqs. (4.1a)–(4.1c)):

τ0I0e
iξ = τ 2

0 − 1

1 − e−i〈ξ,ϑ〉 e
iξ + 1 − τ 2

0 e−i〈ξ,ϑ〉

1 − e−i〈ξ,ϑ〉 eic〈ξ,ϑ〉eisϑ ξ

produces on the one hand that

τ0I0φξ =
∑
v∈W0

τ 2
0 − 1

1 − e−i〈vξ,ϑ〉 C(vξ)eivξ

+
∑
v∈W0

1 − τ 2
0 ei〈vξ,ϑ〉

1 − ei〈vξ,ϑ〉 C(sϑvξ)e−ic〈vξ,ϑ〉eivξ (ξ ∈ Vreg).

When comparing this expression with the corresponding plane wave decomposition of τ 2
0 φξ , it

readily follows—upon exploiting the linear independence of the plane waves eivξ , v ∈ W0, when
ξ ∈ Vreg—that the affine Macdonald spherical function is WR-invariant for ξ ∈ Vreg provided

eic〈vξ,ϑ〉 = C(sϑvξ)

C(vξ)

1 − τ 2
0 ei〈vξ,ϑ〉

τ 2
0 − ei〈vξ,ϑ〉 , ∀v ∈ W0.

By substituting the product expansion for C(·) over R+
0 (cf. (7.4b)) and canceling the common

factors in the numerator and denominator:
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C(sϑξ)

C(ξ)
=

∏
α∈R(sϑ )

1 − τ 2
α∨ei〈ξ,α〉

τ 2
α∨ − ei〈ξ,α〉 =

∏
α∈R+

0
〈ϑ,α∨〉>0

1 − τ 2
α∨ei〈ξ,α〉

τ 2
α∨ − ei〈ξ,α〉

= 1 − τ 2
0 ei〈ξ,ϑ〉

τ 2
0 − ei〈ξ,ϑ〉

∏
α∈R+

0 \{ϑ}

(
1 − τ 2

α∨ei〈ξ,α〉

τ 2
α∨ − ei〈ξ,α〉

)〈ϑ,α∨〉

(where it was used that 0 � 〈ϑ,α∨〉� 1 for all α ∈ R+
0 \ {ϑ}), the relation for the spectral param-

eter at issue is rewritten in the form of the algebraic system given by Eq. (7.7) (first for ν ∈ W0ϑ

and then for ν ∈ Q upon recalling that the short roots generate Q over Z). �
The following explicit formula for the periodic Macdonald spherical function is immediate

from the plane waves decomposition in Eqs. (7.4a), (7.4b), the WR-invariance in Proposition 7.1,
and the trivial action of the intertwining operator J (5.1) on functions supported in the funda-
mental domain P +

c .

Corollary 7.2. For ξ ∈ Vreg (7.3) subject to the periodicity conditions in Proposition 7.1, the
affine Macdonald spherical function is given explicitly by

Φξ(λ) =
∑
v∈W0

C(vξ)ei〈vξ,λ+〉 (λ ∈ P), (7.8)

with C(ξ) taken from Eq. (7.4b).

The algebraic system in Eq. (7.7) inherits from Φξ the invariance with respect to the action
of the affine Weyl group W

R̂
on the spectral parameter ξ . It constitutes a generalization of the

Bethe Ansatz equations in [11, Prop. 3.2] to the case of arbitrary Weyl groups in the spirit of
[18, Thm. 2.6]. A standard technique due to C.N. Yang and C.P. Yang [57] allows one to char-
acterize the solutions of such Bethe Ansatz equations in terms of the global minima of a family
of strictly convex Morse functions [43,23,33,15]. We will now detail the relevant solutions for
the algebraic system of Bethe type equations in Eq. (7.7) by adapting Yang and Yang’s method
to the present context sticking closely to the approach in [11, Sec. 4] and [18, Secs. 2, 9–11].
To avoid linear dependencies it suffices to consider only solutions belonging to the fundamental
alcove 2πA∨ (7.5) (cf. Remark 7.8 below).

7.3. Solution of the Bethe type equations

For any μ ∈ P ∨, let Vμ : V → R be a smooth auxiliary function of the form

Vμ(ξ) = c

2
〈ξ, ξ 〉 − 2π

〈
ρ∨ + μ,ξ

〉 + ∑
α∈R+

0

2

〈α,α〉

〈ξ,α〉∫
0

vα(x)dx, (7.9a)

where ρ∨ = 1 ∑
+ α∨ (cf. Remark 3.4) and
2 α∈R0
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vα(x) := (
1 − τ 4

α∨
) x∫

0

dy

1 − 2τ 2
α∨ cos(y) + τ 4

α∨

= 2 arctan

(
1 + τ 2

α∨

1 − τ 2
α∨

tan

(
x

2

))
= i log

(
1 − τ 2

α∨eix

eix − τ 2
α∨

)
. (7.9b)

Here the branches of arctan(·) and log(·) are assumed to be chosen such that vα(x) varies
from −π to π as x varies from −π to π (which corresponds to the principal branch) and vα

is quasi-periodic: vα(x + 2π) = vα(x) + 2π . Our parameter restriction (7.1) moreover guar-
antees that the odd function vα is smooth and strictly monotonously increasing on R. Let us
denote the directional derivative of Vμ(ξ) in the direction η ∈ V by (∂ηVμ)(ξ) := 〈(∇Vμ)(ξ), η〉
(where ∇ refers to the gradient) and write H(ξ) ∈ End(V ) for the (μ-independent) Hessian
of Vμ at the point ξ ∈ V . An explicit computation reveals that the associated quadratic form
Hη,ζ (ξ) := 〈H(ξ)η, ζ 〉 = (∂η∂ζVμ)(ξ) characterizing this Hessian is given by:

Hη,ζ (ξ) = c〈η, ζ 〉 +
∑
α∈R0

(1 − τ 4
α∨)〈η,α〉〈ζ,α〉

〈α,α〉(1 − 2τ 2
α∨ cos(〈ξ,α〉) + τ 4

α∨)
(ξ, η, ζ ∈ V ). (7.10)

It is manifest from this explicit expression that Hη,η(ξ) > 0 for η �= 0, whence H(ξ) is positive
definite and Vμ : V → R is a strictly convex Morse function. For any μ ∈ P ∨, we now define
ξμ as the unique global minimum of Vμ (7.9a), (7.9b). The existence of such a minimum is
guaranteed since Vμ(ξ) → +∞ when ξ → ∞ (as

∫ x
0 vα(y)dy � 0 for x ∈R). Moreover, because

ξμ is a critical point of Vμ, it provides the unique solution of the critical equation ∇Vμ = 0, or
more explicitly:

cξμ + ρ∨
v (ξμ) = 2π

(
ρ∨ + μ

)
where ρ∨

v (ξ) :=
∑

α∈R+
0

vα

(〈ξ,α〉)α∨. (7.11)

Proposition 7.3. For a coweight μ belonging to the fundamental region

P ∨,+
c := {

μ ∈ P ∨ ∣∣ 0 � 〈μ,α〉� c, ∀α ∈ R+
0

}
, (7.12a)

the unique global minimum ξμ of Vμ (7.9a), (7.9b) enjoys the following properties:

i) The point ξμ provides a solution to the Bethe type equations (7.7).
ii) The parametrization μ �→ ξμ, μ ∈ P

∨,+
c is injective.

iii) The minimum ξμ belongs the intersection of the open alcove 2πA∨ (7.5) with the compact
convex polytope in V cut out by the following (moment gap) inequalities:

2π〈ρ∨ + μ,α〉
c + κ−(τ 2)

� 〈ξμ,α〉 � 2π〈ρ∨ + μ,α〉
c + κ+(τ 2)

, ∀α ∈ R+
0 , (7.12b)

where

κ±
(
τ 2) := 2

n

∑
α∈R+

1 − τ 4
α∨

(1 ± |τ 2
α∨|)2

. (7.12c)
0
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iv) The position of ξμ depends analytically on the parameter(s) τ 2
α∨ ∈ (−1,1), and one has that

lim
τ→0

ξμ = 2π

c + h(R0)

(
ρ∨ + μ

)
and lim

τ↑1
ξμ = 2πc−1μ, (7.12d)

where—recall—h(R0) denotes the Coxeter number of R0 (cf. Eq. (3.8)).

Proof. i) Upon pairing Eq. (7.11) with an arbitrary positive root:

c〈ξμ,β〉 + 〈
ρ∨

v (ξμ),β
〉 = 2π

〈
ρ∨ + μ,β

〉 (
β ∈ R+

0

)
, (7.13)

multiplication by i and exponentiation of both sides (while using that eivα(x) = (eix − τ 2
α∨)/(1 −

τ 2
α∨eix)) reproduces the Bethe type equations in Eq. (7.7) evaluated at ξ = ξμ (first for ν = β and

then for arbitrary ν ∈ Q as the root lattice is generated over Z by R+
0 ).

ii) The injectivity of the parametrization μ �→ ξμ is immediate from the observation that
Eq. (7.11) permits recovering μ from ξμ.

iii) Using that vα(x) is an odd function, one may rewrite 〈ρ∨
v (ξμ),β〉 in Eq. (7.13) as

〈
ρ∨

v (ξμ),β
〉 = 1

2

∑
α∈R0

vα

(〈ξμ,α〉)〈α∨, β
〉

= 1

2

∑
α∈R0

〈α∨,β〉>0

(
vα

(〈ξμ,α〉) − vα

(〈sβξμ,α〉))〈α∨, β
〉
. (7.14)

Because vα(x) is strictly monotonously increasing and

〈ξμ,α〉 − 〈sβξμ,α〉 = 〈ξμ,β〉〈α,β∨〉
, (7.15)

one reads-off from Eq. (7.13) with 〈ρ∨
v (ξμ),β〉 in the form given by Eq. (7.14) that the sign of

〈ξμ,β〉 must be the same as that of 〈ρ∨ +μ,β〉, i.e. 〈ξμ,β〉 > 0 for μ ∈ P
∨,+
c . Since β ∈ R+

0 was
arbitrary, to confirm that ξμ lies in the fundamental alcove 2πA∨ (7.5) it only remains to verify
that 〈ξμ,ϕ〉 < 2π (where—recall—ϕ denotes the highest root of R0, cf. Remark 3.4). To this end
we will infer that the inequality 〈ξμ,ϕ〉 � 2π would imply that 〈μ,ϕ〉 > c, which contradicts
our assumption that μ ∈ P

∨,+
c (7.12a). Indeed, from Eqs. (7.14), (7.15) with β = ϕ and the

quasi-periodicity of the strictly increasing function vα(x) one deduces that for 〈ξμ,ϕ〉� 2π :

c〈ξμ,ϕ〉 + 〈
ρ∨

v (ξμ),ϕ
〉
� 2πc + π

∑
α∈R+

0

〈
α,ϕ∨〉〈

ϕ,α∨〉 Rem. 7.4= 2π
(
c + h(R0)

)
(7.16)

(where we used in passing that ϕ ∈ P + and that h(R0) = |R0|/n). By combining the inequality
in Eq. (7.16) with Eq. (7.13) for β = ϕ, we conclude that in this situation

c + h(R0) �
〈
ρ∨ + μ,ϕ

〉 = 〈μ,ϕ〉 + h(R0) − 1,

i.e. 〈μ,ϕ〉 > c as announced.
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It remains to verify the (moment gap) bounds in Eqs. (7.12b), (7.12c). Upon writing

vα

(〈ξ,α〉) − vα

(〈sβξ,α〉) =
〈sβξ,α〉∫
〈ξ,α〉

(1 − τ 4
α∨)dy

1 − 2τ 2
α∨ cos(y) + τ 4

α∨

and observing that the integrand stays bounded between (1 − τ 4
α∨)/(1 + |τ 2

α∨|)2 and (1 −
τ 4
α∨)/(1 − |τ 2

α∨|)2, one readily infers from Eqs. (7.14), (7.15) that

κ+
(
τ 2)〈ξμ,β〉� 〈

ρ∨
v (ξμ),β

〉
� κ−

(
τ 2)〈ξμ,β〉 (

μ ∈ P ∨,+, β ∈ R+
0

)
, (7.17)

where it was used that

1

2

∑
α∈R0

〈β,α∨〉>0

1 − τ 4
α∨

(1 ± |τ 2
α∨|)2

〈
β,α∨〉〈

α,β∨〉

= 1

2

∑
α∈R+

0

1 − τ 4
α∨

(1 ± |τ 2
α∨|)2

〈
β,α∨〉〈

α,β∨〉 Rem. 7.4= 1

n

∑
α∈R0

1 − τ 4
α∨

(1 ± |τ 2
α∨|)2

= κ±
(
τ 2).

