
Advances in Mathematics 285 (2015) 1225–1240
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Difference equation for the Heckman–Opdam 

hypergeometric function and its confluent 

Whittaker limit ✩

J.F. van Diejen a,∗, E. Emsiz b

a Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
b Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, 
Correo 22, Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 November 2014
Accepted 10 August 2015
Available online xxxx
Communicated by Takahiro Kawai

MSC:
33C67
33C52

Keywords:
Hypergeometric functions
Whittaker functions
Root systems
Bispectral problem
Rational Ruijsenaars–Schneider 
system
Hyperbolic Calogero–Moser model
Open quantum Toda chain

We present an explicit difference equation for the Heckman–
Opdam hypergeometric function associated with root sys-
tems. Via a confluent hypergeometric limit, an analogous 
difference equation is obtained for the class-one Whittaker 
function diagonalizing the open quantum Toda chain.

© 2015 Elsevier Inc. All rights reserved.

✩ This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico
(FONDECYT) Grants # 1130226 and # 1141114.
* Corresponding author.

E-mail addresses: diejen@inst-mat.utalca.cl (J.F. van Diejen), eemsiz@mat.puc.cl (E. Emsiz).
http://dx.doi.org/10.1016/j.aim.2015.08.018
0001-8708/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.aim.2015.08.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:diejen@inst-mat.utalca.cl
mailto:eemsiz@mat.puc.cl
http://dx.doi.org/10.1016/j.aim.2015.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2015.08.018&domain=pdf


1226 J.F. van Diejen, E. Emsiz / Advances in Mathematics 285 (2015) 1225–1240
1. Introduction

It is well known that the action-angle transformations linearizing the hyperbolic 
Calogero–Moser model and the rational Ruijsenaars–Schneider system are inverses of 
each other [35,12,31,11]. At the quantum level [26,34,45], this remarkable reciprocity 
between the two integrable particle models manifests itself as a bispectral duality in 
the sense of Duistermaat and Grünbaum [9,15]: viewed as a function of the spectral 
variable, the eigenfunction kernel of the hyperbolic Calogero–Moser Hamiltonian solves 
the eigenvalue equation for the rational Ruijsenaars–Schneider Hamiltonian [37,6,7]. In 
the framework of affine Hecke algebras, both quantum systems are simultaneously re-
covered by degeneration from the respective centers of two affine Hecke algebras that 
sit inside the double affine Hecke algebra [8]. The upshot is that the Heckman–Opdam 
hypergeometric function diagonalizing the hyperbolic Calogero–Moser system [18,17,28,
29] satisfies a system of difference equations in the spectral variable stemming from the 
commuting quantum integrals of the rational Ruijsenaars–Schneider system [8,7].

The present work addresses the question of computing such difference equations in 
explicit form for arbitrary root systems, beyond the known simplest examples associated 
with the (quasi-)minuscule weights. Rather than facing the challenging task of calculat-
ing the difference equations at issue from a representation of the (degenerate) double 
affine Hecke algebra, we exploit the well-known fact that for discrete spectral values 
on a (translated) cone of dominant weights the Heckman–Opdam hypergeometric func-
tion truncates in terms of Heckman–Opdam Jacobi polynomials [18]. This permits us 
to derive/prove the desired difference equations in two steps: first for the discrete spec-
tral values by performing a q → 1 degeneration of a recently found Pieri formula for 
the Macdonald polynomials [49], and then for arbitrary spectral values upon invoking 
an analytic continuation argument borrowed from Rösler [32] (based on known growth 
estimates for the Heckman–Opdam hypergeometric function [28,39,33] that enable one 
to apply Carlson’s theorem [44]). For the root system of type A, a more direct way to 
recover hypergeometric difference equations straight from the Macdonald–Ruijsenaars 
q-difference operators was recently pointed out by Borodin and Gorin, who established 
that the pertinent Heckman–Opdam hypergeometric function itself can be retrieved as 
a limit of the Macdonald polynomials [4, App. B].

Moreover, it was shown by Shimeno [41] (see also [30]) that for reduced root sys-
tems of arbitrary type the class-one Whittaker function diagonalizing the open quantum 
Toda chain [20,23,16,14,40,2] arises as a confluent hypergeometric degeneration of the 
Heckman–Opdam hypergeometric function. Confluences of this kind have their origin 
in a well-known limiting transition from the hyperbolic Calogero–Moser Hamiltonian to 
the Toda Hamiltonian that was observed independently by Sutherland and Ruijsenaars 
[43,36] and in more general form by Inozemtsev [19]. At the level of the present differ-
ence equation, the degeneration in question manifests itself as a strong-coupling limit 
and gives rise to a corresponding difference equation for the Whittaker function. For the 
root system of type A the resulting difference equation in the spectral variable, satisfied 



J.F. van Diejen, E. Emsiz / Advances in Mathematics 285 (2015) 1225–1240 1227
by the quantum Toda eigenfunction, was previously established both by means of the 
quantum inverse scattering method [21,42,24] and by means of an integral representa-
tion for the Whittaker function [1,3]. The underlying bispectral duality should again be 
viewed as the quantum counterpart of the remarkable fact that the respective action-
angle transforms linearizing the open Toda chain and a strong-coupling limit of rational 
Ruijsenaars–Schneider system are each other’s inverses [36,10].

