Branching formula for Macdonald-Koornwinder polynomials ${ }^{\text {* }}$

J.F. van Diejen ${ }^{\text {a }}$, E. Emsiz ${ }^{\text {b,* }}$
a Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
b Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

A R T I C L E I N F O

Article history:

Received 20 October 2014
Available online 9 September 2015
Communicated by Jean-Yves Thibon

MSC:

33D52
05E05
Keywords:
Macdonald-Koornwinder polynomials
Hyperoctahedral symmetric
functions
Branching rules

A B S T R A C T

We present an explicit branching formula for the six-parameter Macdonald-Koornwinder polynomials with hyperoctahedral symmetry.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Branching formulas constitute a powerful tool in algebraic combinatorics providing a recursive scheme to build symmetric polynomials via induction in the number of variables [11,10]. The combinatorial aspects of the hyperoctahedral-symmetric

[^0]Macdonald-Koornwinder polynomials [12,9] were explored in seminal works of Okounkov and Rains $[14,15]$. In particular, the structure of a branching formula for the MacdonaldKoornwinder polynomials has been outlined at the end of [15, Sec. 5]. The aim of the present note is to make the branching polynomials under consideration explicit. Following the ideas underlying the proof of the branching formula for the Macdonald polynomials [11, Ch. VI.7], our main tools to achieve this goal consist of: Mimachi's Cauchy formula for the Macdonald-Koornwinder polynomials [13], (a special 'column-row' case of) the Cauchy formula for Okounkov's hyperoctahedral interpolation polynomials [14], and explicitly known Pieri coefficients for the Macdonald-Koornwinder polynomials [3,5].

The material is structured as follows. After recalling some necessary preliminaries regarding the Macdonald-Koornwinder polynomials and their Pieri formulas in Section 2, our branching formula is first stated in Section 3 and then proven in Section 4.

2. Preliminaries

2.1. Macdonald-Koornwinder polynomials [9]

For a partition

$$
\begin{equation*}
\lambda \in \Lambda_{n}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\} \tag{2.1}
\end{equation*}
$$

the monic Macdonald-Koornwinder polynomial $P_{\lambda}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right)$ is a Laurent polynomial in the complex variables z_{1}, \ldots, z_{n} that depends rationally on the parameters q, t and $\mathbf{t}:=\left(t_{0}, t_{1}, t_{2}, t_{3}\right)$. It is determined by a leading monomial of the form $z_{1}^{\lambda_{1}} z_{2}^{\lambda_{2}} \cdots z_{n}^{\lambda_{n}}$, while being symmetric with respect to the action of the hyperoctahedral group $W=S_{n} \ltimes \mathbb{Z}_{2}^{n}$ by permutations and inversions of the variables. For real parameter values in the domain $0<q,|t|,\left|t_{l}\right|<1(l=0,1,2,3)$, the Macdonald-Koornwinder polynomials form an orthogonal system on the n-dimensional torus $\left|z_{j}\right|=1, j=1, \ldots, n$. The orthogonality measure is given by Gustafson's q-Selberg type density [6]

$$
\Delta=\prod_{1 \leq j \leq n} \frac{\left(z_{j}^{2}, z_{j}^{-2} ; q\right)_{\infty}}{\prod_{0 \leq l \leq 3}\left(t_{l} z_{j}, t_{l} z_{j}^{-1} ; q\right)_{\infty}} \prod_{1 \leq j<k \leq n} \frac{\left(z_{j} z_{k}, z_{j} z_{k}^{-1}, z_{j}^{-1} z_{k}, z_{j}^{-1} z_{k}^{-1} ; q\right)_{\infty}}{\left(t z_{j} z_{k}, t z_{j} z_{k}^{-1}, t z_{j}^{-1} z_{k}, t z_{j}^{-1} z_{k}^{-1} ; q\right)_{\infty}}
$$

with respect to the Haar measure on this torus. Here and below we employ standard conventions for the q-Pochhammer symbols: $(a ; q)_{k}:=(1-a)(1-a q) \cdots\left(1-a q^{k-1}\right)$ (with $\left.(a ; q)_{0}:=1\right)$ and $\left(a_{1}, \ldots, a_{l} ; q\right)_{k}:=\left(a_{1} ; q\right)_{k} \cdots\left(a_{l} ; q\right)_{k}$.