Combination of Eqs. (7.13) and (7.17) now entails the desired (moment gap) inequalities in
Eqs. (7.12b), (7.12c).

iv) The integrand of vα(x) (7.9b) is analytic in τ 2
α∨ ∈ (−1,1), and thus so is the function Vμ(ξ)

(7.9a) and its critical equation (7.11) determining the global minimum ξμ. Since the Jacobian of
the critical equation (7.11) with respect to ξ amounts to the positive definite Hessian H(ξ) (7.10)
of Vμ(ξ), its determinant is nonzero (viz. positive). Straightforward application of the implicit
function theorem therefore yields that the solution ξμ of the critical equation must depend an-
alytically on τ 2

α∨ ∈ (−1,1). The first limit in Eq. (7.12d) is now immediate from the (moment
gap) inequalities (7.12b), (7.12c) and the observation that limτ→0 κ±(τ 2) = |R0|/n = h(R0). For
τ ↑ 1, the function vα(x) (7.9b) tends pointwise to the following staircase function

v(x) :=
{

2π sign(x)(� |x|
2π

� − 1
2 ) if x ∈R \ 2πZ,

x if x ∈ 2πZ,

where �·� refers to the ceiling function rounding up to the next higher integer. Since v(x) = π for
0 < x < 2π , it follows that on the compact closure 2πA∨ = {ξ ∈ V | 0 � 〈ξ,α〉 � 2π, ∀α ∈ R+

0 }
the function Vμ(ξ) (7.9a), (7.9b) converges in this limit uniformly to the strictly convex Morse
function c

2 〈ξ, ξ 〉 − 2π〈μ,ξ〉, which has a unique global minimum given by 2πc−1μ (belonging
to 2πA∨ if μ ∈ P

∨,+
c (7.12a)). The upshot is that Vμ extends to a continuous function of (ξ, τ ) ∈

2πA∨ × T with T = {−1 < τ 2 < 1} ∪ {τ = 1}. Invoking of [17, Lem. 4] (with X = 2πA∨,
Y = T , and f = Vμ) now ensures that for μ ∈ P

∨,+
c the global minimum ξμ ∈ 2πA∨ of Vμ with

−1 < τ 2 < 1 converges for τ ↑ 1 to the global minimum 2πc−1μ ∈ 2πA∨ of limτ↑1 Vμ. �
Remark 7.4. In the proof of part iii) of Proposition 7.3 it was used that for any root multiplicative
function τ and root β ∈ R0:
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∑
α∈R+

0

τα∨
〈
β,α∨〉〈

α,β∨〉 = 2

n

∑
α∈R0

τα∨ (7.18)

(cf. the proof of [18, Lem. 10.1]). Indeed, the W0-invariant linear map Aτ : V → V defined by
Aτx := ∑

α∈R+
0

τα∨〈x,α∨〉α (x ∈ V ) is a constant multiple of the identity by Schur’s lemma and
the irreducibility of the representation of W0 on V . A computation of the trace of Aτ reveals that
the proportionality constant at issue is equal to

cτ = 1

n

n∑
j=1

〈Aτej , ej 〉 = 1

n

∑
α∈R+

0

τα∨
n∑

j=1

〈
ej ,α

∨〉〈ej ,α〉

= 1

n

∑
α∈R+

0

τα∨
〈
α∨, α

〉 = 1

n

∑
α∈R0

τα∨,

whence 〈Aτβ,β∨〉 = cτ 〈β,β∨〉 = 2cτ (which amounts to Eq. (7.18)).

7.4. Diagonalization

For p = ∑
λ∈P pλX

λ ∈ C[X] (so only a finite number of the complex coefficients pλ, λ ∈ P ,
are nonzero), we define

p
(
eiξ

) :=
∑
λ∈P

pλe
iξ (λ) =

∑
λ∈P

pλe
i〈λ,ξ〉 ∈P

(
V/2πQ∨)

, (7.19)

where P(V/2πQ∨) denotes the algebra of trigonometric polynomials on V with period lattice
2πQ∨. Clearly the assignment p �→ p(eiξ ) defines an algebra isomorphism between C[X] and
P(V/2πQ∨).

The main theorem of this paper affirms that the periodic Macdonald spherical functions con-
stitute a complete basis of eigenfunctions for the Laplace operator Lp with eigenvalues given by
the evaluations of p(e−iξ ) at the minima ξμ corresponding to the coweights in the fundamental
region P

∨,+
c (7.12a).

Theorem 7.5. The periodic Macdonald spherical functions Φξμ , μ ∈ P
∨,+
c , form a basis of

C(P +
c ) consisting of joint eigenfunctions for the commuting Laplacians Lp (6.2):

LpΦξμ = p
(
e−iξμ

)
Φξμ

(
p ∈ C[X]W0, μ ∈ P ∨,+

c

)
. (7.20)

Proof. For any ξ ∈ Vreg and ω ∈ P +, the affine Macdonald spherical function Φξ (7.2a), (7.2b)
satisfies the eigenvalue equation for Lω = Lmω :

LωΦξ = mω(X̂)J φξ = T̂
(
mω(X)

)
J φξ

= J I
(
mω(X)

)
φξ = Jmω(t)φξ = mω

(
e−iξ

)
Φξ ,

where the last step hinges on the plane wave expansion in Eqs. (7.4a), (7.4b) and the explicit
action of the free Laplacian mω(t) (6.1) on plane waves:
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mω(t)eivξ =
∑

ν∈W0ω

tνe
ivξ = mω

(
e−iξ

)
eivξ (v ∈ W0).

The explicit formula of the periodic Macdonald spherical function in Corollary 7.2 confirms—
upon evaluation at λ = 0—that for ξ satisfying the Bethe type equations in Eq. (7.7) we indeed
arrive this way at a nonvanishing eigenfunction in C(P )WR ∼= C(P +

c ):

Φξ(0) =
∑
v∈W0

C(vξ) =
∑
v∈W0

∏
α∈R+

0

1 − τ 2
α∨e−i〈vξ,α〉

1 − e−i〈vξ,α〉

=
∑
v∈W0

τ 2
v =

∏
α∈R+

0

1 − τ 2
α∨eτ (α

∨)

1 − eτ (α∨)
> 0,

where the equalities on the second line rely on Macdonald’s well-known identity from Ref. [39,
Thm. (2.8)] and Macdonald’s product formula (6.7a), (6.7b) for λ = 0. Since the symmetric
monomials mω(X), ω ∈ P + form a basis of C[X]W0 , and the algebra of W0-invariant trigono-
metric polynomials p(e−iξ ) on the torus P(V/2πQ∨) separates the points of the fundamental
alcove 2πA∨ (7.5), it follows that distinct solutions of the Bethe type equations belonging to
2πA∨ give rise to linearly independent eigenfunctions. As a consequence, the eigenfunctions
Φξμ , μ ∈ P

∨,+
c associated with the Bethe solutions in Proposition 7.3 form a complete basis of

C(P +
c ) because dimC(P +

c ) = |P +
c | = |P ∨,+

c | (cf. Remark 7.7 below). �
In particular, for the simplest Laplace operator Lω with ω (quasi-)minuscule given by The-

orems 6.1 and 6.3 the diagonalization in Theorem 7.5 boils down to the following spectral
decomposition.

Corollary 7.6. For ω ∈ P + (quasi-)minuscule, the eigenvalues and eigenfunctions of the in-
tegrable Laplacian Lω (6.8a)–(6.8c) in the space C(P +

c ) are given by mω(e−iξμ) and Φξμ ,

μ ∈ P
∨,+
c .

Remark 7.7. Since the fundamental region P +
c (3.7) consists of all nonnegative integral combi-

nations of the fundamental weights k1ω1 + · · · + knωn such that k1m1 + · · · + knmn � c (where
the integers m1, . . . ,mn refer to the coefficients of the highest coroot ϑ∨ in the simple basis
α∨

1 , . . . , α∨
n of R∨

0 , cf. Eq. (4.5)), it is elementary that the dimensions dimC(P +
c ) = |P +

c |, c ∈N,
can be computed from the generating function

1 +
∑
c>0

dimC
(
P +

c

)
qc = (1 − q)−1

n∏
j=1

(
1 − qmj

)−1 (|q| < 1
)
. (7.21)

One reads-off from this generating function that the dimensions in question are invariant when
replacing R0 by its dual root system R∨

0 , i.e. |P +
c | = |P ∨,+

c |. For root systems other than of
type B or C this is obvious because then R0 and R∨

0 are isomorphic. The root systems of types B

and C on the other hand are dual to each other and share the property that 1 � mj � 2 for j =
1, . . . , n with the lower bound being reached only once, so their generating functions coincide.
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Remark 7.8. It is immediate from the proof of Proposition 7.3 that in fact for any μ ∈ P ∨ the
global minimum ξμ of Vμ (7.9a), (7.9b) provides a solution to the Bethe type equations (7.7)
in V and that the assignment μ → ξμ, μ ∈ P ∨ is still injective. This injection turns out to be
equivariant with respect to two actions of the affine Weyl group W

R̂
generated by the orthogonal

reflections across the walls of 2πA∨:

wξμ = ξw·μ
(
w ∈ W

R̂
, μ ∈ P ∨)

, (7.22)

where w acts on the LHS via the standard action of W
R̂

on V and on the RHS via a ‘dot action’

v · x := v
(
x + ρ∨) − ρ∨, t2πν · x := x + (

c + h(R0)
)
ν

(x ∈ V , v ∈ W0, ν ∈ Q∨) for which P ∨ is manifestly stable. Indeed, the equivariance in
Eq. (7.22) is a consequence of the following W

R̂
-equivariance of the gradient of the Morse func-

tion Vμ:

∇Vw·μ(wξ) = w′∇Vμ(ξ)
(
ξ ∈ V, w ∈ W

R̂
, μ ∈ P ∨)

,

which is readily inferred from Eq. (7.11) upon using that ρ∨
v (wξ) = wρ∨

v (ξ) for w ∈ W0 (since vα

is an odd function) and ρ∨
v (ξ + 2πν) = ρ∨

v (ξ) + 2πh(R0)ν for ν ∈ Q∨ (by the quasi-periodicity
of vα , Remark 7.4, and the fact that h(R0) = |R0|/n). It follows from Eq. (7.22) and the injec-
tivity that ξμ ∈ Vreg iff 〈ρ∨ + μ,α〉 /∈ (c + h(R0))Z for all α ∈ R0 (i.e. iff μ ∈ P ∨ is regular with
respect to the ‘dot action’ of W

R̂
). The parametrization μ → ξμ, μ ∈ P

∨,+
c in Proposition 7.3

arises by restricting the injection on P ∨ to the regular elements of fundamental domains for the
corresponding W

R̂
-actions.

