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1 Introduction

The study of the zeros of orthogonal polynomials has a rich history [1] stimulated, in
particular, by its relevance for the theory of numerical approximation [2]. Of special
interest are the zeros of the classical families of hypergeometric orthogonal polynomi-
als, which have been fruitfully analyzed, e.g., through Sturm–Liouville theory and via
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Stieltjes’ electrostatic interpretation [1,3–14]. In this work, we are mainly concerned
with estimates for the locations of the zeros of some well-studied (basic) hypergeo-
metric orthogonal polynomial families belonging to the (q-)Askey scheme [15,16],
while other relevant issues concerning these zeros, such as, their dependence on the
parameters [1,17,18], interlacing properties [1,19–21], or their asymptotical behavior
[1,22,23], will not be addressed.

A classic bound for the locations of the zeros

π > ξ
(n)
1 > ξ

(n)
2 · · · > ξ

(n)
n−1 > ξ(n)

n > 0 (1.1)

of the Jacobi polynomial P(α,β)
n (cos(ξ)) [16, Chap. 9.8] with − 1

2 ≤ α, β ≤ 1
2 is

provided by Buell’s estimate [1, Eqs. (6.3.5), (6.3.7)]:

(
n + 1 − j + 1

2 (α + β − 1)
)
π

n + 1
2 (α + β + 1)

≤ ξ
(n)
j ≤ (n + 1 − j)π

n + 1
2 (α + β + 1)

( j = 1, . . . , n)

(1.2)
(where all inequalities are actually strict unless α2 = β2 = 1

4 ). For α = β = 1
2 the

estimate in Eq. (1.2) becomes exact; indeed, the Jacobi polynomial P(α,β)
n (cos(ξ))

degenerates in this situation to the Chebyshev polynomial of the second kind

Un
(
cos(ξ)

) = sin
(
(n+1)ξ

)

sin(ξ)
.

Below we will derive a similar estimate for the corresponding zeros of the Askey–
Wilson polynomial pn(cos(ξ); a, b, c, d; q) [15], [16, Chap. 14.1] with parameters in
the domain −1 < a, b, c, d, q < 1:

(n + 1 − j)π

k(n)
− (a, b, c, d; q)

≤ ξ
(n)
j ≤ (n + 1 − j)π

k(n)
+ (a, b, c, d; q)

( j = 1, . . . , n), (1.3a)

where

k(n)
± (a, b, c, d; q) = (n − 1)

(
1 − |q|
1 + |q|

)±1

+ 1

2

((
1 − |a|
1 + |a|

)±1

+
(
1 − |b|
1 + |b|

)±1

+
(
1 − |c|
1 + |c|

)±1

+
(
1 − |d|
1 + |d|

)±1
)

. (1.3b)

The estimate in Eqs. (1.3a), (1.3b) becomes exact for vanishing parameters a, b, c, d
and q, and again pn(cos(ξ); 0, 0, 0, 0; 0) = Un

(
cos(ξ)

)
in this situation. Notice how-

ever that our formula renders only a trivial lower bound (viz. zero) if one of the
parameters tends to 1 in absolute value, and that—especially for the larger roots—the
upper bound is nontrivial (i.e. smaller than π ) only for parameter values sufficiently
close to 0. In particular, the Askey–Wilson estimate in Eqs. (1.3a), (1.3b) merely pro-
duces trivial bounds on the zeros of the Jacobi polynomial via a direct application of
the well-known degeneration formula (cf., e.g., [16, Chap. 14.10]):
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lim
q→1

cn pn(cos(ξ); q
α
2 + 1

4 , q
α
2 + 3

4 ,−q
β
2 + 1

4 ,−q
β
2 + 3

4 ; q) = P(α,β)
n (cos(ξ))

(where—employing standard notations for the q-shifted factorials—the normalization

factor is given explicitly by cn := q( α
2 + 1

4 )n/(q,−q
1
2 (α+β+1),−q

1
2 (α+β+2); q)n).

Many fundamental properties of the Askey–Wilson polynomials were first pre-
sented in the seminal memoir [15]. The zeros were investigated at an early stage by L.
Chihara (for q integral and a, b, c, d rational) in connection with the (non)existence of
certain perfect codes [24]. More recently it was observed that the locations of the zeros
under consideration are determined by an algebraic system of Bethe Ansatz equations
[25–28] stemming from the celebrated second-order q-difference equation satisfied by
the Askey–Wilson polynomials1 [17, Chap. 16.5]. Remarkably, this algebraic system
turns out to be closely related to a family of Bethe Ansatz equations that emerge when
diagonalizing q-boson models with open-end boundary interactions [30–32].

We will consider two ample classes of (generalized) Bethe Ansatz-type equations
that are referred to as Bethe systems of type A and of type B. For special parameter
choices, these Bethe equations of type A and of type B arise when diagonalizing
quantum integrable particle models with periodic boundary conditions and with open-
end boundary conditions, respectively. Both types of systemsmanifest themselves here
in three versions: rational (r), hyperbolic (h) and trigonometric (t). We will solve the
corresponding Bethe systems by means of a powerful technique going back to Yang
and Yang [33–36], which provides the Bethe roots in terms of the global minima of
an associated family of strictly convex Morse functions and automatically produces
bounds estimating the locations of these roots. The bounds in Eqs. (1.3a), (1.3b) for
zeros of the Askey–Wilson polynomials then follow via a parameter specialization
of the trigonometric Bethe systems of type B. Similarly, the corresponding rational
Bethe equations of type B give rise to lower bounds for the zeros of the Wilson
polynomials [37]. Finally, lower bounds for the zeros of the symmetric continuous
Hahn polynomials [38] are retrieved via the rational Bethe systems of type A.

The material is organized as follows. In Sects. 2 and 3, the Bethe systems of types
A and B are exhibited in their general form and solved using the techniques of Yang
and Yang [36]. In Sect. 4, we specialize the parameters in the Bethe system of type B
so as to achieve the bounds for the zeros of the Wilson polynomials (rational version)
and the Askey–Wilson polynomials (trigonometric version), respectively. In Sect. 5,
an analogous parameter specialization of the rational Bethe system of type A then
entails the lower bounds for the zeros of the symmetric continuous Hahn polynomials.

Note Throughout it will be implicitly assumed that empty products are equal to 1
and that empty sums are equal to 0. We will also freely employ standard notations
for (basic) hypergeometric series and (q-)shifted factorials in accordance with the
conventions in Ref. [16].

