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Abstract: We endow Ruijsenaars’ open difference Toda chain with a one-sided bound-
ary interaction of Askey–Wilson type and diagonalize the quantum Hamiltonian by
means of deformed hyperoctahedral q-Whittaker functions that arise as a t = 0 de-
generation of the Macdonald–Koornwinder multivariate Askey–Wilson polynomials.
This immediately entails the quantum integrability, the bispectral dual system, and the
n-particle scattering operator for the chain in question.

1. Introduction

It is well-known that the open and closed Toda chains may be viewed as limits of the hy-
perbolic and elliptic Calogero–Moser–Sutherland particle systems, respectively [St,R1,
I,R2]. More general integrable open Toda chains with boundary interactions involving
potentials of Morse type [Ko,GW,Sk1] and of Pöschl-Teller type [I,KJC] are recov-
ered similarly as degenerations of the Olshanetsky–Perelomov–Inozemtsev generalized
Calogero–Moser–Sutherland systems with hyperoctahedral symmetry [I,O,Sh,GLO2].
Moreover, such limiting relations turn out to persist at the level of the Ruijsenaars-
Schneider particle systems and Ruijsenaars’ difference (a.k.a. relativistic) Toda chains
[R1,R2,R3,E,GLO1,HR,BC], as well as their hyperoctahedral counterparts [D2,C].
Specifically, in the hyperoctahedral case one recovers in this manner generalizations of
Ruijsenaars’ open relativistic Toda chain with boundary interactions that were studied
at the level of classical mechanics in Refs. [Su1,D1,Su2] and at the level of quantum
mechanics in Refs. [KT,D2,E,S,C].

In the present work we consider the Hamiltonian of such an open difference Toda
chain endowed with a one-sided four-parameter boundary interaction of Askey–Wilson
type. Upon diagonalizing the quantum Hamiltonian in question by means of deformed
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hyperoctahedral q-Whittaker functions that arise as a t = 0 degeneration of the Macdon-
ald–Koornwinder polynomials [K,M], the quantum integrability, the bispectral dual
system, and the n-particle scattering operator are deduced. For special values of the
Askey–Wilson parameters, our chain amounts to a difference counterpart of the Dn-
type and the An−1-type quantum Toda chains with one-sided boundary potentials of
Pöschl-Teller and Morse type, respectively.

The presentation is structured as follows. After introducing our difference Toda chain
in Sect. 2 and defining the deformed hyperoctahedral q-Whittaker functions in Sect. 3,
the diagonalization of the Hamiltonian is carried out in Sect. 4 by identifying the cor-
responding eigenvalue equation with the t → 0 degeneration of a well-known Pieri
formula for the Macdonald–Koornwinder polynomials [D3,M]. The quantum integrals
and the bispectral dual system are then discussed in Sects. 5 and 6, respectively. In
Sect. 7 analogous results for a difference counterpart of the quantum Toda chain with
one-sided boundary potentials of Morse type are obtained by letting one of the boundary
parameters tend to zero (which corresponds to a transition from Askey–Wilson poly-
nomials to continuous dual q-Hahn polynomials [KLS]). We close in Sect. 8 with an
explicit description of the n-particle scattering operator that relies on a stationary-phase
analysis that was performed in Refs. [R4,D4]. Some useful properties of the Macdonald–
Koornwinder multivariate Askey–Wilson polynomials have been collected in a separate
appendix at the end.

2. Difference Toda Chain with One-Sided Boundary Interaction of Askey–Wilson
Type

Formally, the Hamiltonian of our difference Toda chain is given by the difference oper-
ator [D2]:

H := T1 +
n−1∑

j=2

(1 − qx j−1−x j )Tj

+
n−2∑

j=1

(1 − qx j −x j+1)T −1
j + (1 − qxn−1−xn )(1 − qxn−1+xn )T −1

n−1

+w+(xn)(1 − qxn−1−xn )Tn + w−(xn)(1 − qxn−1+xn )T −1
n + U (xn−1, xn), (2.1a)

where

w+(x) :=
∏

0≤r≤3(1 − tr qx )

(1 − q2x )(1 − q2x+1)
, w−(x) :=

∏
0≤r≤3(1 − t−1

r qx )

(1 − q2x )(1 − q2x−1)
, (2.1b)

U (x, y) :=
∑

ε∈{1,−1}

cε(1 − εqx+1/2)

(1 − εq y−1/2)(1 − εq−y−1/2)
, (2.1c)

with

cε := 1

2
√

q−1t0t1t2t3

∏

0≤r≤3

(1 − εq−1/2tr ), (2.1d)

and Tj ( j = 1, . . . , n) acts on functions f : R
n → C by a unit translation of the j th

position variable

(Tj f )(x1, . . . , xn) = f (x1, . . . , x j−1, x j + 1, x j+1, . . . , xn).
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Here q denotes a scale parameter and the parameters tr (r = 0, . . . , 3) play the role of
coupling parameters for the boundary interaction of Askey–Wilson type. Upon setting
t2 = −t3 = q1/2, the additive potential term U (xn−1, xn) in H (2.1a)–(2.1d) vanishes.
The above Toda chain amounts in this case to a difference analog of the previously studied
Dn-type quantum Toda chain with Pöschl-Teller boundary potential [I,KJC,O,GLO2].
If we additionally set t0 = −t1 = 1, then w+(x) = w−(x) = 1 and we formally recover
a Dn-type analog of Ruijsenaars’ difference Toda chain [KT,E,S,C] that was introduced
at the level of classical mechanics by Suris [Su1].

3. Deformed Hyperoctahedral q-Whittaker Functions

Let� denote the cone of integer partitions λ = (λ1, . . . , λn) with decreasingly ordered
parts λ1 ≥ · · · ≥ λn ≥ 0, and let W be the hyperoctahedral group formed by the semi-
direct product of the symmetric group Sn and the n-fold product of the cyclic group
Z2 ∼= {1,−1}. Elements w = (σ, ε) ∈ W act naturally on ξ = (ξ1, . . . ξn) ∈ R

n

via wξ := (ε1ξσ1, . . . , εnξσn ) (with σ ∈ Sn and ε j ∈ {1,−1} for j = 1, . . . , n). A
standard basis for the algebra of W -invariant trigonometric polynomials on the torus
T = R

n/(2πZ
n) is given by the hyperoctahedral monomial symmetric functions

mλ(ξ) :=
∑

μ∈Wλ

ei〈μ,ξ 〉, λ ∈ �, (3.1)

where the summation is meant over the orbit of λ with respect to the action of W and
the bracket 〈·, ·〉 refers to the usual inner product on R

n (so 〈μ, ξ 〉 = μ1ξ1 + · · · +μnξn).
This monomial basis inherits a natural partial order from the hyperoctahedral dominance
ordering of the partitions:

∀μ, λ ∈ � : μ ≤ λ iff
∑

1≤ j≤k

μ j ≤
∑

1≤ j≤k

λ j for k = 1, . . . , n. (3.2)

By definition, the basis of deformed hyperoctahedral q-Whittaker functions pλ(ξ),
λ ∈ � is given by the polynomials of the form

pλ(ξ) = mλ(ξ) +
∑

μ∈�
withμ<λ

cλ,μmμ(ξ) (cλ,μ ∈ C) (3.3a)

such that
〈pλ,mμ〉

�̂
= 0 if μ < λ, (3.3b)

where the inner product

〈 f̂ , ĝ〉
�̂

:=
∫

A

f̂ (ξ)ĝ(ξ)�̂(ξ)dξ ( f̂ , ĝ ∈ L2(A, �̂(ξ)dξ)) (3.4a)

is determined by the weight function

�̂(ξ) := 1

(2π)n
∏

1≤ j<k≤n

∣∣∣(ei(ξ j +ξk ), ei(ξ j −ξk ))∞
∣∣∣
2 ∏

1≤ j≤n

∣∣∣∣∣
(e2iξ j )∞∏

0≤r≤3(t̂r eiξ j )∞

∣∣∣∣∣

2

(3.4b)
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supported on the hyperoctahedral Weyl alcove

A := {(ξ1, ξ2, . . . , ξn) ∈ R
n | π > ξ1 > ξ2 > · · · > ξn > 0}. (3.5)

Here (x)m := ∏m−1
l=0 (1 − xql) and (x1, . . . , xl)m := (x1)m · · · (xl)m refer to standard

notations for the q-Pochhammer symbols, and it is assumed that

q ∈ (0, 1) and t̂r ∈ (−1, 1)\{0} (r = 0, . . . , 3). (3.6)

These deformed hyperoctahedral q-Whittaker functions pλ(ξ),λ ∈ � amount to a t → 0
degeneration of the more general Macdonald-Koorwinder multivariate Askey–Wilson
polynomials introduced in Ref. [K] (cf. Appendix A below).

4. Diagonalization

It is known that the eigenfunctions of Ruijsenaars’ open difference Toda chain consist of
An−1-type q-Whittaker functions given by a t → 0 limit of the Macdonald symmetric
functions [GLO1]. In this section our aim is to show that an analogous result holds for
the chain with Askey-Wilson type boundary interactions from Sect. 2, upon employing
the deformed hyperoctahedral q-Whittaker functions from Sect. 3. To this end it is
convenient to reparametrize the boundary parameters of the Toda chain in terms of the
q-Whittaker deformation parameters (3.6) via

t0 =
√

q−1 t̂0 t̂1 t̂2 t̂3, tr = t̂r t̂0/t0 (r = 1, 2, 3), (4.1)

assuming (from now onwards) the additional positivity constraints

t̂0 > 0 and t̂0 t̂1 t̂2 t̂3 > 0. (4.2)

Let ρ0 +� := {ρ0 + λ | λ ∈ �} with

ρ0 := (logq(t0), . . . , logq(t0)) ∈ R
n .

We write 
2(ρ0 + �,�) for the Hilbert space of lattice functions f : (ρ0 + �) → C

determined by the inner product

〈 f, g〉� :=
∑

λ∈�
f (ρ0 + λ)g(ρ0 + λ)�λ ( f, g ∈ 
2(ρ0 + λn,�)), (4.3a)

where

�λ := �0

(qt2
0 )λn−1+λn

(1 − t2
0 q2λn

1 − t2
0

) ∏

0≤r≤3

(t0tr )λn

(qt0t−1
r )λn

∏

1≤ j<n

1

(q)λ j −λ j+1

(4.3b)

and
�0 := (q)∞

∏

0≤r<s≤3

(
t̂r t̂s

)
∞ = (q)∞

∏

1≤r≤3

(t0tr , qt0t−1
r )∞. (4.3c)

From the limiting behavior for t → 0 of the orthogonality relations satisfied by the
normalized Macdonald–Koornwinder polynomials (A.2a)–(A.2c), it is immediate that
the wave function

ψξ (ρ0 + λ) := (t2
0 )2λn∏

0≤r≤3(t0tr )λn

pλ(ξ) (λ ∈ �, ξ ∈ A) (4.4)
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satisfies the following orthogonality with respect to the spectral variable ξ :

∫

A

ψ(ρ0 + λ)ψ(ρ0 + μ)�̂(ξ)dξ =
{
�−1
λ if λ = μ,

0 otherwise.
(4.5)

In other words, the corresponding Fourier transform F : 
2(ρ0 +�,�) → L2(A, �̂dξ)
given by

(F f )(ξ) := 〈 f, ψξ 〉� =
∑

λ∈�
f (ρ0 + λ)ψξ (ρ0 + λ)�λ (4.6a)

( f ∈ 
2(ρ0 +�,�)) constitutes a Hilbert space isomorphism with an inversion formula
of the form

(F−1 f̂ )(ρ0 + λ) = 〈 f̂ , ψ(ρ0 + λ)〉
�̂

=
∫

A

f̂ (ξ)ψξ (ρ0 + λ)�̂(ξ)dξ (4.6b)

( f̂ ∈ L2(A, �̂dξ)). We will refer to F (4.6a), (4.6b) as the deformed hyperoctahedral
q-Whittaker transform.