Remark 7.9. It follows from the proof of Theorem 7.5 that for any spectral parameter value
ξ ∈ Vreg the affine Macdonald spherical function Φξ (7.2a), (7.2b) is a joint eigenfunction of
Laplacians Lp (6.2) in C(P )W0 , but—in view of Proposition 7.1—only for ξ satisfying the Bethe
type equations (7.7) it restricts to an eigenfunction in C(P +

c ) ∼= C(P )WR . The completeness of
the eigenbasis in Theorem 7.5 implies that apart from the solutions detailed in Proposition 7.3
there are no other solutions of the Bethe type equations inside the fundamental alcove 2πA∨.

Remark 7.10. For p = mω with ω ∈ P + (quasi-)minuscule, the eigenvalue equation in Theo-
rem 7.5 amounts to that of a free discrete Laplacian:∑

ν∈W0ω

ψξ (λ − ν) = mω

(
e−iξ

)
ψξ(λ)

(
λ ∈ P +

c

)
, (7.23a)

subject to the boundary conditions

ψξ (λ − ν) =
{

τ 2
j ψξ (sj (λ − ν)) if aj (λ − ν) = −1,

τ 2
j ψξ (sj (λ − ν)) + (τ 2

j − 1)ψ(λ) if aj (λ − ν) = −2,
(7.23b)

0 � j � n. Indeed, it was shown in [10, Sec. 4] that the free Laplacian on C(P +) with boundary
conditions of the form (7.23b) for j = 1, . . . , n is diagonalized by a Bethe Ansatz wave function
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of the form in Eqs. (7.4a), (7.4b). For λ ∈ P +
c , this Bethe Ansatz wave function satisfies moreover

the boundary condition (7.23b) for j = 0 provided the spectral parameter ξ solves the Bethe
Ansatz equations in Proposition 7.1 (cf. also [11, Prop. 3.2]).

Remark 7.11. It is immediate from the proof of Proposition 6.2 that its analog for the extended
affine Weyl group is also valid: the Laplacians Lp , p ∈ C[X]W0 , map the W -invariant subspace

C(P )W = {
f ∈ C(P )

∣∣ wf = f, w ∈ W
}

= {
f ∈ C(P )

∣∣ T̂wf = τwf, w ∈ W
}

into itself. The corresponding Bethe Ansatz equations guaranteeing the W -invariance of the Mac-
donald spherical function Φξ (7.2a), (7.2b) are of the form in Eq. (7.7) with ν ∈ P . By adapting
the argument in the proof of part i) of Proposition 7.3 it is seen that this Ω-invariant subspace of
C(P )WR is spanned by the eigenfunctions Φξμ , μ ∈ P

∨,+
c ∩ Q∨.

8. Hilbert space structure

In this section we endow the function space over our weight lattice P with an appropriate
Hilbert space structure and study the unitarity of the difference-reflection representation T̂ (H),
the (self-)adjointness of the Laplacian Lω, and the orthogonality of the periodic Macdonald
spherical functions Φξμ in this Hilbert space. For this purpose we will further restrict to the
positive parameter regime

0 < τ 2 < 1 (8.1)

from now on (but see Remark 8.8 below).

8.1. Hilbert space

Let us define l2(P, δ) to be the Hilbert space of functions {f ∈ C(P ) | 〈f,f 〉δ < ∞} associ-
ated with the inner product

〈f,g〉δ :=
∑
λ∈P

f (λ)g(λ)δλ

(
f,g ∈ l2(P, δ)

)
, (8.2a)

where

δλ := W−1
R

(
τ 2)τ 2

wλ
and WR

(
τ 2) :=

∑
w∈WR

τ 2
w. (8.2b)

Here the normalization of the orthogonality measure δ : P → (0,1) is chosen such that it restricts
to a probability measure on the WR-orbits of the regular weights:

∑
μ∈WRλ δμ � 1 for λ ∈ P

with equality holding when |WR,λ| = 1 (cf. Eq. (8.3b) below). It follows from [39, Thm. (3.3)]
that the relevant normalization factor given by the generalized Poincaré series WR(τ 2) may be
alternatively rewritten in product form as (cf. Eqs. (6.7a), (6.7b))
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WR

(
τ 2) = (1 − hτ )

−1
∏

a∈R+
ht(a)<h(R0)

1 − τ 2
a τ

2 hts (a)
s τ

2 htl (a)
l

1 − τ
2 hts (a)
s τ

2 htl (a)
l

where ht(a) := hts(a) + htl (a), or equivalently

WR

(
τ 2) = (1 − hτ )

−1
∏

α∈R+
0

(
1 − τ 2

α∨eτ (α
∨)

1 − eτ (α∨)

)(
1 − τ 2

α∨hτ eτ (−α∨)

1 − hτ eτ (−α∨)

)

(though we will not actually use these product formulas here). Since the total mass of δ is finite,
all bounded functions in C(P ) belong to l2(P, δ). As such it is clear that our Hilbert space
contains the WR-invariant space C(P )WR as a finite-dimensional linear subspace. By partitioning
the sum in Eq. (8.2a) into orbit sums∑

λ∈P

f (λ)g(λ)δλ =
∑

λ∈P+
c

∑
μ∈WRλ

f (μ)g(μ)δμ

(
for f,g ∈ l2(P, δ)

)
=

∑
λ∈P+

c

f (λ)g(λ)
∑

μ∈WRλ

δμ

(
for f,g ∈ C(P )WR ⊂ l2(P, δ)

)
,

it is seen that—upon identifying C(P +
c ) with C(P )WR via the WR-invariant embedding of C(P +

c )

into C(P )—the inner product 〈·, ·〉δ pulls back to an inner product on C(P +
c ) of the form

〈f,g〉� :=
∑

λ∈P+
c

f (λ)g(λ)�λ

(
f,g ∈ C

(
P +

c

))
, (8.3a)

with

�λ :=
∑

μ∈WRλ

δμ = 1

WR(τ 2)

∑
μ∈WRλ

τ 2
wμ

= 1

WR,λ(τ 2)
. (8.3b)

In other words, the inner product 〈·, ·〉� associated with the orthogonality measure � : P +
c →

(0,1) turns C(P +
c ) into the finite-dimensional Hilbert space l2(P +

c ,�) in such a way that its
WR-invariant embedding into l2(P, δ) becomes an isometry.

8.2. Unitarity and (self-)adjointness

The extended affine Hecke algebra H carries a natural antilinear involution ∗ : H → H deter-
mined by

T ∗
w := Tw−1 (w ∈ W), (8.4)

which turns it into a ∗-algebra. The difference-reflection representation T̂ (H) restricts to a uni-
tary representation on �2(P, δ) with respect to this ∗-structure.



J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038 2023
Proposition 8.1. The difference-reflection representation h → T̂ (h) (h ∈ H ) on C(P ) restricts
to a unitary representation of the affine Hecke algebra into the space of bounded operators on
l2(P, δ), i.e.

〈
T̂ (h)f, g

〉
δ
= 〈

f, T̂
(
h∗)g〉

δ

(
h ∈ H, f,g ∈ l2(P, δ)

)
. (8.5)

Proof. Formally the proof is the same as that of [13, Thm. 6.1], which corresponds to the sit-
uation that c = 1. Since strictly speaking the statement for c ∈ N>1 only follows from that
for c = 1 when f,g ∈ l2(P, δ) are supported on the sublattice cP , the argument is repeated
here (for c ∈ N>1) so as to keep our presentation complete. Let f,g ∈ l2(P, δ). It suffices
to show that the actions of T̂j (0 � j � n) and u (u ∈ Ω) determine bounded operators on
l2(P, δ) satisfying (i) 〈T̂j f, g〉δ = 〈f, T̂j g〉δ and (ii) 〈uf,g〉δ = 〈f,u−1g〉δ . Property (ii) fol-
lows by performing the change of coordinates λ → uλ to the (discrete) integral 〈uf,g〉δ . In-
deed, invoking of the symmetry δuλ = δλ (as wuλ = uwλu

−1 and therefore τwuλ = τwλ ) then
produces the integral 〈f,u−1g〉δ . Property (i) follows in turn by performing the change of co-
ordinates λ → sjλ to the integral 〈χaj

sj f, g〉δ , which entails the integral 〈f,χaj
sj g〉δ . Here

one uses the symmetries sjχaj
= χ−1

aj
sj and δsj λ = χ2

aj
(λ)δλ (as wsj λ = wλsj and �(wsj λ) =

�(wλ) + sign(aj (λ)) for aj (λ) �= 0). The computations in question also reveal that the ac-
tions of u and sj (and thus that of T̂j ) are indeed bounded in l2(P, δ) (as 〈uf,uf 〉δ = 〈f,f 〉δ
and 〈sjf, sjf 〉δ = 〈χaj

sj f,χ−1
aj

sj f 〉δ = 〈f,χaj
sjχ

−1
aj

sj f 〉δ = 〈f,χ2
aj

f 〉δ , and χaj
is a bounded

function on P ). �
Let us denote the longest element of W0 by v0. The ∗-structure on H will now be extended

to an antilinear anti-involution of the subalgebra C[X]W0 ⊗ H ∼= C[X]W0H ⊂ H with basis
mλ(X)Tw (λ ∈ P +, w ∈ W ) as follows:

mλ(X)∗ := mλ∗(X)
(
λ ∈ P +)

, (8.6)

where λ∗ := −v0λ (∈ P +). We expect that the unitarity of Proposition 8.1 carries over to
C[X]W0H :

〈Lpf,g, 〉δ ?= 〈f,Lp∗g〉δ
(∀p ∈ C[X]W0 and f,g ∈ l2(P, δ)

)
. (8.7)

For p = mω with ω ∈ P + (quasi-)minuscule, the explicit formula for Lp in Theorem 6.1 allows
us to confirm that Eq. (8.7) indeed holds in this special case. Notice in this connection that if ω

is minuscule then so is ω∗, and that if ω is quasi-minuscule then ω∗ = ω.

