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the operators in question are simultaneously diagonalized
by Hall–Littlewood functions and have absolutely continuous
spectrum. As an application, the n-particle scattering operator
is computed explicitly.
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1. Introduction

The q-boson model constitutes a one-dimensional exactly solvable particle system
in Fock space [1] based on the q-oscillator algebra [7, Ch. 5]. In the case of periodic
boundary conditions (i.e. with particles hopping on the finite lattice Zm), the integra-
bility, the spectrum, and the eigenfunctions of the Hamiltonian were studied by means
of the algebraic Bethe Ansatz method [1]. Remarkably, these eigenfunctions turn out
to be Hall–Littlewood functions at discrete spectral values [16] (cf. also Ref. [6] for an
alternative construction of Hall–Littlewood functions in Fock space based on deformed
vertex operator algebras, with applications in the study of KP τ -functions arising from
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generating functions of weighted plane partitions [5]). With the aid of explicit expressions
for the commuting quantum integrals arising from an infinite-dimensional solution of the
Yang–Baxter equation, it was recently demonstrated [8] that the eigenvalue problem for
the q-boson system on Zm is in fact equivalent to that of an integrable discretization [3]
of the celebrated delta Bose gas on the circle [9].

The current paper addresses the spectral problem and the integrability of the q-boson
system on the infinite integer lattice Z. Specifically, we demonstrate that the eigen-
functions of this infinite q-boson system are again given by Hall–Littlewood functions
and provide explicit formulas for a complete hierarchy of operators commuting with
the Hamiltonian; these formulas are natural infinite-dimensional analogues of the above-
mentioned expressions in [8] for the finite periodic q-boson system on Zm. While in the
case of the periodic lattice the use of the algebraic Bethe Ansatz method was instru-
mental for the diagonalization of the system, here in the infinite-dimensional setting our
main tool consists of well-known Pieri formulas for the Hall–Littlewood functions [10].
The n-particle spectrum now turns out to be absolutely continuous rather than dis-
crete but still remains bounded (as in the periodic case). The corresponding n-particle
scattering operator relating the large-times asymptotics of the dynamics for t → −∞
and t → +∞ is computed explicitly as an application of Ruijsenaars’ general scattering
results in Ref. [14].

The infinite q-boson model considered here turns out to be limiting case of a more
general quantum particle system on Z arising from a q-deformation of the totally asym-
metric simple exclusion process (q-TASEP) [15,2]. The spectral problem for the latter
q-boson system was solved very recently by means of a novel one-parameter inhomoge-
neous generalization of the Hall–Littlewood functions [2]. It is an open question whether
the Fock space constructions of the present paper can be adapted so as to incorporate
this more general q-boson model originating from the q-TASEP.

2. The infinite q-boson system

Given n � 0 integral, let F(Λn) be the space of complex functions f : Λn → C on the
fundamental domain

Λn :=
{
(λ1, . . . , λn) ∈ Z

n
∣∣ λ1 � λ2 � · · · � λn

}
(2.1)

of the integral lattice Zn modulo the action of the permutation group Sn, where Λ0 := {∅}
and F(Λ0) := C by convention. We will refer to the infinite direct sum

F :=
⊕
n�0

F(Λn) (2.2)

built of all finite linear combinations of (arbitrary) functions fn ∈ F(Λn), n = 0, 1, 2, . . .
as the algebraic Fock space.
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For λ ∈ Λn and l ∈ Z, let the multiplicity ml(λ) count the number of components λj ,
1 � j � n such that λj = l. We write β∗

l λ for the point of Λn+1 obtained from λ by
inserting an additional component with value l and—assuming ml(λ) > 0—we write
βlλ ∈ Λn−1 for the result of the inverse operation that deletes a component with value l

from λ. Upon defining the following actions on f ∈ F(Λn):

(βlf)(λ) :=
{
f(β∗

l λ) if n > 0 (λ ∈ Λn−1),
0 if n = 0,(

β∗
l f

)
(λ) :=

{
[ml(λ)]f(βlλ) if ml(λ) > 0
0 otherwise

(λ ∈ Λn+1),

(Nlf)(λ) := qml(λ)f(λ) (λ ∈ Λn), (2.3)

where 0 < q < 1 and

[m] := 1 − qm

1 − q
= 1 + q + · · · + qm−1

for m = 0, 1, 2, . . . , it is readily verified that one ends up with a representation of the
q-boson field algebra on F :

[βl, βk] =
[
β∗
l , β

∗
k

]
= [Nl, Nk] = [Nl, βk] =

[
Nl, β

∗
k

]
=

[
βl, β

∗
k

]
= 0 (2.4a)

for l �= k, and

Nlβ
∗
l = qβ∗

l Nl, βlNl = qNlβl,
[
βl, β

∗
l

]
= Nl, βlβ

∗
l − qβ∗

l βl = 1. (2.4b)

Here the brackets refer to the (ordinary) commutator product. By construction βl, β∗
l

and Nl map F(Λn) into F(Λn−1), F(Λn+1) and F(Λn), respectively (with the convention
that F(Λ−1) = {0}).