The formal Hamiltonian H (2.1a)–(2.1d) restricts to a well-defined discrete difference
operator in the space of complex functions on the lattice ρ0 + �. Indeed, when t0 �∈
{1, q1/2} it is manifest that for x = (x1, . . . , xn) at these lattice points we stay away
from the poles in the coefficients of H stemming from the denominators of w±(xn) and
U (xn−1, xn) and, moreover, that for any f : R

n → C and any λ ∈ � the value of
(H f )(ρ0 +λ) depends only on evaluations of f at points of ρ0 +� (due to the vanishing
of (1 − qλ j −λ j+1) at λ j = λ j+1 (1 ≤ j < n) and the vanishing of w−(logq(t0) + λn) at
λn = 0):

(H f )(ρ0 + λ)

=
∑

1≤ j≤n
λ+e j ∈�

v+
j (λ) f (ρ0 + λ + e j ) +

∑

1≤ j≤n
λ−e j ∈�

v−
j (λ) f (ρ0 + λ− e j ) + u(λ) f (ρ0 + λ),

(4.7)

where

v+
j (λ) = (1 − qλ j−1−λ j )

( ∏
0≤r≤3(1 − tr t0qλn )

(1 − t2
0 q2λn )(1 − t2

0 q2λn+1)

)δn− j

,

v−
j (λ) = (1 − qλ j −λ j+1)(1 − t2

0 qλn−1+λn )δn− j +δn−1− j

×
( ∏

0≤r≤3(1 − t−1
r t0qλn )

(1 − t2
0 q2λn )(1 − t2

0 q2λn−1)

)δn− j

,

u(λ) =
∑

ε∈{1,−1}

cε(1 − εt0qλn−1+1/2)

(1 − εt0qλn−1/2)(1 − εt−1
0 q−λn−1/2)

,

with cε taken from (2.1d). Here δk := 1 if k = 0 and δk := 0 otherwise, the vectors
e1, . . . , en denote the standard unit basis of R

n , and λ0 := +∞, λn+1 := −∞ by
convention (so (1−qλ0−λ1) = (1−qλn−λn+1) ≡ 1). The action of H on lattice functions
in Eq. (4.7) extends continuously from t0 �∈ {1, q1/2} to the full parameter domain
determined by Eqs. (4.1), (4.2) and (3.6).
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Our main result implements the Hamiltonian under consideration as a self-adjoint
operator in the Hilbert space 
2(ρ0 +�,�) and provides its spectral decomposition with
the aid of the deformed hyperoctahedral q-Whittaker transform.

Theorem 1 (Diagonalization). (i). For boundary parameters tr (4.1) determined by the
q-Whittaker deformation parameters t̂r (3.6), (4.2), the action of the difference Toda
Hamiltonian H (2.1a)–(2.1d) given by Eq. (4.7) constitutes a bounded self-adjoint oper-
ator in the Hilbert space 
2(ρ0 +�,�) with purely absolutely continuous spectrum. (ii).
The operator in question is diagonalized by the deformed hyperoctahedral q-Whittaker
transform F (4.6a), (4.6b):

H = F−1 ◦ Ê ◦ F, (4.8a)

where Ê denotes the bounded real multiplication operator acting on f̂ ∈ L2(A, �̂dξ)
via

(Ê f̂ )(ξ) := Ê(ξ) f̂ (ξ) with Ê(ξ) := 2
∑

1≤ j≤n

cos(ξ j ). (4.8b)

Proof. The first part of the theorem is immediate from the second part. To prove the
second part it suffices to verify that the deformed hyperoctahedral q-Whittaker kernel
ψξ satisfies the eigenvalue equation Hψξ = Ê(ξ)ψξ , or more explicitly that:

∑

1≤ j≤n
λ+e j ∈�

v+
j (λ)ψξ (ρ0 + λ + e j ) +

∑

1≤ j≤n
λ−e j ∈�

v−
j (λ)ψξ (ρ0 + λ− e j )

+u(λ)ψξ (ρ0 + λ) = Ê(ξ)ψξ (ρ0 + λ).

This eigenvalue equation follows from the Pieri formula for the Macdonald–Koornwinder
polynomials (A.4) in the limit t → 0. Indeed, it is clear that in the Pieri formula
limt→0 Pλ(ξ) = ψλ(ρ0 + λ), limt→0 τ̂ j V +

j (λ) = v+
j (λ), limt→0 τ̂

−1
j V −

j (λ) = v−
j (λ),

and one also has that

lim
t→0

⎛

⎜⎜⎝
n∑

j=1

(τ̂ j + τ̂−1
j )−

∑

1≤ j≤n
λ+e j ∈�

V +
j (λ)−

∑

1≤ j≤n
λ−e j ∈�

V −
j (λ)

⎞

⎟⎟⎠ = u(λ).

This last limit formula is not evident but can be deduced from the following rational
identity in qx1 , . . . , qxn :

n∑

j=1

⎛

⎜⎜⎝τ̂
−1
j − τ̂−1

1 w+(x j )
∏

1≤k≤n
k �= j

1 − tqx j +xk

1 − qx j +xk

1 − tqx j −xk

1 − qx j −xk

⎞

⎟⎟⎠

+
n∑

j=1

⎛

⎜⎜⎝τ̂ j − τ̂1w−(x j )
∏

1≤k≤n
k �= j

1 − t−1qx j +xk

1 − qx j +xk

1 − t−1qx j −xk

1 − qx j −xk

⎞

⎟⎟⎠

= Ct

∑

ε∈{1,−1}

∏

0≤r≤3

(1 − εtr q−1/2)

⎛

⎝1 −
n∏

j=1

1 − εtqx j −1/2

1 − εqx j −1/2

1 − εt−1qx j +1/2

1 − εqx j +1/2

⎞

⎠ ,
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where Ct = − 1
2 t t̂−1

0 (1− t)−1(1−q−1t)−1, upon replacing qx j by τ j qλ j ( j = 1, . . . , n)
and performing the limit t → 0. To infer the rational identity itself, one exploits the
hyperoctahedral symmetry in the variables x1, . . . xn and checks that—as a function of
x j (with the remaining variables fixed in a generic configuration)—the residues at the
(simple) poles on both sides coincide. Hence, the difference of both rational expressions
amounts to a W -invariant Laurent polynomial in qx1 , . . . , qxn . The Laurent polynomial
in question must actually vanish, as the rational expressions under consideration tend to
0 for x j = (n + 1 − j)c in the limit c → +∞. ��

5. Integrability

The quantum integrability of the difference Toda Hamiltonian H (2.1a)–(2.1d) is an
immediate consequence of the diagonalization in Theorem 1. In effect, a complete system
of commuting quantum integrals in the Hilbert space 
2(ρ0 + �,�) is given by the
bounded self-adjoint operators

Hl := F−1 ◦ Êl ◦ F, l = 1, . . . , n, (5.1)

where Êl : L2(A, �̂dξ) → L2(A, �̂dξ) denotes the real multiplication operator by
Êl(ξ) := mωl (ξ) with ωl := e1 + · · · + el (so H1 = H ). The operator Hl (5.1) acts on
f ∈ 
2(ρ0 +�,�) as a difference operator of the form