Theorem 8.2. For ω ∈ P + (quasi-)minuscule, one has that

〈Lωf,g, 〉δ = 〈f,Lω∗g〉δ
(∀f,g ∈ l2(P, δ)

)
. (8.8)

Proof. It follows from the explicit formula in Theorem 6.1 that Lω is bounded in l2(P, δ) for ω

(quasi-)minuscule. Indeed, for any ν ∈ W0ω the coefficients aλ,ν and bλ,ν (3.14a)–(3.14f) remain
bounded as functions of λ ∈ P . By comparing 〈Lωf,g〉δ with 〈f,Lω∗g〉δ we see that
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〈Lωf,g〉δ − 〈f,Lω∗g〉δ =
∑
λ∈P

ν∈W0ω

(
aλ,νf (λ − ν)g(λ) − aλ,−νf (λ)g(λ + ν)

)
δλ

=
∑
λ∈P

ν∈W0ω

(aλ,νδλ − aλ−ν,−νδλ−ν)f (λ − ν)g(λ),

whence it suffices to show that aλ,νδλ = aλ−ν,−νδλ−ν for all λ ∈ P and ν ∈ W0ω, or more ex-
plicitly:

τwwλ(λ−ν)wλτwwλ(λ−ν)
τwλ = τwwλ−ν (λ)wλ−ν τwwλ−ν (λ)

τwλ−ν .

The proof of this relation for the length multiplicative function τ is relegated to Appendix B
below. �

The following (self-)adjointness relation is immediate from Theorem 8.2 upon the restriction
of Lω to the WR-invariant subspace l2(P, δ)WR ∼= l2(P +

c ,�).

Corollary 8.3. For ω ∈ P + (quasi-)minuscule, one has that

〈Lωf,g, 〉� = 〈f,Lω∗g〉�
(∀f,g ∈ l2(P +

c ,�
))

. (8.9)

Remark 8.4. For the classical root systems of types An, B2 and D4 the unitarity in Eq. (8.7)
and the (self-)adjointness relation in Eq. (8.9) with ω ∈ P + arbitrary are a direct consequence
of Theorem 8.2, because in these special cases the monomials mω(X) with ω (quasi-)minuscule
already generate the complete algebra C[X]W0 .

8.3. Orthogonality

The diagonalization in Corollary 7.6 and the expected unitarity in Eq. (8.7) suggest that the
periodic Macdonald spherical functions form an orthogonal basis of l2(P +

c ,�). However, since
Corollary 8.3 only establishes the (self-)adjointness relations for ω (quasi-)minuscule, the or-
thogonality in question is not immediate at this point (because of possible degeneracies in the
spectrum of the relevant discrete Laplacians Lω) and a more sophisticated analysis is required.

By a standard continuity argument, it does follow from the diagonalization in Corollary 7.6
and the (self-)adjointness relations in Corollary 8.3 that the periodic Macdonald spherical func-
tions Φξμ and Φξμ̃

(μ, μ̃ ∈ P
∨,+
c ) are orthogonal in l2(P +

c ,�) for all 0 < τ 2 < 1 if—for some

(quasi-)minuscule weight ω—the corresponding eigenvalues mω(eiξμ) and mω(eiξμ̃ ) (of Lω∗ ) are
distinct as analytic functions in the parameter(s) τα∨ , α ∈ R+

0 . In view of the injectivity in part ii)
of Proposition 7.3, this assures the orthogonality for μ �= μ̃ in the case of the classical root sys-
tems An, B2 and D4, as for these types the relevant symmetric monomials mω(eiξ ) with ω ∈ P +
(quasi-)minuscule separate the points of 2πA∨ (7.5) (cf. Remark 8.4). More generally, it suffices
to verify the inequality of mω(eiξμ) and mω(eiξμ̃ ) (or any of their derivatives with respect to the
parameter(s)) at any fixed value for τ in the analyticity domain −1 < τ 2 < 1 to conclude their
inequality as analytic functions. By determining the limiting behavior of mω(eiξμ) for τ ↑ 1, and
computing mω(eiξμ) and ∂

∂τ 2
β∨

mω(eiξμ) (β ∈ R+
0 ) at the special limiting value τ → 0 by means

of part iv) of Proposition 7.3 and the implicit function theorem, we arrive at the following explicit
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numerical criterion guaranteeing the orthogonality of the periodic Macdonald spherical functions
for general R0.

Proposition 8.5. For any μ, μ̃ ∈ P
∨,+
c the corresponding periodic Macdonald spherical func-

tions are orthogonal:

〈Φξμ,Φξμ̃
〉� =

∑
λ∈P+

c

Φξμ(λ)Φξμ̃
(λ)�λ = 0, (8.10a)

if for some ω ∈ P + (quasi-)minuscule and some ε ∈ {0,1}, β ∈ R+
0 :

mω

(
eiξε

μ
) �= mω

(
e
iξε

μ̃
)

(8.10b)

or ∑
ν∈W0ω

∑
α∈R+

0‖α‖=‖β‖

ei〈ν,ξ0
μ〉 sin

(〈
ξ0
μ,α

〉)〈
ν,α∨〉

�=
∑

ν∈W0ω

∑
α∈R+

0‖α‖=‖β‖

e
i〈ν,ξ0

μ̃
〉 sin

(〈
ξ0
μ̃, α

〉)〈
ν,α∨〉

, (8.10c)

where ‖α‖ := 〈α,α〉1/2 and

ξε
μ := lim

τ→ε
ξμ =

{
2πi

c+h(R0)
(ρ∨ + μ) if ε = 0,

2πic−1μ if ε = 1.
(8.10d)

Proof. It is clear from part iv) of Proposition 7.3 that for 0 < τ 2 < 1

lim
τ→ε

mω

(
eiξμ

) = mω

(
eiξε

μ
)
.

Hence, if Eq. (8.10b) is satisfied (either for ε = 0 or for ε = 1) then the eigenvalues mω(eiξμ) and
mω(eiξμ̃ ) cannot be identical as analytic functions of τα∨ , α ∈ R+

0 , whence 〈Φξμ,Φξμ̃
〉� = 0. In

the same way it is seen from the limit

lim
τ→0

∂

∂τ 2
β∨

mω

(
eiξμ

) = 2

i(c + h(R0))

∑
ν∈W0ω

∑
α∈R+

0‖α‖=‖β‖

ei〈ν,ξ0
μ〉 sin

(〈
ξ0
μ,α

〉)〈
ν,α∨〉

(8.11)

that 〈Φξμ,Φξμ̃
〉� = 0 if the inequality in Eq. (8.10c) is satisfied. To verify the limit in Eq. (8.11)

we first compute ∂

∂τ 2
β∨

mω(eiξμ) for general 0 < τ 2 < 1:

∂

∂τ 2
β∨

mω

(
eiξμ

) = ∂

∂τ 2
β∨

∑
ei〈ν,ξμ〉 = i

∑
ei〈ν,ξμ〉

〈
ν,

∂ξμ

∂τ 2
β∨

〉
(8.12a)
ν∈W0ω ν∈W0ω
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with (upon employing the implicit function theorem to Eq. (7.11))

∂ξμ

∂τ 2
β∨

= −H−1(ξμ)
∂ρ∨

v

∂τ 2
β∨

(ξμ). (8.12b)

Here H(ξ) refers to the Hessian with components Hη,ζ (ξ) given by Eq. (7.10) and

∂ρ∨
v

∂τ 2
β∨

(ξ) =
∑

α∈R+
0‖α‖=‖β‖

2 sin(〈ξ,α〉)
1 − 2τ 2

α∨ cos(〈ξ,α〉) + τ 4
α∨

α∨. (8.12c)

For τ → 0 the expression in Eqs. (8.12a)–(8.12c) simplifies to the RHS of Eq. (8.11) since

ξμ
τ→0= ξ0

μ and Hη,ζ (ξ)
τ→0= (c + h(R0))〈η, ζ 〉 (in view of Remark 7.4 and recalling also that

|R0| = nh(R0)). �
For a given concrete root system R0 and a fixed value of c ∈N>1 of ‘reasonable size’, a direct

verification of the numerical criterion in Proposition 8.5 readily entails the orthogonality of Φξμ

and Φξμ̃
in l2(P +

c ,�) for most (and possibly all) coweights μ �= μ̃ in P
∨,+
c . In fact, we have

not spotted any counterexamples where our criterion fails to separate the eigenvalues if μ �= μ̃,
even though we are not in the position to offer an a priori argument ruling out the existence of
such degeneracies altogether (apart from the above separation argument in the already mentioned
cases when R0 is of type An, B2 or D4).

8.4. Normalization

To determine the spectral measure of the eigenfunction transform of our Laplacians Lp (6.2)
it remains to compute the quadratic norms of the periodic Macdonald spherical functions in
l2(P +

c ,�). After the seminal contributions of Gaudin and Korepin [23,32], it is nowadays a
paradigm of the Bethe Ansatz method that the quadratic norm of a Bethe eigenfunction corre-
sponding to a solution of the Bethe equations determined by the global minimum of a strictly
convex Morse function should (essentially) be given by the determinant of its Hessian [33,53].
Translated to our present setting, this heuristics—which is confirmed for many Bethe Ansatz
models [33]—gives rise to the following conjectural Gaudin-type determinantal formula for the
quadratic norms in question.

Conjecture 8.6. For any μ ∈ P
∨,+
c , the quadratic norm of the periodic Macdonald spherical

function Φξμ in the Hilbert space l2(P +
c ,�) is given by

〈Φξμ,Φξμ〉� =
∑

λ∈P+
c

∣∣Φξμ(λ)
∣∣2

�λ = Ind(R0)C(ξμ)C(−ξμ)detH(ξμ), (8.13)

where Ind(R0) := |Ω|, C(·) is taken from Eq. (7.4b), and detH(·) refers to the determinant of
the Hessian given by Eq. (7.10).

Conjecture 8.6 generalizes analogous conjectural normalization formulas from [12, Eq. (3.5)]
(corresponding to the special situation of a root system of type A [11]) and [17, Eq. (11)]
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(corresponding to the trigonometric degenerate double affine Hecke algebra at critical level
encoding Gaudin’s Weyl-group invariant delta-potential models with periodic boundary con-
ditions [18]). Following a brute-force approach detailed in Refs. [12] and [5] for these two
previous conjectures, it is possible to confirm that Conjecture 8.6 holds true for small root sys-
tems. In a nutshell, the idea is that the plane wave decomposition in Eq. (7.8) permits expressing
the sum

∑
λ∈P+

c
|Φξ(λ)|2�λ in terms of exponential sums of the type

∑
λ∈P+

c
ei〈ξ̃ ,λ〉�λ (with

ξ̃ ∈ W0(ξ − vξ), v ∈ W0). Since �λ (8.3b) is determined completely by the stabilizer WR,λ, par-
titioning of the exponential sum into partial sums over weights of P +

c having the same stabilizer
subgroup inside WR (i.e., weights belonging to the same facet of the Coxeter complex of WR)
produces an exact evaluation of the exponential sum in terms of terminating geometric sums.
Upon elimination of any exponentials of the form eic〈ξ,β〉, β ∈ R+

0 , with the aid of the Bethe type
equations (7.7), one ends up with a tedious algebraic expression for

∑
λ∈P+

c
|Φξ(λ)|2�λ that is

to be compared with the conjectural formula Ind(R0)C(ξ)C(−ξ)detH(ξ) on the RHS. In all
cases that we have checked (using computer algebra), both expressions turn out to agree as alge-
braic functions of the spectral variable ξ and the parameter τ . Specifically, equality was checked
for all classical root systems of rank � 2 symbolically and for all classical root systems of rank
� 4 upon evaluating both expressions at a large number of random values for τs , τl and ξ . We
also verified the case of the exceptional root system G2 symbolically for a significant number of
random values for τs and τl .