2.2. Pieri coefficients $[3,5,16]$

The W-invariant Laurent polynomials

$$
\begin{equation*}
E_{r}\left(z_{1}, \ldots, z_{n} ; t, t_{0}\right)=\sum_{1 \leq j_{1}<\cdots<j_{r} \leq n}\left\langle z_{j_{1}} ; t^{j_{1}-1} t_{0}\right\rangle \cdots\left\langle z_{j_{r}} ; t^{j_{r}-r} t_{0}\right\rangle \tag{2.2}
\end{equation*}
$$

$(r=1, \ldots, n)$, with $\langle z ; x\rangle:=z+z^{-1}-x-x^{-1}$, are special instances of Okounkov's hyperoctahedral interpolation polynomials [14]-with shifted variables as considered by Rains [15]-that correspond to the partitions with only a single column [8]. They describe the eigenvalues of commuting difference operators diagonalized by the MacdonaldKoornwinder polynomials [2] and are also instrumental in Ito's Aomoto-style proof [7] of the hyperoctahedral ${ }_{6} \Psi_{6}$ sum evaluated in Ref. [4].

Let $C_{\lambda, r}^{\mu, n}(q, t, \mathbf{t})$ denote the coefficients in the Macdonald-Koornwinder Pieriexpansions associated with these one-column interpolation polynomials:

$$
\begin{equation*}
E_{r}\left(z_{1}, \ldots, z_{n} ; t, t_{0}\right) P_{\lambda}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right)=\sum_{\substack{\mu \in \Lambda_{n} \\ \mu \sim_{r} \lambda}} C_{\lambda, r}^{\mu, n}(q, t, \mathbf{t}) P_{\mu}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right) \tag{2.3}
\end{equation*}
$$

$r=1, \ldots, n$. To filter only the nonvanishing coefficients, we have employed the following proximity relation within Λ_{n} restricting the sum on the RHS: $\mu \sim_{r} \lambda$ iff there exists a partition $\nu \in \Lambda_{n}$ with $\nu \subset \lambda$ and $\nu \subset \mu$ such that the skew diagrams λ / ν and μ / ν are vertical strips with $|\lambda / \nu|+|\mu / \nu| \leq r$. Here $|\cdot|$ refers to the number of boxes of the diagram, $\nu \subset \lambda$ means that $\nu \in \Lambda_{n}$ is contained in $\lambda: \nu_{j} \leq \lambda_{j}(j=1, \ldots, n)$, and (recall) the skew diagram λ / ν is a vertical strip iff $\nu_{j} \leq \lambda_{j} \leq \nu_{j}+1(j=1, \ldots, n)$.

Upon writing $J=\left\{1 \leq j \leq n \mid \lambda_{j} \neq \mu_{j}\right\}, J^{c}=\{1, \ldots, n\} \backslash J$, and $\epsilon_{j}=\mu_{j}-\lambda_{j}$ for $j \in J$ (so, if $\mu \sim_{r} \lambda$ the cardinality $|J|$ of J is at most r and $\epsilon_{j} \in\{1,-1\}$), one can express the Pieri coefficients in question explicitly as follows:

$$
\begin{equation*}
C_{\lambda, r}^{\mu, n}(q, t, \mathbf{t})=\frac{P_{\lambda}\left(\tau_{1}, \ldots, \tau_{n} ; q, t, \mathbf{t}\right)}{P_{\mu}\left(\tau_{1}, \ldots, \tau_{n} ; q, t, \mathbf{t}\right)} V_{\epsilon J}^{n}(\lambda ; q, t, \mathbf{t}) U_{J^{c}, r-|J|}^{n}(\lambda ; q, t, \mathbf{t}), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{\lambda}\left(\tau_{1}, \ldots, \tau_{n} ; q, t, \mathbf{t}\right)= \\
& \prod_{1 \leq j \leq n} \frac{\prod_{0 \leq l \leq 3}\left(\hat{t}_{l} \hat{\tau}_{j} ; q\right)_{\lambda_{j}}}{\tau_{j}^{\lambda_{j}}\left(\hat{\tau}_{j}^{2} ; q\right)_{2 \lambda_{j}}} \prod_{1 \leq j<k \leq n} \frac{\left(t \hat{\tau}_{j} \hat{\tau}_{k} ; q\right)_{\lambda_{j}+\lambda_{k}}\left(t \hat{\tau}_{j} \hat{\tau}_{k}^{-1} ; q\right)_{\lambda_{j}-\lambda_{k}}}{\left(\hat{\tau}_{j} \hat{\tau}_{k} ; q\right)_{\lambda_{j}+\lambda_{k}}\left(\hat{\tau}_{j} \hat{\tau}_{k}^{-1} ; q\right)_{\lambda_{j}-\lambda_{k}}}, \\
& V_{\epsilon J}^{n}(\lambda ; q, t, \mathbf{t})=\prod_{j \in J} \frac{\prod_{0 \leq l \leq 3}\left(1-\hat{t}_{l} \hat{\tau}_{j}^{\epsilon_{j}} q^{\epsilon_{j} \lambda_{j}}\right)}{t_{0}\left(1-\hat{\tau}_{j}^{2 \epsilon_{j}} q^{2 \epsilon_{j} \lambda_{j}}\right)\left(1-\hat{\tau}_{j}^{2 \epsilon_{j}} q^{2 \epsilon_{j} \lambda_{j}+1}\right)} \\
& \times \prod_{\substack{j, j^{\prime} \in J \\
j<j^{\prime}}} \frac{\left(1-t \hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{j^{\prime}}^{\epsilon_{j^{\prime}}} q^{\epsilon_{j} \lambda_{j}+\epsilon_{j^{\prime}} \lambda_{j^{\prime}}}\right)\left(1-t \hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{j^{\prime}}^{\epsilon_{j^{\prime}}} q^{\epsilon_{j} \lambda_{j}+\epsilon_{j^{\prime}} \lambda_{j^{\prime}}+1}\right)}{t\left(1-\hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{j^{\prime}}^{\epsilon_{j^{\prime}}} q^{\left.\epsilon_{j} \lambda_{j}+\epsilon_{j^{\prime}} \lambda_{j^{\prime}}\right)\left(1-\hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{j^{\prime}}^{\epsilon_{j^{\prime}}} q^{\epsilon_{j} \lambda_{j}+\epsilon_{j^{\prime}} \lambda_{j^{\prime}}+1}\right)}\right.} \\
& \times \prod_{j \in J, k \in J^{c}} \frac{\left(1-t \hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{k} q^{\epsilon_{j} \lambda_{j}+\lambda_{k}}\right)\left(1-t \hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{k}^{-1} q^{\epsilon_{j} \lambda_{j}-\lambda_{k}}\right)}{t\left(1-\hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{k} q^{\epsilon_{j} \lambda_{j}+\lambda_{k}}\right)\left(1-\hat{\tau}_{j}^{\epsilon_{j}} \hat{\tau}_{k}^{-1} q^{\epsilon_{j} \lambda_{j}-\lambda_{k}}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
& U_{K, p}^{n}(\lambda ; q, t, \mathbf{t})=(-1)^{p} \sum_{\substack{I \subset K,|I|=p \\
\epsilon_{i} \in\{1,-1\}, i \in I}}\left(\prod_{i \in I} \frac{\prod_{0 \leq l \leq 3}\left(1-\hat{t}_{l} \hat{\tau}_{i}^{\epsilon_{i}} q^{\epsilon_{i} \lambda_{i}}\right)}{t_{0}\left(1-\hat{\tau}_{i}^{2 \epsilon_{i}} q^{2 \epsilon_{i} \lambda_{i}}\right)\left(1-\hat{\tau}_{i}^{2 \epsilon_{i}} q^{2 \epsilon_{i} \lambda_{i}+1}\right)}\right. \\
& \left.\times \prod_{\substack{i, i^{\prime} \in I \\
i<i^{\prime}}} \frac{\left(1-t \hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{i^{\prime}}^{\epsilon_{i^{\prime}}} q^{\epsilon_{i} \lambda_{i}+\epsilon_{i^{\prime}} \lambda_{i^{\prime}}}\right)\left(1-t^{-1} \hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{i^{\prime}}^{\epsilon_{i^{\prime}}} q^{\epsilon_{i} \lambda_{i}+\epsilon_{i^{\prime}} \lambda_{i^{\prime}}+1}\right)}{\left(1-\hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{i^{\prime}}^{\epsilon^{\prime}}\right.} q^{\epsilon_{i} \lambda_{i}+\epsilon_{i^{\prime}} \lambda_{i^{\prime}}}\right)\left(1-\hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{i^{\prime}}^{\epsilon_{i}} q^{\epsilon_{i} \lambda_{i}+\epsilon_{i^{\prime}} \lambda_{i^{\prime}}+1}\right) \\
& \left.\times \prod_{i \in I, k \in K \backslash I} \frac{\left(1-t \hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{k} q^{\epsilon_{i} \lambda_{i}+\lambda_{k}}\right)\left(1-t \hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{k}^{-1} q^{\epsilon_{i} \lambda_{i}-\lambda_{k}}\right)}{t\left(1-\hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{k} q^{\epsilon_{i} \lambda_{i}+\lambda_{k}}\right)\left(1-\hat{\tau}_{i}^{\epsilon_{i}} \hat{\tau}_{k}^{-1} q^{\epsilon_{i} \lambda_{i}-\lambda_{k}}\right)}\right)
\end{aligned}
$$

