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Abstract. Upon introducing a one-parameter quadratic deformation of the g-boson alge-
bra and a diagonal perturbation at the end point, we arrive at a semi-infinite g-boson sys-
tem with a two-parameter boundary interaction. The eigenfunctions are shown to be given
by Macdonald’s hyperoctahedral Hall-Littlewood functions of type BC. It follows that
the n-particle spectrum is bounded and absolutely continuous and that the corresponding
scattering matrix factorizes as a product of two-particle bulk and one-particle boundary
scattering matrices.
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1. Introduction

The g-boson system [1] is a lattice discretization of the one-dimensional quantum
nonlinear Schrodinger equation [10,11,14,17,20] built of particle creation and anni-
hilation operators representing the g-oscillator algebra [13, Ch. 5]. Its n-particle
eigenfunctions are given by Hall-Littlewood functions [7,15,22]. This model is a
limiting case of a more general quantum particle system arising as a g-deformation
of the totally asymmetric simple exclusion process (¢-TASEP) [2,19]. In the present
letter, we study a system of g-bosons on the semi-infinite lattice with boundary
interactions, in the spirit of previous works concerned with the quantum nonlin-
ear Schrodinger equation on the half-line [3,8,9,12,21].

Specifically, by introducing at the end point creation and annihilation operators
representing a quadratic deformation of the g-oscillator algebra together with a
diagonal perturbation, we arrive at the Hamiltonian of a g-boson system on the

Work was supported in part by the Fondo Nacional de Desarrollo Cientifico y Tecnoléogico (FONDE-
CYT) Grants # 1130226 and # 11100315, and by the Anillo ACT56 ‘Reticulados y Simetrias’ financed
by the Comisién Nacional de Investigacion Cientifica y Tecnologica (CONICYT).



104 JAN FELIPE VAN DIEJEN AND ERDAL EMSIZ

semi-infinite integer lattice endowed with a two-parameter boundary interaction.
By means of an explicit formula for the action of the Hamiltonian in the n-particle
subspace, it is deduced that the Bethe Ansatz eigenfunctions are given by Mac-
donald’s three-parameter Hall-Littlewood functions with hyperoctahedral symme-
try associated with the BC-type root system [16, §10].

It follows that the g-boson system fits within a large class of discrete quan-
tum models with bounded absolutely continuous spectrum for which the scattering
behavior was determined in great detail by means of stationary phase techniques
[6,18]. In particular, the n-particle scattering matrix is seen to factorize as a prod-
uct of explicitly computed two-particle bulk and one-particle boundary scattering
matrices.

2. Semi-Infinite ¢g-Boson System
Let

fi:@}-([\n) 2.1

neN

denote the algebraic Fock space consisting of finite linear combinations of f, €
F(Ay), neN:={0,1,2,...}, where F(A,) stands for the space of functions f :
A, — C on the set of partitions of length at most n:

Api={A=1,..., ) eN A1 > A > > A}, 2.2)

with the additional convention that Ay:={@} and F(Ag):=C. For [ €N, we intro-
duce the following actions on f € F(A,)CF:

BHQN) = f(BA) (AeA,_1)
if n>0 and B;f:=0 if n=0,

W11 —csgmo®-1 A if my (W) >0
(ﬂf‘f)m::[[m’( N —ctig™ @D fBx) HmGI>0

0 otherwise
(C]NH_kf)()\) ::qml()\)'f‘kf()\,) (e Ap),

with ¢, ce€R such that |¢|#0,1 and k €Z. Here

l4+g+-4¢"' form>0"

|1 for =0, _I—=q™ |0 for m=0
P 0 otherwise " 1l—gq -

and the multiplicity m;(1) counts the number of parts A;,1 <j<n of size A; =1
(so mo(A), L€ A, is equal to n minus the number of nonzero parts), while g €
A,y and Bia € A, stand for the partitions obtained from A € A, by insert-
ing/deleting a part of size [, respectively (where it is assumed in the latter situation
that m; (1) > 0). It is clear from these definitions that 8, 8" and gVt map F(A,)
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into F(A,—1), F(A,+1) and F(A,), respectively (with the convention that F(A_1)
is the null space).