For τ ↑ 1 (cf. Remark 6.5), the (conjectural) orthogonality of the periodic Macdonald spheri-
cal functions reduces to the following orthogonality relations

∑
λ∈P+

c

Mλ

(
eiξ1

μ
)
Mλ

(
e
−iξ1

μ̃
)|WR,λ|−1 =

{
cn Ind(R0)|WR̂c,μ

| if μ = μ̃,

0 if μ �= μ̃,
(8.14a)

for the periodic symmetric monomials Mλ(e
iξ1

μ) (λ ∈ P +
c , μ ∈ P

∨,+
c ), where

Mλ

(
eiξ

) := |WR,λ ∩ W0|mλ

(
eiξ

) =
∑
v∈W0

ei〈λ,vξ〉, (8.14b)

ξ1
μ = 2πc−1μ (cf. Eq. (8.10d)), and R̂c = R0 + cZ refers to the affine root system with R0

replaced by R∨
0 . For τ → 0 on the other hand, one arrives at the following orthogonality relations

(cf. [31, Thm. 6.2], [29, Prop. 5.4] and—for R0 of type A—[12, Eq. (4.8)] and [35, Thm. 6.7])

∑
λ∈P+

c

χλ

(
eiξ0

μ
)
χλ

(
e
−iξ0

μ̃
) =

{
(c + h(R0))

n Ind(R0) if μ = μ̃,

0 if μ �= μ̃,
(8.15a)

for the periodic anti-symmetric monomials χλ(e
iξ0

μ) (λ ∈ P +
c , μ ∈ P

∨,+
c ), where

χλ

(
eiξ

) :=
∑
v∈W0

(−1)�(v)ei〈ρ+λ,vξ〉 (8.15b)

and ξ0
μ = 2π (ρ∨ + μ) (cf. Eq. (8.10d)).
c+h(R0)



2028 J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038
Both degenerations of the orthogonality relations under consideration can be verified directly
with the aid of the orthogonality of the characters e2πic−1μ, μ ∈ P ∨/cQ∨, of the finite abelian
group P/cQ:

∑
λ∈P/cQ

e2πic−1μ(λ) =
{

0 if μ ∈ P ∨ \ cQ∨,

|P/cQ| if μ ∈ cQ∨,
(8.16)

upon using that |P/cQ| = cn Ind(R0) and

1

|W0|
∑

λ∈P/cQ

f (λ) =
∑

λ∈P+
c

1

|WR,λ|f (λ) for f ∈ C(P )WR . (8.17)

Indeed, the LHS of Eq. (8.14a) is readily rewritten as

∑
ṽ∈W0

∑
λ∈P+

c

1

|WR,λ|
∑
v∈W0

e2πic−1v(μ−ṽμ̃)(λ)

Eq. (8.17)= 1

|W0|
∑

v,ṽ∈W0

∑
λ∈P/cQ

e2πic−1v(μ−ṽμ̃)(λ)
Eq. (8.16)=

{
cn Ind(R0)|WR̂c,μ

| if μ = μ̃,

0 if μ �= μ̃

(where it was exploited in the last step that both coweights μ and μ̃ belong to the fundamental
domain P

∨,+
c (7.12a)). Moreover, the LHS of Eq. (8.15a) is rewritten along similar lines as∑
ṽ∈W0

(−1)�(ṽ)
∑

λ∈P+
c

∑
v∈W0

e
2πi
c+h

v(ρ∨+μ−ṽ(ρ∨+μ̃))(ρ + λ)

=
∑
ṽ∈W0

(−1)�(ṽ)
∑

ρ+λ∈P +
c+h

1

|WRc+h,λ|
∑
v∈W0

e
2πi
c+h

v(ρ∨+μ−ṽ(ρ∨+μ̃))(ρ + λ)

Eq. (8.17)= 1

|W0|
∑

v,ṽ∈W0

(−1)�(ṽ)
∑

ρ+λ∈P/(c+h)Q

e
2πi
c+h

v(ρ∨+μ−ṽ(ρ∨+μ̃))(ρ + λ)

Eq. (8.16)=
{

(c + h)n Ind(R0) if μ = μ̃,

0 if μ �= μ̃,

where we have employed the short-hands h for h(R0) and Rc+h for the affine root system with
c replaced by c + h. The first equality relies on the fact that λ ∈ P +

c iff ρ + λ is a regular point
of P +

c+h (with respect to the action of WRc+h
), while we also used that in the expression on the

second line the terms with |WRc+h,λ| > 1 cancel out; in the last equality it was exploited that for
μ, μ̃ ∈ P

∨,+
c both coweights ρ∨ + μ and ρ∨ + μ̃ are regular points of the fundamental domain

P
∨,+
c+h(R∨

0 )
(with respect to the action of W

R̂c+h(R∨
0 )

).

It is not very difficult to infer that for τ ↑ 1 the inner product 〈Φξμ,Φξμ̃
〉� indeed tends to

the LHS of Eq. (8.14a). Here one uses that for μ ∈ P
∨,+
c : limτ↑1 ξμ = ξ1

μ and limτ↑1 C(ξμ) = 1.
(When |W

R̂c,μ
| > 1 the second limit can be deduced from the first with the aid of the critical

equation (7.11), cf. also the proof of Proposition 3 in Ref. [17].) This confirms the orthogonality
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of the periodic Macdonald spherical functions in the limit τ ↑ 1. Moreover, the conjectured value
of the quadratic norm of the periodic Macdonald spherical function on the RHS of Eq. (8.13)
converges for τ ↑ 1 to the RHS of Eq. (8.14a) provided

lim
τ↑1

detH(ξμ) = cn|W
R̂c,μ

| (
μ ∈ P ∨,+

c

)
. (8.18)

Whereas Eq. (8.18) is readily seen to hold when μ is W
R̂c

-regular (i.e. |W
R̂c,μ

| = 1), the limit
in question is far from obvious when |W

R̂c,μ
| > 1 (cf. also [17, Sec. 2]). In other words, this

only confirms our norm formula for the periodic Macdonald spherical functions in the limit
τ ↑ 1 when μ ∈ P

∨,+
c is W

R̂c
-regular, whereas for |W

R̂c,μ
| > 1 the limit in Eq. (8.18) would

follow rather as a consequence of the norm formula in Conjecture 8.6. The limiting behavior for

τ → 0 is straightforward: upon multiplying out the (normalizing) Weyl denominators χρ(eiξ0
μ)

and χρ(e
−iξ0

μ̃ ) the inner product 〈Φξμ,Φξμ̃
〉� tends for τ → 0 to the LHS of Eq. (8.15a) and

the RHS of Eq. (8.13) converges to the RHS of Eq. (8.15a), which confirms our orthogonality
relations for the periodic Macdonald spherical functions in the limit τ → 0.

Remark 8.7. In the special situation that we are dealing with a root system R0 of type A and
ω is chosen to be minuscule, the diagonalization, adjointness relations, and the integrability of
the symmetrized operator Lω (6.9b) in Corollaries 7.6, 8.3 and Eq. (6.3), respectively, as well
as the orthogonality of the basis of periodic Macdonald spherical functions implied by Propo-
sition 8.5 (and Remark 8.4), reproduce the principal results of Ref. [11] in Proposition 2.3 and
Theorems 5.1–5.3. While double affine Hecke algebras did not manifest themselves at all in
Ref. [11], their role in the present generalization of these previous results to the case of arbitrary
Weyl groups seems to be fundamental (reminding of a similar state of affairs in the theory of
Macdonald’s polynomials [40,42,7]).

Remark 8.8. For the parameter regime −1 < τ 2 < 0, the coefficients aλ,ν and bλ,ν

(3.14b)–(3.14f) are still real-valued for any λ ∈ P and ν ∈ P ∗
ϑ because of their quadratic depen-

dence on τ . For the coefficient bλ,ν this is immediate form the definition whereas for aλ,ν this
follows from the observation that the coefficient in question is always of the form τ 2

wwλ(λ−ν)
τ−2ε

0
with ε ∈ {0,1} (cf. Appendix B). Macdonald’s product formula (6.7a), (6.7b) reveals moreover
that �λ > 0 in this parameter domain even though the positivity of the nondegenerate scalar
product 〈·, ·〉δ (8.2a), (8.2b) is now lost. The upshot is that Theorem 8.2, Corollary 8.3 and
Proposition 8.5 remain valid (with the given proofs applying verbatim) for −1 < τ 2 < 0. It is
also expected that the prediction of the quadratic norms in Conjecture 8.6 still holds for the
parameter regime at issue.
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Appendix A. Intertwining properties

In this appendix we prove that for any f ∈ C(P ), λ ∈ P and ν ∈ P 
ϑ :

τ−1
wλ

(Iwλf )
(
wλ(λ − ν)

) = aλ,ν(J f )(λ − ν) + bλ,ν

(
1 − τ−2

0

)
(J f )(λ), (A.1)

with aλ,ν and bλ,ν given by Eqs. (3.14a)–(3.14f). This relation lies at the basis of the affine
intertwining relation in Eq. (5.3c) and the explicit expression for Lω in Theorem 6.1. It is a
double affine analog of a similar relation in [13, Eq. (7.7)]. The proof below runs along the same
lines as the corresponding proof in [13, Sec. 7.1], but we feel compelled to provide details in this
appendix as the transition from ‘affine’ to ‘double affine’ is quite subtle at key points.

Our verification of Eq. (A.1) hinges on two technical lemmas concerning the properties of
θ(λ − ν) (3.14e) and (J f )(λ − ν) (5.1) for λ ∈ P +

c (and ν ∈ P 
ϑ ).

Lemma A.1. For λ ∈ P +
c and ν ∈ P 

ϑ , we are in either one of the following two situations: i) if
(λ − ν)+ �= λ, then wλ−ν ∈ WR,λ and

θ(λ − ν) =
{

1 for ν∨ − 〈λ, ν∨〉 ∈ R(wλ−ν),

0 for ν∨ − 〈λ, ν∨〉 /∈ R(wλ−ν),

or ii) if (λ − ν)+ = λ, then w′
λ−νν = −αj for some j ∈ {0, . . . , n} with τj = τ0, moreover,

sjwλ−ν ∈ WR,λ, θ(λ − ν) = 0,

R(wλ−ν) \ R(sjwλ−ν) = {
(sjwλ−ν)

−1aj

}
,

and aj (λ) = 1, i.e. (sjwλ−ν)
−1aj = ν∨ + (1 − 〈λ, ν∨〉).

Lemma A.2. For any f ∈ C(P ), λ ∈ P +
c and ν ∈ P 

ϑ :

τwλ−ν (Iwλ−ν f )
(
(λ − ν)+

) = f (λ − ν) − cλ,ν

(
1 − τ−2

0

)
f (λ),

with cλ,ν = θ(λ − ν)e∨
τ (ν)(h∨

τ )− sign(〈λ,ν∨〉) (cf. Eqs. (3.14d)–(3.14f)).

