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Abstract: In this paper we study root system generalizations of the quantum Bose-
gas on the circle with pair-wise delta-function interactions. The underlying symmetry
structures are shown to be governed by the associated graded algebra of Cherednik’s
(suitably filtered) degenerate double affine Hecke algebra, acting by Dunkl-type differ-
ential-reflection operators. We use Gutkin’s generalization of the equivalence between
the impenetrable Bose-gas and the free Fermi-gas to derive the Bethe ansatz equations
and the Bethe ansatz eigenfunctions.

1. Introduction

Given any affine root system�, Gutkin and Sutherland [10, 31] defined a quantum inte-
grable system whose Hamiltonian −�+ V has a potential V expressible as a weighted
sum of delta-functions at the affine root hyperplanes of �. For the affine root system
of type A, the quantum integrable system essentially reduces to the quantum Bose-gas
on the circle with pair-wise delta-function interactions, which has been the subject of
intensive studies over the past 40 years.

The special case of the impenetrable Bose-gas on the circle was exactly solved by
relating the model to the free Fermi-gas on the circle (see Girardeau [9]). Soon after-
wards fundamental progress was made for arbitrary pair-wise delta function interactions
by Lieb & Liniger [22],Yang [32] andYang &Yang [33], leading to the derivation of the
associated Bethe ansatz equations and Bethe ansatz eigenfunctions. Yang & Yang [33]
showed that the solutions of the Bethe ansatz equations are controlled by a strictly con-
vex master function. One of the aims of the present paper is to generalize these results to
Gutkin’s and Sutherland’s quantum integrable systems associated to affine root systems.

Quantum Calogero-Moser systems are root system generalizations of quantum Bose-
gases on the line or circle with long range pair-wise interactions. In special cases quantum
Calogero-Moser systems naturally arose from harmonic analysis on symmetric spaces.
A decisive role in the studies of quantum Calogero-Moser systems has been played by
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certain non-bosonic analogs of these systems, which are defined in terms of Dunkl-type
commuting differential-reflection operators. Suitable degenerations of affine Hecke alge-
bras naturally appear here as the fundamental objects governing the algebraic relations
between the Dunkl-type operators and the natural Weyl group action.

In this paper we define Dunkl-type commuting differential-reflection operators asso-
ciated to the root system generalizations of the quantum Bose-gas with delta-function
interactions. We furthermore show that the Dunkl-type operators, together with the nat-
ural affine Weyl group action, realize a faithful representation of the associated graded
algebra of Cherednik’s [3] (suitably filtered) degenerate double affine Hecke algebra.
These results show that these quantum integrable systems naturally fit into the class
of quantum Calogero-Moser integrable systems, a point of view which also has been
advertised from the perspective of harmonic analysis in [15, Sect. 5].

The quantum integrable systems under consideration for affine root systems � of
classical type still have reasonable physical interpretations in terms of interacting one-
dimensional quantum bosons. In these cases various results of the present paper can be
found in the vast physics literature on this subject. We will give the precise connections
to the literature in the main body of the text.

The knowledge on the quantum Bose-gas with pair-wise delta-function interactions
still far exceeds the knowledge on its root system generalizations. In fact, an important
feature of the quantum Bose-gas with pair-wise delta-function interactions is its reali-
zation as the restriction to a fixed particle sector of the quantum integrable field theory
in 1 + 1 dimensions governed by the quantum nonlinear Schrödinger equation. This
point of view has led to the study of this model by quantum inverse scattering methods.
With these methods a proof of full orthogonality of the Bethe eigenfunctions on a period
box (with respect to Lebesgue measure) is derived in [5] and the quadratic norms of the
Bethe eigenfunctions are evaluated in terms of the determinant of the Hessian of the
master function (conjectured by Gaudin [8, Sect. 4.3.3] and proved by Korepin [20]).