The Hamiltonian of the q-boson system

Hq =
∑
l∈Z

(
al + a∗l

)
(2.5a)

is built of hopping operators

al := β∗
l+1βl and a∗l := βl+1β

∗
l (2.5b)

for which the n-particle subspace F(Λn) is stable. These hopping operators represent
the plactic subalgebra of the q-boson field algebra [8, Sec. 3.4]:

alak = akal (2.6a)

for |l − k| > 1 (nonlocal commutativity) and
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al+1a
2
l + qa2

l al+1 = (1 + q)alal+1al,

a2
l+1al + qala

2
l+1 = (1 + q)al+1alal+1 (2.6b)

(quantum Knuth relations), with analogous relations (involving reversely ordered prod-
ucts) for a∗l , l ∈ Z. The q-boson Hamiltonian Hq (2.5a), (2.5b) constitutes a well-defined
operator on F as for any f ∈ F(Λn) and λ ∈ Λn the infinite sum (Hqf)(λ) contains only
a finite number of nonvanishing terms.

To facilitate the comparison with previous literature on the q-boson system [1,16,8],
let us denote the characteristic function in F(Λn) supported on λ ∈ Λn by |λ〉. Then one
has that

βl|λ〉 =
{ |βlλ〉 if ml(λ) > 0,

0 otherwise,
β∗
l |λ〉 =

[
ml(λ) + 1

]∣∣β∗
l λ

〉
, Nl|λ〉 = qml(λ)|λ〉.

In the standard physical interpretation the state |λ〉 encodes a configuration of n particles
on Z—q-bosons—with ml(λ) particles occupying the site l ∈ Z. The operators β∗

l and βl

play the role of particle creation and annihilation operators and Nl counts the number of
particles at the site l (as a power of q). The hopping operators al and a∗l move a particle
from l to l + 1 and vice versa.

3. Integrability

To any partition η = (η1, . . . , ηp) with η1 � η2 � · · · � ηp � 1, we associate the
following hopping operators on F :

mη(a) :=
∑′

σ∈Sp

∑
l1<l2<···<lp

a
ησ1
l1

· · · aησp

lp
,

mη

(
a∗
)

:=
∑′

σ∈Sp

∑
l1>l2>···>lp

(
a∗l1

)ησ1 · · ·
(
a∗lp

)ησp . (3.1)

Here the (infinite) inner summations are over all strictly monotonous p-tuples (l1, . . . , lp)
of indices in Z; the primes attached to the (finite) outer summations indicate that these
are meant over the orbit of all distinct compositions (ησ1 , . . . , ησp

) obtained by reordering
the parts of η via permutations

σ =
(

1 2 · · · p

σ1 σ2 · · · σp

)

belonging to the symmetric group Sp. Notice that for given f ∈ F(Λn) and λ ∈ Λn,
the infinite sums (mη(a)f)(λ) and (mη(a∗)f)(λ) contain only a finite number of nonzero
terms, so these operators are again well-defined on F . For r ∈ N we now set
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Hr :=
∑
|η|=r

mη(a)
[η]! and H∗

r :=
∑
|η|=r

mη(a∗)
[η]! , (3.2)

where [η]! = [(η1, . . . , ηp)]! := [η1]! · · · [ηp]! and [m]! := [m][m−1] · · · [1] for m = 0, 1, 2, . . .
(with the convention that [0]! = 1), and |η| := η1 + · · · + ηp (so the (finite) summation
in Eq. (3.2) is over all partitions of r). The q-boson Hamiltonian (2.5a), (2.5b) becomes
in terms of these operators:

Hq = H1 + H∗
1 . (3.3)

Our main result is the following explicit formula for the action of Hr and H∗
r in the

n-particle subspace F(Λn), which will be proven shortly in the next section.

Theorem 3.1 (Explicit action of H(∗)
r in F(Λn)). For any f ∈ F(Λn) and λ ∈ Λn, one

has that

(Hrf)(λ) =
∑

J⊂{1,2,...,n}, |J|=r
λ−eJ∈Λn

Vλ,Jc f(λ− eJ),

(
H∗

r f
)
(λ) =

∑
J⊂{1,2,...,n}, |J|=r

λ+eJ∈Λn

Vλ,J f(λ + eJ), (3.4a)

where |J | denotes the cardinality of J ⊂ {1, . . . , n}, Jc := {1, . . . , n} \ J , eJ :=
∑

j∈J ej
(with e1, . . . , en referring to the standard unit basis of Zn) and

Vλ,J :=
∏

1�j<k�n
j∈J, k∈Jc

λj=λk

1 − qk−j+1

1 − qk−j
. (3.4b)

In particular, for r > n the n-particle subspace F(Λn) belongs to the kernel of the
operators Hr and H∗

r .

