Integrable Boundary Interactions for Ruijsenaars' Difference Toda Chain

J. F. van Diejen ${ }^{1}$, E. Emsiz ${ }^{2}$
${ }^{1}$ Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile. E-mail: diejen@inst-mat.utalca.cl
${ }^{2}$ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile. E-mail: eemsiz@mat.puc.cl

Received: 13 May 2014 / Accepted: 3 August 2014
Published online: 30 January 2015 - © Springer-Verlag Berlin Heidelberg 2015

Abstract

We endow Ruijsenaars' open difference Toda chain with a one-sided boundary interaction of Askey-Wilson type and diagonalize the quantum Hamiltonian by means of deformed hyperoctahedral q-Whittaker functions that arise as a $t=0$ degeneration of the Macdonald-Koornwinder multivariate Askey-Wilson polynomials. This immediately entails the quantum integrability, the bispectral dual system, and the n-particle scattering operator for the chain in question.

1. Introduction

It is well-known that the open and closed Toda chains may be viewed as limits of the hyperbolic and elliptic Calogero-Moser-Sutherland particle systems, respectively [St,R1, I,R2]. More general integrable open Toda chains with boundary interactions involving potentials of Morse type [Ko,GW,Sk1] and of Pöschl-Teller type [I,KJC] are recovered similarly as degenerations of the Olshanetsky-Perelomov-Inozemtsev generalized Calogero-Moser-Sutherland systems with hyperoctahedral symmetry [I,O,Sh, GLO2]. Moreover, such limiting relations turn out to persist at the level of the RuijsenaarsSchneider particle systems and Ruijsenaars' difference (a.k.a. relativistic) Toda chains [R1,R2,R3,E,GLO1,HR,BC], as well as their hyperoctahedral counterparts [D2,C]. Specifically, in the hyperoctahedral case one recovers in this manner generalizations of Ruijsenaars' open relativistic Toda chain with boundary interactions that were studied at the level of classical mechanics in Refs. [Su1,D1,Su2] and at the level of quantum mechanics in Refs. [KT,D2,E,S,C].

In the present work we consider the Hamiltonian of such an open difference Toda chain endowed with a one-sided four-parameter boundary interaction of Askey-Wilson type. Upon diagonalizing the quantum Hamiltonian in question by means of deformed

[^0]hyperoctahedral q-Whittaker functions that arise as a $t=0$ degeneration of the Macdon-ald-Koornwinder polynomials $[\mathrm{K}, \mathrm{M}]$, the quantum integrability, the bispectral dual system, and the n-particle scattering operator are deduced. For special values of the Askey-Wilson parameters, our chain amounts to a difference counterpart of the $D_{n^{-}}$ type and the A_{n-1}-type quantum Toda chains with one-sided boundary potentials of Pöschl-Teller and Morse type, respectively.

The presentation is structured as follows. After introducing our difference Toda chain in Sect. 2 and defining the deformed hyperoctahedral q-Whittaker functions in Sect. 3, the diagonalization of the Hamiltonian is carried out in Sect. 4 by identifying the corresponding eigenvalue equation with the $t \rightarrow 0$ degeneration of a well-known Pieri formula for the Macdonald-Koornwinder polynomials [D3,M]. The quantum integrals and the bispectral dual system are then discussed in Sects. 5 and 6, respectively. In Sect. 7 analogous results for a difference counterpart of the quantum Toda chain with one-sided boundary potentials of Morse type are obtained by letting one of the boundary parameters tend to zero (which corresponds to a transition from Askey-Wilson polynomials to continuous dual q-Hahn polynomials [KLS]). We close in Sect. 8 with an explicit description of the n-particle scattering operator that relies on a stationary-phase analysis that was performed in Refs. [R4,D4]. Some useful properties of the MacdonaldKoornwinder multivariate Askey-Wilson polynomials have been collected in a separate appendix at the end.

2. Difference Toda Chain with One-Sided Boundary Interaction of Askey-Wilson Type

Formally, the Hamiltonian of our difference Toda chain is given by the difference operator [D2]:

$$
\begin{align*}
H:= & T_{1}+\sum_{j=2}^{n-1}\left(1-q^{x_{j-1}-x_{j}}\right) T_{j} \\
& +\sum_{j=1}^{n-2}\left(1-q^{x_{j}-x_{j+1}}\right) T_{j}^{-1}+\left(1-q^{x_{n-1}-x_{n}}\right)\left(1-q^{x_{n-1}+x_{n}}\right) T_{n-1}^{-1} \\
& +w_{+}\left(x_{n}\right)\left(1-q^{x_{n-1}-x_{n}}\right) T_{n}+w_{-}\left(x_{n}\right)\left(1-q^{x_{n-1}+x_{n}}\right) T_{n}^{-1}+U\left(x_{n-1}, x_{n}\right), \tag{2.1a}
\end{align*}
$$

where

$$
\begin{align*}
w_{+}(x) & :=\frac{\prod_{0 \leq r \leq 3}\left(1-t_{r} q^{x}\right)}{\left(1-q^{2 x}\right)\left(1-q^{2 x+1}\right)}, \quad w_{-}(x):=\frac{\prod_{0 \leq r \leq 3}\left(1-t_{r}^{-1} q^{x}\right)}{\left(1-q^{2 x}\right)\left(1-q^{2 x-1}\right)}, \tag{2.1b}\\
U(x, y) & :=\sum_{\epsilon \in\{1,-1\}} \frac{c_{\epsilon}\left(1-\epsilon q^{x+1 / 2}\right)}{\left(1-\epsilon q^{y-1 / 2}\right)\left(1-\epsilon q^{-y-1 / 2}\right)}, \tag{2.1c}
\end{align*}
$$

with

$$
\begin{equation*}
c_{\epsilon}:=\frac{1}{2 \sqrt{q^{-1} t_{0} t_{1} t_{2} t_{3}}} \prod_{0 \leq r \leq 3}\left(1-\epsilon q^{-1 / 2} t_{r}\right), \tag{2.1d}
\end{equation*}
$$

and $T_{j}(j=1, \ldots, n)$ acts on functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by a unit translation of the j th position variable

$$
\left(T_{j} f\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{j-1}, x_{j}+1, x_{j+1}, \ldots, x_{n}\right)
$$

Here q denotes a scale parameter and the parameters $t_{r}(r=0, \ldots, 3)$ play the role of coupling parameters for the boundary interaction of Askey-Wilson type. Upon setting $t_{2}=-t_{3}=q^{1 / 2}$, the additive potential term $U\left(x_{n-1}, x_{n}\right)$ in H (2.1a)-(2.1d) vanishes. The above Toda chain amounts in this case to a difference analog of the previously studied D_{n}-type quantum Toda chain with Pöschl-Teller boundary potential [I,KJC,O,GLO2]. If we additionally set $t_{0}=-t_{1}=1$, then $w_{+}(x)=w_{-}(x)=1$ and we formally recover a D_{n}-type analog of Ruijsenaars' difference Toda chain [KT, E, S, C] that was introduced at the level of classical mechanics by Suris [Su1].

3. Deformed Hyperoctahedral \boldsymbol{q}-Whittaker Functions

Let Λ denote the cone of integer partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with decreasingly ordered parts $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$, and let W be the hyperoctahedral group formed by the semidirect product of the symmetric group S_{n} and the n-fold product of the cyclic group $\mathbb{Z}_{2} \cong\{1,-1\}$. Elements $w=(\sigma, \epsilon) \in W$ act naturally on $\xi=\left(\xi_{1}, \ldots \xi_{n}\right) \in \mathbb{R}^{n}$ via $w \xi:=\left(\epsilon_{1} \xi_{\sigma_{1}}, \ldots, \epsilon_{n} \xi_{\sigma_{n}}\right)$ (with $\sigma \in S_{n}$ and $\epsilon_{j} \in\{1,-1\}$ for $j=1, \ldots, n$). A standard basis for the algebra of W-invariant trigonometric polynomials on the torus $\mathbb{T}=\mathbb{R}^{n} /\left(2 \pi \mathbb{Z}^{n}\right)$ is given by the hyperoctahedral monomial symmetric functions

$$
\begin{equation*}
m_{\lambda}(\xi):=\sum_{\mu \in W \lambda} e^{i\langle\mu, \xi\rangle}, \quad \lambda \in \Lambda \tag{3.1}
\end{equation*}
$$

where the summation is meant over the orbit of λ with respect to the action of W and the bracket $\langle\cdot, \cdot \cdot\rangle$ refers to the usual inner product on \mathbb{R}^{n} (so $\langle\mu, \xi\rangle=\mu_{1} \xi_{1}+\cdots+\mu_{n} \xi_{n}$). This monomial basis inherits a natural partial order from the hyperoctahedral dominance ordering of the partitions:

$$
\begin{equation*}
\forall \mu, \lambda \in \Lambda: \quad \mu \leq \lambda \text { iff } \sum_{1 \leq j \leq k} \mu_{j} \leq \sum_{1 \leq j \leq k} \lambda_{j} \text { for } k=1, \ldots, n . \tag{3.2}
\end{equation*}
$$

By definition, the basis of deformed hyperoctahedral q-Whittaker functions $p_{\lambda}(\xi)$, $\lambda \in \Lambda$ is given by the polynomials of the form

$$
\begin{equation*}
p_{\lambda}(\xi)=m_{\lambda}(\xi)+\sum_{\substack{\mu \in \Lambda \\ \text { with } \mu<\lambda}} c_{\lambda, \mu} m_{\mu}(\xi) \quad\left(c_{\lambda, \mu} \in \mathbb{C}\right) \tag{3.3a}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\langle p_{\lambda}, m_{\mu}\right\rangle_{\hat{\Delta}}=0 \text { if } \mu<\lambda, \tag{3.3b}
\end{equation*}
$$

where the inner product

$$
\begin{equation*}
\langle\hat{f}, \hat{g}\rangle_{\hat{\Delta}}:=\int_{\mathbb{A}} \hat{f}(\xi) \overline{\hat{g}(\xi)} \hat{\Delta}(\xi) \mathrm{d} \xi \quad\left(\hat{f}, \hat{g} \in L^{2}(\mathbb{A}, \hat{\Delta}(\xi) \mathrm{d} \xi)\right) \tag{3.4a}
\end{equation*}
$$

is determined by the weight function

$$
\begin{equation*}
\hat{\Delta}(\xi):=\frac{1}{(2 \pi)^{n}} \prod_{1 \leq j<k \leq n}\left|\left(e^{i\left(\xi_{j}+\xi_{k}\right)}, e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}\right|^{2} \prod_{1 \leq j \leq n}\left|\frac{\left(e^{2 i \xi_{j}}\right)_{\infty}}{\prod_{0 \leq r \leq 3}\left(\hat{t}_{r} e^{i \xi_{j}}\right)_{\infty}}\right|^{2} \tag{3.4b}
\end{equation*}
$$

supported on the hyperoctahedral Weyl alcove

$$
\begin{equation*}
\mathbb{A}:=\left\{\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n} \mid \pi>\xi_{1}>\xi_{2}>\cdots>\xi_{n}>0\right\} . \tag{3.5}
\end{equation*}
$$

Here $(x)_{m}:=\prod_{l=0}^{m-1}\left(1-x q^{l}\right)$ and $\left(x_{1}, \ldots, x_{l}\right)_{m}:=\left(x_{1}\right)_{m} \cdots\left(x_{l}\right)_{m}$ refer to standard notations for the q-Pochhammer symbols, and it is assumed that

$$
\begin{equation*}
q \in(0,1) \text { and } \hat{t}_{r} \in(-1,1) \backslash\{0\} \quad(r=0, \ldots, 3) \tag{3.6}
\end{equation*}
$$

These deformed hyperoctahedral q-Whittaker functions $p_{\lambda}(\xi), \lambda \in \Lambda$ amount to a $t \rightarrow 0$ degeneration of the more general Macdonald-Koorwinder multivariate Askey-Wilson polynomials introduced in Ref. [K] (cf. Appendix A below).

