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EXACT CUBATURE RULES FOR SYMMETRIC FUNCTIONS

J. F. VAN DIEJEN AND E. EMSIZ

Abstract. We employ a multivariate extension of the Gauss quadrature for-
mula, originally due to Berens, Schmid, and Xu [Arch. Math. (Basel) 64
(1995), pp. 26–32], so as to derive cubature rules for the integration of sym-
metric functions over hypercubes (or infinite limiting degenerations thereof)
with respect to the densities of unitary random matrix ensembles. Our main
application concerns the explicit implementation of a class of cubature rules
associated with the Bernstein-Szegö polynomials, which permit the exact in-
tegration of symmetric rational functions with prescribed poles at coordinate
hyperplanes against unitary circular Jacobi distributions stemming from the
Haar measures on the symplectic and the orthogonal groups.

1. Introduction

The study of cubature rules for the numeric integration of functions in several
variables has a long fruitful history; see e.g. [S71, DR84, S92, SV97, C97, CMS01,
IN06, DX14, CH15] and references therein. Over the past few years significant
progress has been reported regarding the construction of explicit cubature rules
of Gauss-Chebyshev type, permitting the exact integration of multivariate polyno-
mials [LX10,MP11,NS12,MMP14,HM14,HMP16].

Inspired by these recent developments we invoke the Cauchy-Binet-Andréief for-
mulas to rederive a multivariate lifting of the Gauss quadrature formula due to
Berens, Schmid, and Xu [BSX95], in the version designed to integrate symmetric
functions over a hypercube, a hyperoctant, or over the entire euclidean space. In
the case of the classical Gauss-Hermite, Gauss-Laguerre, and Gauss-Jacobi quadra-
tures [S75,DR84], this readily produces corresponding cubature rules for the exact
integration of symmetric polynomials against the densities of ubiquitous unitary
random matrix ensembles associated with the Hermite, Laguerre, and Jacobi poly-
nomials [M04,F10], respectively.

At the special parameter values for which the Gauss-Jacobi quadrature sim-
plifies to a Gauss-Chebyshev quadrature, the construction in question leads to
cubature rules associated with the classical simple Lie groups that turn out to
be closely related to those studied in [MP11, MMP14, HM14, HMP16]. One of
our primary concerns is to extend the corresponding Gauss-Chebyshev cubatures
to a class of explicit cubature rules arising from the Bernstein-Szegö polynomials
[S75, Section 2.6]. It is well known that the Gauss quadrature associated with
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2 J. F. VAN DIEJEN AND E. EMSIZ

the Bernstein-Szegö polynomials [N90, P93, N00, BCM07, BCGM08] permits the
exact integration of rational functions with prescribed poles (outside the integra-
tion domain) [DGJ06, BCDG09] (cf. also [G93, VV93, G01, BGHN01] for related
approaches). Our aim is to extend this picture to the multivariate setup: we
construct an exact cubature rule for a class of symmetric rational functions with
prescribed poles at the coordinate hyperplanes, where the integration is against
the unitary circular Jacobi distributions stemming from the Haar measures on the
symplectic and the orthogonal groups (cf. e.g. [S96, Chapter IX.9], [P07, Chapter
11.10], or [F10, Chapter 2.6]). This way the above-mentioned Gauss-Chebyshev
cubature rules originating from parameter specializations of the (more involved)
Gauss-Jacobi cubature formulas are generalized so as to allow for pole singularities
on the coordinate hyperplanes.

The presentation is structured as follows. After setting up the notation for the
Gauss quadrature rule in Section 2, we emphasize in Section 3 the effectiveness
of the Cauchy-Binet-Andréief formulas when extending the underlying family of
orthogonal polynomials to the multivariate level via associated generalized Schur
polynomials [M92, BSX95, NNSY00, SV14]. This readily allows us to recover a
Gaussian cubature rule for the integrations of symmetric functions from [BSX95,
equation (8)] (with ρ = 0) in Section 4. In Section 5 we highlight the explicit
cubature rules stemming from the classical Hermite, Laguerre, and Jacobi families,
which permit the exact integration of symmetric polynomials with respect to the
densities of the corresponding unitary ensembles. In the remainder of the paper
the implementation of the construction for the case of Bernstein-Szegö polynomials
is carried out. Specifically, after recalling the definition of the Bernstein-Szegö
polynomials in Section 6 and providing estimates for the locations of their roots
in Section 7, the corresponding Gauss quadrature rule stemming from [DGJ06,
BCDG09] is exhibited in Section 8. In Section 9 we then apply the general formalism
of Section 4 to lift this quadrature to an explicit cubature rule for an associated class
of symmetric rational functions. To enhance the readability, some technical details
regarding the explicit computation of the pertinent Christoffel weights associated
with the Bernstein-Szegö families are supplemented in Appendix A at the end.

2. Preliminaries and notation regarding the Gauss quadrature

Given a continuous weight function w(x) > 0 on a nonempty interval (a, b) with
finite moments, let pl(x), l = 0, 1, 2, . . ., denote the orthonormal basis obtained from
the monomial basisml(x) := xl, l = 0, 1, 2, . . ., via Gram-Schmidt orthogonalization
with respect to the inner product

(2.1) (f, g)w :=

∫ b

a

f(x)g(x)w(x)dx

(for f, g : (a, b) → R polynomial (say)). It is well known (cf. e.g. [S75, Section
3.3]) that the roots of such orthogonal polynomials pl(x) are simple and belong to
(a, b); i.e., for m ≥ 0:

(2.2a) pm+1(x) = αm+1

(
x− x

(m+1)
0

)(
x− x

(m+1)
1

)
· · ·

(
x− x(m+1)

m

)
,

with

(2.2b) a < x
(m+1)
0 < x

(m+1)
1 < · · · < x(m+1)

m < b

and αl := 1/(pl,ml)w (l = 0, 1, 2, . . .).
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EXACT CUBATURE RULES FOR SYMMETRIC FUNCTIONS 3

Let f(x) be an arbitrary polynomial of degree at most 2m+1 in x. The celebrated
Gauss quadrature formula states that in this situation (cf. e.g. [S75, Section 3.4],
[G81], or for an overview of more recent developments [G04]):

(2.3a)

∫ b

a

f(x)w(x)dx =
∑

0≤l̂≤m

f(x
(m+1)

l̂
)w

(m+1)

l̂
,

where the corresponding Christoffel weights w
(m+1)
0 , . . . ,w

(m+1)
m are given by

(2.3b) w
(m+1)

l̂
=

( ∑
0≤l≤m

(
pl(x

(m+1)

l̂
)
)2)−1

(l̂ = 0, . . . ,m).

This quadrature rule can be reformulated in terms of discrete orthogonality rela-
tions for p0(x), p1(x), . . . , pm(x). Indeed, when applying the Gauss quadrature rule
(2.3a), (2.3b) to the product f(x) = pl(x)pk(x) with l, k at most m, the defining
orthogonality

(2.4) (pl, pk)w =

{
1 if k = l,

0 if k �= l

gives rise to the associated finite-dimensional discrete orthogonality:

(2.5a)
∑

0≤l̂≤m

pl(x
(m+1)

l̂
)pk(x

(m+1)

l̂
)w

(m+1)

l̂
=

{
1 if k = l,

0 if k �= l

(l, k ∈ {0, . . . ,m}). By “column-row duality”, one can further reformulate (2.5a)
in terms of the equivalent dual orthogonality relations

(2.5b)
∑

0≤l≤m

pl(x
(m+1)

l̂
)pl(x

(m+1)

k̂
) =

{
1/w

(m+1)

l̂
if k̂ = l̂,

0 if k̂ �= l̂

(l̂, k̂ ∈ {0, . . . ,m}).

