
DOI 10.1007/s11005-013-0657-y
Lett Math Phys (2014) 104:103–113

The Semi-Infinite q-Boson System with Boundary
Interaction

JAN FELIPE VAN DIEJEN and ERDAL EMSIZ
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Abstract. Upon introducing a one-parameter quadratic deformation of the q-boson alge-
bra and a diagonal perturbation at the end point, we arrive at a semi-infinite q-boson sys-
tem with a two-parameter boundary interaction. The eigenfunctions are shown to be given
by Macdonald’s hyperoctahedral Hall–Littlewood functions of type BC . It follows that
the n-particle spectrum is bounded and absolutely continuous and that the corresponding
scattering matrix factorizes as a product of two-particle bulk and one-particle boundary
scattering matrices.
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1. Introduction

The q-boson system [1] is a lattice discretization of the one-dimensional quantum
nonlinear Schrödinger equation [10,11,14,17,20] built of particle creation and anni-
hilation operators representing the q-oscillator algebra [13, Ch. 5]. Its n-particle
eigenfunctions are given by Hall–Littlewood functions [7,15,22]. This model is a
limiting case of a more general quantum particle system arising as a q-deformation
of the totally asymmetric simple exclusion process (q-TASEP) [2,19]. In the present
letter, we study a system of q-bosons on the semi-infinite lattice with boundary
interactions, in the spirit of previous works concerned with the quantum nonlin-
ear Schrödinger equation on the half-line [3,8,9,12,21].

Specifically, by introducing at the end point creation and annihilation operators
representing a quadratic deformation of the q-oscillator algebra together with a
diagonal perturbation, we arrive at the Hamiltonian of a q-boson system on the
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semi-infinite integer lattice endowed with a two-parameter boundary interaction.
By means of an explicit formula for the action of the Hamiltonian in the n-particle
subspace, it is deduced that the Bethe Ansatz eigenfunctions are given by Mac-
donald’s three-parameter Hall–Littlewood functions with hyperoctahedral symme-
try associated with the BC-type root system [16, §10].

It follows that the q-boson system fits within a large class of discrete quan-
tum models with bounded absolutely continuous spectrum for which the scattering
behavior was determined in great detail by means of stationary phase techniques
[6,18]. In particular, the n-particle scattering matrix is seen to factorize as a prod-
uct of explicitly computed two-particle bulk and one-particle boundary scattering
matrices.

2. Semi-Infinite q-Boson System

Let

F :=
⊕

n∈N

F(�n) (2.1)

denote the algebraic Fock space consisting of finite linear combinations of fn ∈
F(�n), n ∈ N := {0,1,2, . . .}, where F(�n) stands for the space of functions f :
�n →C on the set of partitions of length at most n:

�n := {λ= (λ1, . . . , λn)∈N
n |λ1 ≥λ2 ≥· · ·≥λn}, (2.2)

with the additional convention that �0 :={∅} and F(�0) :=C. For l ∈N, we intro-
duce the following actions on f ∈F(�n)⊂F :

(βl f )(λ) := f (β∗
l λ) (λ∈�n−1)

if n >0 and βl f :=0 if n =0,

(β∗
l f )(λ) :=

{
[ml(λ)](1− cδlqm0(λ)−1) f (βlλ) if ml(λ)>0

0 otherwise
(λ∈�n+1),

(q Nl+k f )(λ) :=qml (λ)+k f (λ) (λ∈�n),

with q, c ∈R such that |q| �=0,1 and k ∈Z. Here

δl :=
{

1 for l =0,

0 otherwise
, [m] := 1−qm

1−q
=

{
0 for m =0

1+q +· · ·+qm−1 for m >0
,

and the multiplicity ml(λ) counts the number of parts λ j ,1 ≤ j ≤ n of size λ j = l
(so m0(λ), λ∈�n is equal to n minus the number of nonzero parts), while β∗

l λ∈
�n+1 and βlλ ∈ �n−1 stand for the partitions obtained from λ ∈ �n by insert-
ing/deleting a part of size l, respectively (where it is assumed in the latter situation
that ml(λ)>0). It is clear from these definitions that βl , β