The material is organized as follows. After recalling some necessary preliminaries 
regarding the Heckman–Opdam hypergeometric function in Section 2, our difference 
equation is first stated for reduced root systems in Section 3 and then proven in Section 4. 
We wrap up in Sections 5 and 6, by indicating briefly how our difference equation is to 
be adapted in the case of a nonreduced root system and by computing the degeneration 
of the difference equation pertaining to the Toda–Whittaker level, respectively.

2. Preliminaries

Throughout, the Heckman–Opdam hypergeometric function will be viewed here as a 
holomorphic interpolation function for the Heckman–Opdam Jacobi polynomials.

2.1. Jacobi polynomials

Let W , Q and P denote the Weyl group, the root lattice and the weight lattice, 
associated with an irreducible crystallographic root system R spanning a real finite-
dimensional Euclidean vector space V with inner product 〈·,·〉 [5]. Here the dual linear 
space will be identified with V via the inner product, in particular, this means that 
α∨ := 2α/〈α, α〉 ∈ V is taken as our definition of the coroot associated with α ∈ R. 
We furthermore write Q+ ⊂ Q for the nonnegative semigroup generated by a (fixed) 
choice of positive roots R+ ⊂ R, and P+ ⊂ P for the corresponding dual cone of domi-
nant weights endowed with the dominance partial order ≤ (i.e. for μ, λ ∈ P+: μ ≤ λ iff 
λ − μ ∈ Q+).

The normalized Heckman–Opdam Jacobi polynomials Pλ, λ ∈ P+ are W -invariant 
polynomials on V of the form [18,28]

Pλ(x) =
∑

μ∈P+, μ≤λ

cλ,μmμ(x) (cλ,μ ∈ C) (2.1a)

such that

LPλ = E(ρg + λ)Pλ with E(ξ) := 〈ξ, ξ〉 − 〈ρg, ρg〉, (2.1b)

with Pλ(0) = 1. Here mμ :=
∑

ν∈Wμ e
ν with eν(x) := e〈ν,x〉 (ν ∈ P , x ∈ V ), L denotes 

the hypergeometric differential operator

L := Δ +
∑

gα

(1 + e−α

1 − e−α

)
∂α (2.2)
α∈R+
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parameterized by root multiplicity parameters gα ∈ (0, +∞) with gwα = gα for all 
w ∈ W , and

ρg := 1
2

∑
α∈R+

gαα. (2.3)

In L (2.2) the operator Δ refers to the Laplacian on V (i.e. Δeν = 〈ν, ν〉eν) and ∂α
stands for the directional derivative along the root α (i.e. ∂αeν = 〈ν, α〉eν).

Remark 1. The leading coefficient of the Jacobi polynomial Pλ(x) (2.1a), (2.1b) normal-
ized such that Pλ(0) = 1 was computed explicitly by Opdam [27,18,29]:

cλ,λ =
∏

α∈R+

〈λ,α∨〉−1∏
j=0

〈ρg, α∨〉 + 1
2gα/2 + j

〈ρg, α∨〉 + gα + 1
2gα/2 + j

(2.4)

(with the convention that gα/2 := 0 if α/2 /∈ R). The remaining coefficients cλ,μ, μ < λ

can be computed in closed form via a linear recursion stemming from the eigenvalue 
equation (2.1b) [50, Thm. 4.4].