4. Diagonalization

It is known that the eigenfunctions of Ruijsenaars' open difference Toda chain consist of A_{n-1}-type q-Whittaker functions given by a $t \rightarrow 0$ limit of the Macdonald symmetric functions [GLO1]. In this section our aim is to show that an analogous result holds for the chain with Askey-Wilson type boundary interactions from Sect. 2, upon employing the deformed hyperoctahedral q-Whittaker functions from Sect. 3. To this end it is convenient to reparametrize the boundary parameters of the Toda chain in terms of the q-Whittaker deformation parameters (3.6) via

$$
\begin{equation*}
t_{0}=\sqrt{q^{-1} \hat{t}_{0} \hat{t}_{1} \hat{t}_{2} \hat{t}_{3}}, \quad t_{r}=\hat{t}_{r} \hat{t}_{0} / t_{0} \quad(r=1,2,3) \tag{4.1}
\end{equation*}
$$

assuming (from now onwards) the additional positivity constraints

$$
\begin{equation*}
\hat{t}_{0}>0 \text { and } \hat{t}_{0} \hat{t}_{1} \hat{t}_{2} \hat{t}_{3}>0 \tag{4.2}
\end{equation*}
$$

Let $\rho_{0}+\Lambda:=\left\{\rho_{0}+\lambda \mid \lambda \in \Lambda\right\}$ with

$$
\rho_{0}:=\left(\log _{q}\left(t_{0}\right), \ldots, \log _{q}\left(t_{0}\right)\right) \in \mathbb{R}^{n}
$$

We write $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ for the Hilbert space of lattice functions $f:\left(\rho_{0}+\Lambda\right) \rightarrow \mathbb{C}$ determined by the inner product

$$
\begin{equation*}
\langle f, g\rangle_{\Delta}:=\sum_{\lambda \in \Lambda} f\left(\rho_{0}+\lambda\right) \overline{g\left(\rho_{0}+\lambda\right)} \Delta_{\lambda} \quad\left(f, g \in \ell^{2}\left(\rho_{0}+\lambda_{n}, \Delta\right)\right) \tag{4.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{\lambda}:=\frac{\Delta_{0}}{\left(q t_{0}^{2}\right)_{\lambda_{n-1}+\lambda_{n}}}\left(\frac{1-t_{0}^{2} q^{2 \lambda_{n}}}{1-t_{0}^{2}}\right) \prod_{0 \leq r \leq 3} \frac{\left(t_{0} t_{r}\right)_{\lambda_{n}}}{\left(q t_{0} t_{r}^{-1}\right)_{\lambda_{n}}} \prod_{1 \leq j<n} \frac{1}{(q)_{\lambda_{j}-\lambda_{j+1}}} \tag{4.3b}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{0}:=(q)_{\infty} \prod_{0 \leq r<s \leq 3}\left(\hat{t}_{r} \hat{t}_{s}\right)_{\infty}=(q)_{\infty} \prod_{1 \leq r \leq 3}\left(t_{0} t_{r}, q t_{0} t_{r}^{-1}\right)_{\infty} \tag{4.3c}
\end{equation*}
$$

From the limiting behavior for $t \rightarrow 0$ of the orthogonality relations satisfied by the normalized Macdonald-Koornwinder polynomials (A.2a)-(A.2c), it is immediate that the wave function

$$
\begin{equation*}
\psi_{\xi}\left(\rho_{0}+\lambda\right):=\frac{\left(t_{0}^{2}\right)_{2 \lambda_{n}}}{\prod_{0 \leq r \leq 3}\left(t_{0} t_{r}\right)_{\lambda_{n}}} p_{\lambda}(\xi) \quad(\lambda \in \Lambda, \xi \in \mathbb{A}) \tag{4.4}
\end{equation*}
$$

satisfies the following orthogonality with respect to the spectral variable ξ :

$$
\int_{\mathbb{A}} \psi\left(\rho_{0}+\lambda\right) \overline{\psi\left(\rho_{0}+\mu\right)} \hat{\Delta}(\xi) \mathrm{d} \xi= \begin{cases}\Delta_{\lambda}^{-1} & \text { if } \lambda=\mu \tag{4.5}\\ 0 & \text { otherwise }\end{cases}
$$

In other words, the corresponding Fourier transform $\boldsymbol{F}: \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right) \rightarrow L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ given by

$$
\begin{equation*}
(\boldsymbol{F} f)(\xi):=\left\langle f, \psi_{\xi}\right\rangle_{\Delta}=\sum_{\lambda \in \Lambda} f\left(\rho_{0}+\lambda\right) \overline{\psi_{\xi}\left(\rho_{0}+\lambda\right)} \Delta_{\lambda} \tag{4.6a}
\end{equation*}
$$

$\left(f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)\right)$ constitutes a Hilbert space isomorphism with an inversion formula of the form

$$
\begin{equation*}
\left(\boldsymbol{F}^{-1} \hat{f}\right)\left(\rho_{0}+\lambda\right)=\left\langle\hat{f}, \overline{\psi\left(\rho_{0}+\lambda\right)}\right\rangle_{\hat{\Delta}}=\int_{\mathbb{A}} \hat{f}(\xi) \psi_{\xi}\left(\rho_{0}+\lambda\right) \hat{\Delta}(\xi) \mathrm{d} \xi \tag{4.6b}
\end{equation*}
$$

$\left(\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)\right)$. We will refer to $\boldsymbol{F}(4.6 \mathrm{a}),(4.6 \mathrm{~b})$ as the deformed hyperoctahedral q-Whittaker transform.

The formal Hamiltonian H (2.1a)-(2.1d) restricts to a well-defined discrete difference operator in the space of complex functions on the lattice $\rho_{0}+\Lambda$. Indeed, when $t_{0} \notin$ $\left\{1, q^{1 / 2}\right\}$ it is manifest that for $x=\left(x_{1}, \ldots, x_{n}\right)$ at these lattice points we stay away from the poles in the coefficients of H stemming from the denominators of $w_{ \pm}\left(x_{n}\right)$ and $U\left(x_{n-1}, x_{n}\right)$ and, moreover, that for any $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ and any $\lambda \in \Lambda$ the value of $(H f)\left(\rho_{0}+\lambda\right)$ depends only on evaluations of f at points of $\rho_{0}+\Lambda$ (due to the vanishing of $\left(1-q^{\lambda_{j}-\lambda_{j+1}}\right)$ at $\lambda_{j}=\lambda_{j+1}(1 \leq j<n)$ and the vanishing of $w_{-}\left(\log _{q}\left(t_{0}\right)+\lambda_{n}\right)$ at $\left.\lambda_{n}=0\right)$:

$$
\begin{align*}
& (H f)\left(\rho_{0}+\lambda\right) \\
& =\sum_{\substack{1 \leq j \leq n \\
\lambda+e_{j} \in \Lambda}} v_{j}^{+}(\lambda) f\left(\rho_{0}+\lambda+e_{j}\right)+\sum_{\substack{1 \leq j \leq n \\
\lambda-e_{j} \in \Lambda}} v_{j}^{-}(\lambda) f\left(\rho_{0}+\lambda-e_{j}\right)+u(\lambda) f\left(\rho_{0}+\lambda\right), ~ \tag{4.7}
\end{align*}
$$

where

$$
\begin{aligned}
v_{j}^{+}(\lambda)= & \left(1-q^{\lambda_{j-1}-\lambda_{j}}\right)\left(\frac{\prod_{0 \leq r \leq 3}\left(1-t_{r} t_{0} q^{\lambda_{n}}\right)}{\left(1-t_{0}^{2} q^{2 \lambda_{n}}\right)\left(1-t_{0}^{2} q^{2 \lambda_{n}+1}\right)}\right)^{\delta_{n-j}} \\
v_{j}^{-}(\lambda)= & \left(1-q^{\lambda_{j}-\lambda_{j+1}}\right)\left(1-t_{0}^{2} q^{\lambda_{n-1}+\lambda_{n}}\right)^{\delta_{n-j}+\delta_{n-1-j}} \\
& \times\left(\frac{\prod_{0 \leq r \leq 3}\left(1-t_{r}^{-1} t_{0} q^{\lambda_{n}}\right)}{\left(1-t_{0}^{2} q^{2 \lambda_{n}}\right)\left(1-t_{0}^{2} q^{2 \lambda_{n}-1}\right)}\right)^{\delta_{n-j}} \\
u(\lambda)= & \sum_{\epsilon \in\{1,-1\}} \frac{c_{\epsilon}\left(1-\epsilon t_{0} q^{\lambda_{n-1}+1 / 2}\right)}{\left(1-\epsilon t_{0} q^{\lambda_{n}-1 / 2}\right)\left(1-\epsilon t_{0}^{-1} q^{-\lambda_{n}-1 / 2}\right)}
\end{aligned}
$$

with c_{ϵ} taken from (2.1d). Here $\delta_{k}:=1$ if $k=0$ and $\delta_{k}:=0$ otherwise, the vectors e_{1}, \ldots, e_{n} denote the standard unit basis of \mathbb{R}^{n}, and $\lambda_{0}:=+\infty, \lambda_{n+1}:=-\infty$ by convention (so $\left(1-q^{\lambda_{0}-\lambda_{1}}\right)=\left(1-q^{\lambda_{n}-\lambda_{n+1}}\right) \equiv 1$). The action of H on lattice functions in Eq. (4.7) extends continuously from $t_{0} \notin\left\{1, q^{1 / 2}\right\}$ to the full parameter domain determined by Eqs. (4.1), (4.2) and (3.6).

Our main result implements the Hamiltonian under consideration as a self-adjoint operator in the Hilbert space $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ and provides its spectral decomposition with the aid of the deformed hyperoctahedral q-Whittaker transform.