(Hl f )(ρ0 + λ) =
∑

J⊂{1,...,n},0≤|J |≤l
ε j ∈{1,−1}, j∈J ;λ+eε J ∈�

C (l)
ε J (λ) f (ρ0 + λ + eε J ), (5.2a)

where eε J := ∑
j∈J ε j e j , |J | denotes the cardinality of J ⊂ {1, . . . , n}, and the coeffi-

cients
C (l)
ε J (λ) = lim

t→0
C (l)
ε J,t (λ) (5.2b)

arise as t → 0 limits of the expansion coefficients in the corresponding Pieri formula for
the normalized Macdonald–Koornwinder polynomials Pλ(ξ) (A.1a), (A.1b) (cf. [D3,
Sec. 6]):

Êl(ξ)Pλ(ξ) =
∑

J⊂{1,...,n},0≤|J |≤l
ε j ∈{1,−1}, j∈J ;λ+eε J ∈�

C (l)
ε J,t (λ)Pλ+eε J (ξ). (5.2c)

Notice in this connection that the Pieri expansion coefficients

C (l)
ε J,t (λ) = �λ+eε J

∫

A

Êl(ξ)Pλ(ξ)Pλ+eε J (ξ)�̂(ξ)dξ

are continuous at t = 0, because the Macdonald–Koornwinder weight function �̂(ξ)
and (thus) the polynomials Pλ(ξ), λ ∈ � are continuous at this parameter value (cf.
Appendix A).

In practice it turns out to be very tedious to compute the t → 0 limiting coefficients
C (l)
ε J (λ) explicitly with the aid of the known explicit Pieri formulas for the Macdonald–

Koornwinder polynomials in [D3, Sec. 6] beyond l = 1. For a particular second quantum
integral belonging to the commutative algebra generated by H1, . . . , Hn , however, the
required computation results to be surprisingly straightforward. More specifically: from
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the t → 0 limiting behavior of the r = n (top) Pieri formula for the Macdonald–
Koornwinder polynomials in Theorem 6.1 of [D3], one readily deduces that the action
on f ∈ 
2(ρ0 + �,�) of the operator HQ := F−1 ◦ Q̂ ◦ F, where Q̂ refers to the
self-adjoint multiplication operator in L2(A, �̂dξ) by

Q̂(ξ) :=
n∏

j=1

(2 cos(ξ j )− t̂0 − t̂−1
0 ),

is given explicitly by

(HQ f )(ρ0 + λ)

=
∑

J+∪J−∪K+∪K−={1,...,n}
|J+|+|J−|+|K+|+|K−|=n

λ+eJ+−eJ−∈�

uK+,K−(λ)vJ+,J−(λ) f (ρ0 + λ + eJ+ − eJ−), (5.3)

with

vJ+,J−(λ) =
∏

j∈J+
j−1 �∈J+

(1 − qλ j−1−λ j )
∏

j∈J−
j+1 �∈J−

(1 − qλ j −λ j+1−δJ+ ( j+1))

×(1 − t2
0 qλn−1+λn )

δJc
+
(n−1)δJc

+
(n)−δJc

+∩Jc− (n−1)δJc
+∩Jc− (n)

×(1 − t2
0 qλn−1+λn−1)δJ− (n−1)δJ− (n) w+(λn)

δJ+ (n)w−(λn)
δJ− (n)

and

uK+,K−(λ) = (−t̂0)
|K−|−|K+| ∏

k∈K+
k−1∈K−

(1 − qλk−1−λk )
∏

k∈K+
k+1∈K−

(1 − qλk−λk+1+1)

×(1 − t2
0 qλn−1+λn+1)δK+ (n−1)δK+ (n)(1 − t2

0 qλn−1+λn )δK− (n−1)δK− (n)

×w+(λn)
δK+ (n)w−(λn)

δK− (n).

Here δJ : {1, . . . , n} → {0, 1} denotes the characteristic function of J ⊂ {1, . . . , n} and
J c = {1, . . . , n}\J .

Corollary 1. The difference Toda Hamiltonians H (4.7) and HQ (5.3) are bounded,
self-adjoint, commuting operators in 
2(ρ0 + �,�) for which the deformed hyperoc-
tahedral q-Whittaker functions ψξ (4.4) constitute a complete system of (generalized)
joint eigenfunctions corresponding to the eigenvalues Ê(ξ) and Q̂(ξ), respectively.

6. Bispectral Dual System

For t → 0 the Macdonald–Koornwinder q-difference equation (A.3) amounts to the
following eigenvalue equation satisfied by the deformed hyperoctahedral q-Whittaker
functions:

Ĥ pλ = (q−λ1 − 1)pλ (λ ∈ �), (6.1)

with

Ĥ =
n∑

j=1

(
v̂ j (ξ)(T̂ j,q − 1) + v̂ j (−ξ)(T̂ −1

j,q − 1)
)
, (6.2a)
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and

v̂ j (ξ) =
∏

0≤r≤3(1 − t̂r eiξ j )

(1 − e2iξ j )(1 − qe2iξ j )

∏

1≤k≤n
k �= j

(1 − ei(ξ j +ξk ))−1(1 − ei(ξ j −ξk ))−1, (6.2b)

where T̂ j,q acts on trigonometric (Laurent) polynomials p̂(eiξ1 , . . . , eiξn ) by a q-shift
of the j th variable:

(T̂ j,q p̂)(eiξ1 , . . . , eiξn ) := p̂(eiξ1 , . . . , eiξ j−1 , qeiξ j , eiξ j+1 , . . . , eiξn ).

The following proposition is now immediate.

Proposition 1 (Bispectral Dual Hamiltonian). The t = 0 Macdonald–Koornwinder q-
difference operator Ĥ (6.2a), (6.2b) constitutes a nonnegative unbounded self-adjoint
operator with purely discrete spectrum in L2(A, �̂dξ) that is diagonalized by the (in-
verse) deformed hyperoctahedral q-Whittaker transform F (4.6a), (4.6b):

Ĥ = F ◦ E ◦ F−1, (6.3a)

where E denotes the self-adjoint multiplication operator in 
2(ρ0 +�,�) of the form

(E f )(ρ0 + λ) := (q−λ1 − 1) f (ρ0 + λ) (λ ∈ �) (6.3b)

(for f ∈ 
2(ρ0 +�,�) with 〈E f, E f 〉� < ∞).

One learns from Theorem 1 and Proposition 1 that the eigenfunction transforms
diagonalizing the difference Toda Hamiltonian H (4.7) and the t = 0 Macdonald–
Koornwinder difference operator Ĥ (6.2a), (6.2b) are inverses of each other. This fact
encodes the bispectral duality of the operators under consideration in the sense of Duis-
termaat and Grünbaum [DG,G]: the kernel functionψξ (ρ0 +λ) of the deformed hyperoc-
tahedral q-Whittaker transform F (4.6a), (4.6b) simultaneously solves the corresponding
eigenvalue equations for H and Ĥ in the discrete variable ρ0 +λ and the spectral variable
ξ , respectively.