for $p=0, \ldots,|K|$ (with the convention that $V_{\epsilon J}^{n}(\lambda ; q, t, \mathbf{t})=1$ if J is empty and $U_{K, p}^{n}(\lambda ; q, t, \mathbf{t})=1$ if $\left.p=0\right)$. Here

$$
\tau_{j}=t^{n-j} t_{0}, \quad \hat{\tau}_{j}=t^{n-j} \hat{t}_{0} \quad(j=1, \ldots, n)
$$

and

$$
\hat{t}_{0}^{2}=q^{-1} t_{0} t_{1} t_{2} t_{3}, \quad \hat{t}_{0} \hat{t}_{l}=t_{0} t_{l} \quad(l=1,2,3)
$$

Remark 1. Below we will employ a trivially extended notion of $E_{r}\left(z_{1}, \ldots, z_{n} ; t, t_{0}\right)$ and $C_{\lambda, r}^{\mu, n}(q, t, \mathbf{t})$ that allows r and n to become equal to zero. By convention $E_{0}\left(z_{1}, \ldots, z_{n} ; t, t_{0}\right):=1$, whence for the corresponding coefficients $C_{\lambda, 0}^{\mu, n}(q, t, \mathbf{t})=1$ if $\mu=\lambda$ and vanishes otherwise.

3. Branching formula

Let us recall that for $\mu \subset \lambda \in \Lambda_{n}$, the skew diagram λ / μ is a horizontal strip provided the parts of λ and μ interlace as follows:

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \lambda_{n} \geq \mu_{n}
$$

We will need the following relation in Λ_{n} expressing that the partition λ can be obtained from $\mu \subset \lambda$ by adding at most two horizontal strips: $\mu \preceq \lambda$ iff there exists a $\nu \in \Lambda_{n}$ with $\mu \subset \nu \subset \lambda$ such that the skew diagrams λ / ν and ν / μ are horizontal strips. From now on we will think of Λ_{n} as being embedded in Λ_{n+1} in the natural way (i.e. 'by adding a part of size zero'). The main result of this note is given by the following branching formula for the Macdonald-Koornwinder polynomials, the proof of which is delayed until Section 4 below.

We denote by $m^{n} \in \Lambda_{n}$ the rectangular partition such that $\left(m^{n}\right)_{j}=m(j=1, \ldots, n)$ and-more generally-by $m^{n}-\mu$ with $\mu \subset m^{n}$ the partition such that $\left(m^{n}-\mu\right)_{j}=$ $m-\mu_{n+1-j}(j=1, \ldots, n)$. Finally, we write $\lambda^{\prime} \in \Lambda_{m}\left(m \geq \lambda_{1}\right)$ for the conjugate partition of $\lambda \in \Lambda_{n}$, i.e. with λ_{i}^{\prime} counting the number of parts of λ that are greater or equal than $i(i=1, \ldots, m)$.

Theorem 1 (Branching formula). For $\lambda \in \Lambda_{n+1}$, the Macdonald-Koornwinder polynomial in $(n+1)$ variables expands in terms of the n-variable polynomials as

$$
\begin{equation*}
P_{\lambda}\left(z_{1}, \ldots, z_{n}, x ; q, t, \mathbf{t}\right)=\sum_{\substack{\mu \in \Lambda_{n} \\ \mu \leftrightharpoons \lambda}} P_{\mu}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right) P_{\lambda / \mu}(x ; q, t, \mathbf{t}) \tag{3.1a}
\end{equation*}
$$

with one-variable branching polynomials of degree $d=\left|\left\{1 \leq j \leq m \mid \lambda_{j}^{\prime}=\mu_{j}^{\prime}+1\right\}\right|$ whose expansion

$$
\begin{equation*}
P_{\lambda / \mu}(x ; q, t, \mathbf{t})=\sum_{0 \leq k \leq d} B_{\lambda / \mu}^{k}(q, t, \mathbf{t})\left\langle x ; t_{0}\right\rangle_{q, k} \tag{3.1b}
\end{equation*}
$$

in the basis of the interpolation polynomials in one variable

$$
\begin{equation*}
\left\langle x ; t_{0}\right\rangle_{q, k}:=\left\langle x ; t_{0}\right\rangle\left\langle x ; q t_{0}\right\rangle \cdots\left\langle x ; q^{k-1} t_{0}\right\rangle \quad\left(\text { with }\left\langle x ; t_{0}\right\rangle_{q, 0}:=1\right) \tag{3.1c}
\end{equation*}
$$