It is readily seen from Lemma A.1 that for λ ∈ P +
c and ν ∈ Pϑ :

θ(λ − ν) ∈ {0,1} and
〈
λ, ν∨〉 ∈ {−c,0, c} if θ(λ − ν) > 0 (A.2)

(which means, in particular, that in X̂ν (3.14a)–(3.14f) the factor θ(λ+ − η) of cλ,η (3.14d) only
assumes the values 0 or 1). To infer the second statement one notices that ν∨ − 〈λ, ν∨〉 ∈ R+
if θ(λ − ν) > 0, i.e. ν ∈ R0 ∩ Pϑ = W0ϑ and 〈λ, ν∨〉 ∈ cZ. The statement now follows because
|〈λ, ν∨〉|� c when λ ∈ P +

c .
The proof of Lemma A.1 uses an elementary recurrence relation for θ (3.14e). Let μ ∈ P \P +

c

and j ∈ {0, . . . , n} be such that aj ∈ R(wμ) (cf. Eq. (3.13)). Then wμ = ws μsj with �(wμ) =

j



J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038 2031
�(wsj μ) + 1, and thus R(wμ) = sjR(wsj μ) ∪ {aj } (cf. [42, (2.2.4)]). From the definition of θ

(3.14e) it is clear that in this situation:

θ(μ) =
{

θ(sjμ) + 1 if aj (μ) = −2,

θ(sjμ) if aj (μ) �= −2.
(A.3)

Armed with this recurrence for θ it is seen that for λ and ν as in Lemma A.1 with λ − ν /∈ P +
c ,

and ν̃ := λ − sj (λ − ν) (so sj (λ − ν) = λ − ν̃) with j ∈ {0, . . . , n} such that aj ∈ R(wλ−ν), we
are necessarily in one of the following three cases:

(A) aj (λ) = 0 and 〈ν,α∨
j 〉 = 1 (so aj (λ − ν) = −1). Then sj ∈ WR,λ, so ν̃ = s′

j ν and

θ(λ − ν)
Eq. (A.3)= θ(λ − s′

j ν).
(B) aj (λ) = 0 and 〈ν,α∨

j 〉 = 2 (so aj (λ − ν) = −2). Then sj ∈ WR,λ and ν = αj , so ν̃ = s′
j ν =

−αj and θ(λ − ν)
Eq. (A.3)= θ(λ − s′

j ν) + 1.
(C) aj (λ) = 1 and 〈ν,α∨

j 〉 = 2 (so aj (λ − ν) = −1). Then ν = αj and ν̃ = 0, so wλ−ν = sj and

θ(λ − ν)
Eq. (A.3)= θ(λ) = 0.

It is moreover manifest that the cases (B) and (C) only occur when ν ∈ R0 ∩ Pϑ = W0ϑ and
(thus) τj = τ0.

A.1. Proof of Lemma A.1

It is sufficient to restrict attention to the case that λ − ν /∈ P +
c (as for λ − ν ∈ P +

c the lemma
is trivial). For a reduced decomposition wλ−ν = sj�

· · · sj1 with � = �(wλ−ν)� 1, we write νk :=
s′
jk

· · · s′
j1

ν for k = 0, . . . , � and bk = β∨
k + rkc := sj1 · · · sjk

ajk+1 for k = 0, . . . , � − 1 (with the
conventions that ν0 := ν and b0 := aj1 ). This means that R(wλ−ν) = {b0, . . . , b�−1} (cf. [42,
(2.2.9)]). It is immediate from the observations (A)–(C) above that the minimal sequence of
weights taking λ − ν to (λ − ν)+ by successive application of the simple reflections in our
reduced decomposition of wλ−ν is either of the form (situation i)):

λ − ν = λ − ν0
sj1−−→ λ − ν1

sj2−−→ · · · sj�−1−−−→ λ − ν�−1
sj�−−→ λ − ν� = (λ − ν)+,

or of the form (situation ii)):

λ − ν = λ − ν0
sj1−−→ λ − ν1

sj2−−→ · · · sj�−1−−−→ λ − ν�−1
sj�−−→ λ = (λ − ν)+,

because case (C) can at most occur at the last step: λ − ν�−1
sj�−−→ λ = (λ − ν)+ (as this case

takes us back to P +
c ). In situation i) (i.e. case (C) does not occur at the last step) we have that

wλ−ν ∈ WR,λ and (λ − ν)+ �= λ, whereas in situation ii) (i.e. case (C) does occur at the last
step) we have that sj�

wλ−ν = sj�−1 · · · sj1 ∈ WR,λ, (λ − ν)+ = λ, and τj�
= τ0. Moreover, in

the latter situation s′
j�

w′
λ−νν = ν�−1 = αj�

, i.e. ν = (s′
j�

w′
λ−ν)

−1αj�
= (s′

j1
· · · s′

j�−1
αj�

) = β�−1,
which implies that〈

λ, ν∨〉 + r�−1c = b�−1(λ) = (
(sj wλ−ν)

−1aj

)
(λ) = aj (sj · · · sj λ) = aj (λ) = 1,
� � � �−1 1 �
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i.e.

ν∨ + (
1 − 〈

λ, ν∨〉) = b�−1 ∈ R(wλ−ν) \ R(sj�
wλ−ν). (A.4)

It remains to compute θ(λ − ν). Since θ((λ − ν)+) = 0, it is clear from the observations
(A)–(C) that θ(λ − ν) is equal to the number of times case (B) occurs in the above sequences,
i.e. the number of times that 〈νk,α

∨
jk+1

〉 = 2 for k = 0, . . . , �′ − 1, where �′ = � in situation i) and
�′ = � − 1 in situation ii). Since for k = 0, . . . , �′ − 1:〈

νk,α
∨
jk+1

〉 = 2 ⇔ 〈
ν,β∨

k

〉 = 2 ⇔ ν = βk,

and 〈
λ,β∨

k

〉 + rkc = bk(λ) = (sj1 · · · sjk
ajk+1)(λ) = ajk+1(sjk

· · · sj1λ) = ajk+1(λ) = 0,

i.e.

β∨
k − 〈

λ,β∨
k

〉 = bk ∈ R(wλ−ν),

it follows that θ(λ − ν) is equal to 1 or 0 depending whether ν∨ − 〈λ, ν∨〉 ∈ R(wλ−ν) or ν∨ −
〈λ, ν∨〉 /∈ R(wλ−ν), respectively. In particular, in situation ii) we have that θ(λ− ν) = 0, because
by Eq. (A.4) (and thus 〈λ, ν∨〉−1 ∈ cZ) the fact that ν∨ −〈λ, ν∨〉 belongs to R(wλ−ν) (and thus
〈λ, ν∨〉 ∈ cZ) would imply that c = 1, which contradicts our assumption that c > 1.

A.2. Proof of Lemma A.2

The explicit action of Ij implied by Eqs. (4.1a)–(4.1c) simplifies close to (the positive side
of) the hyperplane Vj to

(Ijf )(μ) =

⎧⎪⎨⎪⎩
τjf (μ) if aj (μ) = 0,

τ−1
j f (sjμ) = τ−1

j f (μ − αj ) if aj (μ) = 1,

τ−1
j f (μ − 2αj ) − (τj − τ−1

j )f (μ − αj ) if aj (μ) = 2

(A.5)

(for f ∈ C(P ), μ ∈ P , j = 0, . . . , n). With the aid of these formulas the proof of the lemma
follows by induction on �(wλ−ν) starting from the trivial base λ − ν ∈ P +

c .
Specifically, let �(wλ−ν) > 1 and sj (0 � j � n) be such that �(wλ−νsj ) = �(wλ−ν) − 1 (i.e.

aj ∈ R(wλ−ν)). From the observations before the proof of Lemma A.1 it is clear that wλ−νsj =
wsj (λ−ν) with either sj (λ− ν) = λ− s′

j ν (cases (A) and (B)) or sj (λ− ν) = λ(∈ P +
c ) (case (C)).

In the latter situation wλ−ν = sj and the statement of the lemma reduces to the second line of
Eq. (A.5) (with μ = λ). Moreover, in the cases (A) and (B) invoking of the induction hypothesis
yields

τwλ−ν (Iwλ−ν f )
(
(λ − ν)+

) = τj τwλ−s′
j
ν
(Iwλ−s′

j
ν
Ij f )

((
λ − s′

j ν
)
+
)

= τj (Ijf )
(
λ − s′

j ν
) − τj cλ,s′

j ν

(
1 − τ−2

0

)
(Ijf )(λ)

(where we have used that (λ − s′ ν)+ = (λ − ν)+).
j
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In case (A), one has that τj (Ijf )(λ − s′
j ν) = f (λ − ν) (by the second line of Eq. (A.5)

with μ = λ − s′
j ν) and (Ijf )(λ) = τjf (λ) (by the first line of Eq. (A.5) with μ = λ),

which completes the induction step for this situation as now cλ,s′
j ν = cλ,ντ

−2
j . Indeed, clearly

θ(λ − s′
j ν) = θ(λ − ν) with for j > 0: e∨

τ (sj ν) = e∨
τ (ν)τ−2

j and 〈λ, sj ν
∨〉 = 〈sjλ, ν∨〉 =

〈λ, ν∨〉, whereas for j = 0: e∨
τ (s′

0ν) = e∨
τ (ν − α0) = e∨

τ (ν + ϑ) = e∨
τ (ν)h∨

τ τ−2
0 and—assuming

θ(λ−ν) > 0—〈λ, s′
0ν

∨〉 = 〈s′
0λ, ν∨〉 = 〈λ+cα0, ν

∨〉 = 〈λ, ν∨〉+c〈α0, ν
∨〉 = 〈λ, ν∨〉+c (upon

recalling that ν ∈ W0ϑ when θ(λ−ν) > 0 and thus 〈α0, ν
∨〉 = 〈α∨

0 , ν〉 = 1), i.e. sign(〈λ, s′
0ν〉) =

sign(〈λ, ν〉) + 1 (cf. Eq. (A.2)).
In case (B), one has that τj (Ijf )(λ − s′

j ν) = f (λ − ν) − τ 2
0 (1 − τ−2

0 )f (λ) (by the third
line of Eq. (A.5) with μ = λ − s′

j ν and the fact that τj = τ0) and cλ,s′
j ν = 0 (since 0 �

θ(λ − s′
j ν) < θ(λ − ν) � 1), which completes the induction step for this situation as now

cλ,ν = τ 2
0 . Indeed, clearly θ(λ − ν) = 1 with for j > 0: e∨

τ (ν) = e∨
τ (αj ) = τ 2

j = τ 2
0 (as e∨

τ (αj ) =
e∨
τ (sjαj )τ

2〈αj ,α∨
j 〉

j = e∨
τ (−αj )τ

4
j = τ 4

j /e∨
τ (αj )) and 〈λ, ν∨〉 = 〈λ,α∨

j 〉 = 0, whereas for j = 0:

e∨
τ (ν) = e∨

τ (α0) = e∨
τ (−ϑ) = τ 2

0 /h∨
τ and 〈λ, ν∨〉 = 〈λ,α∨

0 〉 = a0(λ) − c = −c < 0.

A.3. Proof of Eq. (A.1)

We are now in a position to verify Eq. (A.1) by making the action of the intertwining operator
on f ∈ C(P ) explicit:

aλ,ν(J f )(λ − ν)
Eq. (5.2)= aλ,ντ

−1
wwλ(λ−ν)wλ

(Iwwλ(λ−ν)wλf )
(
(λ − ν)+

)
. (A.6)

Throughout it will be used that wλ(λ − ν) = λ+ − w′
λν.