The operators in question represent a quadratic deformation of the g-boson field
algebra at the boundary site / =0 parametrized by the constant c:

BN =gt g, BN =™ Bf,
BiB; =[N+ 111 —c8i1g™), (B, Bjlg=1—c81g*N0 (2.3a)

and preserving the ultralocality:

(B, BI=1B/", B 1= N1, Ne1=[Ni, Bl =Ni, B =181, B 1=0 (2.3b)

for | #k (where [A, B]:=AB — BA, [A,Bl,:=AB —qBA, and [N;+r]:=(1—
gMt) /(1= q)).

When interpreting the characteristic function |A) € F(A,) supported on A€ A,
as a state representing a configuration of n particles on N such that m;(A) parti-
cles are occupying the site /€N (i.e., each part A; encodes a particle at site A;), it
is clear that the operators ; and B act as particle annihilation and creation oper-
ators:

. B 1A = [m(3) + 11(1 — 8™ M) B 1),
0 otherwise

ﬂz|x>=i'm> it my () =0

while ¢ counts the number of particles at the site / (as a power of ¢):
g"n) =g P2).

The dynamics of our g-boson system is governed by a Hamiltonian built of left
and right hopping operators together with a diagonal boundary term:

Hy =alNol+ > (BB + BB 24)

leN

a € R. The interaction at the lattice end stems from a particle reflection in the
boundary governed by the deformation parameter ¢ of the g-boson algebra at [ =
0, and from the additive potential term at the end point controlled by the coupling
parameter a (cf. also Proposition 3.1 below). The Hamiltonian in question consti-
tutes a well-defined operator on F (2.1) as for any fe€F(A,) and A € A, the infi-
nite sum (H, f)(A) contains only a finite number of nonvanishing terms.

3. The n-Particle Hamiltonian and Its Eigenfunctions

By construction H, (2.4) preserves the n-particle subspace F(A,) C F. Let us
denote the restriction of H, to F(A,) by Hy ,. The following proposition describes
the action of this operator in the n-particle subspace explicitly.
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PROPOSITION 3.1 (n-Particle Hamiltonian). For any f € F(A,) and A€ A,, one
has that

(Hyn )() =almo()] f (1)
+ D (I=cdyg™ P Dma, WIf e+ D Ima;(WIfO—e)),

1<j=n 1<j=n
)»-‘re]'EAn )»—EjEAn
where ey, ..., e, refer to the unit vectors comprising the standard basis of 7.

Proof. 1t is clear from the definitions that ([No]f)(X)=[mo(X)]f (L), and that for
any [ eN:

[mi (W] —edig™ PN F(BF Air) - if mi(h) >0,
0 otherwise,

Br+1B7 HH(L) =H

where B | BiA=21+e; with j=min{k| s =[} (so [=2;), and

A A if A) >0,
(ﬁ;‘+1ﬁzf)()\)={[ml+l( N B Bir) 1 mz+1.( ) >
0 otherwise,
where fi118A=A—e; with j=max{k| A, =]4+1} (so [=1; —1). O

The n-particle Hamiltonian H, , has Bethe Ansatz eigenfunctions given by the
following plane wave expansion

Pe():i= D Cle&p)e ™, (3.1a)
o€ES,
ee{i:l}"

with expansion coefficients of the form

1 —ae™i + e
ce=[]