1 Whereas a classical result ofBochner characterizes the Jacobi polynomials as “themost general orthogonal
family satisfying a linear homogeneous second-order differential equation”, the Askey–Wilson polynomials
are known to constitute “the most general orthogonal family satisfying a linear homogeneous second-order
q-difference equation” [29].
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2 Convex Bethe systems of type A

The idea of the Bethe Ansatz method is to convert the spectral problem for amenable
quantum integrable particle models into an algebraic problem: the spectrum is com-
puted through a complete set of solutions to an auxiliary system of algebraic equations
[33–35,39]. The combinatorics of such Bethe Ansatz solutions was investigated
recently in Ref. [40]. Here we will consider a rather wide class of (in general tran-
scendental) Bethe-type equations that are convex in the sense that they can be solved
in terms of the critical points of an associated family of strictly convex Morse func-
tions using the approach of Yang and Yang [33–36]. Special instances of the type A
systems in this section have appeared in the literature in connection with the spec-
tral problems of exactly solvable quantum particle models with periodic boundary
conditions. Specifically, the Bethe Ansatz equations governing the spectral problems
of the periodic Lieb–Liniger quantum nonlinear Schrödinger equation [33–36,41,42]
and its lattice discretization due to Izergin and Korepin [41,43] (cf. also [34, Chap.
VIII.3]) correspond to rational systems of type A. Trigonometric/hyperbolic systems
of type A arise in turn as Bethe Ansatz equations for the q-boson model [44–48] and
for the lattice quantum sine-Gordon equation [34, Chap. VIII.5]. The well-studied
periodic Heisenberg XXX and XXZ spin chains also give rise to rational and trigono-
metric/hyperbolic Bethe Ansatz equations of typeA [33–35,49], but these spinmodels
correspond to parameter values that do not belong to the convex regime considered
here. The results in this section therefore do not apply directly to suchmodels and alter-
native techniques have been incorporated to analyze the corresponding Bethe Ansatz
equations in these situations, cf., e.g., Refs. [50] and [51] and references therein.

2.1 Bethe equations

Given u ∈ {r, h, t} and

s(x) = s(u)(x) :=

⎧
⎪⎨

⎪⎩

x
2 if u = r,

sinh( x
2 ) if u = h,

sin( x
2 ) if u = t,

(2.1)

the Bethe system of type A is defined by n equations in the variables ξ1, . . . , ξn of the
form

eiαξ j = e2π iβ
∏

1≤k≤K

s(iak + ξ j )

s(iak − ξ j )

∏

1≤ j ′≤n, j ′ �= j
1≤l≤L

s(ibl + ξ j − ξ j ′)

s(ibl − ξ j + ξ j ′)
(2.2)

( j = 1, . . . , n). Here α, β, a1, . . . , aK and b1, . . . , bL refer to a choice of K + L + 2
parameters. Throughout this section, we assume (unless explicitly stated otherwise)
that
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α ∈ (0,∞), β ∈ [0, 1), ak, bl ∈

⎧
⎪⎨

⎪⎩

(0,∞) if u = r

(0, π) if u = h

(0,∞) ∪ (
(0,∞) + iπ

)
if u = t

(2.3)

(k = 1, . . . , K , l = 1, . . . , L). As will be seen shortly, these restrictions on the
parameters guarantee that the roots of our Bethe system are governed by a convex
(Yang–Yang) Morse function.

2.2 Bethe roots

For any μ = (μ1, . . . , μn) belonging to

ΛA := {μ ∈ Z
n | μ1 > μ2 > · · · > μn}, (2.4)

let us define the following Morse function in the variable ξ = (ξ1, . . . , ξn) ∈ R
n :

V (u)
A,μ(ξ ;α, β) :=

∑

1≤ j≤n

(
1

2
αξ2j − 2π(μ j + β)ξ j +

∑

1≤k≤K

∫ ξ j

0
vak (x) dx

)

+
∑

1≤ j< j ′≤n
1≤l≤L

∫ ξ j −ξ j ′

0
vbl (x) dx, (2.5)

with

va(x) = v(u)
a (x) :=

⎧
⎪⎨

⎪⎩

∫ x
0

2a
a2+y2

dy = 2 arctan( x
a ) if u = r,

∫ x
0

sin(a)
cosh(y)−cos(a)

dy if u = h,
∫ x
0

sinh(a)
cosh(a)−cos(y)

dy if u = t.

(2.6)

In the spirit of Yang and Yang [36], this Morse function is designed in such a way that
the equation for its critical points [cf. Eq. (2.8) below] reproduces our Bethe equation
(2.2) upon exponentiation (cf. the proof of Proposition 2.1 below). The parameter
restrictions in Eq. (2.3) now guarantee that V (u)

A,μ(ξ ;α, β) (2.5) is smooth and that

V (u)
A,μ(ξ ;α, β) → ∞ when |ξ | → ∞, so the function in question possesses a global

minimum in Rn . Notice in this connection that the contributions from the integrals in
Eq. (2.5) are nonnegative for all ξ ∈ R

n (because va(x) (2.6) is odd and increasing in
x for the relevant parameter values) and that for |ξ | → ∞ the nonnegative quadratic
terms up front dominate possibly negative contributions stemming from the linear
terms.
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The minimum in question is unique by convexity. Indeed, the Hessian

HA
j, j ′(ξ) := ∂ξ j ∂ξ j ′ V

(u)
A,μ(ξ ;α, β)

=
⎧
⎨

⎩

α + ∑
1≤k≤K v′

ak
(ξ j ) + ∑

��= j
1≤l≤L

v′
bl

(ξ j − ξ�) if j ′ = j,

∑
1≤l≤L v′

bl
(ξ j ′ − ξ j ) if j ′ �= j,

(2.7)

is manifestly positive definite:

∑

1≤ j, j ′≤n

x j x j ′ H
A
j, j ′(ξ)

=
∑

1≤ j≤n

(
α +

∑

1≤k≤K

v′
ak

(ξ j )
)

x2j +
∑

1≤ j< j ′≤n
1≤l≤L

v′
bl

(ξ j − ξ j ′)(x j − x j ′)
2

(since the derivatives v′
ak

(x) and v′
bl

(x) are positive for our parameter regime).

The upshot is that for any μ ∈ ΛA (2.4) the critical equation ∇ξ V (u)
A,μ(ξ ;α, β) = 0,

which is given explicitly by the following transcendental system

αξ j +
∑

1≤k≤K

vak (ξ j ) +
∑

1≤ j ′≤n, j ′ �= j
1≤l≤L

vbl (ξ j − ξ j ′) = 2π(μ j + β) (2.8)

( j = 1, . . . , n), has a unique solution ξ = ξ
(u)
A,μ consisting of the global minimum of

the strictly convex Morse function V (u)
A,μ(ξ ;α, β) (2.5).

Proposition 2.1 (Bethe roots of type A)

(i) For the parameter regime in Eq. (2.3) and any μ ∈ ΛA (2.4), the unique global
minimum ξ = ξ

(u)
A,μ of V (u)

A,μ(ξ ;α, β) (2.5) produces a solution of the Bethe system
of type A (2.2).

(ii) The assignment μ → ξ
(u)
A,μ, μ ∈ ΛA is injective and depends smoothly on the

parameters (2.3).

Proof (i) Since for any x ∈ R and a = ak , bl subject to the restrictions in Eq. (2.3):

e−iv(u)
a (x) = s(u)(ia + x)

s(u)(ia − x)
, (2.9)

it is clear from Eq. (2.8)—upon multiplying by i and exponentiating both sides—
that the critical point ξ = ξ

(u)
A,μ solves the Bethe equations (2.2).