∗
l and q Nl+k map F(�n)
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into F(�n−1),F(�n+1) and F(�n), respectively (with the convention that F(�−1)

is the null space).
The operators in question represent a quadratic deformation of the q-boson field

algebra at the boundary site l =0 parametrized by the constant c:

βlq
Nl =q Nl+1βl , β∗

l q Nl =q Nl−1β∗
l ,

βlβ
∗
l =[Nl +1](1− cδlq

N0), [βl , β
∗
l ]q =1− cδlq

2N0 (2.3a)

and preserving the ultralocality:

[βl , βk]= [β∗
l , β∗

k ]= [Nl , Nk]= [Nl , βk]= [Nl , β
∗
k ]= [βl , β

∗
k ]=0 (2.3b)

for l �= k (where [A, B] := AB − B A, [A, B]q := AB − q B A, and [Nl + r ] := (1 −
q Nl+r )/(1−q)).

When interpreting the characteristic function |λ〉 ∈ F(�n) supported on λ ∈ �n

as a state representing a configuration of n particles on N such that ml(λ) parti-
cles are occupying the site l ∈N (i.e., each part λ j encodes a particle at site λ j ), it
is clear that the operators βl and β∗

l act as particle annihilation and creation oper-
ators:

βl |λ〉=
{

|βlλ〉 if ml(λ)>0

0 otherwise
, β∗

l |λ〉= [ml(λ)+1](1− cδlq
m0(λ))|β∗

l λ〉,

while q Nl counts the number of particles at the site l (as a power of q):

q Nl |λ〉=qml (λ)|λ〉.

The dynamics of our q-boson system is governed by a Hamiltonian built of left
and right hopping operators together with a diagonal boundary term:

Hq =a[N0]+
∑

l∈N

(βl+1β
∗
l +β∗

l+1βl), (2.4)

a ∈ R. The interaction at the lattice end stems from a particle reflection in the
boundary governed by the deformation parameter c of the q-boson algebra at l =
0, and from the additive potential term at the end point controlled by the coupling
parameter a (cf. also Proposition 3.1 below). The Hamiltonian in question consti-
tutes a well-defined operator on F (2.1) as for any f ∈F(�n) and λ∈�n the infi-
nite sum (Hq f )(λ) contains only a finite number of nonvanishing terms.

3. The n-Particle Hamiltonian and Its Eigenfunctions

By construction Hq (2.4) preserves the n-particle subspace F(�n) ⊂ F . Let us
denote the restriction of Hq to F(�n) by Hq,n . The following proposition describes
the action of this operator in the n-particle subspace explicitly.
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PROPOSITION 3.1 (n-Particle Hamiltonian). For any f ∈F(�n) and λ∈�n , one
has that

(Hq,n f )(λ)=a[m0(λ)] f (λ)

+
∑

1≤ j≤n
λ+e j ∈�n

(1− cδλ j q
m0(λ)−1)[mλ j (λ)] f (λ+ e j )+

∑

1≤ j≤n
λ−e j ∈�n

[mλ j (λ)] f (λ− e j ),

where e1, . . . , en refer to the unit vectors comprising the standard basis of Z
n .

Proof. It is clear from the definitions that ([N0] f )(λ)=[m0(λ)] f (λ), and that for
any l ∈N:

(βl+1β
∗
l f )(λ)=

{
[ml(λ)](1− cδlqm0(λ)−1) f (β∗

l+1βlλ) if ml(λ)>0,

0 otherwise,

where β∗
l+1βlλ=λ+ e j with j =min{k |λk = l} (so l =λ j ), and

(β∗
l+1βl f )(λ)=

{
[ml+1(λ)] f (βl+1β

∗
l λ) if ml+1(λ)>0,

0 otherwise,

where βl+1β
∗
l λ=λ− e j with j =max{k |λk = l +1} (so l =λ j −1).