In [4, App. C] the discrete difference operators Hr on the RHS of Eqs. (3.4a), (3.4b)
were obtained (up to a trivial similarity transformation and replacing q by q2) as n

algebraically independent commuting central elements arising from a difference-reflection
representation of the affine Hecke algebra associated with GL(n;C). Since Hn acts on
f ∈ F(Λn) simply as an overall translational symmetry: (Hnf)(λ) = f(λ−(e1+· · ·+en)),
it is immediate from the above formulas that the discrete difference operators in F(Λn)
corresponding to H∗

r can be written in turn as Hn−rH
−1
n (with the convention that

H0 := 1). The upshot is that all Hr and H∗
r (3.2) commute as operators on F , which

proves the integrability of the infinite q-boson system.
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Corollary 3.2 (Integrability). All operators Hr and H∗
r in Eq. (3.2) mutually commute

on F :

[Hr, Hr′ ] = 0,
[
H∗

r , H
∗
r′
]

= 0,
[
Hr, H

∗
r′
]

= 0
(
∀r, r′ ∈ N

)
, (3.5)

and they restrict to n algebraically independent operators on the invariant n-particle
subspace F(Λn).

A quasi-periodic counterpart of the formula in Theorem 3.1 for the finite q-boson
system on Zm can be found in Ref. [8] (see Prp. 3.11 and Prp. 6.1). For Dirichlet
type boundary conditions corresponding to the case of a vanishing quasi-periodicity
parameter, one arrives—in the limit when the lattice size parameter m tends to infinity—
at an analogue of the commutativity in Corollary 3.2 for the q-boson system on the
(semi-)infinite lattice N as a consequence of [8, Cor. 3.3] (cf. also [3, Thm. 5.3]). In
principle, the commutativity in Corollary 3.2 for the q-boson system on Z could also
be recovered along these lines upon centering the finite lattice around the origin before
performing the infinite size limit. Alternatively, the commutativity in question can also
be viewed as a degeneration of the commutativity of the discrete Macdonald–Ruijsenaars
operators [13], [10, Sec. VI.6] via a limit transition (that takes Macdonald symmetric
functions to Hall–Littlewood symmetric functions).

It is straightforward from Theorem 3.1 and Eq. (3.3) that the action of the q-boson
Hamiltonian Hq (2.5a), (2.5b) in the n-particle subspace F(Λn) is given by

(Hqf)(λ) =
∑

1�j�n, ε=±1
λ+εej∈Λn

[
mλj

(λ)
]
f(λ + εej) (3.6)

(f ∈ F(Λn), λ ∈ Λn).

4. Proof of the main Theorem 3.1

We will determine the action of H∗
r on f ∈ Fn by direct computation in three steps;

the calculation of Hrf is completely analogous so its details will be suppressed (but cf.
Remark 6.3 below for an alternative shortcut yielding the action of Hr from that of H∗

r

via adjointness).

4.1. In the first step Vλ,J (3.4b) (with λ, λ + eJ ∈ Λn) is rewritten in q-binomial form
by means of well-known product formulas for the Poincaré polynomial of the symmetric
group:

Sn(q) :=
∑

q�(σ) =
∏ 1 − q1+k−j

1 − qk−j
=

∏ 1 − qj

1 − q
= [n]! (4.1a)
σ∈Sn 1�j<k�n 1�j�n
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(where 	(σ) denotes the length of σ). Since the stabilizer subgroup Sn,λ := {σ ∈ Sn |
σλ = λ} is isomorphic to the direct product

∏
l∈Z

Sml(λ), the corresponding Poincaré
polynomial factorizes in turn as

Sn,λ(q) =
∑
σ∈Sn
σλ=λ

q�(σ) =
∏

1�j<k�n
λj=λk

1 − q1+k−j

1 − qk−j
=

∏
l∈Z

[
ml(λ)

]
! (4.1b)

and similarly Sn,λ ∩ Sn,λ+eJ
∼=

∏
l∈Z

(Sml,J (λ) × Sml,Jc (λ)) so

(Sn,λ ∩ Sn,λ+eJ )(q) =
∏

j,k∈J
j<k, λj=λk

1 − q1+k−j

1 − qk−j

∏
j,k∈Jc

j<k, λj=λk

1 − q1+k−j

1 − qk−j

=
∏
l∈Z

[
ml,J(λ)

]
!
[
ml,Jc(λ)

]
!, (4.1c)

where ml,J (λ) denotes the number of components λj , j ∈ J such that λj = l (i.e.
ml,J (λ) + ml,Jc(λ) = ml(λ)). Division of Eqs. (4.1b) and (4.1c) now reveals that

Vλ,J = Vλ,JVλ,Jc = Sn,λ(q)
(Sn,λ ∩ Sn,λ+eJ )(q) =

∏
l∈Z

[
ml(λ)
ml,J (λ)

]
(4.2)

where
[
m
k

]
:= [m]!