(ii) That the assignment μ → ξ
(u)
A,μ, μ ∈ ΛA defines an injection is also immediate

from the system in Eq. (2.8), while the smoothness in the parameters (2.3) follows
from it by the implicit function theorem. Indeed, our system is manifestly smooth
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in these parameters and its Jacobian amounts to the Hessian (2.7) (and is thus
invertible). 
�

2.3 Bethe bounds

It follows from the system in Eq. (2.8) that the global minimum ξ
(u)
A,μ of V (u)

A,μ(ξ ;α, β)

(2.5) with μ ∈ ΛA (2.4) belongs to the open wedge

AA := {ξ ∈ R
n | ξ1 > ξ2 > · · · > ξn}. (2.10)

Indeed, by subtracting the j ′th equation from the j th equation we see that

α(ξ j − ξ j ′) +
∑

1≤k≤K

(
vak (ξ j ) − vak (ξ j ′)

)

+
∑

1≤ j ′′≤n
1≤l≤L

(
vbl (ξ j − ξ j ′′) − vbl (ξ j ′ − ξ j ′′)

) = 2π(μ j − μ j ′). (2.11)

Since vak (x) and vbl (x) are monotonously increasing for our parameter regime, it is
manifest from Eq. (2.11) that ξ j > ξ j ′ ifμ j > μ j ′ (because otherwise the LHS would
be ≤ 0 while the RHS is > 0). By refining this analysis somewhat further, one arrives
at the following bounds on the gaps between ξ j and ξ j ′ at ξ = ξ

(u)
A,μ.

Proposition 2.2 (Bethe bounds of type A) For the parameter regime in Eq. (2.3) and
any μ ∈ ΛA (2.4), one has that at the global minimum ξ = ξ

(u)
A,μ of V (u)

A,μ(ξ ;α, β)

(2.5):
2π(μ j − μ j ′)

α + κ
(u)
−

≤ ξ j − ξ j ′ ≤ 2π(μ j − μ j ′)

α + κ
(u)
+

(2.12)

for 1 ≤ j < j ′ ≤ n, where

κ
(u)
− :=

⎧
⎪⎨

⎪⎩

2
∑

1≤k≤K a−1
k + 2n

∑
1≤l≤L b−1

l if u = r,
∑

1≤k≤K cot
( 1
2ak

) + n
∑

1≤l≤L cot
( 1
2bl

)
if u = h,

∑
1≤k≤K coth

( 1
2Re(ak)

) + n
∑

1≤l≤L coth
( 1
2Re(bl)

)
if u = t,

and

κ
(u)
+ :=

{
0 if u = r or u = h,
∑

1≤k≤K tanh
( 1
2Re(ak)

) + n
∑

1≤l≤L tanh
( 1
2Re(bl)

)
if u = t.
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Proof When a = ak or bl from Eq. (2.3), the derivative of va(x) = v
(u)
a (x) (2.6)

remains bounded:

v′
a(x) ∈

⎧
⎪⎨

⎪⎩

[
0, 2

a

]
if u = r,

[
0, cot( a

2 )
]

if u = h,
[
tanh

( 1
2Re(a)

)
, coth

( 1
2Re(a)

)]
if u = t

(for any x ∈ R). Hence, if 1 ≤ j < j ′ ≤ n (so μ j > μ j ′ and ξ j > ξ j ′) Eq. (2.11)
implies (via the mean value theorem) that

(α + κ
(u)
+ )(ξ j − ξ j ′) ≤ 2π(μ j − μ j ′) ≤ (α + κ

(u)
− )(ξ j − ξ j ′).


�

3 Convex Bethe systems of type B

In the case of quantum particle models with open-end boundary conditions rather than
the more conventional periodic boundary conditions, the form of the Bethe Ansatz
equations is known to undergo some structuralmodifications [33,52,53].Herewe refer
to the latter Bethe Ansatz equations as systems of type B, and we will again restrict
attention to a relatively wide class of equations in the convex regime. Themathematics
of trigonometric Bethe systems of type B was addressed in Refs. [27] (cf. also [17,
Chap. 16.5]) and [54] through q-difference Sturm–Liouville theory and q-deformed
Onsager algebras, respectively. Specific examples of particlemodels leading to rational
BetheAnsatz equations of typeBare the openquantumnonlinear Schrödinger equation
[30,33,52] and its lattice discretization [55]. The trigonometric-/hyperbolic-type B
systems arise in turn as Bethe Ansatz equations for the q-boson model with open-end
boundary interactions [30–32]. The open Heisenberg XXX and XXZ spin chains with
boundary interactions [53,56–61] again lead to rational and trigonometric/hyperbolic
Bethe Ansatz equations of type B that do not belong to the convex regime considered
here, and thus fall outside the scope of the results presented below.

3.1 Bethe equations

The Bethe system of type B is defined as

e2iαξ j = (−1)ε
∏

1≤k≤K

s(iak + ξ j )

s(iak − ξ j )

∏

1≤ j ′≤n, j ′ �= j
1≤l≤L

s(ibl + ξ j + ξ j ′)

s(ibl − ξ j − ξ j ′)

s(ibl + ξ j − ξ j ′)

s(ibl − ξ j + ξ j ′)

(3.1)

( j = 1, . . . , n). Here s(x) = s(u)(x) is taken from Eq. (2.1), and in order to ensure
the convexity of the system we will again impose the following restrictions on the
L + K + 2 parameters α, ε, a1, . . . , aK and b1, . . . , bL :
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α ∈ (0,∞), ε ∈ {0, 1}, ak, bl ∈

⎧
⎪⎨

⎪⎩

(0,∞) if u = r

(0, π) if u = h

(0,∞) ∪ (
(0,∞) + iπ

)
if u = t

(3.2)

(k = 1, . . . , K , l = 1, . . . , L).

3.2 Bethe roots

Following the same pattern as for type A, we establish the Morse function whose
equation for the critical points reproduces the Bethe system of type B (after exponen-
tiation):

V (u)
B,μ(ξ ;α, ε) :=

∑

1≤ j≤n

(
αξ2j − 2π

(
μ j + ε

2

)
ξ j +

∑

1≤k≤K

∫ ξ j

0
vak (x) dx

)

+
∑

1≤ j< j ′≤n
1≤l≤L

(∫ ξ j +ξ j ′

0
vbl (x) dx +

∫ ξ j −ξ j ′

0
vbl (x) dx

)
, (3.3)

with va(x) = v
(u)
a (x) as in Sect. 2.2 and

μ ∈ ΛB := {μ ∈ Z
n | μ1 > μ2 > · · · > μn > 0}. (3.4)

As before, the parameter restrictions in Eq. (3.2) guarantee that (i) V (u)
B,μ(ξ ;α) is

smooth in ξ ∈ R
n , (ii) V (u)

B,μ(ξ ;α) → ∞ when |ξ | → ∞, and (iii) V (u)
B,μ(ξ ;α) is

strictly convex:

HB
j, j ′(ξ) := ∂ξ j ∂ξ j ′ V

(u)
B,μ(ξ ;α, ε)

=
{
2α + ∑

1≤k≤K v′
ak

(ξ j ) + ∑
��= j

1≤l≤L

(
v′

bl
(ξ j + ξ�) + v′

bl
(ξ j − ξ�)

)
if j ′ = j,

∑
1≤l≤L

(
v′

bl
(ξ j ′ + ξ j ) + v′

bl
(ξ j ′ − ξ j )