1 — e 2
I<j<n
1—geiGi—5) 1 —ge—i&i+8)
< 1 qac_ < . (3.1b)
1—e i€ —8) 1 —e—i+&)
1<j<k=<n
Here (-, -) denotes the standard inner product on R", €&, :=(€1&0,, €20, . . ., €néo,),
and the summation is meant over all permutations ¢ in the symmetric group S,
and all sign configurations € = (¢y, ..., €,) € {1, —1}". Viewed as a function of the
spectral parameter £ = (&1, ..., &,) in the fundamental alcove
AZ{(SI,%—Z, "'751’!)6Rn |7T>§1 >$2>>Sn>0}7 (32)

the expression ¢z(1),A € A, amounts to Macdonald’s three-parameter Hall-
Littlewood polynomial with hyperoctahedral symmetry associated with the root
system BC, [16, §10].
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PROPOSITION 3.2 (Bethe Ansatz eigenfunctions). The n-particle Bethe Ansatz
wave function ¢g, & € A solves the eigenvalue equation

Hy e =En(€)pe,  En(§):=2 cos(&)). (3.3)

j=1

Proof. 1t follows from Proposition 3.1 that the stated eigenvalue equation boils
down to the following identity

almoMlge W)+ D~ (1=cb,q" P HImy, W)1ge (A +e)

I<j<n
)»-‘re_,'EA,,

n
+ D> Imay (Mg (h—ej) =2¢: (1) D cos()).
I<j=n j=1
A—e;eN,
which is in turn equivalent to the Pieri formula for the hyperoctahedral Hall-
Littlewood function in Equation (A.3) of Appendix A. O

4. Diagonalization

From now on it will be assumed unless stated otherwise that 0 <|g| <1 and that
the boundary parameters a and ¢ are chosen such that the roots rj,r of the
quadratic polynomial r2 —ar +¢ belong to the interval (-1, 1):

a=ri+r and c=rirp with r;,rpe(—1,1). 4.1)

Let L%(A, Ad¢) be the Hilbert space of functions f :A— C characterized by the
inner product

4.2)

( ,g>A=A/f(s>g<s)A<§> d&,  where A@):W

with C(§) given by Equation (3.1b). It is well known that for the parameter
regime in question Macdonald’s hyperoctahedral Hall-Littlewood functions form
an orthogonal basis of L2(A, AdE) [16, §10]:

N if a=pu,
<¢<A>,¢(u>>A=[ 1) ifA=p 4.3a)
0 otherwise,
where
NG = (e Doy [ [Ime ]! (4.3b)
LeN

with (¢; @)m =0 —c)(1 —cq)--- (1 —cg™ ") (and the convention that (c;g)g:=1)
and [m]!:=(q; Q)m/(q; q)" =[m][m —1]---[2][1]. By combining the orthogonality
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in Equations (4.3a), (4.3b) with Proposition 3.2, the spectral decomposition of H,
in the n-particle Hilbert space ¢2(A,, N~') Cc F(A,) characterized by the inner
product

(frghni= D FMEOINT' () (4.4)

reA,

becomes immediate.
THEOREM 4.1 (Diagonalization). For 0 < |q| < 1 and values of the boundary
parameters a and c in the orthogonality domain (4.1), the g-boson Hamiltonian
H, (2.4) restricts to a bounded self-adjoint operator in (A, NV with purely

absolutely continuous spectrum. More specifically, the spectral decomposition of H ,
in L2(Ap, N~V reads explicitly

Hyn=F;'0E,0F,, (4.5)

where F 2(Ay, N7 — L%(A, Ad§) denotes the unitary Fourier transform associ-
ated with the hyperoctahedral Macdonald—Hall-Littlewood basis:

(FgE):=(f. )= D fMde MIN ' (3) (4.6a)

AEAR

(f €€2(Ap, N=YY)) with the inversion formula given by

A

(F,'Hw=(f.¢ / FE:MAE) dt (4.6b)

(feLz(A, AdE)), and (l?nf)(é) = En(E)f(S) stands for the bounded real multipli-
cation operator in L*(A, AdE) associated with the n-particle eigenvalue E,(£) (3.3).