2.2. Hypergeometric function

Let us denote the complexification V ⊗R C of V by VC, with the form 〈·,·〉 and the 
action of W extended by linearity. The Heckman–Opdam hypergeometric function Fξ(x)
is a holomorphic function of ξ ∈ VC and x ∈ U ⊂ VC—where U denotes a sufficiently small 
W -invariant tubular neighborhood of V in VC—satisfying the following properties [18]:

Fρg+λ(x) = Pλ(x) (for all λ ∈ P+, x ∈ U), (2.5a)

Fwξ(x) = Fξ(wx) = Fξ(x) (for all ξ ∈ VC, x ∈ U,w ∈ W ), (2.5b)

and [28,39,33]

|Fρg+ξ(x)| ≤ emaxw∈W Re〈wξ,x〉 (for all ξ ∈ VC, x ∈ V ). (2.5c)

This hypergeometric function extends the W -invariant solution of the eigenvalue equa-
tion for the hypergeometric differential operator L (2.2) given by the normalized Jacobi 
polynomials, from the discrete spectral values ξ in ρg + P+ to general values of the 
spectral variable [18,17,28,29]:

LFξ = E(ξ)Fξ and Fξ(0) = 1 (for all ξ ∈ VC). (2.6)

Remark 2. It is clear from Section 4 below that the properties in Eqs. (2.5a)–(2.5c)—
combined with the analyticity in ξ and x—in fact characterize Fξ(x) uniquely (by 
Carlson’s theorem).



J.F. van Diejen, E. Emsiz / Advances in Mathematics 285 (2015) 1225–1240 1229
3. Hypergeometric difference equation

From now onwards except in Section 5, it will be assumed that R is reduced unless 
explicitly insinuated otherwise. To any ν ∈ P we associate its stabilizer subgroup Wν :=
{w ∈ W | wν = ν} generated by the root subsystem Rν := {α ∈ R | 〈ν, α∨〉 = 0}, and 
the shortest group element wν ∈ W such that wν(ν) ∈ P+. For λ ∈ P+, we denote by 
P (λ) ⊂ P the saturated set with highest weight λ given by

P (λ) :=
⋃

μ∈P+,μ≤λ

Wμ. (3.1)

Our main result is the following explicit difference equation in the spectral variable for 
the Heckman–Opdam hypergeometric function associated with a reduced root system.

Theorem 1. For R reduced and ω ∈ P+ small in the sense that 〈ω, α∨〉 ≤ 2 for all 
α ∈ R+, the Heckman–Opdam hypergeometric function Fξ(x) satisfies the difference 
equation

∑
ν∈P (ω)

∑
η∈Wν(w−1

ν ω)

Uν,η(ξ)Vν(ξ)Fξ+ν(x) = Eω(x)Fξ(x) (3.2a)

(as a holomorphic identity in x ∈ U and ξ ∈ VC), with

Vν(ξ) :=
∏
α∈R

〈ν,α∨〉>0

〈ξ, α∨〉 + gα
〈ξ, α∨〉

∏
α∈R

〈ν,α∨〉=2

1 + 〈ξ, α∨〉 + gα
1 + 〈ξ, α∨〉 , (3.2b)

Uν,η(ξ) :=
∏

α∈Rν

〈η,α∨〉>0

〈ξ, α∨〉 + gα
〈ξ, α∨〉

∏
α∈Rν

〈η,α∨〉=2

1 + 〈ξ, α∨〉 − gα
1 + 〈ξ, α∨〉 , (3.2c)

and

Eω(x) :=
∑

μ∈P+, μ≤ω

|Wμ(ω)|mμ(x), (3.2d)

where |Wμ(ω)| denotes the order of the orbit of ω with respect to Wμ.

If ω is minuscule (i.e. 0 ≤ 〈ω, α∨〉 ≤ 1 for all α ∈ R+), then P (ω) = Wω and the 
above difference equation becomes of the form

∑
ν∈Wω

Vν(ξ)Fξ+ν(x) = mω(x)Fξ(x). (3.3)

If ω is quasi-minuscule (i.e. ω ∈ R+ and 0 ≤ 〈ω, α∨〉 ≤ 1 for all α ∈ R+ \ {ω}), then 
P (ω) = Wω ∪ {0} and our difference equation reads
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∑
ν∈Wω

(
Vν(ξ)Fξ+ν(x) + U0,ν(ξ)Fξ(x)

)
=

(
mω(x) + mω(0)

)
Fξ(x), (3.4)

which is readily rewritten in the form

∑
ν∈Wω

Vν(ξ)
(
Fξ+ν(x) − Fξ(x)

)
=

(
mω(x) −mω(0)

)
Fξ(x), (3.5)

with the aid of the elementary identity 1
2
∑

ν∈Wω

(
Vν(ξ) + U0,ν(ξ)

)
= mω(0). In these 

simplest examples the explicit difference equation for the Heckman–Opdam hypergeo-
metric function was first established by Cherednik for ω minuscule using the degenerate 
double affine Hecke algebra (cf. [8, Eq. (4.15)]), and by Chalykh for ω either minuscule 
or quasi-minuscule with the aid of a Baker–Akhiezer function associated with R (cf. [7, 
Thm. 6.9]).