Remark 2.1. The discrete orthogonality relations in (2.5a) remain in fact valid
when either l or k (but not both) become equal to m+1 (because pm+1(x) vanishes

identically on the nodes x
(m+1)
0 , . . . , x

(m+1)
m ).

3. Generalized Schur polynomials

Given λ = (λ1, . . . , λn) in the fundamental cone

(3.1) Λ(n) := {λ ∈ Z
n | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0},

the generalized Schur polynomial Pλ(x) associated with the orthonormal system
p0(x), p1(x), p2(x), . . . is defined via the determinantal formula (cf. [M92,BSX95,
NNSY00,SV14])

(3.2a) Pλ(x) :=
1

V(x)
det[pλj+n−j(xk)]1≤j,k≤n,

where V (x) refers to the Vandermonde determinant

(3.2b) V(x) :=
∏

1≤j<k≤n

(xj − xk).

Clearly Pλ(x) constitutes a (permutation-)symmetric polynomial in the compo-
nents of x := (x1, x2, . . . , xn) (as the determinant in the numerator produces an
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4 J. F. VAN DIEJEN AND E. EMSIZ

antisymmetric polynomial which is therefore divisible by the Vandermonde deter-
minant).

It is well known that the symmetric polynomials in question inherit multivariate
orthogonality relations from the underlying univariate family (cf. e.g. [BSX95,
SV14]).

Proposition 3.1 (Orthogonality relations). The generalized Schur polynomials
Pλ(x), λ ∈ Λ(n) satisfy the orthogonality relations

1

n!

∫ b

a

· · ·
∫ b

a

Pλ(x)Pμ(x)W(x)dx1 · · · dxn =

{
1 if μ = λ,

0 if μ �= λ
(3.3a)

(λ, μ ∈ Λ(n)), where

(3.3b) W(x) :=
(
V(x)

)2 ∏
1≤j≤n

w(xj).

Proof. This orthogonality is immediate from (i) a classical (Cauchy-Binet type)
integration formula for the products of determinants going back to M.C. Andréief
[A86] (which is for instance reproduced with proof in [BDS03, Lemma 3.1]), in com-
bination with (ii) the orthogonality of the basis polynomials p0(x), p1(x), p2(x), . . . .
More specifically, one has that ∀λ, μ ∈ Λ(n):

1

n!

∫ b

a

· · ·
∫ b

a

Pλ(x)Pμ(x)W(x)dx1 · · · dxn

=
1

n!

∫ b

a

· · ·
∫ b

a

det[pλj+n−j(xk)]1≤j,k≤n det[pμj+n−j(xk)]1≤j,k≤n

∏
1≤j≤n

w(xj)dxj

(i)
= det

[∫ b

a

pλj+n−j(x)pμk+n−k(x)w(x)dx

]
1≤j,k≤n

(ii)
=

{
1 if μ = λ,

0 if μ �= λ.

�

The following proposition provides a corresponding multivariate generalization
of the finite-dimensional discrete orthogonality in (2.5a), which holds for Pλ(x)
when λ is restricted to the fundamental alcove

(3.4) Λ(m,n) := {λ = (λ1, . . . , λn) ∈ Z
n | m ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}.

Proposition 3.2 (Discrete orthogonality relations). The generalized Schur poly-
nomials Pλ(x), λ ∈ Λ(m,n) satisfy the discrete orthogonality relations

∑
λ̂∈Λ(m,n)

Pλ

(
x
(m,n)

λ̂

)
Pμ

(
x
(m,n)

λ̂

)
Wλ̂ =

{
1 if μ = λ,

0 if μ �= λ
(3.5a)

(λ, μ ∈ Λ(m,n)), where

(3.5b) x
(m,n)

λ̂
:=

(
x
(m+n)

λ̂1+n−1
, x

(m+n)

λ̂2+n−2
, . . . , x

(m+n)

λ̂n−1+1
, x

(m+n)

λ̂n

)
and

(3.5c) Wλ̂ :=
(
V
(
x
(m,n)

λ̂

))2 ∏
1≤j≤n

w
(m+n)

λ̂j+n−j
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EXACT CUBATURE RULES FOR SYMMETRIC FUNCTIONS 5

(for λ̂ ∈ Λ(m,n)). Here x
(m+n)

λ̂j+n−j
and w

(m+n)

λ̂j+n−j
(j = 1, . . . , n) are in accordance with

the definitions in Equations (2.2a), (2.2b) and Equations (2.3a), (2.3b), respec-
tively.

Proof. Similarly to the proof of Proposition 3.1, the asserted orthogonality relations
are derived from those in Equation (2.5a) by means of the Cauchy-Binet formula:∑

λ̂∈Λ(m,n)

Pλ

(
x
(m,n)

λ̂

)
Pμ

(
x
(m,n)

λ̂

)
Wλ̂

=
∑

m+n>λ̃1>λ̃2>···>λ̃n≥0

⎛
⎝det

[
pλj+n−j

(
x
(m+n)

λ̃k

)√
w

(m+n)

λ̃k

]
1≤j,k≤n

× det

[
pμj+n−j

(
x
(m+n)

λ̃k

)√
w

(m+n)

λ̃k

]
1≤j,k≤n

⎞
⎠

(i)
= det

⎡
⎣ ∑
0≤l̂<m+n

pλj+n−j

(
x
(m+n)

l̂

)
pμk+n−k

(
x
(m+n)

l̂

)
w

(m+n)

l̂

⎤
⎦
1≤j,k≤n

(ii)
=

{
1 if μ = λ,

0 if μ �= λ

(where it was assumed that λ, μ ∈ Λ(m,n)). Here the equality (i) hinges on the
Cauchy-Binet formula, while the equality (ii) follows using Equation (2.5a). �

Remark 3.1. The alternative dual formulation of the discrete orthogonality in
Proposition 3.2 reads (cf. Equation (2.5b))

∑
λ∈Λ(m,n)

Pλ

(
x
(m,n)

λ̂

)
Pλ

(
x
(m,n)
μ̂

)
=

{
1/Wλ̂ if μ̂ = λ̂,

0 if μ̂ �= λ̂
(3.6)

(λ̂, μ̂ ∈ Λ(m,n)).

Remark 3.2. The orthogonality in Proposition 3.2 extends in fact to the situation
that λ ∈ Λ(m+1,n) and μ ∈ Λ(m,n). Indeed, it is immediate from the definitions

that if λ1 = m+ 1, then Pλ

(
x
(m,n)

λ̂

)
= 0 for all λ̂ ∈ Λ(m,n) (cf. Remark 2.1).