The n-particle Hamiltonian Hq,n has Bethe Ansatz eigenfunctions given by the
following plane wave expansion

φξ (λ) :=
∑

σ∈Sn
ε∈{±1}n

C(εξσ )ei〈λ,εξσ 〉, (3.1a)

with expansion coefficients of the form

C(ξ) :=
∏

1≤ j≤n

1−ae−iξ j + ce−2iξ j

1− e−2iξ j

×
∏

1≤ j<k≤n

(
1−qe−i(ξ j −ξk )

1− e−i(ξ j −ξk )

)(
1−qe−i(ξ j +ξk )

1− e−i(ξ j +ξk )

)
. (3.1b)

Here 〈·, ·〉 denotes the standard inner product on R
n , εξσ :=(ε1ξσ1, ε2ξσ2 , . . . , εnξσn ),

and the summation is meant over all permutations σ in the symmetric group Sn

and all sign configurations ε = (ε1, . . . , εn)∈ {1,−1}n . Viewed as a function of the
spectral parameter ξ = (ξ1, . . . , ξn) in the fundamental alcove

A := {(ξ1, ξ2, . . . , ξn)∈R
n |π >ξ1 >ξ2 > · · ·>ξn >0}, (3.2)

the expression φξ (λ), λ ∈ �n amounts to Macdonald’s three-parameter Hall–
Littlewood polynomial with hyperoctahedral symmetry associated with the root
system BCn [16, §10].
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PROPOSITION 3.2 (Bethe Ansatz eigenfunctions). The n-particle Bethe Ansatz
wave function φξ , ξ ∈ A solves the eigenvalue equation

Hq,nφξ = En(ξ)φξ , En(ξ) :=2
n∑

j=1

cos(ξ j ). (3.3)

Proof. It follows from Proposition 3.1 that the stated eigenvalue equation boils
down to the following identity

a[m0(λ)]φξ (λ)+
∑

1≤ j≤n
λ+e j ∈�n

(1− cδλ j q
m0(λ)−1)[mλ j (λ)]φξ (λ+ e j )

+
∑

1≤ j≤n
λ−e j ∈�n

[mλ j (λ)]φξ (λ− e j )=2φξ (λ)

n∑

j=1

cos(ξ j ),

which is in turn equivalent to the Pieri formula for the hyperoctahedral Hall–
Littlewood function in Equation (A.3) of Appendix A.

4. Diagonalization

From now on it will be assumed unless stated otherwise that 0 < |q|< 1 and that
the boundary parameters a and c are chosen such that the roots r1, r2 of the
quadratic polynomial r2 −ar + c belong to the interval (−1,1):

a = r1 + r2 and c = r1r2 with r1, r2 ∈ (−1,1). (4.1)

Let L2(A,�dξ) be the Hilbert space of functions f̂ : A→C characterized by the
inner product

〈 f̂ , ĝ〉� =
∫

A

f̂ (ξ)ĝ(ξ)�(ξ) dξ, where �(ξ) := 1
(2π)n|C(ξ)|2 (4.2)

with C(ξ) given by Equation (3.1b). It is well known that for the parameter
regime in question Macdonald’s hyperoctahedral Hall–Littlewood functions form
an orthogonal basis of L2(A,�dξ) [16, §10]:

〈φ(λ),φ(μ)〉� =
{

N (λ) if λ=μ,

0 otherwise,
(4.3a)

where

N (λ) := (c;q)m0(λ)

∏

�∈N

[m�(λ)]! (4.3b)

with (c;q)m := (1 − c)(1 − cq) · · · (1 − cqm−1) (and the convention that (c;q)0 := 1)
and [m]! := (q;q)m/(q;q)m

1 = [m][m − 1] · · · [2][1]. By combining the orthogonality



108 JAN FELIPE VAN DIEJEN AND ERDAL EMSIZ

in Equations (4.3a), (4.3b) with Proposition 3.2, the spectral decomposition of Hq

in the n-particle Hilbert space �2(�n,N−1) ⊂ F(�n) characterized by the inner
product

〈 f, g〉n :=
∑

λ∈�n

f (λ)g(λ)N −1(λ) (4.4)

becomes immediate.