Theorem 1 (Diagonalization). (i). For boundary parameters t_{r} (4.1) determined by the q-Whittaker deformation parameters \hat{t}_{r} (3.6), (4.2), the action of the difference Toda Hamiltonian H (2.1a)-(2.1d) given by Eq. (4.7) constitutes a bounded self-adjoint operator in the Hilbert space $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ with purely absolutely continuous spectrum. (ii). The operator in question is diagonalized by the deformed hyperoctahedral q-Whittaker transform \boldsymbol{F} (4.6a), (4.6b):

$$
\begin{equation*}
H=\boldsymbol{F}^{-1} \circ \hat{E} \circ \boldsymbol{F}, \tag{4.8a}
\end{equation*}
$$

where \hat{E} denotes the bounded real multiplication operator acting on $\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} d \xi)$ via

$$
\begin{equation*}
(\hat{E} \hat{f})(\xi):=\hat{E}(\xi) \hat{f}(\xi) \text { with } \hat{E}(\xi):=2 \sum_{1 \leq j \leq n} \cos \left(\xi_{j}\right) \tag{4.8b}
\end{equation*}
$$

Proof. The first part of the theorem is immediate from the second part. To prove the second part it suffices to verify that the deformed hyperoctahedral q-Whittaker kernel ψ_{ξ} satisfies the eigenvalue equation $H \psi_{\xi}=\hat{E}(\xi) \psi_{\xi}$, or more explicitly that:

$$
\begin{array}{r}
\sum_{\substack{1 \leq j \leq n \\
\lambda+e_{j} \in \Lambda}} v_{j}^{+}(\lambda) \psi_{\xi}\left(\rho_{0}+\lambda+e_{j}\right)+\sum_{\substack{1 \leq j \leq n \\
\lambda-e_{j} \in \Lambda}} v_{j}^{-}(\lambda) \psi_{\xi}\left(\rho_{0}+\lambda-e_{j}\right) \\
+u(\lambda) \psi_{\xi}\left(\rho_{0}+\lambda\right)=\hat{E}(\xi) \psi_{\xi}\left(\rho_{0}+\lambda\right) .
\end{array}
$$

This eigenvalue equation follows from the Pieri formula for the Macdonald-Koornwinder polynomials (A.4) in the limit $t \rightarrow 0$. Indeed, it is clear that in the Pieri formula $\lim _{t \rightarrow 0} \mathbf{P}_{\lambda}(\xi)=\psi_{\lambda}\left(\rho_{0}+\lambda\right), \lim _{t \rightarrow 0} \hat{\tau}_{j} V_{j}^{+}(\lambda)=v_{j}^{+}(\lambda), \lim _{t \rightarrow 0} \hat{\tau}_{j}^{-1} V_{j}^{-}(\lambda)=v_{j}^{-}(\lambda)$, and one also has that

$$
\lim _{t \rightarrow 0}\left(\sum_{j=1}^{n}\left(\hat{\tau}_{j}+\hat{\tau}_{j}^{-1}\right)-\sum_{\substack{1 \leq j \leq n \\ \lambda+e_{j} \in \Lambda}} V_{j}^{+}(\lambda)-\sum_{\substack{1 \leq j \leq n \\ \lambda-e_{j} \in \Lambda}} V_{j}^{-}(\lambda)\right)=u(\lambda) .
$$

This last limit formula is not evident but can be deduced from the following rational identity in $q^{x_{1}}, \ldots, q^{x_{n}}$:

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\hat{\tau}_{j}^{-1}-\hat{\tau}_{1}^{-1} w_{+}\left(x_{j}\right) \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{1-t q^{x_{j}+x_{k}}}{1-q^{x_{j}+x_{k}}} \frac{1-t q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right) \\
& \quad+\sum_{j=1}^{n}\left(\hat{\tau}_{j}-\hat{\tau}_{1} w_{-}\left(x_{j}\right) \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{1-t^{-1} q^{x_{j}+x_{k}}}{1-q^{x_{j}+x_{k}}} \frac{1-t^{-1} q^{x_{j}-x_{k}}}{1-q^{x_{j}-x_{k}}}\right) \\
& \quad=C_{t} \sum_{\epsilon \in\{1,-1\}} \prod_{0 \leq r \leq 3}\left(1-\epsilon t_{r} q^{-1 / 2}\right)\left(1-\prod_{j=1}^{n} \frac{1-\epsilon t q^{x_{j}-1 / 2}}{1-\epsilon q^{x_{j}-1 / 2}} \frac{1-\epsilon t^{-1} q^{x_{j}+1 / 2}}{1-\epsilon q^{x_{j}+1 / 2}}\right),
\end{aligned}
$$

where $C_{t}=-\frac{1}{2} t \hat{t}_{0}^{-1}(1-t)^{-1}\left(1-q^{-1} t\right)^{-1}$, upon replacing $q^{x_{j}}$ by $\tau_{j} q^{\lambda_{j}}(j=1, \ldots, n)$ and performing the limit $t \rightarrow 0$. To infer the rational identity itself, one exploits the hyperoctahedral symmetry in the variables $x_{1}, \ldots x_{n}$ and checks that-as a function of x_{j} (with the remaining variables fixed in a generic configuration)-the residues at the (simple) poles on both sides coincide. Hence, the difference of both rational expressions amounts to a W-invariant Laurent polynomial in $q^{x_{1}}, \ldots, q^{x_{n}}$. The Laurent polynomial in question must actually vanish, as the rational expressions under consideration tend to 0 for $x_{j}=(n+1-j) c$ in the limit $c \rightarrow+\infty$.

5. Integrability

The quantum integrability of the difference Toda Hamiltonian H (2.1a)-(2.1d) is an immediate consequence of the diagonalization in Theorem 1. In effect, a complete system of commuting quantum integrals in the Hilbert space $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ is given by the bounded self-adjoint operators

$$
\begin{equation*}
H_{l}:=\boldsymbol{F}^{-1} \circ \hat{E}_{l} \circ \boldsymbol{F}, \quad l=1, \ldots, n \tag{5.1}
\end{equation*}
$$

where $\hat{E}_{l}: L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ denotes the real multiplication operator by $\hat{E}_{l}(\xi):=m_{\omega_{l}}(\xi)$ with $\omega_{l}:=e_{1}+\cdots+e_{l}$ (so $H_{1}=H$). The operator H_{l} (5.1) acts on $f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ as a difference operator of the form

$$
\begin{equation*}
\left(H_{l} f\right)\left(\rho_{0}+\lambda\right)=\sum_{\substack{J \subset\{1, \ldots, n\}, 0 \leq \lambda J \mid \leq l \\ \epsilon_{j} \in\{1,-1\}, j \in J ; \lambda+e_{\epsilon} \in \Lambda}} C_{\epsilon J}^{(l)}(\lambda) f\left(\rho_{0}+\lambda+e_{\epsilon J}\right), \tag{5.2a}
\end{equation*}
$$

where $e_{\epsilon J}:=\sum_{j \in J} \epsilon_{j} e_{j},|J|$ denotes the cardinality of $J \subset\{1, \ldots, n\}$, and the coefficients

$$
\begin{equation*}
C_{\epsilon J}^{(l)}(\lambda)=\lim _{t \rightarrow 0} C_{\epsilon J, t}^{(l)}(\lambda) \tag{5.2b}
\end{equation*}
$$

arise as $t \rightarrow 0$ limits of the expansion coefficients in the corresponding Pieri formula for the normalized Macdonald-Koornwinder polynomials $\mathbf{P}_{\lambda}(\xi)$ (A.1a), (A.1b) (cf. [D3, Sec. 6]):

$$
\begin{equation*}
\hat{E}_{l}(\xi) \mathbf{P}_{\lambda}(\xi)=\sum_{\substack{J \subset\{1, \ldots, n\}, 0 \leq|J| \leq l \\ \epsilon_{j} \in\{1,-1\}, j \in J ; \lambda+e_{\epsilon} \in \Lambda}} C_{\epsilon J, t}^{(l)}(\lambda) \mathbf{P}_{\lambda+e_{\epsilon J}}(\xi) . \tag{5.2c}
\end{equation*}
$$

Notice in this connection that the Pieri expansion coefficients

$$
C_{\epsilon J, t}^{(l)}(\lambda)=\boldsymbol{\Delta}_{\lambda+e_{\epsilon J}} \int_{\mathbb{A}} \hat{E}_{l}(\xi) \mathbf{P}_{\lambda}(\xi) \overline{\mathbf{P}_{\lambda+e_{\epsilon J}}(\xi)} \hat{\boldsymbol{\Delta}}(\xi) \mathrm{d} \xi
$$

are continuous at $t=0$, because the Macdonald-Koornwinder weight function $\hat{\boldsymbol{\Delta}}(\xi)$ and (thus) the polynomials $\mathbf{P}_{\lambda}(\xi), \lambda \in \Lambda$ are continuous at this parameter value (cf. Appendix A).

In practice it turns out to be very tedious to compute the $t \rightarrow 0$ limiting coefficients $C_{\epsilon J}^{(l)}(\lambda)$ explicitly with the aid of the known explicit Pieri formulas for the MacdonaldKoornwinder polynomials in [D3, Sec. 6] beyond $l=1$. For a particular second quantum integral belonging to the commutative algebra generated by H_{1}, \ldots, H_{n}, however, the required computation results to be surprisingly straightforward. More specifically: from
the $t \rightarrow 0$ limiting behavior of the $r=n$ (top) Pieri formula for the MacdonaldKoornwinder polynomials in Theorem 6.1 of [D3], one readily deduces that the action on $f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ of the operator $H_{Q}:=\boldsymbol{F}^{-1} \circ \hat{Q} \circ \boldsymbol{F}$, where \hat{Q} refers to the self-adjoint multiplication operator in $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ by

$$
\hat{Q}(\xi):=\prod_{j=1}^{n}\left(2 \cos \left(\xi_{j}\right)-\hat{t}_{0}-\hat{t}_{0}^{-1}\right)
$$

is given explicitly by

$$
=\sum_{\substack{J_{+} \cup J_{-} \cup K_{+} \cup K_{-}=\{1, \ldots, n\} \\\left|J_{+}\right|+\left|J_{-}\right|+\left|K_{+}+\left||K-|=n \\ \lambda+e_{J_{+}}-e_{J_{-}} \in \Lambda\right.\right.}} u_{K_{+}, K_{-}}(\lambda)\left(\rho_{0}+\lambda\right) v_{J_{+}, J_{-}}(\lambda) f\left(\rho_{0}+\lambda+e_{J_{+}}-e_{J_{-}}\right)
$$