4. Gaussian cubature for symmetric functions

For λ ∈ Λ(n), let us define the symmetric monomial

(4.1) Mλ(x) :=
∑

μ∈Snλ

xμ1

1 xμ2

2 · · ·xμn
n ,

where the summation is meant over the orbit Snλ of λ with respect to the standard
action of the permutation group Sn on the components

(4.2) λ = (λ1, . . . , λn)
σ→ (λσ−1(1), . . . , λσ−1(n)) =: σλ
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6 J. F. VAN DIEJEN AND E. EMSIZ

for σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
∈ Sn. Clearly Mλ(x) is homogeneous of total

degree

(4.3) |λ| := λ1 + λ2 + · · ·+ λn.

Upon restricting the (inhomogeneous) dominance order

(4.4) ∀μ, λ ∈ Z
n : μ ≤ λ ⇔

∑
1≤j≤k

(λj − μj) ≥ 0 for k = 1, . . . , n

from Z
n to Λ(n), this partial ordering is inherited by monomial basis Mλ(x), λ ∈

Λ(n).
Let P(m,n) denote the

(
m+n
n

)
-dimensional subspace of the algebra of symmetric

polynomials spanned by Mλ(x), λ ∈ Λ(m,n). Notice that these are precisely the
monomials Mλ(x) with λ ∈ Λ(n) such that λ ⊆ (m)n := (m, . . . ,m) ∈ Λ(n) (where
for λ, μ ∈ Λ(n) one writes λ ⊆ μ iff λj ≤ μj for j = 1, . . . , n). In other words, P(m,n)

consists of all symmetric polynomials of degree at most m in each of the variables
xj (j ∈ {1, . . . , n}).

Lemma 4.1 (Generalized Schur basis). The generalized Schur polynomials Pλ(x),
λ ∈ Λ(m,n) constitute a basis for P

(m,n).

Proof. Since the numerator is a polynomial in xj of degree at most λ1 + n − 1
and the Vandermonde determinant is of degree n − 1 in xj , it is clear that the

generalized Schur polynomial Pλ(x) ((3.2a), (3.2b)) belongs to P
(m,n) when λ ∈

Λ(m,n). Moreover, if we replace pl(x) on the RHS of Equation (3.2a) by xl, then we
recover a classic determinantal formula for the conventional Schur polynomial Sλ(x)
(cf. e.g. [M92, equation (0.1)]). Hence, up to normalization, the top-degree terms of
Pλ(x) are given by Sλ(x). It is therefore enough to infer that the Schur polynomials
Sλ(x), λ ∈ Λ(m,n) provide a basis for P(m,n). This, however, is immediate from the
well-known fact that the expansion of the Schur polynomials on the monomial basis
is unitriangular with respect to the dominance partial order (cf. e.g. [M95, Chapter
I.6]):

Sλ(x) = Mλ(x) +
∑

μ∈Λ(n), μ<λ
|μ|=|λ|

Cμ
λMμ(x)

for certain (nonnegative integral) coefficients Cμ
λ . �

After these preparations we are now in a position to reformulate the orthogo-
nality relations of Propositions 3.1 and 3.2 as a cubature rule for the integration
of symmetric functions in n variables over (a, b)n ⊆ R

n. The resulting cubature
formula, which provides a multivariate extension of the celebrated Gauss quad-
rature rule (2.3a), (2.3b), was originally found by Berens, Schmid, and Xu; cf.
[BSX95, equation (8)] (with ρ = 0) and [DX14, Chapter 5.4].

Proposition 4.2 (Exact Gaussian cubature rule in P
(2m+1,n)). For f(x) ∈

P
(2m+1,n), one has that

(4.5)
1

n!

∫ b

a

· · ·
∫ b

a

f(x)W(x)dx1 · · · dxn =
∑

λ̂∈Λ(m,n)

f
(
x
(m,n)

λ̂

)
Wλ̂,
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EXACT CUBATURE RULES FOR SYMMETRIC FUNCTIONS 7

where W(x), x
(m,n)

λ̂
, and Wλ̂ are drawn from (3.3b), (3.5b), and (3.5c), respec-

tively.

Proof. By comparing the orthogonality relations in Propositions 3.1 and 3.2, while
also recalling Remark 3.2, it is plain that the cubature rule in (4.5) is valid for
f(x) = Pλ(x)Pμ(x) with λ ∈ Λ(m+1,n) and μ ∈ Λ(m,n). By Lemma 4.1 and the

bilinearity, the same is thus true for f(x) = Mλ(x)Mμ(x) with λ ∈ Λ(m+1,n) and

μ ∈ Λ(m,n). Since σλ ≤ λ for all λ ∈ Λ(n) and σ ∈ Sn (cf. e.g. [H78, Chapter
III.13.2]), it is clear from (4.1) that

Mλ(x)Mμ(x) = Mλ+μ(x) +
∑

ν∈Λ(n), ν<λ+μ
|ν|=|λ+μ|

Cν
λ,μMν(x)

for certain (nonnegative integral) coefficients Cν
λ,μ. Thus, the productsMλ(x)Mμ(x)

span the space P
(2m+1,n) as λ and μ vary over Λ(m+1,n) and Λ(m,n), respectively.

The asserted cubature rule now follows for general f(x) ∈ P
(2m+1,n) by linearity. �

Remark 4.1. Since any symmetric polynomial can be uniquely written as a poly-
nomial expression in the elementary symmetric monomials, the change of variables
x → y = (y1, . . . , yn) given by

(4.6) yk = Ek(x1, . . . , xn) :=
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · ·xjk (k = 1, . . . , n),

induces a linear isomorphism between P
(m,n) and the space Π(m,n) of all (not

necessarily symmetric) polynomials in the variables y1, . . . , yn of total degree ≤
m. In particular, dim(Π(m,n)) = dim(P(m,n)) =

(
m+n
m

)
. Under this change of

variables, the cubature formula in (4.5) transforms into an exact cubature for-
mula in Π(2m+1,n) supported on dim(Π(m,n)) nodes that was detailed explicitly
in [BSX95, equation (2)]. Since it is well known that any exact cubature rule
in Π(2m+1,n) involves function evaluations on at least dim(Π(m,n)) nodes (cf. e.g.
[DX14, Chapter 3.8] and references therein), it follows via the change of variables in
(4.6) that similarly any exact cubature rule in P

(2m+1,n) involves function evalua-
tions on at least dim(P(m,n)) nodes. Following standard terminology [DX14, Chap-
ter 3.8], here we refer to exact cubature rules in P

(2m+1,n) supported on precisely
(the minimal possible number of) dim(P(m,n)) nodes as being Gaussian. From this
perspective, Proposition 4.2 is to be viewed as a concrete example of a Gaussian
cubature rule in P

(2m+1,n). Notice in this connection also that, in view of Remark

3.2, the nodes x
(m,n)

λ̂
, λ̂ ∈ Λ(m,n) are common zeros of all

(
m+n
m+1

)
basis polynomi-

als Pλ(x), λ ∈ Λ(n) that are precisely of degree m + 1 in each of the variables xj

(j ∈ {1, . . . , n}); cf. [DX14, Theorem 3.8.4].