Remark 3. In the case of the classical series An, Bn, Cn and Dn all fundamental weights 
of R are small in the sense specified in Theorem 1, whereas for the exceptional root 
systems E6, E7, E8, F4 and G2 the number of such small fundamental weights of R is 
given by 5, 4, 2, 2 and 1, respectively. By varying ω over these small fundamental weights, 
the Eqs. (3.2a)–(3.2d) produce an explicit system of independent difference equations for 
the Heckman–Opdam hypergeometric function Fξ(x).

Remark 4. For technical convenience, we have assumed most of the time that our root 
multiplicity parameters gα take positive values. It is known, however, that Fξ(x) (with 
(ξ, x) ∈ VC×U) extends holomorphically in the root multiplicity parameters to complex 
values outside the pole locus of an overall normalization factor of the form [18,29]

∏
α∈R+

Γ(〈ρg, α∨〉 + 1
2gα/2 + gα)

Γ(〈ρg, α∨〉 + 1
2gα/2)

(3.6)

(where Γ(·) refers to the gamma function), which comprises in particular the closed 
parameter domain Re(1

2gα/2 + gα) ≥ 0. The explicit difference equation in Theorem 1
thus extends holomorphically to such complex root multiplicities as well.

4. Proof of Theorem 1

Our proof of Theorem 1 exploits (and makes precise sense of) the idea that the differ-
ence operator that enters via the LHS of our difference equation—through its action on 
Fξ(x) in the spectral variable—amounts to a rational degeneration of an analogous differ-
ence operator diagonalized by the Macdonald polynomials [49, Thm. 3.1]. The simplest 
examples in Eqs. (3.3) and (3.5) correspond in this respect to the rational degenerations 
of the celebrated Macdonald difference operators associated with the (quasi-)minuscule 
weights [25].
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4.1. Holomorphy in the spectral variable

The holomorphy and W -invariance of Fξ(x) in the spectral variable ensures that the 
LHS of (3.2a) is actually holomorphic for ξ ∈ VC. Indeed, the generically simple poles of 
the coefficients Vν(ξ) (3.2b) and Uη,ν(ξ) (3.2c) at root hyperplanes 〈ξ, α∨〉 = 0 and at 
the affine root hyperplanes 〈ξ, α∨〉 + 1 = 0 (α ∈ R) cancel out in the final expression on 
the LHS of Eq. (3.2a) due to the Weyl group symmetry. For the root hyperplanes this is 
obvious (from the reflection-symmetry) and for the affine root hyperplanes this follows 
from a detailed residue analysis performed (at the trigonometric level) in the appendix 
of Ref. [49].

4.2. Pieri formula

At the spectral value ξ = ρg + λ with λ ∈ P+, the difference equation in Theorem 1
gives rise to a Pieri formula for the Jacobi polynomials by virtue of the specialization 
formula in Eq. (2.5a):

Eω(x)Pλ(x) =
∑

ν∈P (ω)
λ+ν∈P+

∑
η∈Wν(w−1

ν ω)

Uν,η(ρg + λ)Vν(ρg + λ)Pλ+ν(x), (4.1)

first for generic positive root multiplicity parameters gα such that 〈ρg, α∨〉 �= 1 (∀α ∈ R) 
and then for general positive root multiplicity values by continuity (cf. also Remark 4
above). The restriction of the first sum on the RHS of Eq. (4.1)—to those ν ∈ P (ω) for 
which λ + ν is dominant—stems from the observation that the factor Vν(ξ) vanishes at 
ξ = ρg + λ if λ + ν /∈ P+. Indeed, in such cases there exists a simple root β such that 
〈λ + ν, β∨〉 < 0, i.e. either 〈λ, β∨〉 = 0 and 〈ν, β∨〉 < 0 so 〈ξ, α∨〉 + gα = 0 at ξ = ρg + λ

for α = −β, or 〈λ, β∨〉 = 1 and 〈ν, β∨〉 = −2 so 1 + 〈ξ, α∨〉 + gα = 0 at ξ = ρg + λ

for α = −β. (Here we have exploited that |〈ν, α∨〉| ≤ 2 for all α ∈ R as well as the 
elementary fact that 〈ρg, β∨〉 = gβ for β simple.)

It is well known that the Jacobi polynomials may be viewed as a q → 1 degeneration of 
the more general Macdonald polynomials [25, §11]. The Pieri formula in Eq. (4.1) arises 
in this context as the corresponding (rational) degeneration of the recently found Pieri 
formula for the Macdonald polynomials in [49, Sec. 4]. Specifically, upon substituting 
tα = qgαα in [49, Thm. 4.1] and performing the limit q → 1, Eq. (4.1) readily follows.