For (λ − ν)+ �= λ+, Lemma A.1 (with λ and ν replaced by λ+ and w′
λν) ensures that

wwλ(λ−ν) ∈ WR,λ+ , whence �(wwλ(λ−ν)wλ) = �(wwλ(λ−ν)) + �(wλ) and we may rewrite the ex-
pression in question as:

τ−1
wλ

τwwλ(λ−ν)
(Iwwλ(λ−ν)

Iwλf )
(
(λ − ν)+

)
Lem. A.2= τ−1

wλ

(
(Iwλf )

(
wλ(λ − ν)

) − cλ+,w′
λν

(
1 − τ−2

0

)
(Iwλf )(λ+)

)
= τ−1

wλ
(Iwλf )

(
wλ(λ − ν)

) − bλ,ν

(
1 − τ−2

0

)
(J f )(λ),

which proves Eq. (A.1) when (λ − ν)+ �= λ+.
Similarly, for (λ − ν)+ = λ+ we rewrite the RHS of Eq. (A.6) as:

aλ,ντ
−1
wwλ(λ−ν)wλ

(Iwwλ(λ−ν)wλf )(λ+)

(i)= τ−1
wλ

τwwλ(λ−ν)

(
(Ij Isj wwλ(λ−ν)wλf )(λ+)

− χ
(
(sjwwλ(λ−ν)wλ)

−1aj

)(
τj − τ−1

j

)
(Isj wwλ(λ−ν)wλf )(λ+)

)
(ii)= τ−1

wλ

(
(Iwλf )

(
wλ(λ − ν)

) − τ 2
wwλ(λ−ν)

χ
(
ν∨ + (

1 − 〈
λ, ν∨〉))(

1 − τ−2
0

)
(Iwλf )(λ+)

)
= τ−1(Iwλf )

(
wλ(λ − ν)

) − bλ,ν

(
1 − τ−2)(J f )(λ),
wλ 0
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which proves Eq. (A.1) when (λ − ν)+ = λ+. Here the equality (i) hinges on Eq. (2.10b) (for
any j ∈ {0, . . . , n}), whereas for inferring equality (ii) we pick j as in part ii) of Lemma A.1
(with λ and ν replaced by λ+ and w′

λν). Then sjwwλ(λ−ν) ∈ WR,λ+ (so �(sjwwλ(λ−ν)wλ) =
�(sjwwλ(λ−ν)) + �(wλ)) and (sjwwλ(λ−ν))

−1aj ∈ R(wwλ(λ−ν)) (so �(wwλ(λ−ν)) =
�(sjwwλ(λ−ν)) + 1). Hence, in this situation the first term on the RHS of equality (i) may be
rewritten as:

τwwλ(λ−ν)
(Ij Isj wwλ(λ−ν)wλf )(λ+) = τwwλ(λ−ν)

(Iwwλ(λ−ν)
Iwλf )

(
(λ − ν)+

)
Lem. A.2= (Iwλf )

(
wλ(λ − ν)

)
, (A.7a)

where it was used that cλ+,w′
λν = 0 as θ(λ+ − w′

λν) = 0 (by Lemma A.1). For the second term
one deduces in a similar way that:

(Isj wwλ(λ−ν)wλf )(λ+) = (Isj wwλ(λ−ν)
Iwλf )(λ+)

Eq. (5.2)= τsj wwλ(λ−ν)
(Iwλf )(λ+) = τwwλ(λ−ν)

τ−1
j (Iwλf )(λ+). (A.7b)

Performing the substitutions (A.7a) and (A.7b) on the RHS of equality (i) gives rise to equal-
ity (ii). Here one uses in addition that—for this particular choice of j—Lemma A.1 guarantees
that τj = τ0 and

(sjwwλ(λ−ν)wλ)
−1aj = w−1

λ

(
w′

λν
∨ + (

1 − 〈
λ+,w′

λν
∨〉)) = ν∨ + (

1 − 〈
λ, ν∨〉)

. (A.8)

Remark A.3. It is read-off from Eq. (A.8) that for any λ ∈ P and ν ∈ P 
ϑ such that (λ−ν)+ = λ+,

one has that ν∨ + (1 − 〈λ, ν∨〉) ∈ R (and thus ν ∈ R0 ∩ Pϑ = W0ϑ and 〈λ, ν∨〉 − 1 ∈ cZ).

Appendix B. The adjoint of Lω

In this appendix it is shown that for all λ ∈ P and ν ∈ P 
ϑ :

τwwλ(λ−ν)wλτwwλ(λ−ν)
τwλ = τwwλ−ν (λ)wλ−ν τwwλ−ν (λ)

τwλ−ν . (B.1)

This relation for the length multiplicative function τ lies at the basis of the unitarity in Theo-
rem 8.2 and the consequent (self-)adjointness relation in Corollary 8.3. The proof of Eq. (B.1)
hinges on two lemmas elucidating the geometric interpretation of the group element wwλ(λ−ν)wλ

for (λ − ν)+ �= λ+ (i.e. λ and λ − ν lie on the same closed alcove wAc, w ∈ WR) and for
(λ − ν)+ = λ+ (i.e. λ and λ − ν are separated by a (unique) wall Va , a ∈ R+), respectively.

Lemma B.1. Let λ ∈ P and ν ∈ P 
ϑ be such that (λ − ν)+ �= λ+. Then wwλ(λ−ν)wλ is the unique

element in WR of minimal length mapping both λ − ν and λ to P +
c , i.e. wwλ(λ−ν) ∈ WR;λ+ and

wwλ−ν (λ)wλ−ν = wwλ(λ−ν)wλ. (B.2)

Lemma B.2. Let λ ∈ P and ν ∈ P 
ϑ be such that (λ − ν)+ = λ+. Then

−(wwλ(λ−ν)wλ)
′ν = αj = (wwλ−ν (λ)wλ−ν)

′ν (B.3a)
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for some j ∈ {0, . . . , n} with τj = τ0, and wwλ(λ−ν)wλ is the unique element in WR of minimal
length mapping λ − ν to λ+ and λ to sjλ+, i.e. sjwwλ(λ−ν) ∈ WR,λ+ and

wwλ−ν (λ)wλ−ν = sjwwλ(λ−ν)wλ (B.3b)

with �(wwλ(λ−ν)) = �(sjwwλ(λ−ν)) + 1 and �(wwλ−ν (λ)) = �(sjwwλ−ν (λ)) + 1.

For (λ− ν)+ �= λ+ the relation in Eq. (B.1) is manifest from Lemma B.1 and the symmetry in
λ and λ − ν, which entail that in this situation both sides simplify to τ 2

wwλ(λ−ν)wλ
= τ 2

wwλ−ν (λ)wλ−ν
.

For (λ − ν)+ = λ+ the relation follows in turn from Lemma B.2. Indeed, in the latter situation it
is readily seen that

τwwλ(λ−ν)
τwλ = τ0τsj wwλ(λ−ν)

τwλ = τ0τsj wwλ(λ−ν)wλ = τ0τwwλ−ν (λ)wλ−ν

and (upon interchanging the role of λ and λ − ν)

τwwλ−ν (λ)
τwλ−ν = τ0τsj wwλ−ν (λ)

τwλ−ν = τ0τsj wwλ−ν (λ)wλ−ν = τ0τwwλ(λ−ν)wλ,

whence both sides of Eq. (B.1) now simplify to τ0τwwλ(λ−ν)wλτwwλ−ν (λ)wλ−ν .

B.1. Proof of Lemma B.1

Clearly wwλ(λ−ν)wλ(λ − ν) = (λ − ν)+ and—by Lemma A.1 (with λ and ν replaced by
λ+ and w′

λν)—it furthermore follows that wwλ(λ−ν) ∈ WR,λ+ , i.e. wwλ(λ−ν)wλ(λ) = λ+ and
�(wwλ(λ−ν)wλ) = �(wwλ(λ−ν)) + �(wλ). Let w now denote any element in WR of minimal
length sending λ and λ − ν to P +

c . Then ww−1
λ ∈ WR,λ+ (so �(w) = �(ww−1

λ ) + �(wλ)) and
ww−1

λ (wλ(λ − ν)) = (λ − ν)+ (so �(ww−1
λ ) � �(wwλ(λ−ν))), i.e.

�(w) = �
(
ww−1

λ

) + �(wλ) � �(wwλ(λ−ν)) + �(wλ) = �(wwλ(λ−ν)wλ).

It thus follows that �(w) = �(wwλ(λ−ν)wλ) (and therefore �(ww−1
λ ) = �(wwλ(λ−ν))) by the min-

imality of �(w), and consequently ww−1
λ = wwλ(λ−ν) (by the uniqueness of wwλ(λ−ν)), i.e.

w = wwλ(λ−ν)wλ. The equality in Eq. (B.2) now follows upon interchanging the roles of λ and
λ − ν.

B.2. Proof of Lemma B.2

For j ∈ {0, . . . , n} as in Lemma A.1 (with λ and ν replaced by λ+ and w′
λν) we have

that sjwwλ(λ−ν) ∈ WR,λ+ , whence wwλ(λ−ν)wλ maps λ − ν to λ+ and λ to sjλ+. In addition
(wwλ(λ−ν)wλ)

′ν = w′
λ−w′

λν
w′

λν = −αj and �(wwλ(λ−ν)) = �(sjwwλ(λ−ν)) + 1 (as R(wwλ(λ−ν))

is the disjoint union of R(sjwwλ(λ−ν)) and {(sjwwλ(λ−ν))
−1aj }).

Let w now be any element in WR of minimal length satisfying that w(λ − ν) = λ+ and wλ =
sjλ+. Then sjww−1

λ ∈ WR,λ+ (so �(sjw) = �(sjww−1
λ ) + �(wλ)) and ww−1

λ (wλ(λ − ν)) = λ+
(so �(ww−1) � �(wwλ(λ−ν))), i.e.
λ
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�(w)
(i)= �(sjw) − sign

(
w−1aj

) = �
(
sjww−1

λ

) + �(wλ) − sign
(
w−1aj

)
� �

(
ww−1

λ

) + �(wλ) − sign
(
w−1aj

) − 1 � �(wwλ(λ−ν)) + �(wλ) − sign
(
w−1aj

) − 1

= �(sjwwλ(λ−ν)) + �(wλ) − sign
(
w−1aj

) = �(sjwwλ(λ−ν)wλ) − sign
(
w−1aj

)
(ii)= �(sjwwλ(λ−ν)wλ) − sign

(
(wwλ(λ−ν)wλ)

−1aj

) (iii)= �(wwλ(λ−ν)wλ). (B.4)

In steps (i) and (iii) we employed Eq. (2.4a), and in step (ii) it was used that w−1aj =
(wwλ(λ−ν)wλ)

−1aj . Indeed, one has that

w−1Vj = (wwλ(λ−ν)wλ)
−1Vj = Va,

where Va , a ∈ R+ stands for the root hyperplane consisting of all points equidistant to λ

and λ − ν (which is in fact the unique root hyperplane separating λ and λ − ν), and fur-
thermore that (w′)−1αj = (w′)−1(λ+ − sjλ+) = w−1λ+ − w−1sjλ+ = (λ − ν) − λ = −ν =
(w′

wλ(λ−ν)w
′
λ)

−1αj . By the minimality of �(w), one concludes that all inequalities in Eq. (B.4)

must in fact be equalities. In particular, one has that �(w) = �(wwλ(λ−ν)wλ) and �(ww−1
λ ) =

�(wwλ(λ−ν)). But then ww−1
λ = wwλ(λ−ν) (by the uniqueness of wwλ(λ−ν)), i.e. w = wwλ(λ−ν)wλ.