[k]![m−k]! for m � k � 0. (Notice in this connection that here Vλ,Jc = 1,
because the product in question is empty as consequence of the assumption that λ + eJ
belongs to Λn.)

4.2. It is clear by induction on m � 1 that for any f ∈ Fn and λ ∈ Λn:

((
a∗l
)m

f
)
(λ) =

{
[m]!

[
ml(λ)
m

]
f(aml λ) if m � ml(λ),

0 if m > ml(λ),
(4.3)

where in the former case aml λ = λ + ed + ed+1 + · · · + ed+m−1—with d = d(λ, l) :=
min{j | λj = l}—belongs to Λn (because of the condition that m � ml(λ)). By iterating
the formula in Eq. (4.3) it readily follows that—for l1 > l2 > · · · > lp and a composition
(m1,m2, . . . ,mp) obtained by reordering the parts of the partition η = (η1, η2, . . . , ηp)
(with ηp � 1)—the action of the corresponding monomial in mη(a∗) (3.1) is given by

((
a∗l1

)m1 · · ·
(
a∗lp

)mp
f
)
(λ) = [η]!

[
ml1(λ)
m1

]
· · ·

[
mlp(λ)
mp

]
f
(
a
mp

lp
· · · am1

l1
λ
)

= [η]!
∏[

ml(λ)
ml,J(λ)

]
f(λ + eJ) (4.4)
l∈Z
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provided mk � mlk(λ) for k = 1, . . . , p, and equal to zero otherwise. Here

J = {dk, dk + 1, . . . , dk + mk − 1 | k = 1, . . . , p} (4.5)

with dk := d(λ, lk) = min{j | λj = lk}. The condition that mk � mlk(λ) for k = 1, . . . , p
guarantees that J is a subset of {1, . . . , n} of cardinality |J | = m1 + · · · + mp = |η| and
that λ + eJ = a

mp

lp
· · · am1

l1
λ ∈ Λn.

4.3. From Steps 4.1 and 4.2 one learns that for r � n the action (H∗
r f)(λ) is built of a

sum of terms of the form Vλ,Jf(λ + eJ) (cf. Eqs. (4.2) and (4.4)), with J ⊂ {1, . . . , n}
satisfying that |J | = r and λ+ eJ ∈ Λn. For r > n on the other hand (H∗

r f)(λ) vanishes
(since then for all monomial terms m1 + · · ·+mp = |η| = r > n � ml1(λ)+ · · ·+mlp(λ)).

To complete the proof of the explicit formula for H∗
r f in Theorem 3.1, it only remains

to infer that in the former situation all terms on the RHS actually do occur and with
multiplicity 1. Indeed, this is clear from the observation that given λ ∈ Λn and J ⊂
{1, . . . , n} such that λ+eJ ∈ Λn, the corresponding l1 > l2 > · · · > lp and m1,m2, . . . ,mp

for which

(
[m1]! · · · [mp]!

)−1((
a∗l1

)m1 · · ·
(
a∗lp

)mp
f
)
(λ) = Vλ,Jf(λ + eJ)

are uniquely retrieved by ordering the elements of the set {λj | j ∈ J} = {l1, . . . , lp} and
picking mk = mlk,J(λ), k = 1, . . . , p.

5. Diagonalization

For λ ∈ Λn and a spectral parameter ξ = (ξ1, ξ2, . . . , ξn) taken from the open funda-
mental alcove

A :=
{
ξ ∈ R

n
∣∣ π > ξ1 > ξ2 > · · · > ξn > −π

}
, (5.1)

let us define the n-variable Hall–Littlewood function as [10, Ch. III]

φξ(λ) :=
∑
σ∈Sn

C(ξσ)eiλ·ξσ , (5.2a)

with ξσ := (ξσ1 , ξσ2 , . . . , ξσn
) and

C(ξ) :=
∏

1�j<k�n

1 − qei(ξk−ξj)

1 − ei(ξk−ξj)
. (5.2b)

It is immediate from the explicit action in Theorem 3.1 and the Pieri formulas for the
Hall–Littlewood functions [10, Sec. III.3] that the action of the commuting operators Hr

and H∗
r (3.2) in the n-particle subspace F(Λn) is diagonal on φξ (5.2a), (5.2b).
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Corollary 5.1 (Diagonalization). For any spectral value ξ in the fundamental alcove A

(5.1), the n-variable Hall–Littlewood function φξ (5.2a), (5.2b) constitutes a joint eigen-
function for the commuting operators Hr and H∗

r (3.2) in F(Λn):