In the Fock space H := &P, 2(A,, N1, built of all linear combinations
> oo fn With ¢, €C and f, € €2(A,, N such that 3, o [cal*(fns fr)n <00, the
g-boson Hamiltonian H, (2.4) constitutes an unbounded operator that is essen-
tially self-adjoint on the dense domain D:=F N'H (because for z€ C\R the range
(Hy —2)D is dense in H and lim,— oo SUPgcy | En(§)| =00). The representation of
the deformed g-boson field algebra in Section 2 on the other hand gives rise to a
bounded representation on H:

1 )
Bif. Bif ot < +'C' !

(s Fns

1 )
BESBE P < +M’

(@ f.q™ fin < <f, f>n,

preserving the x-structure:

B f, & i1 ={f Big)n and (g™ f,8)n=(f,q"g)n

(f, fn



THE SEMI-INFINITE Q-BOSON SYSTEM WITH BOUNDARY INTERACTION 109

Remark 4.2. Upon rescaling the lattice A, (2.2) and performing an appropriate
continuum limit [5, Sec. 5], Macdonald’s hyperoctahedral Hall-Littlewood func-
tions tend to the eigenfunctions of the quantum nonlinear Schrodinger equation
on the half-line with a boundary interaction [3,8,9,12,21]. In particular, it follows
from [5, Sec. 5.3] that for a =0 (which corresponds to a reduction from type BC
to type C root systems), a renormalized version of the n-particle g-boson Hamil-
tonian H, , then converges in the strong resolvent sense to a Schrodinger operator
that can be written formally as:

oa
—Za 2+g D GG —x) G +x)) +g0 D 8(x))
I<j<k<n I<j<n

with g, go >0 (where §(-) stands for the ‘delta potential’).

5. Factorized Scattering

The similarity transformation
Hy:=N""2H, , N/ (5.1)

turns the n-particle g-boson Hamiltonian in Proposition 3.1 into a self-adjoint
operator in ¢2(A,) diagonalized by the normalized wave function

W (0= Q2m) 2T CE) TN )T (1)
=Qm) PN DT sign(eo)S(ek,) el ), (5.2a)

o€esS,
ee{£1}"

with £ € A (3.2), sign(eo):=¢€1---€,sign(o), p:=mn,n—1,...,2,1), and

S@&:= [] s¢-&s&+& [ s, (5.2b)
I<j<k<n I<j<n
where
1— —ix 1— —ix
s(x):= ac : with s(x)l/2 = q—e. (5.2¢)
1 —ge* |1 —qge'¥|
and
1— ae—ix + Ce—2ix ) 12 1— ae—ix +CC_2iX
so(x):= . - with  so(x) /= (5.2d)

1 —ae’* + ce?x © |1 —aei* +cetix|

Specifically, one has that H,=F !0 E, o F where F:¢*(A,)— L%(A, d¢) denotes
the unitary Fourier transformation determined by the kernel Wg(A) (and E, is now
interpreted as a bounded multiplication operator in L?(A, d¢)). For ¢,a,c — 0
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the n-particle g-boson Hamiltonian H, (5.1) simplifies to a Hamiltonian modeling
impenetrable bosons on N:

(Hiof)O)= D fO+ep+ D fl—e) (5.3)
relch, e

(f € €2(Ap)), which is diagonalized by the conventional Fourier transform Fp :
€2(A,) — L2(A, d€) obtained from F by setting S(€)=1, N (L) =1.

Let Cy(Areg) denote the dense subspace of L%(A, d¢) consisting of smooth test
functions with compact support in an open dense subset Ayg of A (3.2) deter-
mined by the condition that the components of VE, (&)= —2(sin(&}), ..., sin(&,))
do not vanish and are all distinct in absolute value on it (S0 Areg is the part of A
on which the gradient VE, (&) is regular with respect to the action of the hyper-
octahedral group of permutations and sign flips of the components). We will now
apply the results in [6, Sec. 4] to conclude that the wave- and scattering operators
that relate the g-boson dynamics