Explicit commuting quantum integrals for the dual Hamiltonian Ĥ (6.2a), (6.2b)
are obtained as a t → 0 degeneration of the commuting difference operators in [D3,
Thm. 5.1]:

Ĥl =
∑

J⊂{1,...,n}, 0≤|J |≤l
ε j ∈{1,−1}, j∈J

ÛJ c,l−|J |V̂ε J T̂ε J,q , l = 1, . . . , n, (6.4)

with T̂ε J,q := ∏
j∈J T̂

ε j
j,q and

V̂ε J :=
∏

j∈J

∏
0≤r≤3(1 − t̂r eiε j ξ j )

(1 − e2iε j ξ j )(1 − qe2iε j ξ j )

∏

j∈J
k �∈J

(1 − ei(ε j ξ j +ξk ))−1(1 − ei(ε j ξ j −ξk ))−1

×
∏

j,k∈J
j<k

(1 − ei(ε j ξ j +εkξk ))−1(1 − qei(ε j ξ j +εkξk ))−1,
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ÛK ,p := (−1)p
∑

I⊂K , |I |=p
ε j ∈{1,−1}, j∈I

( ∏

j∈I

∏
0≤r≤3(1 − t̂r eiε j ξ j )

(1 − e2iε j ξ j )(1 − qe2iε j ξ j )

×
∏

j∈I
k∈K\I

(1 − ei(ε j ξ j +ξk ))−1(1 − ei(ε j ξ j −ξk ))−1

×
∏

j,k∈I
j<k

(1 − ei(ε j ξ j +εkξk ))−1(1 − q−1e−i(ε j ξ j +εkξk ))−1
)

(so Ĥ1 = Ĥ ). The diagonalization in Proposition 1 now generalizes to the complete
system of commuting quantum integrals Ĥ1, . . . , Ĥn as follows.

Theorem 2 (Bispectral Dual System). Let El (1 ≤ l ≤ n) denote the self-adjoint multi-
plication operator in 
2(ρ0 +�,�) given by

(El f )(ρ0 + λ) := Eλ,l f (ρ0 + λ) (λ ∈ �) (6.5a)

(on the domain of f ∈ 
2(ρ0 +�,�) for which 〈El f, El f 〉� < ∞), where

Eλ,l := q−λ1−λ2···−λl−1(q−λl − 1) + t2
0 q−λ1−λ2···−λn−1(qλn − 1)δn−l . (6.5b)

The q-difference operators Ĥl (6.4) constitute nonnegative unbounded self-adjoint op-
erators with purely discrete spectra in L2(A, �̂dξ) that are simultaneously diagonalized
by the (inverse) deformed hyperoctahedral q-Whittaker transform F (4.6a), (4.6b):

Ĥl = F ◦ El ◦ F−1, l = 1, . . . , n. (6.5c)

Proof. It suffices to verify that

Ĥl pλ = Eλ,l pλ (λ ∈ �, l = 1, . . . , n).

This is achieved by multiplying the lth eigenvalue equation in Eq. (5.8) of [D3] by a scal-
ing factor t l(n−l)+l(l−1)/2 and performing the limit t → 0. Indeed, since the Macdonald–
Koornwinder polynomial pλ converges to the deformed hyperoctahedral q-Whittaker
function pλ, we see from the explicit formulas for the operators in question that the
LHS of the cited eigenvalue equation converges in this limit manifestly to Ĥl pλ (up to
an overall factor t l

0). Hence, the RHS must also have a finite limit for t → 0, which

confirms that pλ is an eigenfunction of Ĥl (using again that pλ
t→0−→ pλ). For l > 1 it is

not obvious from [D3, Eq. (5.5)] that the (limiting) eigenvalue is indeed given by Eλ,l
(6.5b), but this can be deduced quite easily from the asymptotics of mλ and Ĥlmλ at
ξ = −ciρ, ρ := (n, n −1, . . . , 2, 1) for c → +∞. Indeed, one readily computes that for
c → +∞: mλ = e〈λ,ρ〉c(1 + o(1)) and Ĥlmλ = Eλ,l e〈λ,ρ〉c(1 + o(1)) (using the explicit
formula for Ĥl and the asymptotics

∏
0≤r≤3(1 − t̂r eiεξ j )

(1 − e2iεξ j )(1 − qe2iεξ j )

c→+∞−→
{

t2
0 if ε = 1

1 if ε = −1
(1 ≤ j ≤ n)
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and

(1 − qaeiε(ξ j ±ξk ))−1 c→+∞−→
{

0 if ε = 1
1 if ε = −1

(1 ≤ j < k ≤ n),

where a ∈ {1, 0,−1}). But then also pλ = e〈λ,ρ〉c(1 + o(1)) and Ĥl pλ = Eλ,l e〈λ,ρ〉c(1 +
o(1)) for c → +∞ by the triangularity (3.3a) and the property that 〈μ, ρ〉 < 〈λ, ρ〉 if
μ < λ. The upshot is that the eigenvalue of Ĥl on the eigenpolynomial pλ must be equal
to Eλ,l . ��

The q-difference operators Ĥl (6.4) commute in the space of W -invariant trigono-
metric polynomials on T. It is clear from Theorem 2 that this commutativity extends in
the Hilbert space in the resolvent sense: for

zl �∈ σ(Ĥl) := {Eλ,l | λ ∈ �} ⊂ [0,+∞) (l = 1, . . . , n)

the resolvents (Ĥ1 − z1I)−1, . . . , (Ĥn − znI)−1 of the unbounded operators Ĥ1, . . . , Ĥn

mutually commute as bounded operators in L2(A, �̂dξ).
Theorem 2 and Sect. 5 lift the bispectral duality of H (4.7) and Ĥ (6.2a),(6.2b) to

the complete systems of commuting quantum integrals. The bispectral dual integrable
system Ĥ1, . . . , Ĥn associated with our difference Toda chain can actually be identified
as the strong-coupling limit (t = qg , g → +∞) of a trigonometric Ruijsenaars-type
difference Calogero-Moser system with hyperoctahedral symmetry [D2]. Analogous
bispectral dual systems were linked previously to the open quantum Toda chain and
Ruijsenaars’ open difference Toda chain. Specifically, the open quantum Toda chain and
the strong-coupling limit of Ruijsenaars’ rational difference Calogero-Moser system
turn out to be bispectral duals of each other [B,HR,Sk2,Kz], and the same holds true
for Ruijsenaars’ open difference Toda chain and the t = 0 trigonometric/hyperbolic
Ruijsenaars-Macdonald operators [GLO1,HR,BC]. Dualities of this type were actually
first established for the corresponding particle systems within the realms of classical
mechanics: the action-angle transforms linearizing the open Toda chain and the strong-
coupling limit of the rational Ruijsenaars-Schneider system are the inverses of each other
and the same holds true for the action-angle transforms for Ruijsenaars’ open relativistic
Toda chain and the strong-coupling limit of the hyperbolic Ruijsenaars-Schneider system
[R1,F].