Hrφξ = er
(
e−iξ

)
φξ and H∗

rφξ = er
(
eiξ

)
φξ (r = 1, . . . , n), (5.3a)

with er(e−iξ) := er(e−iξ1 , . . . , e−iξn) and er(eiξ) := er(eiξ1 , . . . , eiξn), where er refers to
the rth elementary symmetric function

er(x1, . . . , xn) :=
∑

1�j1<j2<···<jr�n

xj1xj2 · · ·xjr . (5.3b)

Proof. By Theorem 3.1, the eigenvalue equations in Eqs. (5.3a), (5.3b) become explic-
itly:

er
(
e−iξ

)
φξ(λ) =

∑
J⊂{1,2,...,n}, |J|=r

λ−eJ∈Λn

Vλ,Jcφξ(λ− eJ),

er
(
eiξ

)
φξ(λ) =

∑
J⊂{1,2,...,n}, |J|=r

λ+eJ∈Λn

Vλ,Jφξ(λ + eJ),

respectively. Both formulas boil down to well-known Pieri identities for the Hall–
Littlewood functions [10, Sec. III.3]. In the form stated above the second identity
can e.g. be directly retrieved from [4, Eq. (C.11)] and the first identity follows for
r < n from the second upon dividing by en(eiξ) and replacing r by n − r, whereas
for r = n both identities are equivalent and reduce to the elementary translational
quasi-periodicity φξ(λ + e1 + · · · + en) = eiξ1+···+iξnφξ(λ) (which is manifest from
Eq. (5.2a)). �

It follows in particular that the Hall–Littlewood function φξ (5.2a), (5.2b) is an eigen-
function of the q-boson Hamiltonian Hq (2.5a), (2.5b) in the n-particle subspace F(Λn):

Hqφξ = ε(ξ)φξ with ε(ξ) := 2
n∑

j=1
cos(ξj) (5.4)

(cf. Eq. (3.3)).

6. Spectral analysis

To address the completeness of the above eigenfunctions for the infinite q-boson sys-
tem, we pass from our algebraic Fock space F (2.2) to a full-fledged Fock space

H :=
⊕

	2(Λn, δn), (6.1)

n�0
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which is built of all series
∑

n�0 fn, with fn ∈ 	2(Λn, δn) such that
∑

n�0〈fn, fn〉n < ∞.
Here the n-particle Hilbert space 	2(Λn, δn) = H ∩ F(Λn) consists of the functions
f ∈ F(Λn) such that 〈f, f〉n < ∞, where

〈f, g〉n :=
∑
λ∈Λn

f(λ)g(λ)δn(λ)
(
f, g ∈ 	2(Λn, δn)

)
(6.2a)

with

δn(λ) := 1/Sn,λ(q) = 1/
∏
l∈Z

[
ml(λ)

]
! (6.2b)

(cf. Eq. (4.1b)).
The representation of the q-boson algebra in Eq. (2.3) readily extends from the dense

domain

D := H ∩ F (6.3)

consisting of the finite linear combinations
∑

n�0 cnfn—with cn ∈ C and fn ∈ 	2(Λn,

δn)—to a bounded representation on the Fock space H (6.1). Indeed, it is immediate
from the definitions that for any f ∈ 	2(Λn, δn):

〈βlf, βlf〉n−1 � (1 − q)−1〈f, f〉n,〈
β∗
l f, β

∗
l f

〉
n+1 � (1 − q)−1〈f, f〉n, (6.4)

〈Nlf,Nlf〉n � 〈f, f〉n

(where one exploits that δn+1,β∗
l λ

(q) = δn,λ(q)/[ml(λ) + 1] for all λ ∈ Λn and that
[m] � 1/(1 − q) for all m = 0, 1, 2, . . .). The representation at issue moreover preserves
the ∗-structure:

〈
β∗
l f, g

〉
n+1 = 〈f, βlg〉n and 〈Nlf, g〉n = 〈f,Nlg〉n (6.5)

(for all f ∈ 	2(Λn, δn) with g ∈ 	2(Λn+1, δn+1) and g ∈ 	2(Λn, δn), respectively).
The completeness of the eigenfunctions in Corollary 5.1 is now obvious from the

well-known fact that the Hall–Littlewood functions φξ(λ), λ ∈ Λn form an orthogonal
basis for the Hilbert space L2(A,Δ dξ) with inner product

〈f̂ , ĝ〉Δ = 1
(2π)n

∫
A

f̂(ξ)ĝ(ξ)Δ(ξ) dξ, where Δ(ξ) := 1
|C(ξ)|2 (6.6)

with C(ξ) taken from Eq. (5.2b). More specifically, for any λ, μ ∈ Λn one has that [11, §10]

〈
φ(λ), φ(μ)

〉
Δ =

{
1/δn(λ) if λ = μ,

(6.7)

0 otherwise.
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The corresponding Fourier transform F q : 	2(Λn, δn) → L2(A,Δ dξ) defined by