At this point we can only speculate on the generalizations of these results to arbitrary
root systems. The quantum inverse scattering techniques are only in reach for classical
root systems, in which case we have quantum field theories with (non)periodic integrable
boundary conditions at our disposal, see [29]. In general it seems reasonable to expect
that the Bethe eigenfunctions are orthogonal on a fundamental domain for the reflection
representation of the affine Weyl group (with respect to Lebesgue measure), and that
their quadratic norms are expressible in terms of the determinant of the Hessian of the
master function at the associated spectral point.

The contents of the paper is as follows. Sections 2 and 3 are meant to introduce the
quantum integrable systems and to state and clarify the results on the associated spec-
tral problem. We first introduce in Sect. 2 the relevant notations on affine root systems.
Following Gutkin [11] we formulate the spectral problem for the quantum integra-
ble systems under consideration as an explicit boundary value problem. We state the
main results on the boundary value problem (Bethe ansatz equations and Bethe ansatz
eigenfunctions) and we introduce the associated master function. In Sect. 3 we formulate
the analog of Girardeau’s equivalence between the impenetrable Bose-gas and the free
Fermi-gas on the circle for the quantum integrable systems under consideration.

In Sect. 4 we introduce Dunkl-type commuting differential-reflection operators and
show that they realize, together with the natural affine Weyl group action, a faithful
realization of the associated graded algebra H of Cherednik’s [3] (suitably filtered)
degenerate double affine Hecke algebra. In Sect. 5 we show that Gutkin’s [11] inte-
gral-reflection operators, together with the ordinary directional derivatives, yield an
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equivalent realization of H . The equivalence is realized by Gutkin’s [11] propagation
operator. We furthermore show that the Dunkl operators naturally act on a space of
functions with higher order normal derivative jumps over the affine root hyperplanes.

In Sect. 6 we return to the boundary value problem of Sect. 2. Using the Hecke-type
algebraH we refine and clarify Gutkin’s [11] generalization of Girardeau’s equivalence
between the boundary value problem for the impenetrable Bose gas and the boundary
value problem for the free Fermi-gas as formulated in Sect. 3. The results in this section
entail that the boundary value problem is equivalent to a boundary value problem with
trivial boundary value conditions, at the cost of having to deal with a non-standard affine
Weyl group action. In Sect. 7 we study the reformulated boundary value problem, lead-
ing in Sect. 8 to the derivation of the Bethe ansatz equations. In Sect. 9 we study the
master function and show how it leads to a natural parametrization of the solutions of the
Bethe ansatz equations. In Sect. 10 the solutions of the Bethe ansatz equations are further
analyzed. In Sect. 11 it is proved that the boundary value problem has solutions if and
only if the associated spectral value is a regular solution of the Bethe ansatz equations.
In case of root system of type A, this is known as the Pauli principle for the interacting
bosons.

2. The Boundary Value Problem

In this section we recall Gutkin’s [11] reformulation of the spectral problem for periodic
integrable systems with delta-potentials in terms of a concrete boundary value problem.
We furthermore state the main results on the solutions of the boundary value problem
and we detail the physical background.

In order to fix notations we start by recalling some well known facts on affine root
systems, see e.g. [17] for a detailed exposition. Let V be an Euclidean space of dimen-
sion n. Let�0 be a finite, irreducible crystallographic root system in the dual Euclidean
space V ∗. We denote 〈·, ·〉 for the inner product on V ∗ and ‖ · ‖ for the corresponding
norm. The co-root of α ∈ �0 is the unique vector α∨ ∈ V satisfying

ξ(α∨) = 2〈ξ, α〉
‖α‖2 , ∀ ξ ∈ V ∗.

We write �∨
0 = {α∨}α∈�0 for the resulting co-root system in V . We fix a basis I0 =

{a1, . . . , an} for the root system �0. Let �0 = �+
0 ∪�−

0 be the corresponding decom-
position in positive and negative roots. We denote ρ ∈ V ∗ for the half sum of positive
roots and ϕ ∈ �+

0 for the highest root with respect to the basis I0. The highest root ϕ is
a long root in �0. We define the fundamental Weyl chamber in V ∗ by

V ∗
+ = {ξ ∈ V ∗ | ξ(α∨) > 0 ∀ α ∈ �+

0 }. (2.1)

Let V̂ be the vector space of affine linear functionals on V . Then V̂ 	 V ∗ ⊕ R as
vector spaces, where the second component is identified with the constant functions on
V . The gradient map D : V̂ → V ∗ is the projection onto V ∗ along this decomposition.