)
if j ′ �= j,

(3.5)

so

∑

1≤ j, j ′≤n

x j x j ′ H
B
j, j ′(ξ) =

∑

1≤ j≤n

(
2α +

∑

1≤k≤K

v′
ak

(ξ j )
)

x2j

+
∑

1≤ j< j ′≤n
1≤l≤L

(
v′

bl
(ξ j + ξ j ′)(x j + x j ′)

2 + v′
bl

(ξ j − ξ j ′)(x j − x j ′)
2
)
.
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Hence, for any μ ∈ ΛB (3.4) the critical equation ∇ξ V (u)
B,μ(ξ ;α, ε) = 0, i.e. the

system

2αξ j +
∑

1≤k≤K

vak (ξ j ) +
∑

1≤ j ′≤n, j ′ �= j
1≤l≤L

(
vbl (ξ j ′ + ξ j ) − vbl (ξ j ′ − ξ j )

) = 2π
(
μ j + ε

2

)

(3.6)

( j = 1, . . . , n), has a unique solution ξ = ξ
(u)
B,μ given by the global minimum of the

strictly convex Morse function V (u)
B,μ(ξ ;α, ε) (3.3).

Proposition 3.1 (Bethe roots of type B)

(i) For the parameter regime in Eq. (3.2) and any μ ∈ ΛB (3.4), the unique global
minimum ξ = ξ

(u)
B,μ of V (u)

B,μ(ξ ;α, ε) (3.3) produces a solution of the Bethe system
of type B (3.1).

(ii) The assignment μ → ξ
(u)
B,μ, μ ∈ ΛB is injective and depends smoothly on the

parameters (3.2).

Proof The proof of Proposition 2.1 applies verbatim upon substituting: A → B and
Eqs. (2.2), (2.3), (2.5), (2.7), (2.8) → Eqs. (3.1)–(3.3), (3.5), (3.6), respectively. 
�

3.3 Bethe bounds

In the same way as in Sect. 2, we deduce from the system in Eq. (3.6) that the global
minimum ξ

(u)
B,μ of V (u)

B,μ(ξ ;α, ε) (3.3) with μ ∈ ΛB (3.4) belongs to the open cone

AB := {ξ ∈ R
n | ξ1 > ξ2 > · · · > ξn > 0}. (3.7)

Indeed, it is manifest from Eq. (3.6) that ξ j > 0 if μ j > 0, because the expression
on the LHS is monotonously increasing and odd in ξ j (for our parameter regime).
Moreover, subtracting the j ′th equation from the j th equation now yields that

2α(ξ j − ξ j ′) +
∑

1≤k≤K

(
vak (ξ j ) − vak (ξ j ′)

)

+
∑

1≤ j ′′≤n, j ′′ �= j, j ′
1≤l≤L

(
vbl (ξ j + ξ j ′′) − vbl (ξ j ′ + ξ j ′′)

)

+
∑

1≤ j ′′≤n
1≤l≤L

(
vbl (ξ j − ξ j ′′) − vbl (ξ j ′ − ξ j ′′)

) = 2π(μ j − μ j ′), (3.8)

so by monotonicity ξ j > ξ j ′ if μ j > μ j ′ as before. Refining the analysis finally leads

us to the following bounds on ξ j and on the gaps between ξ j and ξ j ′ at ξ = ξ
(u)
B,μ.
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Proposition 3.2 (Bethe bounds of type B) For the parameter regime in Eq. (3.2) and
any μ ∈ ΛB (3.4), one has that at the global minimum ξ = ξ

(u)
B,μ of V (u)

B,μ(ξ ;α, ε) (3.3):

π
(
μ j + ε

2

)

α + κ
(u)
−

≤ ξ j ≤ π
(
μ j + ε

2

)

α + κ
(u)
+

(3.9a)

for 1 ≤ j ≤ n, and

π(μ j − μ j ′)

α + κ
(u)
−

≤ ξ j − ξ j ′ ≤ π(μ j − μ j ′)

α + κ
(u)
+

(3.9b)

for 1 ≤ j < j ′ ≤ n, where

κ
(u)
− :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
1≤k≤K a−1

k + 2(n − 1)
∑

1≤l≤L b−1
l if u = r,

1
2

∑
1≤k≤K cot( 12ak) + (n − 1)

∑
1≤l≤L cot( 12bl) if u = h,

1
2

∑
1≤k≤K coth( 12Re(ak)) + (n − 1)

∑
1≤l≤L coth( 12Re(bl)) if u = t,

and

κ
(u)
+ :=

⎧
⎪⎨

⎪⎩

0 if u = r or u = h,
1
2

∑
1≤k≤K tanh( 12Re(ak))

+(n − 1)
∑

1≤l≤L tanh( 12Re(bl)) if u = t.

Proof As in the proof of Proposition 3.2, one deduces—from the bounds on the deriva-
tive of v

(u)
a (2.6) in combination the mean value theorem—via Eq. (3.6) that

(α + κ
(u)
+ )ξ j ≤ π

(
μ j + ε

2

)
≤ (α + κ

(u)
− )ξ j

for 1 ≤ j ≤ n, and via Eq. (3.8) that

(α + κ
(u)
+ )(ξ j − ξ j ′) ≤ π(μ j − μ j ′) ≤ (α + κ

(u)
− )(ξ j − ξ j ′)

for 1 ≤ j < j ′ ≤ n. 
�
Remark 3.3 For a complex and x real, one has that

Re
(
v′

a(x)
) = 1

2

(
v′
Re(a)

(
x + Im(a)

) + v′
Re(a)

(
x − Im(a)

))
.

The upshot is that the propositions in Sects. 2 and 3 persist for complex parameters
ak and bl , provided both all nonreal parameters ak and all nonreal parameters bl

arise in complex conjugate pairs. Indeed, we may in this situation relax the parameter
restrictions inEqs. (2.3) and (3.2) by replacingak withRe(ak) andbl withRe(bl), while
performing the same modifications in the expressions for the bounds in Propositions
2.2 and 3.2 (when u = r and u = h).
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4 Estimates for the zeros of Askey–Wilson and Wilson polynomials

The estimates for the zeros of the (Askey-)Wilson polynomials hinge on algebraic
Bethe equations that arise from the type B system in Eqs. (3.1), (3.2) via the degener-
ation α → 0. For this purpose, it is enough to restrict attention to the case that ε = 0,
which will therefore be assumed from now on (unless explicitly stated otherwise).

4.1 Algebraic Bethe system of type B at α = 0

The following proposition adapts the results of Sect. 3 for u = r and u = t to the case
α = 0 with μ ∈ ΛB (3.4) minimal:

μ = ρ := (n, n − 1, n − 2, . . . , 2, 1) (4.1)

(and ε = 0).