with

$$
\begin{aligned}
v_{J_{+}, J_{-}}(\lambda)= & \prod_{\substack{j \in J_{+} \\
j-1 \notin J_{+}}}\left(1-q^{\lambda_{j-1}-\lambda_{j}}\right) \prod_{\substack{j \in J_{-} \\
j+1 \notin J_{-}}}\left(1-q^{\lambda_{j}-\lambda_{j+1}-\delta_{J_{+}}(j+1)}\right) \\
& \times\left(1-t_{0}^{2} q^{\lambda_{n-1}+\lambda_{n}}\right)^{\delta_{J_{+} c}(n-1) \delta_{J_{+}^{c}}(n)-\delta_{J_{+}^{c} \cap J_{-}^{c}}(n-1) \delta_{J_{+} c_{\cap} J_{-}^{c}}(n)} \\
& \times\left(1-t_{0}^{2} q^{\lambda_{n-1}+\lambda_{n}-1}\right)^{\delta_{J_{-}}(n-1) \delta_{J_{-}}(n)} w_{+}\left(\lambda_{n}\right)^{\delta_{J_{+}}(n)} w_{-}\left(\lambda_{n}\right)^{\delta_{J_{-}}(n)}
\end{aligned}
$$

and

$$
\begin{aligned}
u_{K_{+}, K_{-}}(\lambda)= & \left(-\hat{t}_{0}\right)^{\left|K_{-}\right|-\left|K_{+}\right|} \prod_{\substack{k \in K_{+} \\
k-1 \in K_{-}}}\left(1-q^{\lambda_{k-1}-\lambda_{k}}\right) \prod_{\substack{k \in K_{+} \\
k+1 \in K_{-}}}\left(1-q^{\lambda_{k}-\lambda_{k+1}+1}\right) \\
& \times\left(1-t_{0}^{2} q^{\lambda_{n-1}+\lambda_{n}+1}\right)^{\delta_{K_{+}}(n-1) \delta_{K_{+}}(n)}\left(1-t_{0}^{2} q^{\lambda_{n-1}+\lambda_{n}}\right)^{\delta_{K_{-}}(n-1) \delta_{K_{-}}(n)} \\
& \times w_{+}\left(\lambda_{n}\right)^{\delta_{K_{+}}(n)} w_{-}\left(\lambda_{n}\right)^{\delta_{K_{-}}(n)} .
\end{aligned}
$$

Here $\delta_{J}:\{1, \ldots, n\} \rightarrow\{0,1\}$ denotes the characteristic function of $J \subset\{1, \ldots, n\}$ and $J^{c}=\{1, \ldots, n\} \backslash J$.

Corollary 1. The difference Toda Hamiltonians H (4.7) and H_{Q} (5.3) are bounded, self-adjoint, commuting operators in $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ for which the deformed hyperoctahedral q-Whittaker functions $\psi_{\xi}(4.4)$ constitute a complete system of (generalized) joint eigenfunctions corresponding to the eigenvalues $\hat{E}(\xi)$ and $\hat{Q}(\xi)$, respectively.

6. Bispectral Dual System

For $t \rightarrow 0$ the Macdonald-Koornwinder q-difference equation (A.3) amounts to the following eigenvalue equation satisfied by the deformed hyperoctahedral q-Whittaker functions:

$$
\begin{equation*}
\hat{H} p_{\lambda}=\left(q^{-\lambda_{1}}-1\right) p_{\lambda} \quad(\lambda \in \Lambda) \tag{6.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{H}=\sum_{j=1}^{n}\left(\hat{v}_{j}(\xi)\left(\hat{T}_{j, q}-1\right)+\hat{v}_{j}(-\xi)\left(\hat{T}_{j, q}^{-1}-1\right)\right) \tag{6.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{v}_{j}(\xi)=\frac{\prod_{0 \leq r \leq 3}\left(1-\hat{t}_{r} e^{i \xi_{j}}\right)}{\left(1-e^{2 i \xi_{j}}\right)\left(1-q e^{2 i \xi_{j}}\right)} \prod_{\substack{1 \leq k \leq n \\ k \neq j}}\left(1-e^{i\left(\xi_{j}+\xi_{k}\right)}\right)^{-1}\left(1-e^{i\left(\xi_{j}-\xi_{k}\right)}\right)^{-1} \tag{6.2b}
\end{equation*}
$$

where $\hat{T}_{j, q}$ acts on trigonometric (Laurent) polynomials $\hat{p}\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{n}}\right)$ by a q-shift of the j th variable:

$$
\left(\hat{T}_{j, q} \hat{p}\right)\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{n}}\right):=\hat{p}\left(e^{i \xi_{1}}, \ldots, e^{i \xi_{j-1}}, q e^{i \xi_{j}}, e^{i \xi_{j+1}}, \ldots, e^{i \xi_{n}}\right)
$$

The following proposition is now immediate.
Proposition 1 (Bispectral Dual Hamiltonian). The $t=0$ Macdonald-Koornwinder q difference operator \hat{H} (6.2a), (6.2b) constitutes a nonnegative unbounded self-adjoint operator with purely discrete spectrum in $L^{2}(\mathbb{A}, \hat{\Delta} d \xi)$ that is diagonalized by the (inverse) deformed hyperoctahedral q-Whittaker transform \boldsymbol{F} (4.6a), (4.6b):

$$
\begin{equation*}
\hat{H}=\boldsymbol{F} \circ E \circ \boldsymbol{F}^{-1}, \tag{6.3a}
\end{equation*}
$$

where E denotes the self-adjoint multiplication operator in $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ of the form

$$
\begin{equation*}
(E f)\left(\rho_{0}+\lambda\right):=\left(q^{-\lambda_{1}}-1\right) f\left(\rho_{0}+\lambda\right) \quad(\lambda \in \Lambda) \tag{6.3b}
\end{equation*}
$$

(for $f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ with $\left.\langle E f, E f\rangle_{\Delta}<\infty\right)$.
One learns from Theorem 1 and Proposition 1 that the eigenfunction transforms diagonalizing the difference Toda Hamiltonian H (4.7) and the $t=0$ MacdonaldKoornwinder difference operator \hat{H} (6.2a), (6.2b) are inverses of each other. This fact encodes the bispectral duality of the operators under consideration in the sense of Duistermaat and Grünbaum [DG,G]: the kernel function $\psi_{\xi}\left(\rho_{0}+\lambda\right)$ of the deformed hyperoctahedral q-Whittaker transform \boldsymbol{F} (4.6a), (4.6b) simultaneously solves the corresponding eigenvalue equations for H and \hat{H} in the discrete variable $\rho_{0}+\lambda$ and the spectral variable ξ, respectively.

Explicit commuting quantum integrals for the dual Hamiltonian \hat{H} (6.2a), (6.2b) are obtained as a $t \rightarrow 0$ degeneration of the commuting difference operators in [D3, Thm. 5.1]:

$$
\begin{equation*}
\hat{H}_{l}=\sum_{\substack{J \subset\{1, \ldots, n\}, 0 \leq|J| \leq l \\ \epsilon_{j} \in\{1,-1\}, j \in J}} \hat{U}_{J^{c}, l-|J|} \hat{V}_{\epsilon J} \hat{T}_{\epsilon J, q}, \quad l=1, \ldots, n, \tag{6.4}
\end{equation*}
$$

with $\hat{T}_{\epsilon J, q}:=\prod_{j \in J} \hat{T}_{j, q}^{\epsilon_{j}}$ and

$$
\begin{aligned}
\hat{V}_{\epsilon J}:= & \prod_{j \in J} \frac{\prod_{0 \leq r \leq 3}\left(1-\hat{t}_{r} e^{i \epsilon_{j} \xi_{j}}\right)}{\left(1-e^{2 i \epsilon_{j} \xi_{j}}\right)\left(1-q e^{2 i \epsilon_{j} \xi_{j}}\right)} \prod_{\substack{j \in J \\
k \notin J}}\left(1-e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}\right)^{-1}\left(1-e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}\right)^{-1} \\
& \times \prod_{\substack{j, k \in J \\
j<k}}\left(1-e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}\right)^{-1}\left(1-q e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}\right)^{-1},
\end{aligned}
$$

$$
\begin{aligned}
& \hat{U}_{K, p}:=(-1)^{p} \sum_{\substack{I \subset K,|I|=p \\
\epsilon_{j} \in\{1,-1\}, j \in I}}\left(\prod_{j \in I} \frac{\prod_{0 \leq r \leq 3}\left(1-\hat{t}_{r} e^{i \epsilon_{j} \xi_{j}}\right)}{\left(1-e^{2 i \epsilon_{j} \xi_{j}}\right)\left(1-q e^{2 i \epsilon_{j} \xi_{j}}\right)}\right. \\
& \times \prod_{\substack{j \in I \\
k \in K \backslash I}}\left(1-e^{i\left(\epsilon_{j} \xi_{j}+\xi_{k}\right)}\right)^{-1}\left(1-e^{i\left(\epsilon_{j} \xi_{j}-\xi_{k}\right)}\right)^{-1} \\
&\left.\times \prod_{\substack{j, k \in I \\
j<k}}\left(1-e^{i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}\right)^{-1}\left(1-q^{-1} e^{-i\left(\epsilon_{j} \xi_{j}+\epsilon_{k} \xi_{k}\right)}\right)^{-1}\right)
\end{aligned}
$$

(so $\hat{H}_{1}=\hat{H}$). The diagonalization in Proposition 1 now generalizes to the complete system of commuting quantum integrals $\hat{H}_{1}, \ldots, \hat{H}_{n}$ as follows.

Theorem 2 (Bispectral Dual System). Let $E_{l}(1 \leq l \leq n)$ denote the self-adjoint multiplication operator in $\ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ given by

$$
\begin{equation*}
\left(E_{l} f\right)\left(\rho_{0}+\lambda\right):=E_{\lambda, l} f\left(\rho_{0}+\lambda\right) \quad(\lambda \in \Lambda) \tag{6.5a}
\end{equation*}
$$

(on the domain of $f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)$ for which $\left.\left\langle E_{l} f, E_{l} f\right\rangle_{\Delta}<\infty\right)$, where

$$
\begin{equation*}
E_{\lambda, l}:=q^{-\lambda_{1}-\lambda_{2} \cdots-\lambda_{l-1}}\left(q^{-\lambda_{l}}-1\right)+t_{0}^{2} q^{-\lambda_{1}-\lambda_{2} \cdots-\lambda_{n-1}}\left(q^{\lambda_{n}}-1\right) \delta_{n-l} . \tag{6.5b}
\end{equation*}
$$

The q-difference operators \hat{H}_{l} (6.4) constitute nonnegative unbounded self-adjoint operators with purely discrete spectra in $L^{2}(\mathbb{A}, \hat{\Delta} d \xi)$ that are simultaneously diagonalized by the (inverse) deformed hyperoctahedral q-Whittaker transform \boldsymbol{F} (4.6a), (4.6b):

$$
\begin{equation*}
\hat{H}_{l}=\boldsymbol{F} \circ E_{l} \circ \boldsymbol{F}^{-1}, \quad l=1, \ldots, n . \tag{6.5c}
\end{equation*}
$$

Proof. It suffices to verify that

$$
\hat{H}_{l} p_{\lambda}=E_{\lambda, l} p_{\lambda} \quad(\lambda \in \Lambda, l=1, \ldots, n)
$$