(F qf)(ξ) := 〈f, φξ〉n =
∑
λ∈Λn

f(λ)φξ(λ)δn(λ) (6.8a)

(f ∈ 	2(Λn, δn)) thus determines a Hilbert space isomorphism with the inversion formula
given by

(
F−1

q f̂
)
(λ) =

〈
f̂ , φ(λ)

〉
Δ = 1

(2π)n

∫
A

f̂(ξ)φξ(λ)Δ(ξ) dξ (6.8b)

(f̂ ∈ L2(A,Δ dξ)).
By Corollary 5.1, this means that in the n-particle subspace 	2(Λn, δn) the higher

commuting q-boson Hamiltonians

Hq,r := Hr + H∗
r , r = 1, . . . , n, (6.9)

are unitarily equivalent to bounded self-adjoint multiplication operators Ê1, . . . , Ên on
L2(A,Δ dξ) of the form

(Êrf̂)(ξ) := εr(ξ)f̂(ξ) (6.10a)

with

εr(ξ) := 2
∑

1�j1<j2<···<jr�n

cos(ξj1 + ξj2 + · · · + ξjr ), (6.10b)

viz.

Hq,r = F−1
q ◦ Êr ◦ F q, r = 1, . . . , n, (6.11)

on 	2(Λn, δn).

Theorem 6.1 (Spectral decomposition in 	2(Λn, δn)). The higher q-boson Hamiltonians
Hq,1, . . . ,Hq,n (6.9) constitute n independent commuting bounded self-adjoint operators
on 	2(Λn, δn) with purely absolutely continuous spectrum. The spectral decomposition of
these Hamiltonians in the n-particle subspace 	2(Λn, δn) is given explicitly by Eq. (6.11).

As a consequence, the infinite q-boson hierarchy

Hq,r = Hr + H∗
r , r ∈ N (6.12)

consists in turn of (commuting) symmetric operators in Fock space on the dense do-
main D (6.3). It is not difficult to infer that these operators are actually essentially
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self-adjoint and unbounded in the Fock space H (6.1). Indeed, it is clear from the first
part of Theorem 6.1 that for z ∈ C \R the operator (Hq,r − z) maps the n-particle sub-
space 	2(Λn, δn) onto itself, whence the range (Hq,r − z)D is dense in H. In other words,
the deficiency indices of Hq,r on the domain D ⊂ H vanish and the claimed essential
self-adjointness follows. The unboundedness of Hq,r in H is seen in turn from the last
part of Theorem 6.1 and the observation that the n-particle spectrum does not remain
bounded as n grows large: limn→∞ supξ∈A |εr(ξ)| = ∞. The upshot is that we can adapt
the integrability result in Corollary 3.2 to the present setting as follows.

Theorem 6.2 (Integrability). The higher Hamiltonians Hq,r (6.12) of the infinite q-boson
hierarchy on D (6.3) extend uniquely to independent unbounded self-adjoint operators
in the Fock space H (6.1) with commuting resolvents (Hq,r − z)−1 (with z ∈ C \ R and
r ∈ N).

Remark 6.3. It is a priori clear already from the definition of Hr and H∗
r (3.2) in terms of

hopping operators—without need to resort to the explicit formula in Theorem 3.1—that
for given λ ∈ Λn and any f ∈ F(Λn) the values of (Hrf)(λ) and (H∗

r f)(λ) involve
only evaluations of f at a finite number of points in Λn. Hence, for f in the subspace
C0(Λn) ⊂ F(Λn) ∩ 	2(Λn, δn) of functions with finite support in Λn the infinite sums
comprising Hrf and H∗

r f contain only a finite number of nonvanishing monomial terms.
The symmetry

〈Hrf, g〉n =
〈
f,H∗

r g
〉
n

(
∀f, g ∈ C0(Λn)

)
(6.13)

then follows from the first relation in Eq. (6.5) (without invoking the spectral decom-
position in Eq. (6.11)). One can thus determine the action of Hr on C0(Λn) from the
action of H∗

r (and vice versa) by computing the adjoint with respect to the inner product
〈· , ·〉n:

〈Hrf, g〉n =
〈
f,H∗

r g
〉
n

=
∑
λ∈Λn

δn(λ)f(λ)
(
H∗

r g
)
(λ)

=
∑
λ∈Λn

δn(λ)f(λ)
∑

J⊂{1,...,n}, |J|=r
λ+eJ∈Λn

Vλ,Jg(λ + eJ)

=
∑
λ∈Λn

δn(λ)g(λ)
∑

J⊂{1,...,n}, |J|=r
λ−eJ∈Λn

Vλ,Jcf(λ− eJ),

where it was used in the last step that δn(λ− eJ)Vλ−eJ ,J = δn(λ)Vλ,Jc (for λ ∈ Λn such
that λ− eJ ∈ Λn). Since the actions of Hr and H∗

r on F(Λn) are determined completely
by their restrictions to the subspace C0(Λn) (by the opening statement of this remark),
the above computation shows that both formulas in Theorem 3.1 follow from each other
(so it indeed suffices in the proof of Theorem 3.1 to verify only one of these two cases
directly).
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7. n-Particle scattering

For q → 0, the Hall–Littlewood functions (5.2a), (5.2b) reduce to Schur functions
[10, Ch. I]; the q-boson system degenerates in this limit to a system of impenetrable
bosons known as the Phase Model [1,16,8]. We end up by computing the scattering
operator that compares the large-time asymptotics of the n-particle dynamics of the
q-boson system with that of the phase model.