5. The classical orthogonal families: cubature rules

for unitary random matrix ensembles

By specializing pl(x), l = 0, 1, 2, . . ., to the classical orthogonal families of Her-
mite, Laguerre, and Jacobi type, Proposition 4.2 provides cubature rules for the
exact integration of f(x) ∈ P

(2m+1,n) with respect to the densities of the Gaussian
unitary ensemble, the Laguerre unitary ensemble, and the Jacobi unitary ensemble,
respectively.
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8 J. F. VAN DIEJEN AND E. EMSIZ

5.1. Gaussian unitary ensemble. The normalized Hermite polynomials

hl(x) =
1√
2ll!

Hl(x), l = 0, 1, 2, . . . ,

constitute an orthonormal basis on the interval (a, b) = (−∞,∞) with respect

to the weight function w(x) = 1√
π
e−x2

[OLBC10, Chapter 18]. At the (l̂ + 1)th

root x
(m+1)

l̂
of hm+1(x) the corresponding Christoffel weight is given by (cf. e.g.

[S75, Chapter 15.3] or [DR84, Chapter 3.6])

w
(m+1)

l̂
=

(
(m+ 1)h2

m

(
x
(m+1)

l̂

))−1

(0 ≤ l̂ ≤ m).

In this situation Proposition 4.2 gives rise to the following Gauss-Hermite cubature
rule for the integration of f(x) ∈ P

(2m+1,n) with respect to the density of the
Gaussian unitary ensemble (cf. e.g. [M04, Chapter 3.3] or [F10, Chapter 1.3]):

1

π
n
2 n!

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x)

∏
1≤j≤n

e−x2
j

∏
1≤j<k≤n

(xj − xk)
2dx1 · · ·dxn(5.1a)

=
∑

λ̂∈Λ(m,n)

f
(
x
(m,n)

λ̂

)
Wλ̂,

where

Wλ̂ =
1

(m+ n)n

∏
1≤j≤n

(
hm+n−1

(
x
(m+n)

λ̂j+n−j

))−2

(5.1b)

×
∏

1≤j<k≤n

(
x
(m+n)

λ̂j+n−j
− x

(m+n)

λ̂k+n−k

)2

.

5.2. Laguerre unitary ensemble. For α > −1 the normalized Laguerre polyno-
mials

�
(α)
l (x) =

√
l!

Γ(l+1+α)L
(α)
l (x), l = 0, 1, 2, . . . ,

are orthonormal on the interval (a, b) = (0,∞) with respect to the weight function

w(x) = xαe−x [OLBC10, Chapter 18]. The Christoffel weight at the (l̂+ 1)th root

x
(m+1)

l̂
of �

(α)
m+1(x) reads (cf. e.g. [S75, Chapter 15.3] or [DR84, Chapter 3.6])

w
(m+1)

l̂
=

(
(m+ 1) x

(m+1)

l̂

(
�(α+1)
m

(
x
(m+1)

l̂

))2
)−1

(0 ≤ l̂ ≤ m).

The corresponding Gauss-Laguerre cubature rule from Proposition 4.2 permits the
exact integration of f(x) ∈ P

(2m+1,n) with respect to the density of the Laguerre
unitary ensemble (cf. e.g. [M04, Chapter 19] or [F10, Chapter 3]):

1

n!

∫ ∞

0

· · ·
∫ ∞

0

f(x)
∏

1≤j≤n

xα
j e

−xj

∏
1≤j<k≤n

(xj − xk)
2dx1 · · ·dxn(5.2a)

=
∑

λ̂∈Λ(m,n)

f
(
x
(m,n)

λ̂

)
Wλ̂,
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EXACT CUBATURE RULES FOR SYMMETRIC FUNCTIONS 9

where

Wλ̂ =
1

(m+ n)n

∏
1≤j≤n

(
x
(m+n)

λ̂j+n−j

)−1 (
�
(α+1)
m+n−1

(
x
(m+n)

λ̂j+n−j

))−2

(5.2b)

×
∏

1≤j<k≤n

(
x
(m+n)

λ̂j+n−j
− x

(m+n)

λ̂k+n−k

)2

.

5.3. Jacobi unitary ensemble. For α, β > −1 the normalized Jacobi polynomials

p
(α,β)
l (x) =

√
(2l+1+α+β)Γ(l+1+α+β)l!
2α+β+1Γ(l+1+α)Γ(l+1+β)

P
(α,β)
l (x), l = 0, 1, 2, . . . ,

are orthonormal on the interval (a, b) = (−1, 1) with respect to the weight function
w(x) = (1 − x)α(1 + x)β [OLBC10, Chapter 18]. The Christoffel weight at the

(l̂ + 1)th root x
(m+1)

l̂
of p

(α,β)
m+1 (x) is given by (cf. e.g. [S75, Chapter 15.3])

w
(m+1)

l̂
=

(2m+ 3 + α+ β)

(m+ 1)(m+ 2 + α+ β)
(
1−

(
x
(m+1)

l̂

)2)(
p
(α+1,β+1)
m

(
x
(m+1)

l̂

))2

(0 ≤ l̂ ≤ m). The corresponding Gauss-Jacobi cubature rule from Proposition 4.2
permits the exact integration of f(x) ∈ P

(2m+1,n) with respect to the density of the
Jacobi unitary ensemble (cf. e.g. [M04, Chapter 19] or [F10, Chapter 3]):

1

n!

∫ 1

−1

· · ·
∫ 1

−1

f(x)
∏

1≤j≤n

(1− xj)
α(1 + xj)

β
∏

1≤j<k≤n

(xj − xk)
2dx1 · · · dxn(5.3a)

=
∑

λ̂∈Λ(m,n)

f
(
x
(m,n)

λ̂

)
Wλ̂,

where

Wλ̂ = (2m+2n+1+α+β)n

(m+n)n(m+n+1+α+β)n

∏
1≤j≤n

(
1−

(
x
(m+n)

λ̂j+n−j

)2)−1 (
p
(α+1,β+1)
m+n−1

(
x
(m+n)

λ̂j+n−j

))−2

×
∏

1≤j<k≤n

(
x
(m+n)

λ̂j+n−j
− x

(m+n)

λ̂k+n−k

)2

.

(5.3b)

Remark 5.1. For the Hermite, Laguerre, and Jacobi families the orthogonality re-
lations of the associated symmetric polynomials Pλ(x), λ ∈ Λ(n) ((3.2a), (3.2b))
originating from Proposition 3.1 were pointed out in [L91a, L91b, L91c]. In these
special cases, Proposition 3.2 now provides the complementary discrete orthogonal-
ity relations underpinning the cubature rules in equations (5.1a), (5.1b), equations
(5.2a), (5.2b), and equations (5.3a), (5.3b).

Remark 5.2. For n = 2 the bivariate Gaussian cubature rule stemming from Propo-
sition 4.2 was first formulated in [SX94, Equation (1.4)] (in the symmetrized co-
ordinates y1 = x1 + x2 and y2 = x1x2 of Remark 4.1). A more detailed study of
the corresponding bivariate Gauss-Jacobi cubature ((5.3a), (5.3b)) can be found in
[X12,X17].
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10 J. F. VAN DIEJEN AND E. EMSIZ

6. The Bernstein-Szegö polynomials

For parameters α, β ∈ { 1
2 ,−

1
2}, the Gauss-Jacobi cubature ((5.3a), (5.3b)) spe-

cializes to more elementary Gauss-Chebyshev cubature rules. For n = 2 such bi-
variate Gauss-Chebyshev cubatures were highlighted in [X12,X17] (cf. Remark 5.2
above). For general n, a systematic study of closely related Gauss-Chebyshev cuba-
ture formulas was carried out in [MP11,MMP14,HM14,HMP16] within the frame-
work of compact simple Lie groups. From this perspective, the Gauss-Chebyshev
cubatures arising here turn out to be associated with the classical Lie groups of
types Bn, Cn, and Dn. In the remainder of the paper, we employ the Bernstein-
Szegö polynomials [S75, Section 2.6] to construct (rational) generalizations of the
Gauss-Chebyshev cubatures stemming from (5.3a), (5.3b) when α, β ∈ { 1

2 ,−
1
2}.