This is achieved by multiplying the l th eigenvalue equation in Eq. (5.8) of [D3] by a scaling factor $t^{l(n-l)+l(l-1) / 2}$ and performing the limit $t \rightarrow 0$. Indeed, since the MacdonaldKoornwinder polynomial \mathbf{p}_{λ} converges to the deformed hyperoctahedral q-Whittaker function p_{λ}, we see from the explicit formulas for the operators in question that the LHS of the cited eigenvalue equation converges in this limit manifestly to $\hat{H}_{l} p_{\lambda}$ (up to an overall factor t_{0}^{l}). Hence, the RHS must also have a finite limit for $t \rightarrow 0$, which confirms that p_{λ} is an eigenfunction of \hat{H}_{l} (using again that $\mathbf{p}_{\lambda} \xrightarrow{t \rightarrow 0} p_{\lambda}$). For $l>1$ it is not obvious from [D3, Eq. (5.5)] that the (limiting) eigenvalue is indeed given by $E_{\lambda, l}$ (6.5b), but this can be deduced quite easily from the asymptotics of m_{λ} and $\hat{H}_{l} m_{\lambda}$ at $\xi=-c i \rho, \rho:=(n, n-1, \ldots, 2,1)$ for $c \rightarrow+\infty$. Indeed, one readily computes that for $c \rightarrow+\infty: m_{\lambda}=e^{\langle\lambda, \rho\rangle c}(1+o(1))$ and $\hat{H}_{l} m_{\lambda}=E_{\lambda, l} e^{\langle\lambda, \rho\rangle c}(1+o(1))$ (using the explicit formula for \hat{H}_{l} and the asymptotics

$$
\frac{\prod_{0 \leq r \leq 3}\left(1-\hat{t}_{r} e^{i \epsilon \xi_{j}}\right)}{\left(1-e^{2 i \epsilon \xi_{j}}\right)\left(1-q e^{2 i \epsilon \xi_{j}}\right)} \stackrel{c \rightarrow+\infty}{\longrightarrow}\left\{\begin{array}{ll}
t_{0}^{2} & \text { if } \epsilon=1 \\
1 & \text { if } \epsilon=-1
\end{array} \quad(1 \leq j \leq n)\right.
$$

and

$$
\left(1-q^{a} e^{i \epsilon\left(\xi_{j} \pm \xi_{k}\right)}\right)^{-1} \xrightarrow{c \rightarrow+\infty}\left\{\begin{array}{ll}
0 & \text { if } \epsilon=1 \\
1 & \text { if } \epsilon=-1
\end{array} \quad(1 \leq j<k \leq n),\right.
$$

where $a \in\{1,0,-1\})$. But then also $p_{\lambda}=e^{\langle\lambda, \rho\rangle c}(1+o(1))$ and $\hat{H}_{l} p_{\lambda}=E_{\lambda, l} e^{\langle\lambda, \rho\rangle c}(1+$ $o(1))$ for $c \rightarrow+\infty$ by the triangularity (3.3a) and the property that $\langle\mu, \rho\rangle<\langle\lambda, \rho\rangle$ if $\mu<\lambda$. The upshot is that the eigenvalue of \hat{H}_{l} on the eigenpolynomial p_{λ} must be equal to $E_{\lambda, l}$.

The q-difference operators \hat{H}_{l} (6.4) commute in the space of W-invariant trigonometric polynomials on \mathbb{T}. It is clear from Theorem 2 that this commutativity extends in the Hilbert space in the resolvent sense: for

$$
z_{l} \notin \sigma\left(\hat{H}_{l}\right):=\left\{E_{\lambda, l} \mid \lambda \in \Lambda\right\} \subset[0,+\infty) \quad(l=1, \ldots, n)
$$

the resolvents $\left(\hat{H}_{1}-z_{1} \mathrm{I}\right)^{-1}, \ldots,\left(\hat{H}_{n}-z_{n} \mathrm{I}\right)^{-1}$ of the unbounded operators $\hat{H}_{1}, \ldots, \hat{H}_{n}$ mutually commute as bounded operators in $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$.

Theorem 2 and Sect. 5 lift the bispectral duality of H (4.7) and \hat{H} (6.2a),(6.2b) to the complete systems of commuting quantum integrals. The bispectral dual integrable system $\hat{H}_{1}, \ldots, \hat{H}_{n}$ associated with our difference Toda chain can actually be identified as the strong-coupling limit $\left(t=q^{g}, g \rightarrow+\infty\right)$ of a trigonometric Ruijsenaars-type difference Calogero-Moser system with hyperoctahedral symmetry [D2]. Analogous bispectral dual systems were linked previously to the open quantum Toda chain and Ruijsenaars' open difference Toda chain. Specifically, the open quantum Toda chain and the strong-coupling limit of Ruijsenaars' rational difference Calogero-Moser system turn out to be bispectral duals of each other [B, HR, Sk2, Kz], and the same holds true for Ruijsenaars' open difference Toda chain and the $t=0$ trigonometric/hyperbolic Ruijsenaars-Macdonald operators [GLO1,HR,BC]. Dualities of this type were actually first established for the corresponding particle systems within the realms of classical mechanics: the action-angle transforms linearizing the open Toda chain and the strongcoupling limit of the rational Ruijsenaars-Schneider system are the inverses of each other and the same holds true for the action-angle transforms for Ruijsenaars' open relativistic Toda chain and the strong-coupling limit of the hyperbolic Ruijsenaars-Schneider system [R1,F].

7. Parameter Reductions

As already anticipated at the end of Sect. 2, for $\hat{t}_{2}=-\hat{t}_{3}=q^{1 / 2}$ and $\hat{t_{0}}=-\hat{t}_{1} \rightarrow 1$ (so $t_{0}=-t_{1} \rightarrow 1$ and $t_{2}=-t_{3} \rightarrow q^{1 / 2}$) the difference Toda Hamiltonian H (4.7) and the deformed hyperoctahedral q-Whittaker functions $p_{\lambda}(\xi), \lambda \in \Lambda$ degenerate to a difference Toda Hamiltonian and q-Whittaker functions of type D_{n} [Sul,KT,E,S, C]. Even though formally these limiting values of the parameters do not respect our restriction that $\hat{t}_{r} \in(-1,1) \backslash\{0\}$ (for $r=0, \ldots, 3$), it is readily inferred from the formulas that the results of Sects. 3-6 nevertheless remain valid at this specialization of the parameters.

In this section we are concerned with the behavior for $\hat{t}_{0} \rightarrow 0$. In this limit, the difference Toda chain turns out to be governed by a Hamiltonian of the form

$$
\begin{align*}
\mathrm{H}= & T_{1}+\sum_{j=2}^{n}\left(1-q^{x_{j-1}-x_{j}}\right) T_{j}+\sum_{j=1}^{n-1}\left(1-q^{x_{j}-x_{j+1}}\right) T_{j}^{-1} \\
& +\left(\prod_{1 \leq r<s \leq 3}\left(1-\hat{t}_{r} \hat{t}_{s} q^{x_{n}-1}\right)\right)\left(1-q^{x_{n}}\right) T_{n}^{-1} \\
& +\left(\hat{t}_{1}+\hat{t}_{2}+\hat{t}_{3}\right) q^{x_{n}}+\hat{t}_{1} \hat{t}_{2} \hat{t}_{3} q^{2 x_{n}}\left(q^{x_{n-1}-x_{n}}+q^{-x_{n}-1}-1-q^{-1}\right) \tag{7.1}
\end{align*}
$$

When $\hat{t}_{3}=0$, the Hamiltonian in question constitutes a Ruijsenaars-type difference counterpart of the quantum Toda chain with one-sided boundary potentials of Morse type [Sk1,I]. If in addition $\hat{t}_{2}=-1$, then the difference Toda chain under consideration amounts to a quantization of a relativistic Toda chain with boundary potentials introduced by Suris [Su1,KT]. For $\hat{t}_{1}=\hat{t}_{2}=\hat{t}_{3}=0$ and for $\hat{t}_{1}=-\hat{t}_{2}=q^{1 / 2}$ with $\hat{t}_{3}=-1$, we recover in turn hyperoctahedral difference Toda chains of type B_{n} and C_{n} that are diagonalized by q-Whittaker functions of type C_{n} and B_{n}, respectively [$\left.\mathrm{E}, \mathrm{S}, \mathrm{C}\right]$. Again, even though formally none of these specializations respect our restriction that $\hat{t}_{r} \in$ $(-1,1) \backslash\{0\}$ (for $r=1,2,3$), it is clear that the formulas below in fact do remain valid.
7.1. Deformed hyperoctahedral q-Whittaker function. For $\hat{t}_{0} \rightarrow 0$, the deformed hyperoctahedral q-Whittaker functions $p_{\lambda}(\xi)$ (3.3a), (3.3b) degenerate into a three-parameter family of orthogonal polynomials $\mathrm{p}_{\lambda}(\xi), \lambda \in \Lambda$ associated with the weight function

$$
\hat{\Delta}(\xi)=\frac{1}{(2 \pi)^{n}} \prod_{1 \leq j<k \leq n}\left|\left(e^{i\left(\xi_{j}+\xi_{k}\right)}, e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}\right|^{2} \prod_{1 \leq j \leq n}\left|\frac{\left(e^{2 i \xi_{j}}\right)_{\infty}}{\prod_{1 \leq r \leq 3}\left(\hat{t}_{r} e^{i \xi_{j}}\right)_{\infty}}\right|^{2} .
$$

The orthogonality relations for these polynomials read [cf. Eq. (4.5)]

$$
\int_{\mathbb{A}} \mathrm{p}_{\lambda}(\xi) \overline{\mathrm{p}_{\mu}(\xi)} \hat{\Delta}(\xi) \mathrm{d} \xi= \begin{cases}\Delta_{\lambda}^{-1} & \text { if } \lambda=\mu \tag{7.2}\\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\Delta_{\lambda}=\frac{\Delta_{0}}{(q)_{\lambda_{n}} \prod_{1 \leq r<s \leq 3}\left(\hat{t}_{r} \hat{t}_{s}\right)_{\lambda_{n}}} \prod_{1 \leq j<n} \frac{1}{(q)_{\lambda_{j}-\lambda_{j+1}}}
$$

with

$$
\Delta_{0}=(q)_{\infty} \prod_{1 \leq r<s \leq 3}\left(\hat{t}_{r} \hat{t}_{s}\right)_{\infty}
$$