4.3. Analytic continuation

Our verification of the Pieri formula (4.1) proves Theorem 1 for ξ ∈ ρg + P+. The 
extension to arbitrary spectral values ξ ∈ VC is achieved through analytic continuation. 
To this end we will follow a line of arguments that was recently employed successfully 
in the context of the Heckman–Opdam hypergeometric function by Rösler et al., and 



1232 J.F. van Diejen, E. Emsiz / Advances in Mathematics 285 (2015) 1225–1240
which hinges on the following classical result from complex analysis due to Carlson, cf. 
[44, Thm. 5.81].

Carlson’s theorem. Let f be a holomorphic function in a neighborhood of the closed right 
half-plane

Hr := {z ∈ C | Re(z) ≥ 0},

such that (i) f is bounded1 on Hr and (ii) f(m) = 0 for m = 0, 1, 2, . . ., then f vanishes 
identically.

See e.g. [32, Sec. 4] for the proof of a product formula for the Heckman–Opdam hy-
pergeometric function of type BC based on Carlson’s theorem and also [33, Sec. 5] for its 
use in the proof of a limit transition between the type BC and type A Heckman–Opdam 
hypergeometric functions. An earlier (and somewhat different) application of Carlson’s 
theorem in the framework of the analysis on root systems can be found in Opdam’s proof 
of the q = 1 Macdonald constant term formulas (where it was used to perform analytic 
continuation with respect to the root multiplicity parameters) [27].

Specifically, since the two sides of Eq. (3.2a) are W -invariant and holomorphic both 
in x ∈ U and in ξ ∈ VC, it is sufficient to prove the desired equality for x in the (closed) 
fundamental chamber C := {x ∈ V | 〈x, α∨〉 ≥ 0, ∀α ∈ R+} and for

ξ = ρg + z1ω1 + · · · + znωn (4.2)

with zj ∈ Hr (j = 1, . . . , n). Here ω1, . . . , ωn refers to the basis of the fundamental 
weights (so n = dim(V ) = rank(R)). Upon division by e〈ξ,x〉 and temporarily assuming 
that gα > 1 (so 〈ρg, α∨〉 > 1 for all α ∈ R+), both sides of the difference equation remain 
bounded in zj ∈ Hr, j = 1, . . . , n. Indeed, the estimate in Eq. (2.5c) reveals that for the 
variables of interest

|e−〈ξ,x〉Fξ+ν(x)| ≤ e〈wν(ν)−ρg,x〉,

where we have used that 〈wν, x〉 ≤ 〈wν(ν), x〉 and Re〈w(ξ − ρg), x〉 ≤ Re〈ξ − ρg, x〉 for 
all w ∈ W (since both x and Re(ξ) − ρg now belong to the fundamental chamber C). 
Furthermore, the factors of the form 〈ξ,α

∨〉+gα
〈ξ,α∨〉 and 〈ξ,α

∨〉+1±gα
1+〈ξ,α∨〉 constituting Vν(ξ) (3.2b)

and Uν,η(ξ) (3.2c) remain bounded on this variable domain as well (because for gα > 1
we stay away from the (affine) root hyperplanes where the denominators vanish and 
both quotients moreover tend to 1 if 〈ξ, α∨〉 → ∞). When the coordinates z1, . . . , zn
all take nonnegative integral values the spectral variable ξ (4.2) belongs to the shifted 
dominant cone ρg + P+ and the equality of both sides of Eq. (3.2a) is then guaranteed 

1 In full generality Carlson’s theorem allows for f to have exponential growth of order O(ec|z|) with c < π, 
but for our purposes the assumption of a bounded function suffices.
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by the Pieri formula as argued above. We will now use Carlson’s theorem to compare 
both sides of the difference equation outside this discrete spectral set. Indeed, successive 
extension of the coordinate values z1, . . . , zn to the complex half-space Hr by means of 
Carlson’s theorem entails the desired equality for Re(ξ) ∈ ρg +C, x ∈ C and gα > 1. As 
anticipated, the extension of our difference equation to the full domain ξ ∈ VC, x ∈ U

and gα > 0 is now immediate from the Weyl group symmetry and the analyticity (cf. 
also Remark 4 above).

5. Hypergeometric difference equations for nonreduced root systems

In the standard Euclidean realization of the nonreduced root system of rank n [5], the 
hypergeometric differential equation in Eq. (2.6) becomes of the form

LFξ = (ξ2
1 + · · · + ξ2

n − ρ2
1 − · · · − ρ2

n)Fξ, (5.1a)

where ρj = (n − j)g + 1
2g1 + g2 (j = 1, . . . , n) and

L =
∑

1≤j≤n

[
∂2

∂x2
j

+
(
g1 coth 1

2(xj) + 2g2 coth(xj)
) ∂

∂xj

]

+ g
∑

1≤j<k≤n

[
coth 1

2(xj + xk)
( ∂

∂xj
+ ∂

∂xj

)
+ coth 1

2(xj − xk)
( ∂

∂xj
− ∂

∂xj

)]
.