The subset � = �0 + Z ⊂ V̂ is the affine root system associated to �0. We extend
the basis I0 of �0 to a basis I = {a0 = −ϕ + 1, a1, . . . , an} of the affine root system
�. Observe that D maps � onto �0.

For a root a ∈ �,

sa(v) = v − a(v)Da∨, v ∈ V
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defines the orthogonal reflection in the root hyperplane Va := a−1(0). The affine Weyl
groupW associated to� is the sub-group of the affine linear isomorphisms of V gener-
ated by the orthogonal reflections sa (a ∈ �). The sub-groupW0 ⊂ W generated by the
orthogonal reflections sα (α ∈ �0) is the Weyl group associated to �0. We denote w0
for the longest Weyl group element inW0. It is well known thatW (respectivelyW0) is a
Coxeter group with Coxeter generators the simple reflections sj = saj for j = 0, . . . , n
(respectively sj for j = 1, . . . , n).

A second important presentation of W is given by

W 	 W0 �Q∨, (2.2)

withQ∨ = Z�∨
0 ⊂ V the co-root lattice of�0, acting by translations onV . The gradient

map D induces a surjective group homomorphism D : W → W0 by D(sa) = sDa for
a ∈ �. Alternatively, Dw = v if v ∈ W0 is the W0-component of w in the semi-direct
product decomposition (2.2).

The space V̂ of affine linear functionals onV is aW -module by (wf )(v) = f (w−1v)

(w ∈ W,f ∈ V̂ , v ∈ V ). Observe that V ∗ is W0-stable, and

sα(ξ) = ξ − ξ(α∨)α, ξ ∈ V ∗

for roots α ∈ �0. Furthermore,

sα(�0) = �0, sa(�) = �

for α ∈ �0 and a ∈ �. The length of w ∈ W is defined by l(w) = #
(
�+ ∩ w−1�−).

Alternatively, l(w) is the minimal positive integer r such thatw ∈ W can be written as a
product of r simple reflections. Such an expressionw = sj1sj2 · · · sjl(w) (jk ∈ {0, . . . , n})
is called reduced.

The weight lattice of �0 is defined by

P = {λ ∈ V ∗ | λ(α∨) ∈ Z ∀α ∈ �0}.
Another convenient description is

P = {λ ∈ V ∗ | wλ(ϕ∨) ∈ Z ∀w ∈ W0}, (2.3)

which follows from the fact that Q∨ is already spanned over Z by the short co-roots in
�∨

0 . We denote P+ (respectively P++) for the cone of dominant (respectively strictly
dominant) weights with respect to the choice �+

0 of positive roots in �0. Recall that
P++ = ρ + P+.

We write Virreg = ⋃

a∈�+ Va for the irregular vectors in V with respect to the affine
root hyperplane arrangement {Va | a ∈ �+}. Its open, dense complement Vreg :=
V \ Virreg is called the set of regular vectors in V .

We denote C for the collection of connected components of Vreg . An element C ∈ C
is called an alcove. The affine Weyl group W acts simply transitively on C. Explicitly,
Vreg = ⋃

w∈W w(C+) (disjoint union) with the fundamental alcove C+ defined by

C+ = { v ∈ V | aj (v) > 0 (j = 0, . . . , n) }.
We call a vector v ∈ Va (a ∈ �+) sub-regular if it does not lie on any other root
hyperplane Vb (a �= b ∈ �+).
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The symmetric algebra S(V ) is canonically aW0-module algebra. Using the standard
identification S(V ) 	 P(V ∗), where P(V ∗) is the algebra of real-valued polynomial
functions on V ∗, the W0-module structure takes the form

(wp)(ξ) = p(w−1ξ), w ∈ W0, ξ ∈ V ∗.