The second equality in Eq. (B.3a) and the equality in Eq. (B.3b) now follow upon in-
terchanging the roles of λ and λ − ν (which amounts to replacing λ by λ̃ := λ − ν and ν

by ν̃ := −ν). More specifically, by proceeding as before, application of Lemma A.1 (with
λ and ν replaced by λ̃+ = λ+ and w′

λ̃
ν̃) entails that w′

wλ−ν (λ)w
′
λ−νν = −w′

w
λ̃
(λ̃−ν̃)

w′
λ̃
ν̃ = αk

for certain k ∈ {0, . . . , n}, and furthermore wwλ−ν (λ)wλ−ν = ww
λ̃
(λ̃−ν̃)wλ̃ maps λ̃ − ν̃ = λ to

λ+ and λ̃ = λ − ν to skλ+. Since both the line segment connecting λ+ and sjλ+ and the
line segment connecting λ+ and skλ+ belong to the WR-orbit of the line segment connect-
ing λ and λ − ν, we have that k = j and the second equality in Eq. (B.3a) follows. Here
we have used the fact that if Conv{λ+, skλ+} = w Conv{λ+, sj λ+} for some w ∈ WR and
some j, k ∈ {0, . . . , n} such that sjλ+ �= λ+ and skλ+ �= λ+—where we assume without loss
of generality that w ∈ WR,λ+ (since otherwise we replace w by wsj )—then w ∈ WR,sj λ+
and thus k = j . Indeed Conv{λ+, (λ+ + sjλ+)/2} ⊂ Ac and w Conv{λ+, (λ+ + sjλ+)/2} =
Conv{λ+, (λ+ + skλ+)/2} ⊂ Ac , so w Conv{λ+, (λ+ + sjλ+)/2} = Conv{λ+, (λ+ + sjλ+)/2},
i.e. wsjλ+ = sjλ+.

The upshot is that both sides of Eq. (B.3b) map λ to λ+ and λ − ν to sjλ+. To see that the
group elements at issue are in effect the same it therefore only remains to verify that their lengths
are equal (by the uniqueness of the minimal element wwλ−ν (λ)wλ−ν ). We exploit Eq. (2.4a) and
the minimality of wwλ(λ−ν)wλ and wwλ−ν (λ)wλ−ν to arrive at the following estimates:

�(wwλ−ν (λ)wλ−ν) � �(sjwwλ(λ−ν)wλ)

= �(wwλ(λ−ν)wλ) + sign
(
(wwλ(λ−ν)wλ)

−1aj

)
� �(sjwwλ−ν (λ)wλ−ν) + sign

(
(wwλ(λ−ν)wλ)

−1aj

)
= �(wwλ−ν (λ)wλ−ν) + sign

(
(wwλ−ν (λ)wλ−ν)

−1aj

) + sign
(
(wwλ(λ−ν)wλ)

−1aj

)
= �(wwλ−ν (λ)wλ−ν), (B.5)
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where we used in the last equality that (cf. step (ii) above): (wwλ−ν (λ)wλ−ν)
−1aj =

(sjwwλ(λ−ν)wλ)
−1aj = −(wwλ(λ−ν)wλ)

−1aj . Hence, all inequalities in Eq. (B.5) are again
equalities, and in particular �(wwλ−ν (λ)wλ−ν) = �(sjwwλ(λ−ν)wλ), i.e. wwλ−ν (λ)wλ−ν =
sjwwλ(λ−ν)wλ.

References

[1] S. Albeverio, S.M. Fei, P. Kurasov, On integrability of many-body problems with point interactions, Oper. Theory
Adv. Appl. 132 (2002) 67–76.

[2] A. Borodin, I. Corwin, Macdonald processes, Probab. Theory Related Fields (2013), http://dx.doi.org/10.1007/
s00440-013-0482-3.

[3] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4–6, Hermann, Paris, 1968.
[4] E. Brézin, J. Zinn-Justin, Un problème à N corps soluble, C. R. Acad. Sci. Paris Sér. A–B 263 (1966) B670–B673.
[5] M.D. Bustamante, J.F. van Diejen, A.C. de la Maza, Norm formulae for the Bethe Ansatz on root systems of small

rank, J. Phys. A 41 (2008), 025202, 13 pp.
[6] I. Cherednik, Difference-elliptic operators and root systems, Int. Math. Res. Not. 1995 (1) (1995) 43–58.
[7] I. Cherednik, Double Affine Hecke Algebras, London Math. Soc. Lecture Note Ser., vol. 319, Cambridge University

Press, Cambridge, 2005.
[8] J.F. van Diejen, Multivariable continuous Hahn and Wilson polynomials related to integrable difference systems,

J. Phys. A 28 (1995) L369–L374.
[9] J.F. van Diejen, Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans.

Amer. Math. Soc. 351 (1999) 233–270.
[10] J.F. van Diejen, On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary

conditions at the walls, Ann. Henri Poincaré 5 (2004) 135–168.
[11] J.F. van Diejen, Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle, Comm.

Math. Phys. 267 (2006) 451–476.
[12] J.F. van Diejen, Finite-dimensional orthogonality structures for Hall–Littlewood polynomials, Acta Appl. Math. 99

(2007) 301–308.
[13] J.F. van Diejen, E. Emsiz, Unitary representations of affine Hecke algebras related to Macdonald spherical functions,

J. Algebra 354 (2012) 180–210.
[14] J.F. van Diejen, E. Emsiz, A discrete Fourier transform associated with the affine Hecke algebra, Adv. in Appl.

Math. 49 (2012) 24–38.
[15] T.C. Dorlas, Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schroedinger model,

Comm. Math. Phys. 154 (1993) 347–376.
[16] V. Dotsenko, Replica Bethe ansatz derivation of the Tracy–Widom distribution of the free energy fluctuations in

one-dimensional directed polymers, J. Stat. Mech. Theory Exp. (2010), P07010, 31 pp.
[17] E. Emsiz, Completeness of the Bethe ansatz on Weyl alcoves, Lett. Math. Phys. 91 (2010) 61–70.
[18] E. Emsiz, E.M. Opdam, J.V. Stokman, Periodic integrable systems with delta-potentials, Comm. Math. Phys. 264

(2006) 191–225.
[19] E. Emsiz, E.M. Opdam, J.V. Stokman, Trigonometric Cherednik algebra at critical level and quantum many-body

problems, Selecta Math. (N.S.) 14 (2009) 571–605.
[20] M. Gaudin, Bose gas in one dimension, I. The closure property of the scattering wave functions, J. Math. Phys. 12

(1971) 1674–1676.
[21] M. Gaudin, Bose gas in one dimension, II. Orthogonality of the scattering states, J. Math. Phys. 12 (1971)

1677–1680.
[22] M. Gaudin, Boundary energy of a Bose gas in one dimension, Phys. Rev. A 4 (1971) 386–394.
[23] M. Gaudin, La fonction d’onde de Bethe, Masson, Paris, 1983.
[24] W. Groenevelt, Multivariable Wilson polynomials and degenerate Hecke algebras, Selecta Math. (N.S.) 15 (2009)

377–418.
[25] E. Gutkin, Integrable systems with delta-potential, Duke Math. J. 49 (1982) 1–21.
[26] E. Gutkin, B. Sutherland, Completely integrable systems and groups generated by reflections, Proc. Natl. Acad. Sci.

USA 76 (1979) 6057–6059.
[27] M. Hallnäs, E. Langmann, C. Paufler, Generalized local interactions in 1D: solutions of quantum many-body sys-

tems describing distinguishable particles, J. Phys. A 38 (2005) 4957–4974.
[28] G.J. Heckman, E.M. Opdam, Yang’s system of particles and Hecke algebras, Ann. of Math. (2) 145 (1997) 139–173.

http://refhub.elsevier.com/S0022-1236(13)00259-0/bib616C622D6665692D6B75723A696E746567726162696C697479s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib616C622D6665692D6B75723A696E746567726162696C697479s1
http://dx.doi.org/10.1007/s00440-013-0482-3
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib626F753A67726F75706573s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6272652D7A696E3A70726F626C656D65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6275732D6469652D6D617A3A6E6F726Ds1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6275732D6469652D6D617A3A6E6F726Ds1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6368653A646966666572656E6365s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6368653A646F75626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6368653A646F75626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A6D756C74697661726961626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A6D756C74697661726961626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A70726F70657274696573s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A70726F70657274696573s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A706C616E63686572656Cs1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A706C616E63686572656Cs1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A646961676F6E616C697A6174696F6Es1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A646961676F6E616C697A6174696F6Es1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A66696E6974652D64696D656E73696F6E616Cs1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469653A66696E6974652D64696D656E73696F6E616Cs1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469652D656D733A756E6974617279s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469652D656D733A756E6974617279s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469652D656D733A6469736372657465s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6469652D656D733A6469736372657465s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib646F723A6F7274686F676F6E616C697479s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib646F723A6F7274686F676F6E616C697479s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib646F743A7265706C696361s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib646F743A7265706C696361s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib656D733A636F6D706C6574656E657373s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib656D732D6F70642D73746F3A706572696F646963s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib656D732D6F70642D73746F3A706572696F646963s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib656D732D6F70642D73746F3A747269676F6E6F6D6574726963s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib656D732D6F70642D73746F3A747269676F6E6F6D6574726963s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A636C6F73757265s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A636C6F73757265s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A6F7274686F676F6E616C697479s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A6F7274686F676F6E616C697479s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A626F756E64617279s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6761753A666F6E6374696F6Es1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib67726F3A6D756C74697661726961626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib67726F3A6D756C74697661726961626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6775743A696E7465677261626C65s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6775742D7375743A636F6D706C6574656C79s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6775742D7375743A636F6D706C6574656C79s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib68616C2D6C616E2D7061753A67656E6572616C697A6564s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib68616C2D6C616E2D7061753A67656E6572616C697A6564s1
http://refhub.elsevier.com/S0022-1236(13)00259-0/bib6865632D6F70643A79616E67s1
http://dx.doi.org/10.1007/s00440-013-0482-3


2038 J.F. van Diejen, E. Emsiz / Journal of Functional Analysis 265 (2013) 1981–2038
[29] J. Hrivnák, J. Patera, On discretization of tori of compact simple Lie groups, J. Phys. A 42 (2009), 385208, 26 pp.
[30] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math., vol. 29, Cambridge Univer-

sity Press, Cambridge, 1990.
[31] A.A. Kirillov Jr., On an inner product in modular tensor categories, J. Amer. Math. Soc. 9 (1996) 1135–1169.
[32] V.E. Korepin, Calculations of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982) 391–418.
[33] V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions,

Cambridge University Press, Cambridge, 1993.
[34] C. Korff, Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Comm. Math.

Phys. 318 (2013) 173–246.
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