7. Parameter Reductions

As already anticipated at the end of Sect. 2, for t̂2 = −t̂3 = q1/2 and t̂0 = −t̂1 → 1
(so t0 = −t1 → 1 and t2 = −t3 → q1/2) the difference Toda Hamiltonian H (4.7)
and the deformed hyperoctahedral q-Whittaker functions pλ(ξ), λ ∈ � degenerate to
a difference Toda Hamiltonian and q-Whittaker functions of type Dn [Su1,KT,E,S,
C]. Even though formally these limiting values of the parameters do not respect our
restriction that t̂r ∈ (−1, 1)\{0} (for r = 0, . . . , 3), it is readily inferred from the
formulas that the results of Sects. 3–6 nevertheless remain valid at this specialization of
the parameters.
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In this section we are concerned with the behavior for t̂0 → 0. In this limit, the
difference Toda chain turns out to be governed by a Hamiltonian of the form

H = T1 +
n∑

j=2

(1 − qx j−1−x j )Tj +
n−1∑

j=1

(1 − qx j −x j+1)T −1
j

+

⎛

⎝
∏

1≤r<s≤3

(1 − t̂r t̂sqxn−1)

⎞

⎠ (1 − qxn )T −1
n

+(t̂1 + t̂2 + t̂3)q
xn + t̂1 t̂2 t̂3q2xn (qxn−1−xn + q−xn−1 − 1 − q−1). (7.1)

When t̂3 = 0, the Hamiltonian in question constitutes a Ruijsenaars-type difference
counterpart of the quantum Toda chain with one-sided boundary potentials of Morse
type [Sk1,I]. If in addition t̂2 = −1, then the difference Toda chain under consideration
amounts to a quantization of a relativistic Toda chain with boundary potentials introduced
by Suris [Su1,KT]. For t̂1 = t̂2 = t̂3 = 0 and for t̂1 = −t̂2 = q1/2 with t̂3 = −1,
we recover in turn hyperoctahedral difference Toda chains of type Bn and Cn that are
diagonalized by q-Whittaker functions of type Cn and Bn , respectively [E,S,C]. Again,
even though formally none of these specializations respect our restriction that t̂r ∈
(−1, 1)\{0} (for r = 1, 2, 3), it is clear that the formulas below in fact do remain valid.

7.1. Deformed hyperoctahedral q-Whittaker function. For t̂0 → 0, the deformed hyper-
octahedral q-Whittaker functions pλ(ξ) (3.3a), (3.3b) degenerate into a three-parameter
family of orthogonal polynomials pλ(ξ), λ ∈ � associated with the weight function

�̂(ξ) = 1

(2π)n
∏

1≤ j<k≤n

∣∣∣(ei(ξ j +ξk ), ei(ξ j −ξk ))∞
∣∣∣
2 ∏

1≤ j≤n

∣∣∣∣∣
(e2iξ j )∞∏

1≤r≤3(t̂r eiξ j )∞

∣∣∣∣∣

2

.

The orthogonality relations for these polynomials read [cf. Eq. (4.5)]

∫

A

pλ(ξ)pμ(ξ) �̂(ξ)dξ =
{
�−1
λ if λ = μ,

0 otherwise,
(7.2)

where

�λ = �0

(q)λn

∏
1≤r<s≤3(t̂r t̂s)λn

∏

1≤ j<n

1

(q)λ j −λ j+1

with

�0 = (q)∞
∏

1≤r<s≤3

(t̂r t̂s)∞.

For n = 1, the limit pλ
t̂0→0−→ pλ amounts to a well-known reduction from the Askey-

Wilson polynomials to the continuous dual q-Hahn polynomials [KLS].
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7.2. Hamiltonian. The difference Toda eigenvalue equation Hψξ = Ê(ξ)ψξ becomes
in the limit t̂0 → 0 of the form Hφξ = Ê(ξ)φξ withφξ : � → C given byφξ (λ) = pλ(ξ)
(ξ ∈ A, λ ∈ �), where H (7.1) acts on f : � → C via

(H f )(λ) =
∑

1≤ j≤n
λ+e j ∈�

v+
j (λ) f (λ + e j ) +

∑

1≤ j≤n
λ−e j ∈�

v−
j (λ) f (λ− e j ) + u(λ) f (λ), (7.3)

with

v+
j (λ) = (1 − qλ j−1−λ j ),

v−
j (λ) = (1 − qλ j −λ j+1)

(
(1 − qλn )

∏

1≤r<s≤3

(1 − t̂r t̂sqλn−1)
)δn− j

,

u(λ) = (t̂1 + t̂2 + t̂3)q
λn + t̂1 t̂2 t̂3q2λn (qλn−1−λn + q−λn−1 − 1 − q−1)

(subject to the convention that λ0 = +∞ and λn+1 = −∞).

7.3. Diagonalization and integrability. Let F : 
2(�,�) → L2(A, �̂dξ) denote the
(t̂0 → 0 degenerate) Hilbert space isomorphism determined by the orthogonal basis pλ,
λ ∈ �:

(F f )(ξ) = 〈 f, φξ 〉� =
∑

λ∈�
f (λ)φξ (λ)�λ (7.4a)

( f ∈ 
2(�,�)) with

(F−1 f̂ )(λ) = 〈 f̂ , φ(λ)〉
�̂

=
∫

A
f̂ (ξ)φξ (λ)�̂(ξ)dξ (7.4b)

( f̂ ∈ L2(A, �̂dξ)), and let Êl : L2(A, �̂dξ) → L2(A, �̂dξ) (l = 1, . . . , n) be the
multiplication operators defined in accordance with Sect. 5.

The commuting bounded self-adjoint operators H1, . . . ,Hn (with absolutely contin-
uous spectra) in 
2(�,�) given by

Hl = F−1 ◦ Êl ◦ F, l = 1, . . . , n, (7.5)

constitute a complete system of quantum integrals for the difference Toda Hamiltonian
H1 = H (7.3).