For $n=1$, the limit $p_{\lambda} \xrightarrow{\hat{t}_{0} \rightarrow 0} \mathrm{p}_{\lambda}$ amounts to a well-known reduction from the AskeyWilson polynomials to the continuous dual q-Hahn polynomials [KLS].
7.2. Hamiltonian. The difference Toda eigenvalue equation $H \psi_{\xi}=\hat{E}(\xi) \psi_{\xi}$ becomes in the limit $\hat{t}_{0} \rightarrow 0$ of the form $\mathrm{H} \phi_{\xi}=\hat{E}(\xi) \phi_{\xi}$ with $\phi_{\xi}: \Lambda \rightarrow \mathbb{C}$ given by $\phi_{\xi}(\lambda)=\mathrm{p}_{\lambda}(\xi)$ $(\xi \in \mathbb{A}, \lambda \in \Lambda)$, where $\mathrm{H}(7.1)$ acts on $f: \Lambda \rightarrow \mathbb{C}$ via

$$
\begin{equation*}
(\mathrm{H} f)(\lambda)=\sum_{\substack{1 \leq j \leq n \\ \lambda+e_{j} \in \Lambda}} v_{j}^{+}(\lambda) f\left(\lambda+e_{j}\right)+\sum_{\substack{1 \leq j \leq n \\ \lambda-e_{j} \in \Lambda}} v_{j}^{-}(\lambda) f\left(\lambda-e_{j}\right)+u(\lambda) f(\lambda), \tag{7.3}
\end{equation*}
$$

with

$$
\begin{aligned}
v_{j}^{+}(\lambda) & =\left(1-q^{\lambda_{j-1}-\lambda_{j}}\right), \\
v_{j}^{-}(\lambda) & =\left(1-q^{\lambda_{j}-\lambda_{j+1}}\right)\left(\left(1-q^{\lambda_{n}}\right) \prod_{1 \leq r<s \leq 3}\left(1-\hat{t}_{r} \hat{t}_{s} q^{\lambda_{n}-1}\right)\right)^{\delta_{n-j}}, \\
u(\lambda) & =\left(\hat{t}_{1}+\hat{t}_{2}+\hat{t}_{3}\right) q^{\lambda_{n}}+\hat{t}_{1} \hat{t}_{2} \hat{t}_{3} q^{2 \lambda_{n}}\left(q^{\lambda_{n-1}-\lambda_{n}}+q^{-\lambda_{n}-1}-1-q^{-1}\right)
\end{aligned}
$$

(subject to the convention that $\lambda_{0}=+\infty$ and $\lambda_{n+1}=-\infty$).
7.3. Diagonalization and integrability. Let $\mathbf{F}: \ell^{2}(\Lambda, \Delta) \rightarrow L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ denote the ($\hat{t}_{0} \rightarrow 0$ degenerate) Hilbert space isomorphism determined by the orthogonal basis p_{λ}, $\lambda \in \Lambda$:

$$
\begin{equation*}
(\mathbf{F} f)(\xi)=\left\langle f, \phi_{\xi}\right\rangle_{\Delta}=\sum_{\lambda \in \Lambda} f(\lambda) \overline{\phi_{\xi}(\lambda)} \Delta_{\lambda} \tag{7.4a}
\end{equation*}
$$

$\left(f \in \ell^{2}(\Lambda, \Delta)\right)$ with

$$
\begin{equation*}
\left(\mathbf{F}^{-1} \hat{f}\right)(\lambda)=\langle\hat{f}, \overline{\phi(\lambda)}\rangle_{\hat{\Delta}}=\int_{A} \hat{f}(\xi) \phi_{\xi}(\lambda) \hat{\Delta}(\xi) \mathrm{d} \xi \tag{7.4b}
\end{equation*}
$$

$\left(\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)\right)$, and let $\hat{E}_{l}: L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)(l=1, \ldots, n)$ be the multiplication operators defined in accordance with Sect. 5.

The commuting bounded self-adjoint operators $\mathrm{H}_{1}, \ldots, \mathrm{H}_{n}$ (with absolutely continuous spectra) in $\ell^{2}(\Lambda, \Delta)$ given by

$$
\begin{equation*}
\mathrm{H}_{l}=\mathbf{F}^{-1} \circ \hat{E}_{l} \circ \mathbf{F}, \quad l=1, \ldots, n, \tag{7.5}
\end{equation*}
$$

constitute a complete system of quantum integrals for the difference Toda Hamiltonian $\mathrm{H}_{1}=\mathrm{H}$ (7.3).
7.4. Bispectral dual system. Let $\hat{\mathrm{H}}_{1}, \ldots, \hat{\mathrm{H}}_{n}$ denote the commuting q-difference operators in Eq. (6.4) with $\hat{t}_{0}=0$ and let $\mathrm{E}_{1}, \ldots, \mathrm{E}_{n}$ be the self-adjoint multiplication operators in $\ell^{2}(\Lambda, \Delta)$ given by [cf. Eqs. (6.5a), (6.5b)]

$$
\begin{equation*}
\left(\mathrm{E}_{l} f\right)(\lambda)=\mathrm{E}_{\lambda, l} f(\lambda) \quad(\lambda \in \Lambda, l=1, \ldots, n) \tag{7.6a}
\end{equation*}
$$

(on the domain of $f \in \ell^{2}(\Lambda, \Delta)$ for which $\left\langle\mathrm{E}_{l} f, \mathrm{E}_{l} f\right\rangle_{\Delta}<\infty$), with

$$
\begin{equation*}
\mathrm{E}_{\lambda, l}=q^{-\lambda_{1}-\lambda_{2} \cdots-\lambda_{l-1}}\left(q^{-\lambda_{l}}-1\right) . \tag{7.6b}
\end{equation*}
$$

Then one has that

$$
\begin{equation*}
\hat{\mathrm{H}}_{l}=\mathbf{F} \circ \mathrm{E}_{l} \circ \mathbf{F}^{-1}, \quad l=1, \ldots, n, \tag{7.7}
\end{equation*}
$$

i.e. the q-difference operators constitute nonnegative unbounded self-adjoint operators with purely discrete spectra in $L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)$ that are simultaneously diagonalized by the three-parameter (inverse) deformed hyperoctahedral q-Whittaker transform \mathbf{F} (7.4a), (7.4b).

8. Scattering

In Ref. [D4] the scattering operator for a wide class of quantum lattice models was determined by stationary-phase methods originating from Ref. [R4]. It follows from the diagonalization in Theorem 1 that our difference Toda chains fit within this class of lattice models. Indeed, the deformed hyperoctahedral q-Whittaker functions $p_{\lambda}, \lambda \in \Lambda$ belong to the family of orthogonal polynomials defined in [D4, Sec. 2], since the orthogonality weight function $\hat{\Delta}(\xi)(3.4 \mathrm{~b})$ is of the indicated form (with $R=B C_{n}$) and moreover meets the demanded analyticity requirements. We will close by briefly indicating how the general scattering results from Ref. [D4, Sec. 4.2] specialize in the present difference Toda setting.

Let \mathcal{H}_{0} be the self-adjoint discrete Laplacian in $\ell^{2}(\Lambda)$ of the form

$$
\left(\mathcal{H}_{0} f\right)(\lambda):=\sum_{\substack{1 \leq j \leq n \\ \lambda+e_{j} \in \Lambda}} f\left(\lambda+e_{j}\right)+\sum_{\substack{1 \leq j \leq n \\ \lambda-e_{j} \in \Lambda}} f\left(\lambda-e_{j}\right) \quad\left(f \in \ell^{2}(\Lambda)\right),
$$

and let \mathcal{H} denote the pushforward

$$
\begin{equation*}
\mathcal{H}:=\Delta^{1 / 2} H \Delta^{-1 / 2} \tag{8.1}
\end{equation*}
$$

of the difference Toda Hamiltonian H (4.7) onto the Hilbert space $\ell^{2}(\Lambda)$ via the Hilbert space isomorphism $\Delta^{1 / 2}: \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right) \rightarrow \ell^{2}(\Lambda)$ given by

$$
\begin{equation*}
\left(\Delta^{1 / 2} f\right)(\lambda):=\Delta_{\lambda}^{1 / 2} f\left(\rho_{0}+\lambda\right) \quad\left(f \in \ell^{2}\left(\rho_{0}+\Lambda, \Delta\right)\right) \tag{8.2}
\end{equation*}
$$

(where $\Delta^{-1 / 2}:=\left(\Delta^{1 / 2}\right)^{-1}$). Clearly, one has by Theorem 1 that

$$
\begin{equation*}
\mathcal{H}=\mathcal{F}^{-1} \hat{E} \mathcal{F} \quad \text { with } \quad \mathcal{F}:=\hat{\boldsymbol{\Delta}}^{1 / 2} \boldsymbol{F} \boldsymbol{\Delta}^{-1 / 2} \tag{8.3}
\end{equation*}
$$

where $\hat{\boldsymbol{\Delta}}^{1 / 2}: L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A})$ denotes the Hilbert space isomorphism given by

$$
\begin{equation*}
\left(\hat{\Delta}^{1 / 2} \hat{f}\right)(\xi):=\hat{\Delta}^{1 / 2}(\xi) \hat{f}(\xi) \quad\left(\hat{f} \in L^{2}(\mathbb{A}, \hat{\Delta} \mathrm{~d} \xi)\right) \tag{8.4}
\end{equation*}
$$

(and \hat{E} (4.8b) is now regarded as a self-adjoint bounded multiplication operator in $\left.L^{2}(\mathbb{A})\right)$. Moreover, it is elementary that the spectral decomposition of the discrete Laplacian \mathcal{H}_{0} is given by

$$
\mathcal{H}_{0}=\mathcal{F}_{0}^{-1} \hat{E} \mathcal{F}_{0}
$$

where $\mathcal{F}_{0}: \ell^{2}(\Lambda) \rightarrow L^{2}(\mathbb{A})$ denotes the Fourier isomorphism

$$
\begin{equation*}
\left(\mathcal{F}_{0} f\right)(\xi):=\sum_{\lambda \in \Lambda} f(\lambda) \overline{\chi \xi(\lambda)} \tag{8.5a}
\end{equation*}
$$

$\left(f \in \ell^{2}(\Lambda)\right)$ with the inversion formula

$$
\begin{equation*}
\left(\mathcal{F}_{0}^{-1} \hat{f}\right)(\lambda)=\int_{\mathbb{A}} \hat{f}(\xi) \chi_{\xi}(\lambda) \mathrm{d} \xi \tag{8.5b}
\end{equation*}
$$

$\left(\hat{f} \in L^{2}(\mathbb{A})\right)$. Here we have employed the anti-invariant Fourier kernel

$$
\chi_{\xi}(\lambda):=\frac{1}{(2 \pi)^{n / 2} i^{n^{2}}} \sum_{w \in W} \operatorname{sign}(w) e^{i\langle w(\rho+\lambda), \xi\rangle}
$$

with $\operatorname{sign}(w)=\epsilon_{1} \cdots \epsilon_{n} \operatorname{sign}(\sigma)$ for $w=(\sigma, \epsilon) \in W=S_{n} \ltimes\{1,-1\}^{n}$ and $\rho=$ $(n, n-1, \ldots, 2,1)$. Notice that \mathcal{F}_{0} is recovered from \mathcal{F} in the limit $q \rightarrow 0, \hat{t}_{r} \rightarrow 0$ $(r=0, \ldots, 3)$.