We denote S(V )W0 and P(V ∗)W0 for the subalgebra of W0-invariants in S(V ) and
P(V ∗), respectively.

Let ∂v (v ∈ V ) be the derivative in direction v,

(∂vf )(u) = d

dt

∣
∣
∣
∣
t=0
f (u+ tv)

for f continuously differentiable at u ∈ V . The assignment v �→ ∂v uniquely extends
to an algebra isomorphism of S(V ) onto the algebra of constant coefficient differential
operators on V (say acting on C∞(V )). We denote p(∂) for the constant coefficient
differential operator corresponding to p ∈ S(V ) 	 P(V ∗). For example, the W0-
invariant constant coefficient differential operator p2(∂) associated to the polynomial
p2(·) = ‖ · ‖2 ∈ P(V ∗)W0 is the Laplacian � on V .

The quantum integrable system which we will define now in a moment depends on
certain coupling constants called multiplicity functions.

Definition 2.1. A multiplicity function k is aW -invariant function k : � → R satisfying
k(a) = k(Da) for all a ∈ �.

Unless stated explicitly otherwise, we fix a strictly positive multiplicity function
k : � → R>0. To simplify notations we write ka for the value of k at the root a ∈ �.

We define the quantum Hamiltonian Hk by

Hk = −�+
∑

a∈�
kaδ(a(·)), (2.4)

where δ is the Kronecker delta-function. Here we interpret Hk as a linear map Hk :
C(V ) → D′(V ), with C(V ) the complex-valued continuous functions on V andD′(V )
the space of distributions on V , as

(Hkf
)
(φ) := −

∫

V

f (v)
(
�φ

)
(v)dv +

∑

a∈�

ka

‖Da∨‖
∫

Va

f (v)φ(v)dav (2.5)

for a test function φ, with dv the Euclidean volume measure on V and dav (a ∈ �+)
the corresponding volume measure on the root hyperplane Va .

The quantum Hamiltonian Hk and the associated quantum physical system has been
studied in e.g. [31, 10, 11]. A key step in these investigations is the reformulation of the
spectral problem for Hk in terms of an explicit boundary value problem for the Laplacian
� on V , which we now proceed to recall.

Let CB1(V ) be the space of complex valued continuous functions f on V whose
restriction f |C to an alcove C ∈ C has a continuously differentiable extension to some
open neighborhood C̃ ⊃ C. LetC1,(k)(V ) be the space of functions f ∈ CB1(V )which
satisfy the derivative jump conditions

(
∂Da∨f

)
(v + 0Da∨)− (

∂Da∨f
)
(v − 0Da∨) = 2kaf (v) (2.6)

for sub-regular vectors v ∈ Va (a ∈ �+).
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Proposition 2.2. For f ∈ CB1(V ) and E ∈ C the following two statements are
equivalent.
(i) Hkf = Ef as distributions on V .
(ii) f ∈ C1,(k)(V ) and �f |Vreg = −Ef |Vreg as distributions on Vreg .
A function f ∈ CB1(V ) satisfying these equivalent conditions is smooth on Vreg .

Proof. The first part of the proposition follows from a straightforward application of
Green’s identity (cf. the proof of [11, Thm. 2.7]). The last statement follows from the
fact that the constant coefficient differential operator�+E on V is (hypo)elliptic. ��

The quantum physical system with quantum Hamiltonian Hk is known to be integra-
ble. The common spectral problem for the associated quantum conserved integrals has
been translated by Sutherland and Gutkin [31, 10] into the following boundary value
problem.

Definition 2.3. Fix a spectral parameter λ ∈ V ∗
C

:= C ⊗R V
∗. We denote BVPk(λ) for

the space of functions f ∈ C1,(k)(V ) solving (in the distributional sense) the system

p(∂)f
∣
∣
Vreg

= p(λ)f
∣
∣
Vreg

∀p ∈ S(V )W0 (2.7)

of differential equations away from the root hyperplane configuration
⋃

a∈�+ Va .