Proposition 4.1 (Bethe system of type B at α = 0) Let K > 2, L > 0, and let
a1, . . . , aK and b1, . . . , bL satisfy the restrictions in Eq. (3.2). For u = r and u = t
the unique global minimum ξ

(u)
B,ρ of the strictly convex Morse function V (u)

B,ρ(ξ ; 0, 0)
(3.3), (4.1) produces a solution to the algebraic Bethe system (3.1) at α = 0 and ε = 0,
which depends smoothly on the parameters a1, . . . , aK and b1, . . . , bL . Moreover, at
ξ = ξ

(u)
B,ρ the following inequalities are satisfied:

π(n + 1 − j)

κ
(r)
−

≤ ξ j (4.2a)

(1 ≤ j ≤ n) and
π( j ′ − j)

κ
(r)
−

≤ ξ j − ξ j ′ (4.2b)

(1 ≤ j < j ′ ≤ n) if u = r , and

π(n + 1 − j)

κ
(t)
−

≤ ξ j ≤ π(n + 1 − j)

κ
(t)
+

(4.3a)

(1 ≤ j ≤ n) and
π( j ′ − j)

κ
(t)
−

≤ ξ j − ξ j ′ ≤ π( j ′ − j)

κ
(t)
+

(4.3b)

(1 ≤ j < j ′ ≤ n) if u = t , with κ
(u)
± taken from Proposition 3.2.

Proof We only need to check the existence of the unique global minimum of the
Morse function at (α, ε) = (0, 0), since the rest of the proof can be extracted verbatim
from the proofs of Propositions 3.1 and 3.2 via the specialization μ = ρ, α = 0, and
ε = 0. It ismoreover clear from theHessian (3.5) that theMorse function V (u)

B,μ(ξ ; 0, 0)

123



Solutions of convex Bethe Ansatz equations and the zeros…

(3.3) remains strictly convex if K > 0, which automatically settles the question of
the minimum’s uniqueness. For the existence to persist, it is enough to infer that
V (u)
B,ρ(ξ ; 0, 0) → ∞ for |ξ | → ∞.

When u = t the quadratic growth of the integral
∫ ξ

0 v
(t)
a (x)dx as |ξ | → ∞—which

stems from the quasiperiodicity v
(t)
a (x+2π) = v

(t)
a (x)+2π—immediately guarantees

the desired growth of V (t)
B,μ(ξ ; 0, 0) for K > 0, therewith confirming the existence of

the (unique) global minimum of our Morse function for any μ ∈ ΛB in this situation.
When u = r one has that limx→∞ v

(r)
a (x) = π . This case is therefore more subtle,

as the existence of the global minimum of V (r)
B,μ(ξ ; 0, 0) is no longer guaranteed for

all μ ∈ ΛB (3.4). We notice though that—apart from the linear term—our Morse
function is symmetric with respect to the natural action of the hyperoctahedral group
of signed permutations on the components of ξ (because

∫ ξ

0 v
(r)
a (x)dx is even in ξ ).

It thus suffices to infer that V (r)
B,ρ(ξ ; 0, 0) → ∞ when |ξ | → ∞ on the closure of

the fundamental cone AB (3.7). Notice in this connection also that the linear term
ρ1ξ1 + · · · + ρnξn grows fastest for |ξ | → ∞ on this fundamental cone, because

ρ1(ξ1 − ε1ξσ1) + · · · + ρn(ξn − εnξσn ) ≥ 0 (4.4)

for all ξ ∈ AB (3.7), {σ1, . . . , σn} = {1, . . . , n} and ε j ∈ {1,−1} ( j = 1, . . . , n).

To verify the unbounded growth of V (r)
B,ρ(ξ ; 0, 0) on the closure of AB, we set

x j = ξ j − ξ j+1 ( j = 1, . . . , n) with the convention that ξn+1 ≡ 0. Moreover, for a

given nonempty subset J ⊂ {1, . . . , n}, let us write ξ
J→ ∞ if x j → ∞ for j ∈ J

while x j remains bounded for j /∈ J . Since

ξ j = x j + · · · + xn

(1 ≤ j ≤ n) and

ξ j − ξ j ′ = x j + · · · + x j ′−1,

ξ j + ξ j ′ = x j + · · · + x j ′−1 + 2
(
x j ′ + · · · + xn

)

(1 ≤ j < j ′ ≤ n), it follows that for ξ
J→ ∞

∑

1≤ j≤n

∫ ξ j

0
v(r)

ak
(x)dx ∼ π

∑

j∈J

j x j ,

∑

1≤ j< j ′≤n

∫ ξ j −ξ j ′

0
v

(r)
bl

(x)dx ∼ π
∑

j∈J

j (n − j)x j ,

∑

1≤ j< j ′≤n

∫ ξ j +ξ j ′

0
v

(r)
bl

(x)dx ∼ π
∑

j∈J

j (n − 1)x j .
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Hence, the leading asymptotics of V (r)
B,ρ(ξ ; 0, 0) for ξ

J→ ∞ is given by

π
∑

j∈J

j x j
(−(2n + 1 − j) + K + L(2n − 1 − j)

) ≥ π
∑

j∈J

j x j

(where for the last estimate it was used that K > 2 and L > 0). By varying our
choice for J , this diverging lower bound on the leading asymptotics confirms that
V (r)
B,ρ(ξ ; 0, 0) → ∞ for |ξ | → ∞ (first on the closure of the fundamental cone AB,

and then on the whole Rn because of the hyperoctahedral symmetry of the nonlinear
terms and Eq. (4.4)). 
�

Remark 4.2 In the hyperbolic case, one has that limx→∞ v
(h)
a (x) = π − a (with

0 < a < π ), which entails that the existence of the (unique) global minimum of
V (h)
B,ρ(ξ ; 0, 0) is only guaranteed for K > 2 and L > 0 provided the parameters ak and

bl lie sufficiently close to 0 in the interval (0, π).

Remark 4.3 It is clear (from the stated inequalities) that the global minimum ξ = ξ
(u)
B,ρ

of V (u)
B,ρ(ξ ; 0, 0) in Proposition 4.1 is again assumed inside the cone AB (3.7), both for

u = r and u = t . In the latter (trigonometric) case, the Bethe roots under consideration
belong in fact to the interval (0, π), i.e. one has that

π > ξ1 > ξ2 > · · · > ξn > 0 (4.5)

at the critical point of V (t)
B,ρ(ξ ; 0, 0). Indeed, for u = t the LHS of Eq. (3.6) takes the

value
(
2α + K + 2L(n − 1)

)
π at ξ j = π (by the quasiperiodicity v

(t)
a (x + 2π) =

v
(t)
a (x) + 2π of the odd function v

(t)
a (x) (2.6)), while the RHS takes only the value

2π
(
n + 1 − j + ε

2

)
when μ = ρ (4.1). Hence, it is immediate from the monotonicity

of the LHS as function of ξ j that the corresponding Bethe solutions must be smaller
than π when K > 2 and L > 0.