The scattering operator describing the large-times asymptotics of the difference Toda dynamics $e^{i \mathcal{H} t}$ relative to the Laplacian's reference dynamics $e^{i \mathcal{H}_{0} t}$ turns out to be governed by an n-particle scattering matrix $\hat{\mathcal{S}}(\xi)$ that factorizes in two-particle pair matrices and one-particle boundary matrices:

$$
\begin{equation*}
\hat{\mathcal{S}}(\xi):=\prod_{1 \leq j<k \leq n} s\left(\xi_{j}-\xi_{k}\right) s\left(\xi_{j}+\xi_{k}\right) \prod_{1 \leq j \leq n} s_{0}\left(\xi_{j}\right) \tag{8.6a}
\end{equation*}
$$

with

$$
\begin{equation*}
s(x):=\frac{\left(q e^{i x}\right)_{\infty}}{\left(q e^{-i x}\right)_{\infty}} \quad \text { and } \quad s_{0}(x):=\frac{\left(q e^{2 i x}\right)_{\infty}}{\left(q e^{-2 i x}\right)_{\infty}} \prod_{0 \leq r \leq 3} \frac{\left(\hat{t}_{r} e^{-i x}\right)_{\infty}}{\left(\hat{t}_{r} e^{i x}\right)_{\infty}} . \tag{8.6b}
\end{equation*}
$$

To make the latter statement precise, let us denote by $C_{0}\left(\mathbb{A}_{\text {reg }}\right)$ the dense subspace of $L^{2}(\mathbb{A})$ consisting of smooth test functions with compact support in the open dense subset $\mathbb{A}_{\text {reg }} \subset \mathbb{A}$ on which the components of the gradient

$$
\nabla \hat{E}(\xi)=\left(-2 \sin \left(\xi_{1}\right), \ldots,-2 \sin \left(\xi_{n}\right)\right), \quad \xi \in \mathbb{A}
$$

do not vanish and are all distinct in absolute value. We now define an unitary multiplication operator $\hat{\mathcal{S}}: L^{2}(\mathbb{A}, \mathrm{~d} \xi) \rightarrow L^{2}(\mathbb{A}, \mathrm{~d} \xi)$ via its restriction to $C_{0}\left(\mathbb{A}_{\text {reg }}\right)$ as follows:

$$
\begin{equation*}
(\hat{\mathcal{S}} \hat{f})(\xi):=\hat{\mathcal{S}}\left(w_{\xi} \xi\right) \hat{f}(\xi) \quad\left(\hat{f} \in C_{0}\left(\mathbb{A}_{\mathrm{reg}}\right)\right. \tag{8.7}
\end{equation*}
$$

where $w_{\xi} \in W$ for $\xi \in \mathbb{A}_{\text {reg }}$ is such that the components of $w_{\xi} \nabla \hat{E}(\xi)$ are all positive and reordered from large to small.

Theorem 4.2 and Corollary 4.3 of Ref. [D4] then provide the following explicit formulas for the wave operators and scattering operator of our difference Toda chain.

Theorem 3 (Wave and Scattering Operators). The operator limits

$$
\Omega^{ \pm}:=s-\lim _{t \rightarrow \pm \infty} e^{i t \mathcal{H}} e^{-i t \mathcal{H}_{0}}
$$

converge in the strong $\ell^{2}(\Lambda)$-norm topology and the corresponding wave operators $\Omega^{ \pm}$ intertwining the difference Toda dynamics $e^{i \mathcal{H} t}$ with the discrete Laplacian's dynamics $e^{i \mathcal{H}_{0} t}$ are given by unitary operators in $\ell^{2}(\Lambda)$ of the form

$$
\Omega^{ \pm}=\mathcal{F}^{-1} \circ \hat{\mathcal{S}}^{\mp 1 / 2} \circ \mathcal{F}_{0}
$$

where the branches of the square roots are to be chosen such that

$$
s(x)^{1 / 2}=\frac{\left(q e^{i x}\right)_{\infty}}{\left|\left(q e^{i x}\right)_{\infty}\right|} \quad \text { and } \quad s_{0}(x)^{1 / 2}=\frac{\left(q e^{2 i x}\right)_{\infty}}{\left|\left(q e^{2 i x}\right)_{\infty}\right|} \prod_{0 \leq r \leq 3} \frac{\left|\left(\hat{t}_{r} e^{i x}\right)_{\infty}\right|}{\left(\hat{t}_{r} e^{i x}\right)_{\infty}}
$$

Hence, the scattering operator relating the large-times asymptotics of the difference Toda dynamics $e^{i \mathcal{H} t}$ for $t \rightarrow-\infty$ and $t \rightarrow+\infty$ is given by the unitary operator

$$
\mathcal{S}:=\left(\Omega^{+}\right)^{-1} \Omega^{-}=\mathcal{F}_{0}^{-1} \circ \hat{\mathcal{S}} \circ \mathcal{F}_{0}
$$

The degenerate case of the difference Toda chain discussed in Sect. 7 is also covered by Theorem 3, upon setting ρ_{0} equal to the nulvector in Eq. (8.2), replacing H (4.7) by H (7.3) in \mathcal{H} (8.1) and \boldsymbol{F} (4.6a), (4.6b) by \mathbf{F} (7.4a), (7.4b) in \mathcal{F} (8.3), and substituting $\hat{t}_{0}=0$ overall.

Appendix A: Macdonald-Koornwinder Polynomials

This appendix collects some key properties of the Macdonald-Koornwinder multivariate Askey-Wilson polynomials [K,D3, M]. In the case of one variable ($n=1$), the properties below specialize to well-known formulas for the Askey-Wilson polynomials (see e.g. [KLS]).

The Macdonald-Koornwinder polynomials $\mathbf{p}_{\lambda}(\xi)(\lambda \in \Lambda, \xi \in \mathbb{T})$ are defined as polynomials of the type in Eqs. (3.3a), (3.3b), (3.4a) associated with the weight function [K, Sec. 5], [M, Ch. 5.3]:

$$
\hat{\boldsymbol{\Delta}}(\xi)=\frac{1}{(2 \pi)^{n}} \prod_{1 \leq j \leq n}\left|\frac{\left(e^{2 i \xi_{j}}\right)_{\infty}}{\prod_{0 \leq r \leq 3}\left(\hat{t}_{r} e^{i \xi_{j}}\right)_{\infty}}\right|^{2} \prod_{1 \leq j<k \leq n}\left|\frac{\left(e^{i\left(\xi_{j}+\xi_{k}\right)}, e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}}{\left(t e^{i\left(\xi_{j}+\xi_{k}\right)}, t e^{i\left(\xi_{j}-\xi_{k}\right)}\right)_{\infty}}\right|^{2},
$$

with $q \in(0,1)$ and $t, \hat{t}_{r} \in(-1,1) \backslash\{0\}(r=0, \ldots, 3)$. For $t \rightarrow 0$ this weight function passes into that of Eq. (3.4b), whence the polynomials in question degenerate in this limit continuously to the deformed hyperoctahedral q-Whittaker functions of Sect. 3. Notice in this respect that for $x \in \mathbb{R}$ and $|t|<\varepsilon(<1)$ quotients of the form $\left(e^{i x}\right)_{\infty} /\left(t e^{i x}\right)_{\infty}$ remain bounded in absolute value by $(-1)_{\infty} /(\varepsilon)_{\infty}$, so we may interchange limits and integration for $t \rightarrow 0$ when integrating trigonometric polynomials against the Macdonald-Koornwinder weight function $\hat{\boldsymbol{\Delta}}(\xi)$ over the bounded alcove \mathbb{A} (by dominated convergence).

The normalized Macdonald-Koornwinder polynomials

$$
\begin{equation*}
\mathbf{P}_{\lambda}(\xi):=\mathbf{c}_{\lambda} \mathbf{p}_{\lambda}(\xi) \quad\left(\lambda \in \Lambda_{n}\right), \tag{A.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{c}_{\lambda}:=\prod_{1 \leq j \leq n} \frac{\left(\tau_{j}^{2}\right)_{2 \lambda_{j}}}{\prod_{0 \leq r \leq 3}\left(t_{r} \tau_{j}\right)_{\lambda_{j}}} \prod_{1 \leq j<k \leq n} \frac{\left(\tau_{j} \tau_{k}\right)_{\lambda_{j}+\lambda_{k}}}{\left(t \tau_{j} \tau_{k}\right)_{\lambda_{j}+\lambda_{k}}} \frac{\left(\tau_{j} \tau_{k}^{-1}\right)_{\lambda_{j}-\lambda_{k}}}{\left(t \tau_{j} \tau_{k}^{-1}\right)_{\lambda_{j}-\lambda_{k}}} \tag{A.1b}
\end{equation*}
$$

with $\tau_{j}:=t^{n-j} t_{0}(j=1, \ldots, n)$ and $t_{r}(r=0, \ldots, 3)$ given by Eq. (4.1), satisfy the following orthogonality relations [K, Sec. 5], [D3, Sec. 7], [M, Ch. 5.3]:

$$
\int_{\mathbb{A}} \mathbf{P}_{\lambda}(\xi) \overline{\mathbf{P}_{\mu}(\xi)} \hat{\boldsymbol{\Delta}}(\xi) \mathrm{d} \xi= \begin{cases}\boldsymbol{\Delta}_{\lambda}^{-1} & \text { if } \lambda=\mu \tag{A.2a}\\ 0 & \text { otherwise }\end{cases}
$$

with

$$
\begin{align*}
\Delta_{\lambda}:= & \Delta_{0} \prod_{1 \leq j \leq n}\left(\frac{1-\tau_{j}^{2} q^{2 \lambda_{j}}}{1-\tau_{j}^{2}} \prod_{0 \leq r \leq 3} \frac{\left(t_{r} \tau_{j}\right)_{\lambda_{j}}}{\left(q t_{r}^{-1} \tau_{j}\right)_{\lambda_{j}}}\right) \\
& \times \prod_{1 \leq j<k \leq n} \frac{1-\tau_{j} \tau_{k} q^{\lambda_{j}+\lambda_{k}}}{1-\tau_{j} \tau_{k}} \frac{\left(t \tau_{j} \tau_{k}\right) \lambda_{j}+\lambda_{k}}{\left(q t^{-1} \tau_{j} \tau_{k}\right)_{\lambda_{j}+\lambda_{k}}} \frac{1-\tau_{j} \tau_{k}^{-1} q^{\lambda_{j}-\lambda_{k}}}{1-\tau_{j} \tau_{k}^{-1}} \frac{\left(t \tau_{j} \tau_{k}^{-1}\right) \lambda_{j}-\lambda_{k}}{\left(q t^{-1} \tau_{j} \tau_{k}^{-1}\right)_{\lambda_{j}-\lambda_{k}}} \tag{A.2b}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{0}:=\prod_{1 \leq j \leq n} \frac{\left(q, t^{j}\right)_{\infty} \prod_{0 \leq r<s \leq 3}\left(\hat{t}_{r} \hat{t}_{s} t^{n-j}\right)_{\infty}}{\left(t, \hat{t}_{0} \hat{t}_{1} \hat{t}_{2} \hat{t}_{3} t^{2 n-j-1}\right)_{\infty}} . \tag{A.2c}
\end{equation*}
$$