7.4. Bispectral dual system. Let Ĥ1, . . . , Ĥn denote the commuting q-difference op-
erators in Eq. (6.4) with t̂0 = 0 and let E1, . . . ,En be the self-adjoint multiplication
operators in 
2(�,�) given by [cf. Eqs. (6.5a), (6.5b)]

(El f )(λ) = Eλ,l f (λ) (λ ∈ �, l = 1, . . . , n) (7.6a)

(on the domain of f ∈ 
2(�,�) for which 〈El f,El f 〉� < ∞), with

Eλ,l = q−λ1−λ2···−λl−1(q−λl − 1). (7.6b)

Then one has that
Ĥl = F ◦ El ◦ F−1, l = 1, . . . , n, (7.7)

i.e. the q-difference operators constitute nonnegative unbounded self-adjoint operators
with purely discrete spectra in L2(A, �̂dξ) that are simultaneously diagonalized by the
three-parameter (inverse) deformed hyperoctahedral q-Whittaker transform F (7.4a),
(7.4b).
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8. Scattering

In Ref. [D4] the scattering operator for a wide class of quantum lattice models was
determined by stationary-phase methods originating from Ref. [R4]. It follows from the
diagonalization in Theorem 1 that our difference Toda chains fit within this class of lattice
models. Indeed, the deformed hyperoctahedral q-Whittaker functions pλ, λ ∈ � belong
to the family of orthogonal polynomials defined in [D4, Sec. 2], since the orthogonality
weight function �̂(ξ) (3.4b) is of the indicated form (with R = BCn) and moreover
meets the demanded analyticity requirements. We will close by briefly indicating how
the general scattering results from Ref. [D4, Sec. 4.2] specialize in the present difference
Toda setting.

Let H0 be the self-adjoint discrete Laplacian in 
2(�) of the form

(H0 f )(λ) :=
∑

1≤ j≤n
λ+e j ∈�

f (λ + e j ) +
∑

1≤ j≤n
λ−e j ∈�

f (λ− e j ) ( f ∈ 
2(�)),

and let H denote the pushforward

H := �1/2 H�−1/2 (8.1)

of the difference Toda Hamiltonian H (4.7) onto the Hilbert space 
2(�) via the Hilbert
space isomorphism �1/2 : 
2(ρ0 +�,�) → 
2(�) given by

(�1/2 f )(λ) := �
1/2
λ f (ρ0 + λ) ( f ∈ 
2(ρ0 +�,�)) (8.2)

(where �−1/2 := (�1/2)−1). Clearly, one has by Theorem 1 that

H = F−1 ÊF with F := �̂
1/2

F�−1/2, (8.3)

where �̂
1/2 : L2(A, �̂dξ) → L2(A) denotes the Hilbert space isomorphism given by

(�̂
1/2

f̂ )(ξ) := �̂1/2(ξ) f̂ (ξ) ( f̂ ∈ L2(A, �̂dξ)) (8.4)

(and Ê (4.8b) is now regarded as a self-adjoint bounded multiplication operator in
L2(A)). Moreover, it is elementary that the spectral decomposition of the discrete Lapla-
cian H0 is given by

H0 = F−1
0 ÊF0,

where F0 : 
2(�) → L2(A) denotes the Fourier isomorphism

(F0 f )(ξ) :=
∑

λ∈�
f (λ)χξ (λ) (8.5a)

( f ∈ 
2(�)) with the inversion formula

(F−1
0 f̂ )(λ) =

∫

A

f̂ (ξ)χξ (λ)dξ (8.5b)
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( f̂ ∈ L2(A)). Here we have employed the anti-invariant Fourier kernel

χξ (λ) := 1

(2π)n/2 in2

∑

w∈W

sign(w)ei〈w(ρ+λ),ξ 〉,

with sign(w) = ε1 · · · εnsign(σ ) for w = (σ, ε) ∈ W = Sn � {1,−1}n and ρ =
(n, n − 1, . . . , 2, 1). Notice that F0 is recovered from F in the limit q → 0, t̂r → 0
(r = 0, . . . , 3).

The scattering operator describing the large-times asymptotics of the difference Toda
dynamics eiHt relative to the Laplacian’s reference dynamics eiH0t turns out to be
governed by an n-particle scattering matrix Ŝ(ξ) that factorizes in two-particle pair
matrices and one-particle boundary matrices:

Ŝ(ξ) :=
∏

1≤ j<k≤n

s(ξ j − ξk)s(ξ j + ξk)
∏

1≤ j≤n

s0(ξ j ), (8.6a)

with

s(x) := (qeix )∞
(qe−i x )∞

and s0(x) := (qe2i x )∞
(qe−2i x )∞

∏

0≤r≤3

(t̂r e−i x )∞
(t̂r ei x )∞

. (8.6b)

To make the latter statement precise, let us denote by C0(Areg) the dense subspace of
L2(A) consisting of smooth test functions with compact support in the open dense subset
Areg ⊂ A on which the components of the gradient

∇ Ê(ξ) = (−2 sin(ξ1), . . . ,−2 sin(ξn)), ξ ∈ A

do not vanish and are all distinct in absolute value. We now define an unitary multipli-
cation operator Ŝ : L2(A, dξ) → L2(A, dξ) via its restriction to C0(Areg) as follows:

(Ŝ f̂ )(ξ) := Ŝ(wξ ξ) f̂ (ξ) ( f̂ ∈ C0(Areg), (8.7)

where wξ ∈ W for ξ ∈ Areg is such that the components of wξ∇ Ê(ξ) are all positive
and reordered from large to small.

Theorem 4.2 and Corollary 4.3 of Ref. [D4] then provide the following explicit
formulas for the wave operators and scattering operator of our difference Toda chain.

Theorem 3 (Wave and Scattering Operators). The operator limits

�± := s − lim
t→±∞ eitHe−i tH0

converge in the strong 
2(�)-norm topology and the corresponding wave operators�±
intertwining the difference Toda dynamics eiHt with the discrete Laplacian’s dynamics
eiH0t are given by unitary operators in 
2(�) of the form

�± = F−1 ◦ Ŝ∓1/2 ◦ F0,

where the branches of the square roots are to be chosen such that

s(x)1/2 = (qeix )∞
|(qeix )∞| and s0(x)

1/2 = (qe2i x )∞
|(qe2i x )∞|

∏

0≤r≤3

|(t̂r ei x )∞|
(t̂r ei x )∞

.
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Hence, the scattering operator relating the large-times asymptotics of the difference
Toda dynamics eiHt for t → −∞ and t → +∞ is given by the unitary operator

S := (�+)−1�− = F−1
0 ◦ Ŝ ◦ F0.