(5.1b)

Here x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) and ρg = (ρ1, . . . , ρn) are being represented in the 
standard orthogonal basis e1, . . . , en of V . Rather than to incorporate the nonreduced 
setting into Theorem 1, it is actually more convenient to tweak the structure of our 
difference equation a bit in this case, as it will give rise to somewhat simpler formulas.

Theorem 2. For R nonreduced of rank n and 
 ∈ {1, . . . , n}, the Heckman–Opdam hy-
pergeometric function Fξ(x) satisfies the difference equation

∑
J⊂{1,...,n}, 0≤|J|≤�

εj=±1, j∈J

UJc, �−|J|(ξ)VεJ(ξ)Fξ+eεJ (x) = E�(x)Fξ(x) (5.2a)

(as a holomorphic identity in x ∈ U and ξ ∈ VC), with

VεJ(ξ) :=
∏
j∈J

(εjξj + 1
2g1 + g2)(1 + 2εjξj + g1)
εjξj(1 + 2εjξj)

∏
j∈J
k/∈J

(εjξj + ξk + g

εjξj + ξk

)(εjξj − ξk + g

εjξj − ξk

)

×
∏

j,j′∈J
′

(εjξj + εj′ξj′ + g

εjξj + εj′ξj′

)(1 + εjξj + εj′ξj′ + g

1 + εjξj + εj′ξj′

)
, (5.2b)
j<j
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UK,p(ξ) := (−1)p
∑

I⊂K, |I|=p

εi=±1, i∈I

(∏
i∈I

(εiξi + 1
2g1 + g2)(1 + 2εiξi + g1)
εiξi(1 + 2εiξi)

×
∏
i∈I

k∈K\I

(εiξi + ξk + g

εiξi + ξk

)(εiξi − ξk + g

εiξi − ξk

)

×
∏

i,i′∈I
i<i′

(εiξi + εi′ξi′ + g

εiξi + εi′ξi′

)(1 + εiξi + εi′ξi′ − g

1 + εiξi + εi′ξi′

))
,

(5.2c)

and

E�(x) := 4�
∑

J⊂{1,...,n}
|J|=�

∏
j∈J

sinh2
(xj

2

)
, (5.2d)

where eεJ :=
∑

j∈J εjej, |J | denotes the cardinality of J ⊂ {1, . . . , n}, and Jc :=
{1, . . . , n} \ J .

Proof. The theorem follows by a straightforward modification of the three-stage proof 
in Section 4. (i) The residue analysis to infer that the LHS of our difference equation 
is holomorphic in ξ was carried out (at the trigonometric level) in Ref. [47]. (ii) For 
ξj = ρj + λj (j = 1, . . . , n), with λ1, . . . , λn being nonnegative integers such that λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0, the stated difference equation reduces to a Pieri formula for the 
hyperoctahedral-symmetric Heckman–Opdam Jacobi polynomials that was derived in 
[48, Thm 6.4]. (iii) The extrapolation to general spectral values hinges again on Carlson’s 
theorem, following closely the arguments in Section 4. �

By varying 
 from 1, . . . , n, Eqs. (5.2a)–(5.2d) reveal that the Heckman–Opdam hy-
pergeometric function associated with a nonreduced root system constitutes a joint 
eigenfunction for the commuting quantum integrals of a rational Ruijsenaars–Schneider 
type system with hyperoctahedral symmetry introduced in [45] (see also [46]). For 
 = 1, 
the difference equation at issue becomes

∑
1≤j≤n

Vj(ξ)
(
Fξ+ej (x) − Fξ(x)

)
+Vj(−ξ)

(
Fξ−ej (x) − Fξ(x)

)

= 4
(
sinh2

(x1

2

)
+ · · · + sinh2

(xn

2

))
Fξ(x), (5.3a)

where

Vj(ξ) =
(ξj + 1

2g1 + g2)(1 + 2ξj + g1)
ξj(1 + 2ξj)

∏
1≤k≤n

(ξj + ξk + g

ξj + ξk

)(ξj − ξk + g

ξj − ξk

)
. (5.3b)
k �=j
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This particular difference equation for Fξ(x) when R is nonreduced was first established 
by Chalykh with the aid of a Baker–Akhiezer function associated with the root system 
of interest [7, Thm. 6.12].