has coefficients that are given explicitly by the Macdonald-Koornwinder Pieri coefficients in $m=\lambda_{1}$ variables:

$$
\begin{equation*}
B_{\lambda / \mu}^{k}(q, t, \mathbf{t})=(-1)^{k+|\lambda|-|\mu|} C_{n^{m}-\mu^{\prime}, m-k}^{(n+1)^{m}-\lambda^{\prime}, m}(t, q, \mathbf{t}) \quad(k=0, \ldots, d) . \tag{3.1d}
\end{equation*}
$$

It is well-known [9] that in the case of only a single variable the MacdonaldKoornwinder polynomials reduce to the five-parameter monic Askey-Wilson polynomials $P_{m}(z ; q, \mathbf{t}), m=0,1,2, \ldots[1]$. On the other hand, if we formally set $n=0$ and $\mu=0$ then (the proof of) Theorem 1 remains valid. This gives rise to the following expansion of the Askey-Wilson polynomials in terms of the one-variable interpolation polynomials $\left\langle x ; t_{0}\right\rangle_{q, k}$.

Corollary 2 (Askey-Wilson polynomials). The monic Askey-Wilson polynomial of degree m is given by

$$
\begin{equation*}
P_{m}(z ; q, \mathbf{t})=\sum_{0 \leq k \leq m} B_{m / 0}^{k}(q, \mathbf{t})\left\langle z ; t_{0}\right\rangle_{q, k} \tag{3.2a}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{m / 0}^{k}(q, \mathbf{t})=(-1)^{m+k} C_{0^{m}, m-k}^{0^{m}, m}(t, q, \mathbf{t}) \tag{3.2~b}
\end{equation*}
$$

This formula for the Askey-Wilson polynomials amounts to the $n=1$ case of Okounkov's binomial formula for the Macdonald-Koornwinder polynomials [14, Thm. 7.1] with the binomial coefficients written explicitly in terms of the m-variable MacdonaldKoornwinder Pieri coefficients. Notice that since the Askey-Wilson polynomials on the LHS are independent of t, it follows that the t-dependence of the corresponding branching coefficients drops out as well. In this special situation, alternative expressions for the relevant binomial coefficients are available in a much more compact form [15, Prp. 4.1]
and the binomial formula is in fact seen to reduce to the usual ${ }_{4} \phi_{3}$ representation of the Askey-Wilson polynomial [8, p. 25].

By iterating the branching formula in Theorem 1, one finds the general MacdonaldKoornwinder branching polynomial as a sum of factorized contributions over ascending chains of partitions.

Corollary 3 (Branching polynomials). For $\lambda \in \Lambda_{n+l}$, one has that

$$
\begin{align*}
& P_{\lambda}\left(z_{1}, \ldots, z_{n}, x_{1}, \ldots, x_{l} ; q, t, \mathbf{t}\right)= \\
& \sum_{\substack{\mu^{(i)} \in \Lambda_{n+i}, i=0, \ldots, l \\
\mu=\mu^{(0)} \preceq \mu^{(1)} \preceq \cdots \preceq \mu^{(l)}=\lambda}} P_{\mu}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right) \prod_{1 \leq i \leq l} P_{\mu^{(i)} / \mu^{(i-1)}}\left(x_{i} ; q, t, \mathbf{t}\right) . \tag{3.3}
\end{align*}
$$

Setting $n=1$ in the latter formula, leads us to an explicit formula for the MacdonaldKoornwinder polynomials generalizing the formula for the Askey-Wilson polynomials in Corollary 2.

Corollary 4 (Macdonald-Koornwinder polynomials). For $\lambda \in \Lambda_{n}$, the monic MacdonaldKoornwinder polynomial is given by

$$
\begin{equation*}
P_{\lambda}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right)=\sum_{\substack{\mu^{(i)} \in \Lambda_{i}, i=1, \ldots, n \\ \mu^{(1)} \preceq \mu^{(2)} \preceq \cdots \preceq \mu^{(n)}=\lambda}} \prod_{1 \leq i \leq n} P_{\mu^{(i)} / \mu^{(i-1)}}\left(z_{i} ; q, t, \mathbf{t}\right) \tag{3.4}
\end{equation*}
$$

where $P_{\mu^{(1)} / \mu^{(0)}}(z ; q, t, \mathbf{t}):=P_{\mu^{(1)}}(z ; q, \mathbf{t})(3.2 \mathrm{a}),(3.2 \mathrm{~b})$ by convention.
This is the analog of a classic formula for the usual permutation-symmetric Macdonald polynomials in terms of semistandard tableaux, cf. e.g. [11, Ch. VI.7] and [10, Sec. 1].