These orthogonal polynomials satisfy moreover a second-order q-difference equation [K, Sec. 5], [M, Ch. 5.3, 4.4]:

$$
\begin{align*}
& \mathbf{P}_{\lambda}(\xi) \sum_{j=1}^{n}\left(q^{-1} \hat{t}_{0} \hat{1}_{1} \hat{2}_{2} \hat{t}_{3} t^{2 n-1-j}\left(q^{\lambda_{j}}-1\right)+t^{j-1}\left(q^{-\lambda_{j}}-1\right)\right) \\
& \quad=\sum_{1 \leq j \leq n} \hat{V}_{j}(\xi)\left(\mathbf{P}_{\lambda}\left(\xi-i \log (q) e_{j}\right)-\mathbf{P}_{\lambda}(\xi)\right)+\hat{V}_{j}(-\xi)\left(\mathbf{P}_{\lambda}\left(\xi+i \log (q) e_{j}\right)-\mathbf{P}_{\lambda}(\xi)\right) \tag{A.3}
\end{align*}
$$

with

$$
\hat{V}_{j}(\xi):=\frac{\prod_{0 \leq r \leq 3}\left(1-\hat{t}_{r} e^{i \xi_{j}}\right)}{\left(1-e^{2 i \xi_{j}}\right)\left(1-q e^{2 i \xi_{j}}\right)} \prod_{\substack{1 \leq \leq \leq \leq n \\ k \neq j}} \frac{1-t e^{i\left(\xi_{j}+\xi_{k}\right)}}{1-e^{i\left(\xi_{j}+\xi_{k}\right)}} \frac{1-t e^{i\left(\xi_{j}-\xi_{k}\right)}}{1-e^{i\left(\xi_{j}-\xi_{k}\right)}}
$$

and a Pieri-type recurrence formula [D3, Sec. 6], [M, Ch. 5.3, 4.4]:

$$
\begin{align*}
& \mathbf{P}_{\lambda}(\xi) \sum_{j=1}^{n}\left(2 \cos \left(\xi_{j}\right)-\hat{\tau}_{j}-\hat{\tau}_{j}^{-1}\right) \\
& \quad=\sum_{\substack{1 \leq j \leq n \\
\lambda+e_{j} \in \Lambda}} V_{j}^{+}(\lambda)\left(\hat{\tau}_{j} \mathbf{P}_{\lambda+e_{j}}(\xi)-\mathbf{P}_{\lambda}(\xi)\right) \\
& \quad+\sum_{\substack{1 \leq j \leq n \\
\lambda-e_{j} \in \Lambda}} V_{j}^{-}(\lambda)\left(\hat{\tau}_{j}^{-1} \mathbf{P}_{\lambda-e_{j}}(\xi)-\mathbf{P}_{\lambda}(\xi)\right), \tag{A.4}
\end{align*}
$$

with $\hat{\tau}_{j}:=t^{n-j} \hat{t}_{0}(j=1, \ldots, n)$ and

$$
\begin{aligned}
V_{j}^{+}(\lambda) & :=\frac{\hat{\tau}_{1}^{-1} \prod_{0 \leq r \leq 3}\left(1-t_{r} \tau_{j} q^{\lambda_{j}}\right)}{\left(1-\tau_{j}^{2} q^{2 \lambda_{j}}\right)\left(1-\tau_{j}^{2} q^{2 \lambda_{j}+1}\right)} \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{1-t \tau_{j} \tau_{k} q^{\lambda_{j}+\lambda_{k}}}{1-\tau_{j} \tau_{k} q^{\lambda_{j}+\lambda_{k}}} \frac{1-t \tau_{j} \tau_{k}^{-1} q^{\lambda_{j}-\lambda_{k}}}{1-\tau_{j} \tau_{k}^{-1} q^{\lambda_{j}-\lambda_{k}}}, \\
V_{j}^{-}(\lambda) & :=\frac{\hat{\tau}_{1} \prod_{0 \leq r \leq 3}\left(1-t_{r}^{-1} \tau_{j} q^{\lambda_{j}}\right)}{\left(1-\tau_{j}^{2} q^{2 \lambda_{j}}\right)\left(1-\tau_{j}^{2} q^{2 \lambda_{j}-1}\right)} \prod_{\substack{1 \leq k \leq n \\
k \neq j}} \frac{1-t^{-1} \tau_{j} \tau_{k} q^{\lambda_{j}+\lambda_{k}}}{1-\tau_{j} \tau_{k} q^{\lambda_{j}+\lambda_{k}}} \frac{1-t^{-1} \tau_{j} \tau_{k}^{-1} q^{\lambda_{j}-\lambda_{k}}}{1-\tau_{j} \tau_{k}^{-1} q^{\lambda_{j}-\lambda_{k}}}
\end{aligned}
$$

(where the vectors e_{1}, \ldots, e_{n} refer to the standard unit basis of \mathbb{R}^{n}).

References

[B] Babelon, O.: Equations in dual variables for Whittaker functions. Lett. Math. Phys. 65, 229-240 (2003)
[BC] Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225-400 (2014)
[C] Cherednik, I.: Whittaker limits of difference spherical functions, Int. Math. Res. Not. IMRN 37933842 (2009)
[D1] van Diejen, J.F.: Deformations of Calogero-Moser systems and finite toda chains. Theoret. Math. Phys. 99, 549-554 (1994)
[D2] van Diejen, J.F.: Difference Calogero-Moser systems and finite Toda chains. J. Math. Phys. 36, 12991323 (1995)
[D3] van Diejen, J.F.: Properties of some families of hypergeometric orthogonal polynomials in several variables. Trans. Am. Math. Soc. 351, 233-270 (1999)
[D4] van Diejen, J.F.: Scattering theory of discrete (pseudo) Laplacians on a Weyl chamber. Am. J. Math. 127, 421-458 (2005)
[DG] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Comm. Math. Phys. 103, 177-240 (1986)
[E] Etingof, P.: Whittaker functions on quantum groups and q-deformed Toda operators. In: Astashkevich, A., Tabachnikov, S. (eds.) Differential Topology, Infinite-Dimensional Lie Algebras, and Applications. Amer. Math. Soc. Transl. Ser. 2, vol. 194., pp. 9-25. Amer. Math. Soc., Providence, RI (1999)
[F] Fehér, L.: Action-angle map and duality for the open Toda lattice in the perspective of Hamiltonian reduction. Phys. Lett. A 377, 2917-2921 (2013)
[GLO1] Gerasimov, A., Lebedev, D., Oblezin, S.: On q-deformed $g l_{l+1}$-Whittaker function III. Lett. Math. Phys. 97, 1-24 (2011)
[GLO2] Gerasimov, A., Lebedev, D., Oblezin, S.: Quantum Toda chains intertwined, St. Petersburg Math. J. 22, 411-435 (2011)
[GW] Goodman, R., Wallach, N.R.: Classical and quantum mechanical systems of Toda-lattice type III. joint eigenfunctions of the quantized systems. Comm. Math. Phys. 105, 473-509 (1986)
[G] Grünbaum, F.A.: The bispectral problem: an overview. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds.) Special Functions 2000: Current Perspective and Future Directions. NATO Sci. Ser. II Math. Phys. Chem., vol. 30, pp. 129-140. Kluwer Academic Publishers, Dordrecht (2001)
[HR] Hallnäs, M., Ruijsenaars, S.N.M.: Kernel functions and Bäcklund transformations for relativistic Calogero-Moser and Toda systems. J. Math. Phys. 53, 123512 (2012)
[I] Inozemtsev, V.I.: The finite Toda lattices. Comm. Math. Phys. 121, 629-638 (1989)
[KLS] Koekoek, R., Lesky, P., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics. Springer, New York
[K] Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type BC. In: Richards, D.St.P. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, vol. 138, pp. 189-204. Amer. Math. Soc. Providence RI (1992)
[Ko] Kostant, B.: Quantization and representation theory. In: Luke G.L. (ed.) Representation Theory of Lie Groups. London Mathematical Society Lecture Note Series, vol. 34, pp. 287-316. Cambridge University Press, Cambridge-New York (1979)
[Kz] Kozlowski, K.K.: Aspects of the inverse problem for the Toda chain. J. Math. Phys. 54, 121902 (2013)
[KJC] Kuznetsov, V.B., Jørgensen, M.F., Christiansen, P.L.: New boundary conditions for integrable lattices. J. Phys. A 28, 4639-4654 (1995)
[KT] Kuznetsov, V.B., Tsyganov, A.V.: Quantum relativistic Toda chains. J. Math. Sci. 80, 1802-1810 (1996)
[M] Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)
[O] Oshima, T.: Completely integrable systems associated with classical root systems. SIGMA Symmetry Integr. 3, 061 (2007)
[R1] Ruijsenaars, S.N.M.: Relativistic Toda systems. Comm. Math. Phys. 133, 217-247 (1990)
[R2] Ruijsenaars, S.N.M.: Finite-dimensional Soliton systems. In: Kupershmidt B. (ed.) Integrable and Superintegrable Systems, pp. 165-206. World Scientific Publishing, Teaneck, NJ (1990)
[R3] Ruijsenaars, S.N.M.: Systems of Calogero-Moser type. In: Semenoff, G., Vinet, L. (eds.) Particles and Fields (Banff, 1994). CRM Ser. Math. Phys., pp. 251-352. Springer, New York (1999)
[R4] Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Comm. Math. Phys. 228, 467-494 (2002)
[S] Sevostyanov, A.: Quantum deformation of Whittaker modules and the Toda lattice. Duke Math. J. 105, 211-238 (2000)
[Sh] Shimeno, N.: A limit transition from Heckman-Opdam hypergeometric functions to the Whittaker functions associated with root systems. arXiv:0812.3773
[Sk1] Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375-2389 (1988)
[Sk2] Sklyanin, E.K.: Bispectrality for the quantum open Toda chain. J. Phys. A 46, 382001 (2013)
[Su1] Suris, Y.B.: Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices. Phys. Lett. A 145, 113-119 (1990)
[Su2] Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics, vol. 219. Birkäuser Verlag, Basel (2003)
[St] Sutherland, B.: An introduction to the Bethe ansatz. In: Shastry, B.S., Jha, S.S., Singh, V. (eds.) Exactly Solvable Problems in Condensed Matter and Relativistic Field Theory (Panchgani, 1985). Lecture Notes in Physics, vol. 242, pp. 1-95. Springer, Berlin (1985)

Communicated by P. Deift

[^0]: This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grants \# 1130226 and \# 1141114.