Remark 5. For n = 1, the difference equation in Eqs. (5.3a), (5.3b) boils down to the 
following elementary difference equation:

(ξ + 1
2g1 + g2)(1 + 2ξ + g1)

ξ(1 + 2ξ)

(
Fξ+1(x) − Fξ(x)

)
+

(ξ − 1
2g1 − g2)(−1 + 2ξ − g1)

ξ(−1 + 2ξ)

(
Fξ−1(x) − Fξ(x)

)
= 4 sinh2

(x
2

)
Fξ(x) (5.4a)

for the Gauss hypergeometric function (a.k.a. Jacobi function)

Fξ(x) = 2F1

(
−ξ + g1

2 + g2, ξ + g1
2 + g2

1
2 + g1 + g2

; − sinh2
(x

2

))
, (5.4b)

cf. [37, p. 185] and [38, Sec. 2]. Notice that for ξ = g1
2 + g2 + l (l = 0, 1, 2, . . .), this 

recovers precisely the well-known three-term recurrence relation

sinh2
(x

2

)
Pl(x) =

(l + g1 + 2g2)(1
2 + l + g1 + g2)

(2l + g1 + 2g2)(1 + 2l + g1 + 2g2)
(Pl+1(x) − Pl(x))

+
l(−1

2 + l + g2)
(2l + g1 + 2g2)(−1 + 2l + g1 + 2g2)

(Pl−1(x) − Pl(x)) (5.5a)

for the normalized Jacobi polynomials

Pl(x) = 2F1

(
−l, l + g1 + 2g2

1
2 + g1 + g2

; − sinh2
(x

2

))
(l = 0, 1, 2, . . .), (5.5b)

cf. e.g. [22, Ch. 9.8]. In this rank-one situation, Carlson’s theorem thus tells us that—
reversely—the difference equation (5.4a) for the Gauss hypergeometric function (5.4b)
can be retrieved by analytic continuation from the recurrence relation (5.5a) for the Ja-
cobi polynomials (5.5b). Indeed, both sides of Eq. (5.4a) are manifestly entire in ξ and 
holomorphic in g1, g2 provided 1

2 + g1 + g2 /∈ {0, −1, −2, . . .}, moreover, upon division 
by eξ|x|, the expressions remain bounded for ξ = g1

2 + g2 + z on the domain Re(z) ≥ 0
if g1

2 + g2 > 1
2 (cf. [13, Lem. 11]).

6. Confluent hypergeometric limit of Toda–Whittaker type

Let us return to our main setting of a reduced root system R. The class-one Whit-
taker function F̄ξ(x) [20,23,16,2] is a confluent hypergeometric function diagonalizing 
the quantum Hamiltonian of the open Toda chain
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L̄F̄ξ(x) = 〈ξ, ξ〉F̄ξ(x) with L̄ := Δ − 2
∑
α∈S

e−α, (6.1)

where S ⊂ R+ denotes the basis of the simple roots. The function in question is smooth 
and of moderate exponential growth in x ∈ V , and it is holomorphic in the spectral 
variable ξ ∈ VC. Following [2, Sec. 4], we will normalize our Whittaker function such 
that it is W -invariant in the spectral variable

F̄wξ(x) = F̄ξ(x) (∀w ∈ W ), (6.2a)

and characterized by an asymptotics for Re(ξ) in the open fundamental chamber
{ξ ∈ V | 〈ξ, α∨〉 > 0, ∀α ∈ R+} of the form

lim
x→+∞

e〈w0ξ,x〉F̄ξ(x) =
∏

α∈R+

η−〈ξ,α∨〉
α Γ(〈ξ, α∨〉) with ηα :=

√
2

〈α, α〉 . (6.2b)

Here w0 refers to the longest element of W , and by x → +∞ it is meant that 〈x, α∨〉 →
+∞ for all α ∈ R+.

In [41, Thm. 3] it was shown that, for ξ ∈ VC generic such that

〈2ξ + ν, ν〉 �= 0 ∀ν ∈ Q \ {0} (6.3)

and upon parameterizing the root multiplicities gα in terms of t ∈ R such that

gα(t)(gα(t) − 1) = η2
αe

t, (6.4)

one recovers the Whittaker function F̄ξ(x) with x ∈ Int(C) as a confluent limit of a suit-
ably dressed Heckman–Opdam hypergeometric function (diagonalizing the hyperbolic 
Calogero–Moser Hamiltonian):