Remark 2. It follows from the proof in Section 4 below that the branching formula in Theorem 1 holds in fact for any $m \geq \lambda_{1}$, i.e. the expressions for the branching coefficients $B_{\lambda / \mu}^{k}$ in Eq. (3.1d) do not depend on $m \geq \lambda_{1}$.

Remark 3. For $x=t_{0} q^{h}, h=0,1,2, \ldots$, the degree of the branching polynomials $P_{\lambda / \mu}(x ; q, t, \mathbf{t})(3.1 \mathrm{~b})$ remains bounded by h as the sum in question truncates beyond $k=h$. In particular, for $x=t_{0}$ only the first (constant) term survives and the complexity of the branching coefficients reduces considerably (cf. [15, p. 100]):

$$
\begin{equation*}
P_{\lambda / \mu}\left(t_{0} ; q, t, \mathbf{t}\right)=B_{\lambda / \mu}^{0}(q, t, \mathbf{t})=(-1)^{|\lambda|-|\mu|} C_{n^{m}-\mu^{\prime}, m}^{(n+1)^{m}-\lambda^{\prime}, m}(t, q, \mathbf{t}) . \tag{3.5}
\end{equation*}
$$

4. Proof of the branching formula

Let

$$
\begin{equation*}
\prod\left(x_{1}, \ldots, x_{m} ; z_{1}, \ldots, z_{n}\right):=\prod_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}\left\langle x_{i} ; z_{j}\right\rangle \tag{4.1}
\end{equation*}
$$

Mimachi's Cauchy formula [13, Thm. 2.1] states that this kernel expands in terms of Macdonald-Koornwinder polynomials as:

$$
\begin{align*}
& \prod\left(x_{1}, \ldots, x_{m} ; z_{1}, \ldots, z_{n}\right)= \\
& \sum_{\lambda \subset n^{m}}(-1)^{m n-|\lambda|} P_{\lambda}\left(x_{1}, \ldots, x_{m} ; q, t, \mathbf{t}\right) P_{m^{n}-\lambda^{\prime}}\left(z_{1}, \ldots, z_{n} ; t, q, \mathbf{t}\right) . \tag{4.2}
\end{align*}
$$

A similar expansion of the kernel at issue in terms of Okounkov's hyperoctahedral interpolation polynomials is given by the Cauchy formula in [14, Thm. 6.2] (with shifted variables as in [15, Thm. 3.16]). For $n=1$, the latter Cauchy formula becomes of the form [8, Lem. 5.1]:

$$
\begin{equation*}
\prod\left(x_{1}, \ldots, x_{m} ; z\right)=\sum_{0 \leq r \leq m}(-1)^{m-r} E_{r}\left(x_{1}, \ldots, x_{m} ; t, t_{0}\right)\left\langle z ; t_{0}\right\rangle_{t, m-r} \tag{4.3}
\end{equation*}
$$

By expanding the first two factors of the trivial identity

$$
\prod\left(x_{1}, \ldots, x_{m} ; z_{1}, \ldots, z_{n}, z\right)=\prod\left(x_{1}, \ldots, x_{m} ; z_{1}, \ldots, z_{n}\right) \prod\left(x_{1}, \ldots, x_{m} ; z\right)
$$

by means of Mimachi's Cauchy formula (4.2) and the last factor by means of the 'columnrow' case of Okounkov's Cauchy formula in Eq. (4.3), one arrives at the equality

$$
\begin{aligned}
& \sum_{\lambda \subset(n+1)^{m}}(-1)^{m(n+1)-|\lambda|} P_{\lambda}\left(x_{1}, \ldots, x_{m} ; q, t, \mathbf{t}\right) P_{m^{n+1}-\lambda^{\prime}}\left(z_{1}, \ldots, z_{n}, z ; t, q, \mathbf{t}\right) \\
=\sum_{\substack{\mu \subset n^{m} \\
0 \leq r \leq m}}(-1)^{m(n+1)-|\mu|-r}(& P_{m^{n}-\mu^{\prime}}\left(z_{1}, \ldots, z_{n} ; t, q, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{t, m-r} \\
& \left.\quad \times E_{r}\left(x_{1}, \ldots, x_{m} ; t, t_{0}\right) P_{\mu}\left(x_{1}, \ldots, x_{m} ; q, t, \mathbf{t}\right)\right)
\end{aligned}
$$