@'t fy(n) = / O fEwe (1) d& (f=F ) -4

A

to the corresponding impenetrable boson dynamics generated by H, o (5.3) are
governed by an unitary S-matrix S:L%(A, d&)— L2(A, d&) obtained as the closure
of the densely defined multiplication operator

(SHE) =8(este) [ (f €Co(Areg)). (5.5

where the sign-configuration € and the permutation oz are such that the com-
ponents of VE,(ezéy,) are all positive and ordered from large to small. Specifi-
cally, by comparing the large-times asymptotics of oscillatory integrals of the form
in Equation (5.4) for the dynamics generated by H, and H, o one concludes that
[6, Thm. 4.2 and Cor. 4.3]:

THEOREM 5.1 (Wave and scattering operators). The operator limits

Q:l: =g — hm eitH)le_itHn,O (563)

t—=+00

converge in the strong 2(Ay)-norm topology and the corresponding wave operators
QF intertwining the dynamics of H, and H, are given by unitary operators in
2(A,) of the form

Qt=F 18720 F,. (5.6b)

Hence, the scattering operator relating the large-times asymptotics of the g-boson
dynamics for t - —oo and t — +o00 is given by the unitary operator

S:=QH Q0 =F 10SoF. (5.6¢)
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Remark 5.2. Recently, an interesting two-parameter extension of the hyperoctahe-
dral Hall-Littlewood functions of Macdonald was studied [23]. It is natural to
expect that these generalized hyperoctahedral Hall-Littlewood functions arise as
the eigenfunctions of a corresponding g-boson system on the semi-infinite lattice
involving a more general four-parameter interaction at the boundary.
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Appendix A: Pieri Formula for Macdonald’s Hyperoctahedral Hall-Littlewood
Function

Let x:=(x1,...,%,) = ("1, ..., €%) and 7:=(11,...,7,), Where 1, =rq" 7 (j=
., n) with r:%—i-,/(%)2 —c [cf. Equation (4.1)]. Upon setting
)»1 )\,,
P, A rEANy), A.l
. (x) 1= N(O) — (L) (AeAp) (A.1)

where A(0) is given by Equation (4.3b) with A =0, the hyperoctahedral Hall-
Littlewood function is renormalized to have unital principal specialization values:
Py (t)=1 (VAe A,) [16, §12]. With this normalization, the following Pieri formula
holds:

n
P, (x) Z(xj +)cj_1 -1 —-cj_l)

j=1
= D VIO (P, =P@)+ D Vi) (Pie; ()= Pi(),  (A2)
1<]<n 1<]<n
)»-‘re_,'EAn )L—e_,'EAn
where
o _I(I_CZ(SKqu(n—j)) H (1_q1+kj)(1+c(g)\qu+2n—k—j)
. =T. _— T
20— _ k- n—k—j |’
! ! L+c8y;¢2=D Jj<k<n I=g¢* L+cdy g™
Ak=Aj
1+] —k
vio=t [] )
1<k —4
<j
M=

The formula in question is readily obtained through degeneration from an anal-
ogous Pieri formula for a BC,-type Macdonald function that arises as a special
case of the Pieri formulas in [4, Sec. 6.1]. Specifically, by substituting 1, =¢'/%, 13 =
—g'/? (which amounts to a reduction from the Macdonald—Koornwinder function
to the BC,-type Macdonald function) in the Pieri formula of [4, Egs. (6.4), (6.5)]
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with coefficients taken from [4, Egs. (6.12), (6.13)], the relation in Equation (A.2)
is retrieved for ¢ — 0 (which corresponds to a transition from Macdonald type
functions to Hall-Littlewood type functions). Notice in this connection that the
parameters ¢, a, ¢ (and r) of the present paper are related to the parameters ¢, g, f1
of Ref. [4] via g=t,a=1ty+1,c=tpt; (and r=tp).