In Ref. [14] Ruijsenaars analyzed the scattering behavior of a large class of integrable
lattice systems on the discrete cone Λn (2.1) by means of stationary phase techniques.
A fundamental property of the lattice systems in question is that these are diagonalized
by multivariate orthogonal polynomials associated with a factorized orthogonality mea-
sure. By comparing the explicit product formula for the orthogonality measure Δ(ξ) (6.6)
with the corresponding formulas in [14, Sec. 1], it is manifest that the Hall–Littlewood
functions fall within the class of polynomials considered by Ruijsenaars. The upshot is
that we can determine the scattering behavior of the restrictions of the Hamiltonians
Hq,1, . . . ,Hq,n (6.9) to the n-particle subspace 	2(Λn, δn) upon describing how Ruijse-
naars’ general results specialize to the present setting of the infinite q-boson model. To
this end it is convenient to pass to uniform Lebesgue measures by incorporating orthog-
onality densities into the wave functions via the following gauge transformation:

Ψξ(λ) := in(n−1)/2Δ(ξ)1/2δn(λ)1/2φξ(λ)

= δn(λ)1/2
∑
σ∈Sn

sign(σ)Ŝσ(ξ)1/2ei(ρ+λ)·ξσ (7.1a)

(ξ ∈ A (5.1)), where ρ := 1
2 (n− 1, n− 3, n− 5, . . . , 3 − n, 1 − n) and

Ŝσ(ξ) :=
∏

1�j<k�n

σ−1
j <σ−1

k

s(ξk − ξj)
∏

1�j<k�n

σ−1
j >σ−1

k

s(ξk − ξj), (7.1b)

with σ−1
j := (σ−1)j for j = 1, . . . , n and

s(x)1/2 := 1 − qeix

|1 − qeix| , so s(x) = 1 − qeix

1 − qe−ix
. (7.1c)

The wave functions in question diagonalize the commuting self-adjoint difference opera-
tors

H̃q,r := δ1/2
n Hq,rδ

−1/2
n , r = 1, . . . , n, (7.2)

in 	2(Λn), viz.

H̃q,r = F̃
−1
q ◦ Êr ◦ F̃ q, r = 1, . . . , n (7.3)
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(cf. Eq. (6.11)), where F̃ q : 	2(Λn) → L2(A,dξ) denotes the Hilbert space isomorphism
defined by

(F̃ qf)(ξ) :=
∑
λ∈Λn

f(λ)Ψξ(λ)
(
f ∈ 	2(Λn)

)
(7.4a)

with

(
F̃

−1
q f̂

)
(λ) = 1

(2π)n

∫
A

f̂(ξ)Ψξ(λ) dξ
(
f̂ ∈ L2(A,dξ)

)
(7.4b)

(cf. Eqs. (6.8a), (6.8b)). The action of H̃q,r (7.2) on f ∈ 	2(Λn) reads explicitly

(H̃q,rf)(λ) =
∑

J⊂{1,...,n}, |J|=r
λ+eJ∈Λn

V
1/2
J,λ V

1/2
Jc,λ+eJ

f(λ + eJ)

+
∑

J⊂{1,...,n}, |J|=r
λ−eJ∈Λn

V
1/2
Jc,λV

1/2
J,λ−eJ

f(λ− eJ). (7.5)

For 1 � r � n, let Ar be an open dense domain in A (5.1) on which the gradient
vector ∇εr is regular with respect to the permutation-action of Sn on its components:

Ar := {ξ ∈ A | ∂jεr �= ∂kεr, ∀1 � j < k � n} (7.6)

(with εr taken from Eq. (6.10b)). For any ξ ∈ Ar, there exists then a unique permu-
tation σξ ∈ Sn reordering the components of ∇εr(ξ) in strictly decreasing order, i.e.
σξ(∇εr(ξ)) ∈ R

n
> := {x ∈ R

n | x1 > x2 > · · · > xn}. Clearly the assignment ξ → σξ

is constant on the connected components of Ar by the continuity of ∇εr(ξ). Let Ŝr

now denote the following unitary operator on L2(A,dξ)—the scattering matrix—defined
via its restriction to the dense subspace of smooth test functions with compact support
inside Ar:

(Ŝrf̂)(ξ) = Ŝσξ
(ξ)f̂(ξ)