Upon rewriting the RHS with the aid of the Pieri formula (2.3)

$$
\begin{aligned}
=\sum_{\substack{\mu \subset n^{m} \\
0 \leq r \leq m}}(-1)^{m(n+1)-|\mu|-r} & \left(P_{m^{n}-\mu^{\prime}}\left(z_{1}, \ldots, z_{n} ; t, q, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{t, m-r}\right. \\
& \left.\times \sum_{\substack{\lambda \subset(n+1)^{m} \\
\lambda \sim_{r} \mu}} C_{\mu, r}^{\lambda, m}(q, t, \mathbf{t}) P_{\lambda}\left(x_{1}, \ldots, x_{m} ; q, t, \mathbf{t}\right)\right),
\end{aligned}
$$

and reordering the sums

$$
\begin{aligned}
= & \sum_{\lambda \subset(n+1)^{m}}(-1)^{m(n+1)-|\lambda|}\left(P_{\lambda}\left(x_{1}, \ldots, x_{m} ; q, t, \mathbf{t}\right)\right. \\
& \left.\times \sum_{\substack{\mu \subset n^{m}, 0 \leq r \leq m \\
\mu \sim_{r} \lambda}}(-1)^{r+|\lambda|-|\mu|} C_{\mu, r}^{\lambda, m}(q, t, \mathbf{t}) P_{m^{n}-\mu^{\prime}}\left(z_{1}, \ldots, z_{n} ; t, q, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{t, m-r}\right),
\end{aligned}
$$

one deduces by comparing with the LHS that for any $\lambda \subset(n+1)^{m}$:

$$
\begin{aligned}
& P_{m^{n+1}-\lambda^{\prime}}\left(z_{1}, \ldots, z_{n}, z ; t, q, \mathbf{t}\right)= \\
& \quad \sum_{\substack{\mu \subset n^{m}, 0 \leq r \leq m \\
\mu \sim r \lambda}}(-1)^{r+|\lambda|-|\mu|} C_{\mu, r}^{\lambda, m}(q, t, \mathbf{t}) P_{m^{n}-\mu^{\prime}}\left(z_{1}, \ldots, z_{n} ; t, q, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{t, m-r},
\end{aligned}
$$

i.e. for any $\lambda \subset m^{n+1}$:

$$
\begin{align*}
& P_{\lambda}\left(z_{1}, \ldots, z_{n}, z ; q, t, \mathbf{t}\right)= \\
& \quad \sum_{\substack{\mu \subset m^{n}, 0 \leq r \leq m \\
n^{m}-\mu^{\prime} \sim r(n+1)^{m}-\lambda^{\prime}}}(-1)^{m-r+|\lambda|-|\mu|} C_{n^{m}-\mu^{\prime}, r}^{(n+1)^{m}-\lambda^{\prime}, m}(t, q, \mathbf{t}) P_{\mu}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{q, m-r} . \tag{4.4}
\end{align*}
$$

To finish the proof we invoke the following lemma.
Lemma 5. Let $\lambda \subset m^{n+1}$ and $\mu \subset m^{n}$. Then $n^{m}-\mu^{\prime} \sim_{r}(n+1)^{m}-\lambda^{\prime}$ iff $\mu \preceq \lambda$ and $m-d \leq r \leq m$ with $d=\left\{1 \leq j \leq m \mid \lambda_{j}^{\prime}=\mu_{j}^{\prime}+1\right\}$.

Proof. The statement of the lemma is immediate upon combining the following two properties: (i) $n^{m}-\mu^{\prime} \sim_{m}(n+1)^{m}-\lambda^{\prime}$ iff $\mu \preceq \lambda$ and (ii) $n^{m}-\mu^{\prime} \sim_{r}(n+1)^{m}-\lambda^{\prime}$ iff $n^{m}-\mu^{\prime} \sim_{m}(n+1)^{m}-\lambda^{\prime}$ and $r \geq m-d$.

Firstly, $n^{m}-\mu^{\prime} \sim_{m}(n+1)^{m}-\lambda^{\prime} \Leftrightarrow \exists \nu \subset n^{m}$ such that $\left(n^{m}-\mu^{\prime}\right) / \nu$ and $\left((n+1)^{m}-\lambda^{\prime}\right) / \nu$ are vertical strips $\Leftrightarrow \exists \kappa \subset m^{n}$ such that $\left(m^{n}-\mu\right) / \kappa$ and $\left(m^{n+1}-\lambda\right) / \kappa$ are horizontal strips $\Leftrightarrow \exists \kappa \subset m^{n}$ such that $\left(m^{n}-\kappa\right) / \mu$ and $\lambda /\left(m^{n}-\kappa\right)$ are horizontal strips $\Leftrightarrow \mu \preceq \lambda$, which proves part (i).