Since

Vi =1 (=t g™ M Dimy ) VR =150m, ()]

and

n

St > wlm,l— D> 1 m, ()1=rlmo()],
j=1 1<j=n l<j<n

A—ejeN, Atejel,

the Pieri formula (A.2) can be condensed into the more compact form

Pox) D (xj+x7 ) =almoMIPax)+ D 1jlma, (WIP—; (x)

j=1 I<j=<n
A—e_,-eAn
+ Dt A =e8,qm P DImy 001 P (). (A3)
1<j<n
)»-‘re]'EAn
References

1. Bogoliubov, N.M., Izergin, A.G., Kitanine, A.N.: Correlation functions for a strongly
correlated boson system. Nucl. Phys. B 516, 501-528 (1998)

2. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the ¢g-Boson par-
ticle system. arXiv:1308.3475

3. Caudrelier, V., Crampé, N.: Exact results for the one-dimensional many-body prob-
lem with contact interaction: including a tunable impurity. Rev. Math. Phys. 19, 349—
370 (2007)

4. van Diejen, J.F.: Properties of some families of hypergeometric orthogonal polynomials
in several variables. Trans. Am. Math. Soc. 351, 233-270 (1999)

S. van Diejen, JF.: On the Plancherel formula for the (discrete) Laplacian in a Weyl
chamber with repulsive boundary conditions at the walls. Ann. Henri Poincaré 5, 135—
168 (2004)

6. van Diejen, J.F.: Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber.
Am. J. Math. 127, 421-458 (2005)

7. van Diejen, JF., Emsiz, E.: Diagonalization of the infinite g¢-boson system.
arXiv:1308.2237

8. Gattobigio, M., Liguori, A., Mintchev, M.: The nonlinear Schrodinger equation on the
half line. J. Math. Phys. 40, 2949-2970 (1999)

9. Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386-
394 (1971)

10. Gaudin, M.: La fonction d’onde de Bethe. Masson, Paris (1983)

11. Gutkin, E.: Quantum nonlinear Schrodinger equation: two solutions. Phys. Rep. 167,
1-131 (1988)



THE SEMI-INFINITE Q-BOSON SYSTEM WITH BOUNDARY INTERACTION 113

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Hallnds, M., Langmann, E.: Exact solutions of two complementary one-dimensional
quantum many-body systems on the half-line. J. Math. Phys. 46(5), 052101 (2005)
Klimyk, A., Schmiidgen, K.: Quantum Groups and Their Representations. Springer,
Berlin (1997)

Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method
and Correlation Functions. Cambridge University Press, Cambridge (1993)

Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Ver-
linde algebra. Commun. Math. Phys. 318, 173-246 (2013)

Macdonald, 1.G.: Orthogonal polynomials associated with root systems. Sém. Lothar.
Combin. 45, Art. B45a (2000/2001)

Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in
One Dimension. World Scientific, Singapore (1994)

Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun.
Math. Phys. 228, 467-494 (2002)

Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffu-
sion models. J. Phys. A 31, 6057-6071 (1998)

Sutherland, B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body
Problems. World Scientific, Singapore (2004)

Tracy, C.A., Widom, H.: The Bose gas and asymmetric simple exclusion process on
the half-line. J. Stat. Phys. 150, 1-12 (2013)

Tsilevich, N.V.: The quantum inverse scattering method for the g-boson model and
symmetric functions. Funct. Anal. Appl. 40, 207-217 (2006)

Venkateswaran, V.. Symmetric and nonsymmetric Hall-Littlewood polynomials of type
BC. arXiv:1209.2933



	The Semi-Infinite q-Boson System with Boundary Interaction
	Abstract. 
	1 Introduction
	2 Semi-Infinite boldsymbol q-Boson System
	3 The boldsymbol n-Particle Hamiltonian and Its Eigenfunctions
	4 Diagonalization
	5 Factorized Scattering
	Acknowledgements
	Appendix A: Pieri Formula for Macdonald's Hyperoctahedral Hall--Littlewood Function
	References