To this end it will be convenient to pass to trigonometric variables from now on:

x = cos(ξ), 0 ≤ ξ ≤ π.

By definition (cf. [S75, Section 2.6]), the Bernstein-Szegö polynomial pl
(
cos(ξ)

)
serving our purposes is a polynomial of degree l in x = cos(ξ) such that the sequence
p0
(
cos(ξ)

)
, p1

(
cos(ξ)

)
, p2

(
cos(ξ)

)
, . . . provides an orthonormal basis of the Hilbert

space L2((0, π), w(ξ)dξ), where the weight function is of the form

(6.1) w(ξ) :=
2ε++ε−

(
1 + ε+ cos(ξ)

)(
1− ε− cos(ξ)

)
2π

∏
1≤r≤d(1 + 2ar cos(ξ) + a2r)

(0 < |ar| < 1)

(r = 1, . . . , d). Here ε± ∈ {0, 1} and, moreover, it is assumed (throughout) that any
complex parameters ar occur in complex conjugate pairs (so w(ξ) remains positive
and bounded on the interval (0, π)).

It is well known (cf. [S75, Section 2.6]) that for l ≥ dε :=
d−ε+−ε−

2 , the Bernstein-

Szegö polynomial is given by an explicit formula of the form

(6.2a) pl(cos(ξ)) = Δ
1/2
l

(
c(ξ)eilξ + c(−ξ)e−ilξ

)
,

where

(6.2b) c(ξ) := (1 + ε+e
−iξ)−1(1− ε−e

−iξ)−1
∏

1≤r≤d

(1 + are
−iξ)

(so w(ξ) = 1/(2πc(ξ)c(−ξ)) = 1/(2π|c(ξ)|2)) and

(6.2c) Δl :=

{(
1 + (−1)ε−

∏
1≤r≤d ar

)−1
if l = dε,

1 if l > dε.

Remark 6.1. For d = 0 the Bernstein-Szegö polynomials degenerate to

pl
(
cos(ξ)

)
=

⎧⎨
⎩
21−δl/2 cos(lξ) if (ε+, ε−) = (0, 0),
ε+ cos((l+ 1

2 )ξ) sin(
ξ
2 )+ε− sin((l+ 1

2 )ξ) cos(
ξ
2 )

(ε++ε−) sin( ξ
2 ) cos(

ξ
2 )

if (ε+, ε−) �= (0, 0)

(where δl := 1 if l = 0 and δl := 0 otherwise). These are, respectively, the
Chebyshev polynomials of the first kind (ε+, ε−) = (0, 0), of the second kind

(ε+, ε−) = (1, 1) (so pl
(
cos(ξ)

)
= sin((l+1)ξ)

sin(ξ) ), of the third kind (ε+, ε−) = (0, 1) (so

pl
(
cos(ξ)

)
=

sin((l+ 1
2 )ξ)

sin( 1
2 ξ)

), and of the fourth kind (ε+, ε−) = (1, 0) (so pl
(
cos(ξ)

)
=

cos((l+ 1
2 )ξ)

cos( 1
2 ξ)

) (cf. e.g. [OLBC10, Chapter 18]).
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Remark 6.2. The formula in (6.2a)–(6.2c) is immediate from the following elemen-
tary asymptotics in the complex plane for l ≥ dε:

(6.3a) c(ξ)eilξ + c(−ξ)e−ilξ = Δ−1
l eilξ + o(eilξ) as |eiξ| → +∞,

in combination with the relatively straightforward integration formula for 0 ≤ k ≤ l
(cf. the end of this remark below for some additional indications concerning the
evaluation of this integral):

(6.3b)
1

2π

∫ π

−π

eilξ

c(−ξ)
ck(ξ)dξ =

{
1 if k = l,

0 if k < l,

where ck(ξ) := 21−δk cos(kξ). Indeed, since the (possible) singularities at eiξ = ±1
(stemming from c(ξ), if ε+ + ε− > 0) are removable in the even expression on the
LHS of (6.3a), it is clear from the asymptotics that we are dealing with a polynomial
of degree l(≥ dε) in cos(ξ). Moreover, it follows from (6.3b) that

(6.4)

∫ π

0

(
c(ξ)eilξ + c(−ξ)e−ilξ

)
ck(ξ)w(ξ)dξ =

{
1 if k = l,

0 if k < l

(where the overall numerical factor is absorbed in the weight function w(ξ)). The
upshot is that for l ≥ dε the RHS of (6.2a) satisfies the defining orthogonality
relations for pl

(
cos(ξ)

)
. Notice that this also reveals that the (leading) coefficient

αl of
(
cos(ξ)

)l
in pl

(
cos(ξ)

)
is given by

(6.5) αl = 2lΔ
−1/2
l

in this situation. Finally, to infer the identity in (6.3b) it suffices to observe that the
integral under consideration picks up the constant term of the (Fourier) expansion
in eiξ of the integrand. Indeed, after expanding the d factors stemming from the
denominator of 1/c(−ξ) in terms of geometric series, it readily follows that the
constant term in question is equal to 0 if l > k ≥ 0 and equal to 1 if l = k ≥ 0.

7. On the roots of Bernstein-Szegö polynomials

For m+1 ≥ dε, the explicit representation in (6.2a)–(6.2c) permits us to compute

the (l̂ + 1)th root ξ
(m+1)

l̂
of the Bernstein-Szegö polynomial

(7.1a) pm+1

(
cos(ξ)

)
= αm+1

∏
0≤l̂≤m

(
cos(ξ)− cos(ξ

(m+1)

l̂
)
)
,

with the convention

(7.1b) 0 < ξ
(m+1)
0 < ξ

(m+1)
1 < · · · < ξ(m+1)

m < π,

as the unique real solution of an elementary transcendental equation.

Proposition 7.1 (Bernstein-Szegö roots). Given m + 1 ≥ dε and l̂ ∈ {0, . . . ,m},
the root ξ

(m+1)

l̂
(7.1b) of the Bernstein-Szegö polynomial pm+1

(
cos(ξ)

)
can be re-

trieved as the unique real solution of the transcendental equation

(7.2a) 2(m+ 1− dε)ξ +
∑

1≤r≤d

var
(ξ) = π

(
2l̂ + 1 + ε−

)
,
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12 J. F. VAN DIEJEN AND E. EMSIZ

where

(7.2b) va(ξ) :=

∫ ξ

0

1− a2

1 + 2a cos(θ) + a2
dθ (|a| < 1).