(
f̂ ∈ C∞

0 (Ar)
)
. (7.7)

The scattering matrix (7.7) allows us to compare the large-time asymptotics of the
dynamics

(
eitH̃q,rf

)
(λ) = 1

(2π)n

∫
A

eitεr(ξ)f̂(ξ)Ψξ(λ) dξ (f̂ = F̃ qf) (7.8)

of the higher q-boson Hamiltonian H̃q,r (7.2) with that of the corresponding q → 0
limiting Hamiltonian H̃0,r:
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(H̃0,rf)(λ) =
∑

J⊂{1,...,n}, |J|=r
λ+eJ∈Λn

f(λ + eJ) +
∑

J⊂{1,...,n}, |J|=r
λ−eJ∈Λn

f(λ− eJ) (7.9)

for the phase model of impenetrable bosons (f ∈ 	2(Λn)). Specifically, as a very special
case of [14, Thm. 3.3] we arrive at the following explicit formulas for the corresponding
wave- and scattering operators.

Theorem 7.1 (Wave- and scattering operators). The operator limits

Ω±
r := s− lim

t→±∞
eitH̃q,re−itH̃0,r (7.10a)

converge in the strong 	2(Λn)-norm topology and the corresponding wave operators Ω±
r

are given by unitary operators in 	2(Λn) of the form

Ω±
r = F̃

−1
q ◦ Ŝ∓1/2

r ◦ F̃ 0. (7.10b)

Consequently, the scattering operator relating the large-times asymptotics of the q-boson
dynamics eitH̃q,r for t → −∞ and t → +∞ is given by the unitary operator

Sr :=
(
Ω+

r

)−1
Ω−

r = F̃
−1
0 ◦ Ŝr ◦ F̃ 0 (7.10c)

(r = 1, . . . , n).

It is instructive to outline briefly how Ruijsenaars’ proof in [14] simplifies in our
particular situation. For this purpose, we associate to any f̂ ∈ C∞

0 (Ar) a (q = 0) boson
wave packet f (0)(t) and q-boson wave packets f±(t) in 	2(Λn) of the form

f (0)(t) := F̃
−1
0

(
e−itÊr f̂

)
,

f±(t) := F̃
−1
q

(
e−itÊr Ŝ±1/2

r f̂
)
. (7.11)

Theorem 7.1 is now immediate from the following proposition.

Proposition 7.2 (Asymptotic equivalence). For all K > 0 one has that

∥∥f±(t) − f (0)(t)
∥∥ = O

(
|t|−K

)
as t → ±∞ (7.12)

(where ‖ · ‖ refers to the 	2-norm in 	2(Λn)).

To infer the above proposition, one may assume without loss of generality that the
compact support of smooth test function f̂ is contained inside a connected component
of Ar. We then write σ̂ ∈ Sn for the unique (ξ-independent) permutation ordering
the elements of ∇εr(ξ) in strictly decreasing order for all ξ in the support of f̂ . Let
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Vclass ⊂ R
n be an open bounded neighborhood of the compact range of classical wave-

packet velocities Ran(∇εr) := {∇εr(ξ) | ξ ∈ Supp(f̂)} staying away from the boundary
of the chamber σ̂−1(Rn

>). The classical wave packet, finitely supported on the following
t-dependent region of Λn:

Λclas
n (t) :=

{ {ρ + λ ∈ tσ̂(Vclas)} for t > 0,
{ρ + λ ∈ tσ0σ̂(Vclas)} for t < 0,

(7.13)

is defined as

fclas
λ (t)

:=

⎧⎪⎨
⎪⎩

sign(σ̂)
(2π)n

∫
A
ei(ρ+λ)·ξ−itεr(ξ)f̂(ξ) dξ for λ ∈ Λclas

n (t) and t > 0,
sign(σ̂)
(−2π)n

∫
A
ei(ρ+λ)·ξσ0−itεr(ξ)f̂(ξ) dξ for λ ∈ Λclas

n (t) and t < 0,
0 otherwise.

(7.14)

Here σ0 refers to the order reversing permutation for which σj = n+ 1− j, j = 1, . . . , n.
With the aid of the following stationary phase estimate from [12, pp. 38–39]: for any

K > 0 there exists a constant CK > 0 such that
∣∣∣∣
∫
A

eix·ξ−itεr(ξ)f̂(ξ) dξ
∣∣∣∣ � CK

(1 + |x| + |t|)K (7.15)

for all x ∈ R
n and t ∈ R such that x /∈ tVclas, it is now not difficult to deduce that

∥∥f (0)(t) − fclas(t)
∥∥ = O

(
|t|−K

)
as t → ±∞,∥∥f±(t) − fclas(t)

∥∥ = O
(
|t|−K

)
as t → ±∞, (7.16)

whence the asymptotic equivalence in Proposition 7.2 follows.
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