THEOREM 4.1 (Diagonalization). For 0 < |q| < 1 and values of the boundary
parameters a and c in the orthogonality domain (4.1), the q-boson Hamiltonian
Hq (2.4) restricts to a bounded self-adjoint operator in �2(�n,N−1) with purely
absolutely continuous spectrum. More specifically, the spectral decomposition of Hq,n

in �2(�n,N−1) reads explicitly

Hq,n = F−1
q ◦ Ên ◦ Fq, (4.5)

where Fq :�2(�n,N−1)→ L2(A,�dξ) denotes the unitary Fourier transform associ-
ated with the hyperoctahedral Macdonald–Hall–Littlewood basis:

(Fq f )(ξ) := 〈 f, φξ 〉n =
∑

λ∈�n

f (λ)φξ (λ)N −1(λ) (4.6a)

( f ∈�2(�n,N−1)) with the inversion formula given by

(F−1
q f̂ )(λ)=〈 f̂ , φ(λ)〉� =

∫

A
f̂ (ξ)φξ (λ)�(ξ) dξ (4.6b)

( f̂ ∈ L2(A,�dξ)), and (Ên f̂ )(ξ) := En(ξ) f̂ (ξ) stands for the bounded real multipli-
cation operator in L2(A,�dξ) associated with the n-particle eigenvalue En(ξ) (3.3).

In the Fock space H := ⊕
n≥0 �2(�n,N−1), built of all linear combinations∑

n≥0 cn fn with cn ∈C and fn ∈�2(�n,N−1) such that
∑

n≥0 |cn|2〈 fn, fn〉n <∞, the
q-boson Hamiltonian Hq (2.4) constitutes an unbounded operator that is essen-
tially self-adjoint on the dense domain D :=F ∩H (because for z ∈C\R the range
(Hq − z)D is dense in H and limn→∞ supξ∈A |En(ξ)| = ∞). The representation of
the deformed q-boson field algebra in Section 2 on the other hand gives rise to a
bounded representation on H:

〈βl f, βl f 〉n−1 ≤ 1+|c|δl

1−q
〈 f, f 〉n,

〈β∗
l f, β∗

l f 〉n+1 ≤ 1+|c|δl

1−q
〈 f, f 〉n,

〈q Nl f,q Nl f 〉n ≤〈 f, f 〉n,

preserving the ∗-structure:

〈β∗
l f, g〉n+1 =〈 f, βl g〉n and 〈q Nl f, g〉n =〈 f,q Nl g〉n .
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Remark 4.2. Upon rescaling the lattice �n (2.2) and performing an appropriate
continuum limit [5, Sec. 5], Macdonald’s hyperoctahedral Hall–Littlewood func-
tions tend to the eigenfunctions of the quantum nonlinear Schrödinger equation
on the half-line with a boundary interaction [3,8,9,12,21]. In particular, it follows
from [5, Sec. 5.3] that for a = 0 (which corresponds to a reduction from type BC
to type C root systems), a renormalized version of the n-particle q-boson Hamil-
tonian Hq,n then converges in the strong resolvent sense to a Schrödinger operator
that can be written formally as:

−
n∑

j=1

∂2

∂x2
j

+ g
∑

1≤ j<k≤n

(δ(x j − xk)+ δ(x j + xk))+ g0

∑

1≤ j≤n

δ(x j )

with g, g0 >0 (where δ(·) stands for the ‘delta potential’).

5. Factorized Scattering

The similarity transformation

Hn :=N−1/2 Hq,n N 1/2 (5.1)

turns the n-particle q-boson Hamiltonian in Proposition 3.1 into a self-adjoint
operator in �2(�n) diagonalized by the normalized wave function


ξ(λ) := (2π)−n/2 e
π i
2 n2 |C(ξ)|−1N (λ)−1/2φξ (λ)

= (2π)−n/2N (λ)−1/2
∑

σ∈Sn
ε∈{±1}n

sign(εσ )Ŝ(εξσ )1/2ei〈ρ+λ,εξσ 〉, (5.2a)

with ξ ∈ A (3.2), sign(εσ ) := ε1 · · · εnsign(σ ), ρ := (n,n −1, . . . ,2,1), and

Ŝ(ξ) :=
∏

1≤ j<k≤n

s(ξ j − ξk)s(ξ j + ξk)
∏

1≤ j≤n

s0(ξ j ), (5.2b)

where

s(x) := 1−qe−i x

1−qei x
with s(x)1/2 = 1−qe−i x

|1−qei x | (5.2c)

and

s0(x) := 1−ae−i x + ce−2i x

1−aei x + ce2i x
with s0(x)1/2 = 1−ae−i x + ce−2i x

|1−aei x + ce2i x | . (5.2d)