Proof. Since for |a| < 1 and ξ real v′a(ξ) + v′ā(ξ) > 0, it is clear that the (odd) real
function of ξ on the LHS of (7.2a) is monotonously increasing and unbounded (as
va(ξ + 2π) = va(ξ) + 2π). The transcendental equation in question has therefore a

unique real solution ξ̂
(m+1)

l̂
(say). Moreover, from the RHS (and the monotonicity

of the LHS) we see that ξ̂
(m+1)

k̂
> ξ̂

(m+1)

l̂
if k̂ > l̂. At ξ = 0 and ξ = π the

LHS of (7.2a) takes the values 0 and (2m+ 2 + ε+ + ε−)π, respectively (because
va(π) = π), so it is clear (by comparing with the values on the RHS) that 0 <

ξ̂
(m+1)
0 < ξ̂

(m+1)
1 < · · · < ξ̂

(m+1)
m < π. It remains to infer that at ξ = ξ̂

(m+1)

l̂

(0 ≤ l̂ ≤ m) our Bernstein-Szegö polynomial pm+1

(
cos(ξ)

)
vanishes or, equivalently

(when m+ 1 ≥ dε), that e
2i(m+1)ξ = − c(−ξ)

c(ξ) or, more explicitly:

(7.3) e2i(m+1−dε)ξ = (−1)ε−+1
∏

1≤r≤d

1 + are
iξ

eiξ + ar
.

Multiplication of (7.2a) by i and exponentiation of both sides with the aid of the
identity (cf. (7.5) below)

e−iva(ξ) =
1 + aeiξ

eiξ + a
(|a| < 1)

reveals that (7.3) is automatically satisfied at solutions of (7.2a); i.e., pm+1(ξ̂
(m+1)

l̂
)

= 0 and thus ξ̂
(m+1)

l̂
= ξ

(m+1)

l̂
(for l̂ = 0, . . . ,m). �

Proposition 7.1 entails the following estimates for the Bernstein-Szegö roots and
their distances.

Proposition 7.2 (Estimates for the Bernstein-Szegö roots). For m + 1 ≥ dε, the
Bernstein-Szegö roots (7.1b) obey the following inequalities:

(7.4a)
π
(
l̂ + 1

2 + ε−
2

)
m+ 1− dε + κ−

≤ ξ
(m+1)

l̂
≤

π
(
l̂ + 1

2 + ε−
2

)
m+ 1− dε + κ+

(for 0 ≤ l̂ ≤ m) and

(7.4b)
π(k̂ − l̂)

m+ 1− dε + κ−
≤ ξ

(m+1)

k̂
− ξ

(m+1)

l̂
≤ π(k̂ − l̂)

m+ 1− dε + κ+

(for 0 ≤ l̂ < k̂ ≤ m), where

(7.4c) κ± :=
1

2

∑
1≤r≤d

(
1− |ar|
1 + |ar|

)±1

.

Proof. The estimate in (7.4a) readily follows from the transcendental equation for

ξ
(m+1)

l̂
in (7.2a) through the mean value theorem. Here one uses that for ξ real

Re
(
v′a(ξ)

)
=

1

2

(
v′|a|

(
ξ +Arg(a)

)
+ v′|a|

(
ξ −Arg(a)

))
,
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whence
1− |a|
1 + |a| ≤ Re

(
v′a(ξ)

)
≤ 1 + |a|

1− |a| (|a| < 1).

The estimate in (7.4b) for the distance between the zeros follows in an analogous

way after subtracting the l̂th equation in (7.2a) from the k̂th equation. �

Remark 7.1. The transcendental equation in Proposition 7.1 is well-suited for com-

puting ξ
(m+1)

l̂
(m+1 ≥ dε) numerically (e.g. by means of a standard fixed-point iter-

ation scheme like Newton’s method). Notice in this connection that for −π < ξ < π
(and |a| < 1):

(7.5) va(ξ) = iLog

(
1 + aeiξ

eiξ + a

)
= 2Arctan

(
1− a

1 + a
tan

(
ξ

2

))
,

so numerical integration can be readily avoided when evaluating va(ξ) (7.2b). A

natural initial estimate for starting up the numerical computation of ξ
(m+1)

l̂
is

provided by the exact (l̂ + 1)th Chebyshev root
π
(
l̂+ 1

2+
ε−
2

)
m+1+

ε+
2 +

ε−
2

(which corresponds

to the case d = 0; cf. Remark 6.1). Indeed, these Chebyshev roots automatically
comply with all inequalities in Proposition 7.2.

8. Gauss-Chebyshev quadrature for rational functions

with prescribed poles

For ε± = 0 compact expressions for the Christoffel weights associated with the
Bernstein-Szegö polynomials were computed in [DGJ06, Theorem 4.4], while for
general ε± ∈ {0, 1} the corresponding formulas can be gleaned from [BCDG09,
Theorems 5.3–5.5]:

w
(m+1)

l̂
:=

( ∑
0≤l≤m

p2l
(
cos(ξ

(m+1)

l̂
)
))−1

=
(
|c(ξ(m+1)

l̂
)|2h(m+1)(ξ

(m+1)

l̂
)
)−1

(8.1)

with

h(m+1)(ξ) := 2(m+ 1− dε) +
∑

1≤r≤d

v′ar
(ξ)

(l̂ = 0, . . . ,m), where it was assumed that m + 1 ≥ dε. To keep our presentation
self-contained, a short verification of (8.1) is provided in Appendix A.

The Gauss quadrature ((2.3a), (2.3b)) now gives rise to the following exact quad-
rature rule for the integration of rational functions with prescribed poles against
the Chebyshev weight function (cf. [DGJ06, Section 4] and [BCDG09, Section 5]):

1

2π

∫ π

0

R(ξ)ρ(ξ)dξ =
∑

0≤l̂≤m

R
(
ξ
(m+1)

l̂

)
ρ
(
ξ
(m+1)

l̂

)(
h(m+1)

(
ξ
(m+1)

l̂

))−1

.(8.2a)

Here ρ(·) refers to the Chebyshev weight function

(8.2b) ρ(ξ) := 2ε++ε−(1 + ε+ cos(ξ))(1− ε− cos(ξ)),
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14 J. F. VAN DIEJEN AND E. EMSIZ

and R(·) is of the form

(8.2c) R(ξ) =
f
(
cos(ξ)

)
∏

1≤r≤d

(
1 + 2ar cos(ξ) + a2r

)
with d ≤ 2(m + 1) + ε+ + ε−, where f(cos(ξ)) denotes an arbitrary polynomial of
degree at most 2m + 1 in cos(ξ). For d = 0, the quadrature rule in (8.2a)–(8.2c)
reproduces the standard Gauss-Chebyshev quadratures (cf. Remark 6.1).

Remark 8.1. Assuming m+1 ≥ dε, the underlying discrete orthogonality relations
for the Bernstein-Szegö polynomials (cf. (2.5a) and (2.5b)) become explicitly∑

0≤l̂≤m

pl
(
cos(ξ

(m+1)

l̂
)
)
pk
(
cos(ξ

(m+1)

l̂
)
)(

|c(ξ(m+1)

l̂
)|2h(m+1)(ξ

(m+1)

l̂
)
)−1

(8.3a)

=

{
1 if k = l,

0 if k �= l

(l, k ∈ {0, . . . ,m}) and∑
0≤l≤m

pl
(
cos(ξ

(m+1)

l̂
)
)
pl
(
cos(ξ

(m+1)

k̂
)
)

(8.3b)

=

{
|c(ξ(m+1)

l̂
)|2h(m+1)(ξ

(m+1)

l̂
) if k̂ = l̂,

0 if k̂ �= l̂

(l̂, k̂ ∈ {0, . . . ,m}), respectively.