The degenerate case of the difference Toda chain discussed in Sect. 7 is also covered
by Theorem 3, upon setting ρ0 equal to the nulvector in Eq. (8.2), replacing H (4.7) by
H (7.3) in H (8.1) and F (4.6a), (4.6b) by F (7.4a), (7.4b) in F (8.3), and substituting
t̂0 = 0 overall.

Appendix A: Macdonald–Koornwinder Polynomials

This appendix collects some key properties of the Macdonald–Koornwinder multivariate
Askey-Wilson polynomials [K,D3,M]. In the case of one variable (n = 1), the properties
below specialize to well-known formulas for the Askey-Wilson polynomials (see e.g.
[KLS]).

The Macdonald–Koornwinder polynomials pλ(ξ) (λ ∈ �, ξ ∈ T) are defined as
polynomials of the type in Eqs. (3.3a), (3.3b), (3.4a) associated with the weight function
[K, Sec. 5], [M, Ch. 5.3]:

�̂(ξ) = 1

(2π)n
∏

1≤ j≤n

∣∣∣
(e2iξ j )∞∏

0≤r≤3(t̂r eiξ j )∞

∣∣∣
2 ∏

1≤ j<k≤n

∣∣∣
(ei(ξ j +ξk ), ei(ξ j −ξk ))∞
(tei(ξ j +ξk ), tei(ξ j −ξk ))∞

∣∣∣
2
,

with q ∈ (0, 1) and t, t̂r ∈ (−1, 1)\{0} (r = 0, . . . , 3). For t → 0 this weight func-
tion passes into that of Eq. (3.4b), whence the polynomials in question degenerate
in this limit continuously to the deformed hyperoctahedral q-Whittaker functions of
Sect. 3. Notice in this respect that for x ∈ R and |t | < ε (< 1) quotients of the form
(eix )∞/(tei x )∞ remain bounded in absolute value by (−1)∞/(ε)∞, so we may inter-
change limits and integration for t → 0 when integrating trigonometric polynomials
against the Macdonald–Koornwinder weight function �̂(ξ) over the bounded alcove A

(by dominated convergence).
The normalized Macdonald–Koornwinder polynomials

Pλ(ξ) := cλpλ(ξ) (λ ∈ �n), (A.1a)

where

cλ :=
∏

1≤ j≤n

(τ 2
j )2λ j∏

0≤r≤3(trτ j )λ j

∏

1≤ j<k≤n

(τ jτk)λ j +λk

(tτ jτk)λ j +λk

(τ jτ
−1
k )λ j −λk

(tτ jτ
−1
k )λ j −λk

(A.1b)

with τ j := tn− j t0 ( j = 1, . . . , n) and tr (r = 0, . . . , 3) given by Eq. (4.1), satisfy the
following orthogonality relations [K, Sec. 5], [D3, Sec. 7], [M, Ch. 5.3]:

∫

A

Pλ(ξ)Pμ(ξ)�̂(ξ)dξ =
{

�−1
λ if λ = μ,

0 otherwise,
(A.2a)
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with

�λ := �0
∏

1≤ j≤n

(1 − τ2
j q2λ j

1 − τ2
j

∏

0≤r≤3

(tr τ j )λ j

(qt−1
r τ j )λ j

)

×
∏

1≤ j<k≤n

1 − τ j τkqλ j +λk

1 − τ j τk

(tτ j τk)λ j +λk

(qt−1τ j τk)λ j +λk

1 − τ j τ
−1
k qλ j −λk

1 − τ j τ
−1
k

(tτ j τ
−1
k )λ j −λk

(qt−1τ j τ
−1
k )λ j −λk

(A.2b)

and

�0 :=
∏

1≤ j≤n

(q, t j )∞
∏

0≤r<s≤3(t̂r t̂s tn− j )∞
(t, t̂0 t̂1 t̂2 t̂3t2n− j−1)∞

. (A.2c)

These orthogonal polynomials satisfy moreover a second-order q-difference equation
[K, Sec. 5], [M, Ch. 5.3, 4.4]:

Pλ(ξ)
n∑

j=1

(
q−1 t̂0 t̂1 t̂2 t̂3t2n−1− j (qλ j − 1) + t j−1(q−λ j − 1)

)

=
∑

1≤ j≤n

V̂ j (ξ)
(
Pλ(ξ − i log(q)e j )− Pλ(ξ)

)
+ V̂ j (−ξ)

(
Pλ(ξ + i log(q)e j )− Pλ(ξ)

)
,

(A.3)

with

V̂ j (ξ) :=
∏

0≤r≤3(1 − t̂r eiξ j )

(1 − e2iξ j )(1 − qe2iξ j )

∏

1≤k≤n
k �= j

1 − tei(ξ j +ξk )

1 − ei(ξ j +ξk )

1 − tei(ξ j −ξk )

1 − ei(ξ j −ξk )
,

and a Pieri-type recurrence formula [D3, Sec. 6], [M, Ch. 5.3, 4.4]:

Pλ(ξ)
n∑

j=1

(2 cos(ξ j )− τ̂ j − τ̂−1
j )

=
∑

1≤ j≤n
λ+e j ∈�

V +
j (λ)

(
τ̂ j Pλ+e j (ξ)− Pλ(ξ)

)

+
∑

1≤ j≤n
λ−e j ∈�

V −
j (λ)

(
τ̂−1

j Pλ−e j (ξ)− Pλ(ξ)
)
, (A.4)

with τ̂ j := tn− j t̂0 ( j = 1, . . . , n) and

V +
j (λ) := τ̂−1

1

∏
0≤r≤3(1 − trτ j qλ j )

(1 − τ 2
j q2λ j )(1 − τ 2

j q2λ j +1)

∏

1≤k≤n
k �= j

1 − tτ jτkqλ j +λk

1 − τ jτkqλ j +λk

1 − tτ jτ
−1
k qλ j −λk

1 − τ jτ
−1
k qλ j −λk

,

V −
j (λ) := τ̂1

∏
0≤r≤3(1 − t−1

r τ j qλ j )

(1 − τ 2
j q2λ j )(1 − τ 2

j q2λ j −1)

∏

1≤k≤n
k �= j

1 − t−1τ jτkqλ j +λk

1 − τ jτkqλ j +λk

1 − t−1τ jτ
−1
k qλ j −λk

1 − τ jτ
−1
k qλ j −λk

(where the vectors e1, . . . , en refer to the standard unit basis of R
n).
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