Secondly-assuming that $n^{m}-\mu^{\prime} \sim_{m}(n+1)^{m}-\lambda^{\prime}$ and picking $\nu \subset n^{m}$ such that $\left(n^{m}-\mu^{\prime}\right) / \nu$ and $\left((n+1)^{m}-\lambda^{\prime}\right) / \nu$ are vertical strips with $\left|\left(n^{m}-\mu^{\prime}\right) / \nu\right|+\left|\left((n+1)^{m}-\lambda^{\prime}\right) / \nu\right|$ minimal-one has that $\left|\left(n^{m}-\mu^{\prime}\right) / \nu\right|+\left|\left((n+1)^{m}-\lambda^{\prime}\right) / \nu\right| \leq r \Leftrightarrow \mid\left\{1 \leq j \leq m \mid \lambda_{j}^{\prime} \neq\right.$ $\left.\mu_{j}^{\prime}+1\right\} \mid \leq r \Leftrightarrow m-d \leq r$, which completes the proof of part (ii).

The upshot is that Eq. (4.4) can be rewritten as

$$
\begin{aligned}
& P_{\lambda}\left(z_{1}, \ldots, z_{n}, z ; q, t, \mathbf{t}\right)= \\
& \sum_{\substack{\mu \subset m^{n}, \mu \preceq \lambda \\
m-d \leq r \leq m}}(-1)^{m-r+|\lambda|-|\mu|} C_{n^{m}-\mu^{\prime}, r}^{(n+1)^{m}-\lambda^{\prime}, m}(t, q, \mathbf{t}) P_{\mu}\left(z_{1}, \ldots, z_{n} ; q, t, \mathbf{t}\right)\left\langle z ; t_{0}\right\rangle_{q, m-r}
\end{aligned}
$$

and Theorem 1 follows (where our choice of picking m equal to λ_{1} corresponds to the minimal value of m such that $\lambda \subset m^{n+1}$, cf. Remark 2 at the end of the previous section).

Acknowledgments

We are grateful to Alexei Borodin and Ivan Corwin for encouraging us to pursue an explicit branching formula for the Macdonald-Koornwinder polynomials.

References

[1] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (319) (1985).
[2] J.F. van Diejen, Commuting difference operators with polynomial eigenfunctions, Compos. Math. 95 (1995) 183-233.
[3] J.F. van Diejen, Self-dual Koornwinder-Macdonald polynomials, Invent. Math. 126 (1996) 319-339.
[4] J.F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas, Publ. Res. Inst. Math. Sci. 33 (1997) 483-508.
[5] J.F. van Diejen, Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Amer. Math. Soc. 351 (1999) 233-270.
[6] R.A. Gustafson, A generalization of Selberg's beta integral, Bull. Amer. Math. Soc. (N.S.) 22 (1990) 97-105.
[7] M. Ito, q-Difference shift for a $B C_{n}$-type Jackson integral arising from 'elementary' symmetric polynomials, Adv. Math. 204 (2006) 619-646.
[8] Y. Komori, M. Noumi, J. Shiraishi, Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009) 054.
[9] T.H. Koornwinder, Askey-Wilson polynomials for root systems of type BC, in: D.St.P. Richards (Ed.), Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, in: Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 189-204.
[10] A. Lascoux, S.O. Warnaar, Branching rules for symmetric functions and $\mathfrak{s l}_{n}$ basic hypergeometric series, Adv. in Appl. Math. 46 (2011) 424-456.
[11] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Clarendon Press, Oxford, 1995.
[12] I.G. Macdonald, Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/2001) B45a.
[13] K. Mimachi, A duality of Macdonald-Koornwinder polynomials and its application to integral representations, Duke Math. J. 107 (2001) 265-281.
[14] A. Okounkov, $B C$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups 3 (1998) 181-207.
[15] E.M. Rains, $B C_{n}$-symmetric polynomials, Transform. Groups 10 (2005) 63-132.
[16] S. Sahi, Nonsymmetric Koornwinder polynomials and duality, Ann. of Math. (2) 150 (1999) 267-282.

[^0]: 4 This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants \# 1130226 and \# 1141114.

 * Corresponding author.

 E-mail addresses: diejen@inst-mat.utalca.cl (J.F. van Diejen), eemsiz@mat.puc.cl (E. Emsiz).