9. Gauss-Chebyshev cubature for symmetric rational functions

with prescribed poles at coordinate hyperplanes

The specialization of Proposition 4.2 to the case of the Bernstein-Szegö polyno-
mials now immediately culminates in the principal result of this paper: an explicit
cubature rule for the integration of symmetric functions—with prescribed poles at
coordinate hyperplanes—against the distributions of the unitary circular Jacobi
ensembles. The cubature in question generalizes the quadrature in (8.2a)–(8.2c) to
the situation of an arbitrary number of variables n ≥ 1.

Theorem 9.1 (Gauss-Chebyshev cubature rule for symmetric functions). Let ε± ∈
{0, 1} and |ar| < 1 (r = 1, . . . , d) with (possible) complex parameters ar arising in
complex conjugate pairs. Then assuming

d ≤ 2(m+ n) + ε+ + ε−,

one has that

1

(2π)n n!

∫ π

0

· · ·
∫ π

0

R(ξ)ρ(ξ)dξ1 · · · dξn(9.1a)

=
∑

λ̂∈Λ(m,n)

R
(
ξ
(m,n)

λ̂

)
ρ
(
ξ
(m,n)

λ̂

)(
H(m,n)

(
ξ
(m,n)

λ̂

))−1

.

Here the nodes ξ
(m,n)

λ̂
are of the form in (3.5b) with ξ

(m+1)

l̂
as in (7.1a), (7.1b) (cf.

also Propositions 7.1, 7.2), the weight function ρ(·) refers to the unitary circular
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Jacobi distribution

ρ(ξ) :=
∏

1≤j≤n

2ε++ε−
(
1 + ε+ cos(ξj)

)(
1− ε− cos(ξj)

)
(9.1b)

×
∏

1≤j<k≤n

(
cos(ξj)− cos(ξk)

)2
,

the Christoffel weights are governed by

(9.1c) H(m,n)(ξ) :=
∏

1≤j≤n

h(m+n)(ξj)

with h(m+1)(·) taken from (8.1), and R(·) is of the form

(9.1d) R(ξ) =
f
(
cos(ξ1), . . . , cos(ξn)

)
∏

1≤r≤d
1≤j≤n

(
1 + 2ar cos(ξj) + a2r

) ,
where f(x1, . . . , xn) = f(x) denotes an arbitrary symmetric polynomial in P

(2m+1,n).

When d = 0, Theorem 9.1 reduces to a Gauss-Chebyshev cubature of the form
(cf. Remark 6.1)

1

(2π)n n!

∫ π

0

· · ·
∫ π

0

f
(
cos(ξ)

)
ρ(ξ)dξ1 · · · dξn(9.2a)

=
1

(2(m+ n) + ε+ + ε−)
n

∑
λ̂∈Λ(m,n)

f
(
cos

(
ξ
(m,n)

λ̂

))
ρ
(
ξ
(m,n)

λ̂

)
,

where f
(
cos(ξ)

)
:= f

(
cos(ξ1), . . . , cos(ξn)

)
with f(x1, . . . , xn) = f(x) ∈ P

(2m+1,n),

and with explicit nodes ξ
(m,n)

λ̂
(3.5b) governed by the Chebyshev roots:

(9.2b) ξ
(m+n)

l̂
=

π
(
l̂ + 1

2 + ε−
2

)
m+ n+ ε+

2 + ε−
2

(0 ≤ l̂ < m+ n).

The latter cubature formula turns out to be closely related to a class of integration
rules of Lie-theoretic nature studied in [MP11,MMP14,HM14,HMP16], upon re-
stricting to the classical simple Lie groups of types Bn, Cn, and Dn (cf. Remarks
9.2 and 9.3 below for some further details).

Remark 9.1. By exploiting the symmetry of the integrand in the coordinates, the
LHS of (9.1a) can be readily rewritten as a multivariate integral over the funda-
mental domain

(9.3) A
(n) := {ξ ∈ R

n | π > ξ1 > ξ2 > · · · > ξn > 0}.

Convention (7.1b) then ensures that the cubature nodes ξ
(m,n)

λ̂
, λ̂ ∈ Λ(m,n) lie inside

this ordered domain of integration.

Remark 9.2. The unitary circular Jacobi distributions ρ(·) (9.1b) correspond to
the Haar measures on the compact simple Lie groups SO(2n + 1;R) (type Bn:
ε+ �= ε−), Sp(n;H) (type Cn: ε± = 1), and SO(2n;R) (type Dn: ε± = 0); cf. e.g.
[S96, Chapter IX.9], [P07, Chapter 11.10], or [F10, Chapter 2.6].

Remark 9.3. The Gauss-Chebyshev cubature formula in (9.2a), (9.2b) should be
viewed as a counterpart pertaining to the nonreduced root system R = BCn of
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16 J. F. VAN DIEJEN AND E. EMSIZ

the cubature rules in [MP11, Theorem 7.2] (where the situation of reduced crys-
tallographic root systems was considered). The choice for the kind of underlying
Chebyshev polynomials originates in this perspective from a freedom in the weight
function ρ(ξ) (9.1b), which is given (up to normalization) by the squared modu-
lus of the Weyl denominator of one of the following three reduced subsystems of
R = BCn: type Bn (ε+ �= ε−), type Cn (ε± = 1), or type Dn (ε± = 0), respectively
(cf. Remarks 6.1 and 9.2 above). For ε− = 0, the cubature in (9.2a), (9.2b) can ac-
tually already be retrieved from [HM14, Theorem 5.2] (second part). Notice in this
connection that both in [MP11] and in [HM14] the corresponding cubature rules
are formulated in symmetrized coordinates involving transformations analogous to
the one in Remark 4.1. To further facilitate the comparison of (9.2a), (9.2b) with
the formulas in [MP11, Theorem 7.2], let us briefly recall that the Weyl group of
the root system BCn is given by the hyperoctahedral group of signed permutations
(acting on the coordinates ξ1, . . . , ξn through permutations and sign flips). The
closure of the ordered integration domain A

(n) (9.3), which constitutes a funda-
mental domain for this Weyl group action on T

(n) := R
n/(2πZ)n, coincides (up

to rescaling) with the positive Weyl alcove of the root system. Similarly, the set
Λ(m,n) (3.4), which labels both the Schur (character) basis of P(m,n) and the cu-

bature nodes ξ
(m,n)

λ̂
, arises as a fundamental domain for the Weyl group action on

Z
n/(2mZ)n. This fundamental domain is built of the BCn root system’s dominant

weights of the form

(9.4) λ = l1�1 + · · ·+ ln�n with l1, . . . , ln ≥ 0 and l1 + · · ·+ ln ≤ m,

where �k := e1 + · · · + ek (k = 1, . . . , n) refers to the basis of the fundamental
weights (and e1, . . . , en denotes the standard unit basis of (the weight lattice) Zn).
The fact that in the present situation both the (Schur) character basis and the
cubature nodes are labeled by the same dominant weights reflects the self-duality
of the root system BCn, whereas in general one has to resort to both weights (for
labeling the character basis) and coweights (for labeling the nodes) [MP11].