Remark 2.4. Since � = p2(∂) is the Laplacian on V , Proposition 2.2 implies that a
function f ∈ BVPk(λ) is smooth on Vreg and satisfies the differential equations (2.7)
in the strong sense. The fact that f is an eigenfunction of all W0-invariant constant
coefficient differential operators on Vreg in fact implies that f |C is the restriction of a
(necessarily unique) analytic function on V for all alcoves C ∈ C, see [30].

The central theme of this paper is the study of the subspace BVPk(λ)W ⊂ BVP(λ)
of W = W0 �Q∨-invariant solutions, where W acts on BVPk(λ) ⊂ C1,(k)(V ) by

(wf )(v) = f (w−1v) (2.8)

forw ∈ W and v ∈ V . Our focus onW -invariant solutions thus amounts to studying the
bosonic (=W0-invariant) theory of the quantum system underQ∨-periodicity constraints
(or equivalently, we view the quantum system on the torus V/Q∨).

Example 2.5 (Free case k ≡ 0). A function f ∈ BVP0(λ) is a distribution solution of
the (hypo)elliptic constant coefficient differential operator � − p2(λ) on V , hence f
is smooth on V (cf. Proposition 2.2). Combined with Remark 2.4 we conclude that a
function f ∈ BVP0(λ) is analytic on V . Then BVP0(λ)

W (λ ∈ V ∗
C

) are the common
eigenspaces of the quantum conserved integrals for the free bosonic quantum integrable
system on V/Q∨ associated to the Laplacian� on V . It is easy to show that BVP0(λ)

W

is zero-dimensional unless λ ∈ 2πiP , in which case it is spanned by the plane wave

φ0
λ = 1

#W0

∑

w∈W0

ewλ

(cf. the analysis in the impenetrable case k ≡ ∞ in Sect. 3).
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The quantum Hamiltonian (2.4) for �0 of type An takes the explicit form

−�+ k
∑

m∈Z

∑

1≤i �=j≤n+1

δ(xi − xj +m).

Here we have embedded V into R
n+1 as the hyperplane defined by

x1 +· · ·+ xn+1 = 0. The study ofW -invariant solutions to the boundary value problem
then essentially amounts to analyzing the spectral problem for the system describing
n+ 1 quantum bosons on the circle with pair-wise repulsive delta-function interactions.
In this special case the quantum system has been extensively studied in the physics liter-
ature, see e.g. [9, 22, 32, 33, 8, 18]. The upgrade to other classical root systems amounts
to adding particular reflection terms to the physical model, see e.g. [29, 2, 8, 16, 19, 24].

We are now in a position to formulate the main results on the solution space of the
boundary value problem. We call the spectral value λ ∈ V ∗

C
= V ∗ ⊕ iV ∗ regular if its

isotropy sub-group in W0 is trivial (equivalently, λ(α∨) �= 0 for all α ∈ �0). We call
λ singular otherwise. Furthermore, λ is called real (respectively purely imaginary) if
λ ∈ V ∗ (respectively λ ∈ iV ∗). Define the c-function by

c̃k(λ) =
∏

α∈�+
0

λ(α∨)+ kα

λ(α∨)
(2.9)

as rational function of λ ∈ V ∗
C

, cf. [8, 15].

Theorem 2.6. Let λ ∈ V ∗
C

. The space BVPk(λ)W ofW -invariant solutions to the bound-
ary value problem is one-dimensional or zero-dimensional. It is one-dimensional if and
only if the spectral value λ is a purely imaginary, regular solution of the Bethe ansatz
equations

ewλ(ϕ
∨) =

∏

α∈�+
0

(
wλ(α∨)− kα

wλ(α∨)+ kα

)α(ϕ∨)
∀w ∈ W0. (2.10)

If BVPk(λ)W is one-dimensional, then there exists a unique φkλ ∈ BVPk(λ)W normal-
ized by φkλ(0) = 1. The solution φkλ is the unique W -invariant function satisfying

φkλ(v) = 1

#W0

∑

w∈W0

c̃k(wλ)e
wλ(v), v ∈ C+. (2.11)

We give a reformulation of Theorem 2.6 in Sect. 3. The Bethe ansatz equations are
derived in Sect. 8. The regularity constraint on λ is proved in Sect. 11.