F̄ξ(x) = lim
t→+∞

Nt δt (x + tρ∨)Fξ(x + tρ∨; t) (x ∈ Int(C)), (6.5a)

where Fξ(x; t) := Fξ(x) with gα = gα(t) given by Eq. (6.4),

Nt :=
∏

α∈R+

Γ(〈ρg(t), α∨〉)Γ(gα(t))
Γ(〈ρg(t), α∨〉 + gα(t)) , δt :=

∏
α∈R+

(eα/2 − e−α/2)gα(t), (6.5b)

and ρ∨ := 1
2
∑

α∈R+ α∨. The proof of this limiting relation in [41] is based on the 
connection formulas (i.e. c-function expansions) for Fξ(x) and F̄ξ(x) [18,16]. Indeed, 
first it is shown that a (dressed) Harish-Chandra series solution of the hypergeometric 
differential equation converges to that of the quantum Toda chain (i.e. to the fundamental 
Whittaker function). The limiting relation then readily follows by comparing the explicit 
formulas for the respective c-functions in terms of gamma functions.
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The combination of Theorem 1 and the limit in Eqs. (6.5a), (6.5b) entails the following 
confluent hypergeometric difference equation for the class-one Whittaker function.

Theorem 3. Let R be reduced and ω ∈ P+ small such that 〈ω, α∨〉 ≤ 2 for all α ∈ R+. 
The class-one Whittaker function F̄ξ(x), determined by the quantum Toda eigenvalue 
equation (6.1) and the normalization (6.2a), (6.2b), satisfies the difference equation

∑
ν∈P (ω)

∑
η∈Wν(w−1

ν ω)

Ūν,η(ξ)V̄ν(ξ)F̄ξ+ν(x) = Ēω(x)F̄ξ(x) (6.6a)

(as a holomorphic identity in ξ ∈ VC with x ∈ V ), where

V̄ν(ξ) :=
∏
α∈R

〈ν,α∨〉>0

ηα
〈ξ, α∨〉

∏
α∈R

〈ν,α∨〉=2

ηα
1 + 〈ξ, α∨〉 , (6.6b)

Ūν,η(ξ) :=
∏

α∈Rν

〈η,α∨〉>0

ηα
〈ξ, α∨〉

∏
α∈Rν

〈η,α∨〉=2

−ηα
1 + 〈ξ, α∨〉 , (6.6c)

and

Ēω(x) := eω(x) = e〈ω,x〉. (6.6d)

Proof. Let us temporarily assume that x belongs to the open fundamental chamber 
Int(C) and that the spectral parameter ξ ∈ VC is generic in the sense that it satisfies the 
inequalities (6.3) and does not belong to the weight lattice P . Starting from the differ-
ence equation in Theorem 1, we parameterize the root multiplicities in accordance with 
Eq. (6.4), multiply both sides by e−t〈ω,ρ∨〉Ntδt(x), and replace x by x + tρ∨. The differ-
ence equation in Eqs. (6.6a)–(6.6d) is now recovered for t → +∞, in view of Eq. (6.5a)
and the limits

lim
t→+∞

e−t〈ω,ρ∨〉Eω(x + tρ∨) = Ēω(x),

lim
t→+∞

e−t〈wνν,ρ
∨〉Vν(ξ) = V̄ν(ξ),

and

lim
t→+∞

e−t〈ω−wνν,ρ
∨〉Uν,η(ξ) = Ūν,η(ξ).

The first two of these limits are evident, while for the last limit we used the property in 
Remark 6 below (with gα = 1). Finally, the domain restrictions on x and our genericity 
assumptions on the spectral parameter ξ are readily removed by analytic continuation, 
since F̄ξ(x) is real-analytic in x ∈ V and both sides of the stated difference equation 
extend holomorphically to ξ ∈ VC (cf. Section 4.1). �
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For ω minuscule the difference equation in Theorem 3 becomes of the form
∑

ν∈Wω

V̄ν(ξ)F̄ξ+ν(x) = e〈ω,x〉F̄ξ(x), (6.7)

whereas for ω quasi-minuscule it reads
∑

ν∈Wω

V̄ν(ξ)
(
F̄ξ+ν(x) − F̄ξ(x)

)
= e〈ω,x〉F̄ξ(x). (6.8)

When R is of type A one recovers from Eq. (6.7) the corresponding difference equa-
tions for the Whittaker function found in Refs. [21,1,3,42,24], by varying ω over the 
fundamental weights (which in this special case are off course all minuscule).

Remark 6. To determine the asymptotic exponential growth-rate of the factor Uν,η(ξ)
for t → +∞ in the proof of Theorem 3, we exploited the property that for any μ, ω ∈ P+

with μ < ω and 〈ω, α∨〉 ≤ 2 (∀α ∈ R+):
∑

α∈R+

〈μ,α∨〉>0

gα〈μ, α∨〉 =
∑

α∈R+

〈μ,α∨〉>0

gα〈ω, α∨〉

(as is readily verified on a case-by-case basis for each type of irreducible root system).
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