4.2 Wilson polynomials

The Wilson polynomial [37], [16, Chap. 9.1]

pn(ξ ; a, b, c, d) := (−1)n(a + b, a + c, a + d)n

(n + a + b + c + d − 1)n

× 4F3

[−n, n + a + b + c + d − 1, a + iξ, a − iξ
a + b, a + c, a + d

; 1
]

(4.6)

is a monic polynomial of degree n in ξ2 that satisfies the second-order difference
equation

A(ξ)
(
pn(ξ + i) − pn(ξ)

) + A(−ξ)
(
pn(ξ − i) − pn(ξ)

) = Enpn(ξ) (4.7)
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with

A(ξ) = (ξ + ia)(ξ + ib)(ξ + ic)(ξ + id)

2ξ(2ξ + i)
,

En = −n(n + a + b + c + d − 1)

(as a rational identity in the parameters a, b, c, d). For a, b, c, d > 0 the Wilson poly-
nomials pn(ξ ; a, b, c, d), n = 0, 1, 2, . . . are (manifestly) analytic in the parameters
and constitute an orthogonal basis on the interval (0,∞) with respect to the weight
function

�(ξ) =
∣
∣∣∣
�(a + iξ)�(b + iξ)�(c + iξ)�(d + iξ)

�(2iξ)

∣
∣∣∣

2

(4.8)

(where �(·) refers to the gamma function).

Remark 4.4 It is helpful to view the difference equation (4.7) as an eigenvalue equation
with eigenvalue En forWilson’s second-order difference operator D acting on pn(ξ) at
the LHS. The fact that themonicWilson polynomials pn(ξ ; a, b, c, d), n = 0, 1, 2, . . .
solve the eigenvalue equations in question implies that D preserves the space of even
polynomials in ξ without raising the degree. Since the corresponding eigenvalues En

are nondegenerate for a, b, c, d > 0, this triangularity of the Wilson operator with
respect to the monomial basis ξ2n , n = 0, 1, 2, . . . guarantees that its eigenbasis is
unique in the space of even polynomials (up to normalization):

pn(ξ ; a, b, c, d) =
⎛

⎝
∏

0≤m<n

D − Em

En − Em

⎞

⎠ ξ2n, n = 0, 1, 2, . . . (4.9)

(using, e.g., theCayley–Hamilton theorem in the finite-dimensional invariant subspace
of polynomials of degree at most n in ξ2).

Theorem 4.5 (Zeros of the Wilson polynomials) For a, b, c, d > 0, the zeros ξ
(n)
1 >

ξ
(n)
2 > · · · > ξ

(n)
n > 0 of the Wilson polynomial pn(ξ ; a, b, c, d) (4.6) obey the

following inequalities:
π(n + 1 − j)

k(n)
− (a, b, c, d)

≤ ξ
(n)
j (4.10a)

(1 ≤ j ≤ n) and
π( j ′ − j)

k(n)
− (a, b, c, d)

≤ ξ
(n)
j − ξ

(n)

j ′ (4.10b)

(1 ≤ j < j ′ ≤ n), where

k(n)
− (a, b, c, d) := 2(n − 1) + a−1 + b−1 + c−1 + d−1. (4.10c)
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Proof Let ξ = ξ
(r)
B,ρ denote the global minimumof V (r)

B,ρ(ξ ; 0, 0) (3.3), (4.1) for K = 4
and L = 1, with

a1 = a, a2 = b, a3 = c, a4 = d and b1 = 1. (4.11)

Following [26,62–64], we shall check that the associated polynomial

pn(ξ) =
(
ξ2 − ξ21

) (
ξ2 − ξ22

)
· · ·

(
ξ2 − ξ2n

)
(4.12)

satisfies the difference equation (4.7). To this end, we first observe that the substitution
of pn(ξ) into Eq. (4.7) gives rise to a polynomial relation of degree n in ξ2 (cf.
Remark 4.4). Since ξ1 > ξ2 > · · · > ξn > 0 (cf. Remark 4.3), it is sufficient to
infer the polynomial relation in question at ξ = ξ j ( j = 1, . . . , n). This entails the
following algebraic relations

A(ξ j )pn(ξ j + i) + A(−ξ j )pn(ξ j − i) = 0 ( j = 1, . . . , n), (4.13)

which in turn hold by Proposition 4.1. Indeed—uponmaking A(·) and pn(·) explicit—
it is readily seen that Eq. (4.13) amounts precisely to the K = 4, L = 1 Bethe system
of type B with parameters (4.11) that is solved by ξ = ξ

(r)
B,ρ .

The upshot is that pn(ξ ; a, b, c, d) (4.6) and pn(ξ) (4.12) are both monic polynomi-
als of degree n in ξ2 satisfying the eigenvalue equation (4.7). Since the corresponding
eigenvalues En , n = 0, 1, 2, . . . are nondegenerate for a, b, c, d > 0, this implies (cf.
Remark 4.4) that pn(ξ ; a, b, c, d) = pn(ξ), i.e. ξ (n)

j = ξ j ( j = 1, . . . , n). The asserted

inequalities for the zeros are now inherited from those for ξ = ξ
(r)
B,ρ in Proposition 4.1.


�

4.3 Askey–Wilson polynomials

The Askey–Wilson polynomial [15], [16, Chap. 14.1]

pn(ξ ; a, b, c, d; q) := (ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n

× 4�3

[
q−n, abcdqn−1, aeiξ , ae−iξ

ab, ac, ad
; q, q

]
(4.14)

is a monic polynomial of degree n in cos(ξ). It satisfies the second-order difference
equation

A(ξ)
(
pn(ξ − i log(q)) − pn(ξ)

) + A(−ξ)
(
pn(ξ + i log(q)) − pn(ξ)

) = Enpn(ξ)

(4.15)
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with

A(ξ) = (1 − aeiξ )(1 − beiξ )(1 − ceiξ )(1 − deiξ )

(1 − e2iξ )(1 − qe2iξ )
,

En = q−n(1 − qn)(1 − abcdqn−1)

(as a rational identity in the parameters a, b, c, d and q). For −1 < a, b, c, d, q <

1, the Askey–Wilson polynomials are analytic in the parameters and constitute an
orthogonal basis on the interval (0, π) with respect to the weight function

�(ξ) =
∣∣∣∣

(e2iξ ; q)∞
(aeiξ , beiξ , ceiξ , deiξ ; q)∞

∣∣∣∣

2

. (4.16)

Notice that this means in particular that the singularities of pn(ξ ; a, b, c, d; q) (4.14)
at a = 0 and q = 0 are in fact removable.

Theorem 4.6 (Zeros of the Askey–Wilson polynomials) For −1 < a, b, c, d, q < 1,
the zeros π > ξ

(n)
1 > ξ

(n)
2 > · · · > ξ

(n)
n > 0 of the Askey–Wilson polynomial

pn(ξ ; a, b, c, d; q) (4.14) obey the following inequalities:

π(n + 1 − j)

k(n)
− (a, b, c, d; q)

≤ ξ
(n)
j ≤ π(n + 1 − j)

k(n)
+ (a, b, c, d; q)

(4.17a)

(1 ≤ j ≤ n) and

π( j ′ − j)

k(n)
− (a, b, c, d; q)

≤ ξ
(n)
j − ξ

(n)

j ′ ≤ π( j ′ − j)

k(n)
+ (a, b, c, d; q)

(4.17b)

(1 ≤ j < j ′ ≤ n), where

k(n)
± (a, b, c, d; q) := (n − 1)

(
1 − |q|
1 + |q|

)±1

+ 1

2

((
1 − |a|
1 + |a|

)±1

+
(
1 − |b|
1 + |b|

)±1

+
(
1 − |c|
1 + |c|

)±1

+
(
1 − |d|
1 + |d|

)±1
)

.