Specifically, one has that Hn = F−1 ◦ Ên ◦ F where F : �2(�n)→ L2(A,dξ) denotes
the unitary Fourier transformation determined by the kernel 
ξ(λ) (and Ên is now
interpreted as a bounded multiplication operator in L2(A,dξ)). For q,a, c → 0
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the n-particle q-boson Hamiltonian Hn (5.1) simplifies to a Hamiltonian modeling
impenetrable bosons on N:

(Hn,0 f )(λ)=
∑

1≤ j≤n
λ+e j ∈�n

f (λ+ e j )+
∑

1≤ j≤n
λ−e j ∈�n

f (λ− e j ) (5.3)

( f ∈ �2(�n)), which is diagonalized by the conventional Fourier transform F0 :
�2(�n)→ L2(A,dξ) obtained from F by setting Ŝ(ξ)≡1,N (λ)≡1.

Let C0(Areg) denote the dense subspace of L2(A,dξ) consisting of smooth test
functions with compact support in an open dense subset Areg of A (3.2) deter-
mined by the condition that the components of ∇En(ξ) = −2(sin(ξ1), . . . , sin(ξn))

do not vanish and are all distinct in absolute value on it (so Areg is the part of A
on which the gradient ∇En(ξ) is regular with respect to the action of the hyper-
octahedral group of permutations and sign flips of the components). We will now
apply the results in [6, Sec. 4] to conclude that the wave- and scattering operators
that relate the q-boson dynamics

(ei t Hn f )(λ)=
∫

A

ei t En(ξ) f̂ (ξ)
ξ (λ) dξ ( f̂ = F f ) (5.4)

to the corresponding impenetrable boson dynamics generated by Hn,0 (5.3) are
governed by an unitary S-matrix Ŝ : L2(A,dξ)→ L2(A,dξ) obtained as the closure
of the densely defined multiplication operator

(Ŝ f̂ )(ξ) := Ŝ(εξ ξσξ ) f̂ (ξ) ( f̂ ∈C0(Areg)), (5.5)

where the sign-configuration εξ and the permutation σξ are such that the com-
ponents of ∇En(εξ ξσξ ) are all positive and ordered from large to small. Specifi-
cally, by comparing the large-times asymptotics of oscillatory integrals of the form
in Equation (5.4) for the dynamics generated by Hn and Hn,0 one concludes that
[6, Thm. 4.2 and Cor. 4.3]:

THEOREM 5.1 (Wave and scattering operators). The operator limits

�± := s − lim
t→±∞ ei t Hn e−i t Hn,0 (5.6a)

converge in the strong �2(�n)-norm topology and the corresponding wave operators
�± intertwining the dynamics of Hn and Hn,0 are given by unitary operators in
�2(�n) of the form

�± = F−1 ◦ Ŝ∓1/2 ◦ F0. (5.6b)

Hence, the scattering operator relating the large-times asymptotics of the q-boson
dynamics for t →−∞ and t →+∞ is given by the unitary operator

S := (�+)−1�− = F0
−1 ◦ Ŝ ◦ F0. (5.6c)
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Remark 5.2. Recently, an interesting two-parameter extension of the hyperoctahe-
dral Hall–Littlewood functions of Macdonald was studied [23]. It is natural to
expect that these generalized hyperoctahedral Hall–Littlewood functions arise as
the eigenfunctions of a corresponding q-boson system on the semi-infinite lattice
involving a more general four-parameter interaction at the boundary.
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Appendix A: Pieri Formula for Macdonald’s Hyperoctahedral Hall–Littlewood
Function

Let x := (x1, . . . , xn) = (eiξ1 , . . . , eiξn ) and τ := (τ1, . . . , τn), where τ j = rqn− j ( j =
1, . . . ,n) with r = a

2 +
√

( a
2 )2 − c [cf. Equation (4.1)]. Upon setting

Pλ(x) := τ
λ1
1 · · · τλn

n

N (0)
φξ (λ) (λ∈�n), (A.1)

where N (0) is given by Equation (4.3b) with λ = 0, the hyperoctahedral Hall–
Littlewood function is renormalized to have unital principal specialization values:
Pλ(τ )=1 (∀λ∈�n) [16, §12]. With this normalization, the following Pieri formula
holds:

Pλ(x)

n∑

j=1

(x j + x−1
j − τ j − τ−1

j )

=
∑

1≤ j≤n
λ+e j ∈�n

V +
j (λ)

(
Pλ+e j (x)− Pλ(x)

)+
∑

1≤ j≤n
λ−e j ∈�n

V −
j (λ)

(
Pλ−e j (x)− Pλ(x)

)
, (A.2)

where

V +
j (λ)= τ−1

j

(
1− c2δλ j q

2(n− j)

1+ cδλ j q
2(n− j)

)
∏

j<k≤n
λk=λ j

(
1−q1+k− j

1−qk− j

)(
1+ cδλ j q

1+2n−k− j

1+ cδλ j q
2n−k− j

)
,

V −
j (λ)= τ j

∏

1≤k< j
λk=λ j

(
1−q1+ j−k

1−q j−k

)
.

The formula in question is readily obtained through degeneration from an anal-
ogous Pieri formula for a BCn-type Macdonald function that arises as a special
case of the Pieri formulas in [4, Sec. 6.1]. Specifically, by substituting t2 =q1/2, t3 =
−q1/2 (which amounts to a reduction from the Macdonald–Koornwinder function
to the BCn-type Macdonald function) in the Pieri formula of [4, Eqs. (6.4), (6.5)]
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with coefficients taken from [4, Eqs. (6.12), (6.13)], the relation in Equation (A.2)
is retrieved for q → 0 (which corresponds to a transition from Macdonald type
functions to Hall–Littlewood type functions). Notice in this connection that the
parameters q,a, c (and r ) of the present paper are related to the parameters t, t0, t1
of Ref. [4] via q = t,a = t0 + t1, c = t0t1 (and r = t0).

Since

V +
j (λ)= τ−1

j (1− cδλ j q
m0(λ)−1)[mλ j (λ)], V −

j (λ)= τ j [mλ j (λ)],
and

n∑

j=1

(τ j + τ−1
j )−

∑

1≤ j≤n
λ−e j ∈�n

τ j [mλ j (λ)]−
∑

1≤ j≤n
λ+e j ∈�n

τ−1
j [mλ j (λ)]= r [m0(λ)],

the Pieri formula (A.2) can be condensed into the more compact form

Pλ(x)

n∑

j=1

(x j + x−1
j )=a[m0(λ)]Pλ(x)+

∑

1≤ j≤n
λ−e j ∈�n

τ j [mλ j (λ)]Pλ−e j (x)

+
∑

1≤ j≤n
λ+e j ∈�n

τ−1
j (1− cδλ j q

m0(λ)−1)[mλ j (λ)]Pλ+e j (x). (A.3)
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13. Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Springer,
Berlin (1997)

14. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method
and Correlation Functions. Cambridge University Press, Cambridge (1993)

15. Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Ver-
linde algebra. Commun. Math. Phys. 318, 173–246 (2013)

16. Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar.
Combin. 45, Art. B45a (2000/2001)

17. Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in
One Dimension. World Scientific, Singapore (1994)

18. Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun.
Math. Phys. 228, 467–494 (2002)

19. Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffu-
sion models. J. Phys. A 31, 6057–6071 (1998)

20. Sutherland, B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body
Problems. World Scientific, Singapore (2004)

21. Tracy, C.A., Widom, H.: The Bose gas and asymmetric simple exclusion process on
the half-line. J. Stat. Phys. 150, 1–12 (2013)

22. Tsilevich, N.V.: The quantum inverse scattering method for the q-boson model and
symmetric functions. Funct. Anal. Appl. 40, 207–217 (2006)

23. Venkateswaran, V.: Symmetric and nonsymmetric Hall–Littlewood polynomials of type
BC . arXiv:1209.2933


	The Semi-Infinite q-Boson System with Boundary Interaction
	Abstract. 
	1 Introduction
	2 Semi-Infinite boldsymbol q-Boson System
	3 The boldsymbol n-Particle Hamiltonian and Its Eigenfunctions
	4 Diagonalization
	5 Factorized Scattering
	Acknowledgements
	Appendix A: Pieri Formula for Macdonald's Hyperoctahedral Hall--Littlewood Function
	References