Remark 2.7. The Bethe ansatz equations (2.10) can be rewritten as

ewλ(ϕ
∨) = wλ(ϕ∨)− kϕ

wλ(ϕ∨)+ kϕ

∏

α∈�+
0 ∩sϕ�−

0

wλ(α∨)− kα

wλ(α∨)+ kα
, ∀w ∈ W0, (2.12)

due to the fact that for α ∈ �+
0 ,

α(ϕ∨) =






2 if α = ϕ,

1 if α ∈ (
�+

0 ∩ sϕ�−
0

) \ {ϕ},
0 if α ∈ �+

0 ∩ sϕ�+
0 .

(2.13)
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A key role in the analysis of the Bethe ansatz equations (2.10) is played by the
following master function.

Definition 2.8. The master function Sk : P × V ∗ → R is defined by

Sk(µ, ξ) = 1

2
‖ξ‖2 − 2π〈µ, ξ〉 + 1

2

∑

α∈�0

‖α‖2
∫ ξ(α∨)

0
arctan

(
t

kα

)

dt. (2.14)

The master function Sk enters into the description of the set BAEk of solutions
λ ∈ iV ∗ of the Bethe ansatz equations (2.10) in the following way.

Proposition 2.9. For µ ∈ P there exists a unique extremum µ̂k ∈ V ∗ of the mas-
ter function Sk(µ, ·). The assignment µ �→ iµ̂k defines a W0-equivariant bijection
P

∼−→ BAEk .

The proof of Proposition 2.9, which hinges on the strict convexity ofSk(µ, ·) (µ ∈ P ),
is given in Sect. 9. The regularity condition on the spectrum in Theorem 2.6 also turns
out to be a consequence of the strict convexity of the master function Sk(µ, ·) (µ ∈ P ),
see Sect. 11.

The following proposition yields precise information on the location of the deformed
weight iµ̂k ∈ BAEk .

Proposition 2.10. For µ ∈ P+ and β ∈ �+
0 we have

2πµ(β∨)
(

1 + hk
n

) ≤ µ̂k(β
∨) ≤ 2πµ(β∨), (2.15)

where hk = 2
∑

α∈�0
k−1
α . Furthermore, µ ∈ P+ if and only if µ̂k ∈ V ∗+.

Proposition 2.10 is proved in Sect. 10. The lower bound in (2.15) shows how far away
the spectral values µ̂k ∈ V ∗+ (µ ∈ P++) are from being singular.

The Bethe ansatz functions φkλ and the necessity of the Bethe ansatz equations (2.10)
on the allowed spectrum were obtained by Lieb and Liniger [22] for a root system �0
of type An, and soon after generalized to a root system �0 of type Dn by Gaudin [7, 8]
(see also [19]). For �0 of type An, Yang and Yang [33] introduced the master function
S (also known as the Yang-Yang action) and derived the special case of Proposition 2.9
using its strict convexity.

In physics literature the regularity of the spectral parameter λ (see Theorem 2.6) is
usually imposed as an additional requirement, since it automatically ensures that eigen-
states admit a plane wave expansion within any alcove C ∈ C. The regularity condition
for a root system �0 of type An can be viewed as a Pauli type principle for the inter-
acting quantum bosons, since it implies that the momenta of the quantum bosons are
pair-wise different. An actual proof of the regularity of the spectrum was obtained by
Izergin and Korepin [18] using quantum inverse scattering methods. In this derivation
the regularity condition again follows from the strict convexity of the master function.
Estimates for the momenta gaps of the quantum particles play a role in the study of the
thermodynamical limit, see [22, 33]. See e.g. [8, Sect 4.3.2] for the exact analog of the
estimates (2.15) for �0 of type An.