(4.17c)

Proof Let ξ = ξ
(t)
B,ρ denote the global minimumof V (t)

B,ρ(ξ ; 0, 0) (3.3), (4.1) for K = 4
and L = 1, with

e−a1 = a, e−a2 = b, e−a3 = c, e−a4 = d and e−b1 = q (4.18)

(where it is temporarily assumed that abcdq �= 0). With the aid of [26] (cf. also [27],
[17, Chap. 16.5], and [25,28,64]), the proof of Proposition 4.5 is readily adapted to
the Askey–Wilson level starting from trigonometric polynomial
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pn(ξ) = (
cos(ξ) − cos(ξ1)

)(
cos(ξ) − cos(ξ2)

) · · · (cos(ξ) − cos(ξn)
)
. (4.19)

Indeed, (similarly as before) the fact that pn(ξ) (4.19) solves the second-order differ-
ence equation (4.15) encodes a trigonometric identity that is equivalent to the following
algebraic relations between the nodes π > ξ1 > ξ2 > · · · > ξ1 > 0:

A(ξ j )pn

(
ξ j − i log(q)

) + A(−ξ j )pn

(
ξ j + i log(q)

) = 0 ( j = 1, . . . , n). (4.20)

Moreover, after making A(·) and pn(·) explicit and invoking of the elementary trigono-
metric relation cos(ξ) − cos(ξ j ) = 2 sin

( 1
2 (ξ j + ξ)

)
sin

( 1
2 (ξ j − ξ)

)
, the identities in

Eq. (4.20) become a manifest consequence of Proposition 4.1 upon identification with
the trigonometric Bethe system of type B solved by ξ = ξ

(t)
B,ρ .

Since for a, b, c, d, q ∈ (−1, 1)\{0} the eigenvalues En stemming from Eq.
(4.15) are again nondegenerate, it is deduced through the difference equation that
pn(ξ ; a, b, c, d; q) = pn(ξ), and thus ξ

(n)
j = ξ j ( j = 1, . . . , n). (Here one uses

again that the Askey–Wilson difference operator acting on the LHS of Eq. (4.15)
is triangular on the monomial basis cosn(ξ), n = 0, 1, 2, . . ., cf. Remark 4.4.) The
asserted inequalities for the zeros now follow in the same manner as before from the
formulas in Proposition 4.1 through specialization. Finally, the resulting inequalities
are readily extended to the case of one or more vanishing parameters a, b, c, d, q by
continuity. 
�

5 Estimates for the zeros of the symmetric continuous Hahn polynomials

After performing the degeneration α → 0, the rational Bethe system of type A in
Eqs. (2.2), (2.3) entails lower bounds for the zeros of the symmetric continuous Hahn
polynomials.

5.1 Rational Bethe system of type A at α = 0

The following proposition adapts the results of Sect. 2 for u = r to the case α = 0
with μ ∈ ΛA (2.4) chosen minimal:

μ = ρ̃ := (� n−1
2 �, � n−3

2 �, � n−5
2 �, . . . , � 3−n

2 �, � 1−n
2 �) (5.1a)

and

β = βn :=
{

1
2 if n = even,

0 if n = odd.
(5.1b)

Proposition 5.1 (Rational Bethe system of type A at α = 0) Let K , L > 0 and
let a1, . . . , aK and b1, . . . , bL satisfy the restrictions in Eq. (2.3). The unique global
minimum ξ

(r)

A,ρ̃
of the strictly convex Morse function V (r)

A,ρ̃
(ξ ; 0, βn) (2.5), (5.1a), (5.1b)

produces a solution to the algebraic Bethe system (2.2) at α = 0, which depends
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smoothly on the parameters a1, . . . , aK and b1, . . . , bL . Moreover, at ξ = ξ
(r)

A,ρ̃
the

following inequalities are satisfied:

2π( j ′ − j)

κ
(r)
−

≤ ξ j − ξ j ′ (5.2)

(1 ≤ j < j ′ ≤ n), with κ
(r)
− taken from Proposition 2.2.

Proof The statements are derived by adapting the proof of Proposition 4.1 to the
present context. Like before, it suffices to concentrate on the existence and the unique-
ness of the global minimum of theMorse function at α = 0, as all other arguments can
be extracted verbatim from the proofs of Propositions 2.1 and 2.2 via the specialization
μ = ρ̃, α = 0 and β = βn . Since for K ≥ 1 the strict convexity at α = 0 is manifest
from the Hessian (2.7), we will only infer the existence of the global minimum by
verifying that theMorse function V (r)

A,ρ̃
(ξ ; 0, βn) → ∞ for |ξ | → ∞. Upon exploiting

the permutation symmetry of the nonlinear part of the Morse function, the required
asymptotic analysis is restricted to the closure of the fundamental wedge AA (2.10),
where we also use that the growth of the linear term (ρ̃1 + βn)ξ1 + · · · + (ρ̃n + βn)ξn

is maximal on this wedge because of the inequality

(ρ̃1 + βn)(ξ1 − ξσ1) + · · · + (ρ̃n + βn)(ξn − ξσn ) ≥ 0 (5.3)

for all ξ ∈ AA and {σ1, . . . , σn} = {1, . . . , n}.
To verify the unbounded growth of V (r)

A,ρ̃
(ξ ; 0, βn) on the closure ofAA,we again set

x j = ξ j − ξ j+1 ( j = 1, . . . , n) with the convention that ξn+1 ≡ 0. Given a nonempty

subset J ⊂ {1, . . . , n}, let us now write ξ
J→ ∞ if x j → ∞ for j ∈ J with j < n,

|xn| → ∞ for n ∈ J , while x j remains bounded for j /∈ J . The leading asymptotics

of V (r)

A,ρ̃
(ξ ; 0, βn) for ξ

J→ ∞ is then readily verified to dominate

π
∑

j∈J

j x j
(−(n − j) + L(n − j)

) +
{

π K
∑

j∈J j x j if n /∈ J,

π K |xn| if n ∈ J.

By varying our choice for J (and assuming K , L > 0), this diverging lower bound on
the leading asymptotics confirms that V (r)

A,ρ(ξ ; 0, βn) → ∞ when |ξ | → ∞ [first on
the closure of the fundamental wedge AA, and then on the whole Rn because of the
permutation symmetry of the nonlinear terms and Eq. (5.3)]. 
�
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5.2 Symmetric continuous Hahn polynomials

The symmetric continuous Hahn polynomial [38], [16, Chap. 9.4]

pn(ξ ; a, b) := in(2a, a + b)n

(n + 2a + 2b − 1)n

× 3F2

[−n, n + 2a + 2b − 1, a + iξ
2a, a + b

; 1
]

(5.4)

defines a monic polynomial of degree n in ξ satisfying the second-order difference
equation

A(ξ)
(
pn(ξ + i) − pn(ξ)

) + A(−ξ)
(
pn(ξ − i) − pn(ξ)

) = Enpn(ξ) (5.5)

with

A(ξ) = (ξ + ia)(ξ + ib),

En = −n(n + 2a + 2b − 1)