Remark 9.4. For λ ∈ Λ(n), let Pλ

(
cos(ξ)

)
:= Pλ

(
cos(ξ1), . . . , cos(ξn)

)
denote the

generalized Schur polynomial from (3.2a), (3.2b) associated with the orthonormal
Bernstein-Szegö family pl

(
cos(ξ)

)
from Section 6. The orthogonality relations from

Proposition 3.1 now become:

1

(2π)n n!

∫ π

0

· · ·
∫ π

0

Pλ

(
cos(ξ)

)
Pμ

(
cos(ξ)

)
|C(ξ)|−2dξ1 · · ·dξn(9.5a)

=

{
1 if μ = λ,

0 if μ �= λ

(λ, μ ∈ Λ(n)), where

(9.5b) C(ξ) := 2n(n−1)/2
∏

1≤j≤n

c(ξj)
∏

1≤j<k≤n

(1− e−i(ξj+ξk))−1(1− e−i(ξj−ξk))−1

(so |C(ξ)|−2 =
∏

1≤j≤n |c(ξj)|−2
∏

1≤j<k≤n

(
cos(ξj) − cos(ξk)

)2
) with c(ξ) taken

from (6.2b). Upon expanding the pertinent determinant from Pλ (3.2a), (3.2b),
one arrives at a multivariate generalization of the explicit formula in (6.2a)–(6.2c)
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that is valid for λ ∈ Λ(n) with λn ≥ dε:

Pλ

(
cos(ξ)

)(9.6a)

= Δ
1/2
λ

∑
ε1,...,εn∈{−1,1}

σ∈Sn

C(ε1ξσ1
, . . . , εnξσn

) exp
(
iε1λ1ξσ1

+ · · ·+ iεnλnξσn

)
,

where

(9.6b) Δλ :=
∏

1≤j≤n

Δλj+n−j = Δλn

and C(ξ1, . . . , ξn) = C(ξ). This explicit formula reveals that the polynomials in
question are special instances of the multivariate Bernstein-Szegö polynomials as-
sociated with root systems appearing in [D06] (for nonreduced root systems) and
in [DMR07] (for reduced root systems).

Remark 9.5. In the situation of the previous remark, the orthogonality relations of
Proposition 3.2 and Remark 3.1 give rise to the following multivariate generaliza-
tion of the discrete orthogonality relations for the Bernstein-Szegö polynomials in
Remark 8.1 when m+ n ≥ dε:∑

λ̂∈Λ(m,n)

Pλ

(
cos(ξ

(m,n)

λ̂
)
)
Pμ

(
cos(ξ

(m,n)

λ̂
)
)(

|C(ξ
(m,n)

λ̂
)|2H(m,n)(ξ

(m,n)

λ̂
)
)−1

(9.7a)

=

{
1 if μ = λ,

0 if μ �= λ

(λ, μ ∈ Λ(m,n)) and∑
λ∈Λ(m,n)

Pλ

(
cos(ξ

(m,n)

λ̂
)
)
Pλ

(
cos(ξ

(m,n)
μ̂ )

)
(9.7b)

=

{
|C(ξ

(m,n)

λ̂
)|2H(m,n)(ξ

(m,n)

λ̂
) if μ̂ = λ̂,

0 if μ̂ �= λ̂

(λ̂, μ̂ ∈ Λ(m,n)), respectively. (Here the parameter restrictions and the notation are
in accordance with Theorem 9.1 and Remark 9.4.)

Appendix A. Explicit Christoffel weights for the Gauss quadrature

associated with Bernstein-Szegö polynomials

In this appendix we provide a short verification of equation (8.1) based on the
Christoffel-Darboux kernel

(A.1a)
∑

0≤l≤m

pl(x)pl(y) =
αm

αm+1

pm+1(x)pm(y)− pm(x)pm+1(y)

x− y

on the diagonal y → x

(A.1b)
∑

0≤l≤m

(
pl(x)

)2
=

αm

αm+1

(
p′m+1(x)pm(x)− pm+1(x)p

′
m(x)

)
.
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18 J. F. VAN DIEJEN AND E. EMSIZ

At the root x = cos(ξ
(m+1)

l̂
) of pm+1(x), the kernel in (A.1b) produces (cf. e.g.

[S75, equation (3.4.7)]):

(A.2) w
(m+1)

l̂
=

−αm+2/αm+1

pm+2

(
cos(ξ

(m+1)

l̂
)
)
p′m+1

(
cos(ξ

(m+1)

l̂
)
) (0 ≤ l̂ ≤ m),

where we have used that αmαm+2pm
(
cos(ξ

(m+1)

l̂
)
)
= −α2

m+1pm+2

(
cos(ξ

(m+1)

l̂
)
)

(by the three-term recurrence relation). Combined with the explicit expressions for
the Bernstein-Szegö polynomials in (6.2a)–(6.2c) and (6.5) for l ≥ m+ 1 ≥ dε, the

formula in (A.2) readily produces (8.1) upon invoking that pm+1

(
cos(ξ

(m+1)

l̂
)
)
= 0,

i.e.,

(A.3) e2i(m+1)ξ = −c(−ξ)

c(ξ)
at ξ = ξ

(m+1)

l̂

(cf. the proof of Proposition 7.2). Indeed, we see from (6.2a)–(6.2c) that

pm+2

(
cos(ξ)

)
= c(−ξ)e−i(m+1)ξ

(
c(ξ)

c(−ξ)
ei(2m+3)ξ + e−iξ

)
(A.4)

(A.3)
= − 2ic(−ξ)e−i(m+1)ξ sin(ξ)

and that

p′m+1

(
cos(ξ)

)
= −

(
sin(ξ)

)−1
Δ

1/2
m+1c(ξ)e

i(m+1)ξ(A.5)

×
(
c′(ξ)

c(ξ)
− c′(−ξ)

c(ξ)
e−2i(m+1)ξ + i(m+ 1)− i(m+ 1)

c(−ξ)

c(ξ)
e−2i(m+1)ξ

)
(A.3)
= −i

(
sin(ξ)

)−1
Δ

1/2
m+1c(ξ)e

i(m+1)ξ

(
2(m+ 1) +

1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)

))
.

Substitution of (A.4), (A.5), and (6.5) into (A.2) entails that

w
(m+1)

l̂
=

1

c(ξ
(m+1)

l̂
)c(−ξ

(m+1)

l̂
)

⎛
⎝2(m+ 1) +

1

i

⎛
⎝c′(ξ

(m+1)

l̂
)

c(ξ
(m+1)

l̂
)
+

c′(−ξ
(m+1)

l̂
)

c(−ξ
(m+1)

l̂
)

⎞
⎠
⎞
⎠

−1

.

Equation (8.1) now follows upon making (the imaginary part of) the logarithmic
derivative of c(ξ) (6.2b) explicit:

1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)

)
= ε+ + ε− +

∑
1≤r≤d

(
1− a2r

1 + a2r + 2ar cos(ξ)
− 1

)
.
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