(as a rational identity in the parameters a, b). For a, b > 0 the continuous Hahn
polynomials pn(ξ ; a, b), n = 0, 1, 2, . . . are (manifestly) analytic in the parameters
and form an orthogonal basis on R with respect to the weight function

�(ξ) = |�(a + iξ)�(b + iξ)|2 . (5.6)

Theorem 5.2 (Zeros of the symmetric continuous Hahn polynomials) For a, b > 0,
the zeros ξ

(n)
1 > ξ

(n)
2 > · · · > ξ

(n)
n of the symmetric continuous Hahn polynomial

pn(ξ ; a, b) (5.4) obey the following inequalities:

π( j ′ − j)

k(n)
− (a, b)

≤ ξ
(n)
j − ξ

(n)

j ′ (5.7a)

(1 ≤ j < j ′ ≤ n), where

k(n)
− (a, b) := n + a−1 + b−1. (5.7b)

Proof The proof is very similar as that for the Wilson polynomials in Theorem 5.2.
Let ξ = ξ

(r)

A,ρ̃
denote the global minimum of V (r)

A,ρ̃
(ξ ; 0, βn) (2.5), (5.1a), (5.1b) for

K = 2 and L = 1, with

a1 = a, a2 = b and b1 = 1. (5.8)

Following [63,64], we now infer that the associated polynomial

pn(ξ) = (ξ − ξ1)(ξ − ξ2) · · · (ξ − ξn) (5.9)
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satisfies the difference equation (5.5). Indeed, (as before) substitution of pn(ξ) into
Eq. (5.5) and inferring the corresponding polynomial relation of degree n in ξ at the
nodes ξ1 > ξ2 > · · · > ξn gives rise to the algebraic relations

A(ξ j )pn(ξ j + i) + A(−ξ j )pn(ξ j − i) = 0 ( j = 1, . . . , n). (5.10)

When making A(·) and pn(·) explicit, Eq. (5.10) [and thus Eq. (5.5)] is seen to hold
upon identification with the K = 2, L = 1 Bethe system of type A with parameters
(5.8) solved by ξ = ξ

(r)

A,ρ̃
.

In view of the triangularity of the action of the pertinent continuous Hahn difference
operator on the monomial basis ξn , n = 0, 1, 2, . . . (cf. Remark 4.4), the monic poly-
nomials pn(ξ ; a, b) (5.4) and pn(ξ) (5.9) thus coincide, as solutions of the eigenvalue
equation (5.5) corresponding to the same nondegenerate eigenvalue En . The upshot
is that ξ

(n)
j = ξ j ( j = 1, . . . , n), so the asserted inequalities for the zeros are again

inherited from those for ξ = ξ
(r)

A,ρ̃
stemming from Proposition 5.1. 
�

Remark 5.3 Because the weight function �(ξ) (5.6) is even in ξ , the symmetric con-
tinuous Hahn polynomial pn(ξ ; a, b) (5.4) is even or odd in ξ depending whether n
is even or odd, respectively. Its zeros are therefore positioned symmetrically around
the origin: ξ (n)

n+1− j = −ξ
(n)
j ( j = 1, . . . , n). For a, b > 0, the following lower bounds

for the positive zeros of pn(ξ ; a, b) (5.4) are now an immediate consequence of The-
orem 5.2 (upon picking j ′ = n + 1 − j):

π(n + 1 − 2 j)

2k(n)
− (a, b)

≤ ξ
(n)
j for j = 1, . . . , � n

2 �. (5.11)

Remark 5.4 It follows from the proofs of Theorems 4.5, 4.6 and 5.2 that the vector of
decreasingly ordered zeros ξ (n) := (ξ

(n)
1 , . . . , ξ

(n)
n ) of the Wilson, Askey–Wilson and

symmetric continuous Hahn polynomials minimize V (r)
B,ρ(ξ ; 0, 0) and V (t)

B,ρ(ξ ; 0, 0)
for K = 4, L = 1, and V (r)

A,ρ̃
(ξ ; 0, βn) for K = 2, L = 1, where the parameters are

taken from Eqs. (4.11), (4.18) and (5.8), respectively. A different interpretation for
these zeros as the minimizers of corresponding n-particle Ruijsenaars–Schneider-type
Hamiltonians from Refs. [65,66] has been pointed out in Refs. [26,28,63].

Remark 5.5 In view of Remark 3.3, the inequalities in Theorem 4.6 persist in the
case that a, b, c, d become complex within the open unit disc with nonreal parameters
arising in complex conjugate pairs. Similarly, Theorem 4.5 and Theorem 5.2 extend to
the situation that Re(a),Re(b),Re(c),Re(d) > 0 and Re(a),Re(b) > 0 with nonreal
parameters occurring in complex conjugate pairs, upon replacing k(n)

− (a, b, c, d) by

k(n)
−

(
Re(a),Re(b),Re(c),Re(d)

)
and k(n)

− (a, b) by k(n)
−

(
Re(a),Re(b)

)
, respectively.

Remark 5.6 A small numerical sample illustrates that the bounds stemming fromThe-
orem 4.6 estimate the positions of the first few roots of the Askey–Wilson polynomials
reasonably well for parameter values a, b, c, d, q not far from 0 (cf. Table 1). Notice,
however, that for the large(st) root(s) our upper bound soon becomes trivial (> π )
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Table 1 Roots and their bounds
for the Askey–Wilson
polynomial pn(ξ ; a, b, c, d; q)

(4.14) with n = 5, a = 0.300,
b = − 0.200, c = 0.150,
d = 0.100, and q = 0.100

n = 5 ξ
(n)
5 ξ

(n)
4 ξ

(n)
3 ξ

(n)
2 ξ

(n)
1

Root 0.496 0.997 1.508 2.033 2.577

Lower bound 0.400 0.800 1.200 1.600 2.000

Upper bound 0.675 1.350 2.025 2.700 3.375

Table 2 Roots and their lower
bounds for the Wilson
polynomial pn(ξ ; a, b, c, d)

(4.6) with n = 5, a = 1.150,
b = 1.100, c = 1.000, and
d = 0.900

n = 5 ξ
(n)
5 ξ

(n)
4 ξ

(n)
3 ξ

(n)
2 ξ

(n)
1

Root 0.632 1.292 2.090 3.099 4.477

Lower bound 0.264 0.528 0.793 1.057 1.321

Table 3 Positive roots and their
lower bounds for the symmetric
continuous Hahn polynomial
pn(ξ ; a, b) (5.4) with n = 10,
a = 1.100 and b = 0.900

n = 10 ξ
(n)
5 ξ

(n)
4 ξ

(n)
3 ξ

(n)
2 ξ

(n)
1

Root 0.261 0.838 1.554 2.481 3.770

Lower bound 0.131 0.392 0.653 0.915 1.176

even in a small example. The lower bounds for the roots of the Wilson polynomials
and of the continuous Hahn polynomials originating from Theorem 4.5 and from The-
orem 5.2 (cf. also Remark 5.3) tend to be less sharp than in the Askey–Wilson case
(cf. Tables 2 and 3).

Acknowledgements Thanks are due to the referees for pointing out some improvements of the presentation.
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