It is believed [18] that quantum integrable systems governed by a strictly convex mas-
ter function always have a regularity constraint on the spectrum, although a conceptual
understanding is not known as far as we know. We remark though that our derivation
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of the regularity constraint on the spectrum is in accordance with this point of view.
A conceptual understanding of the partly fermionic nature of the quantum integrable
system at hand is given in the next section.

3. Generalization of Girardeau’s Isomorphism

Let Cω(V ) be the space of complex valued, real analytic functions on V , which we con-
sider as aW -module with respect to the usual action (2.8). Consider for λ ∈ V ∗

C
the space

E(λ) = {f ∈ Cω(V ) | p(∂)f = p(λ)f ∀p ∈ S(V )W0
C

}, (3.1)

which is a W -submodule of Cω(V ). We observed in Example 2.5 that

E(λ) = BVP0(λ), λ ∈ V ∗
C
. (3.2)

In this section we give a convenient description of the solution space BVPk(λ)W of the
boundary value problem (Definition 2.3) in terms of the space of invariants inE(λ)with
respect to a k-dependent W -action by integral-reflection operators. We will view this
result as a natural generalization of Girardeau’s [9] equivalence between the impene-
trable quantum Bose-gas and the free quantum Fermi-gas on the circle to arbitrary root
systems and to arbitrary multiplicity functions k.

We start by generalizing Girardeau’s [9] results on the impenetrable quantum Bose-
gas on the circle to arbitrary affine root systems. Denote E(λ)Q

∨
for the subspace of

Q∨-translation invariant functions in E(λ).

Lemma 3.1. For λ ∈ V ∗
C

, we have E(λ)Q
∨ = {0} unless λ ∈ 2πiP . For λ ∈ 2πiP the

space E(λ)Q
∨

is spanned by eµ (µ ∈ W0λ).

Proof. By [30], a function f ∈ E(λ) can be uniquely expressed as

f (v) =
∑

µ∈W0λ

pµ(v)e
µ(v),

where pµ ∈ P(V )C, see also Sect. 7. Such a nonzero function f is Q∨-translation
invariant iff

pµ(v + γ )eµ(γ ) = pµ(v) (3.3)

for all µ ∈ W0λ, v ∈ V and γ ∈ Q∨. This implies that λ ∈ iV ∗ and that pµ is bounded
on V for all µ ∈ W0λ. The latter condition implies that pµ is constant for all µ ∈ W0λ.
Returning to (3.3) with pµ ∈ C, the Q∨-translation invariance of f is equivalent to
µ(Q∨) ⊂ 2πiZ if pµ �= 0. Hence E(λ)Q

∨ = {0} unless λ ∈ 2πiP , in which case
E(λ)Q

∨
is spanned by eµ (µ ∈ W0λ). ��

We denote E(λ)−W for the space of functions f ∈ E(λ) satisfying f (w−1v) =
(−1)l(w)f (v) for all w ∈ W and v ∈ V . Since translations µ ∈ Q∨ ⊂ W have even
length, E(λ)−W consists of Q∨-translation invariant functions. In particular, E(λ)−W
is the solution space to the spectral problem for a free fermionic quantum integrable
system on V/Q∨ associated to the Laplacian � on V .

Corollary 3.2. Let λ ∈ V ∗
C

. The spaceE(λ)−W is zero-dimensional or one-dimensional.
It is one-dimensional iff λ is a regular element from 2πiP , in which case E(λ)−W is
spanned by
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ψ∞
λ = 1

#W0

∏

α∈�0

λ(α∨)−1
∑

w∈W0

(−1)l(w)ewλ. (3.4)

Proof. Let λ ∈ 2πiP and f = ∑

µ∈W0λ
cµe

µ ∈ E(λ)Q∨
with cµ ∈ C, cf. Lemma 3.1.

Then we have f ∈ E(λ)−W iff cwλ = (−1)l(w)cλ for all w ∈ W0. For singular λ this
implies cµ = 0 for all µ ∈ W0λ. For regular λ we conclude that f is a constant multiple
of ψ∞

λ ∈ E(λ)−W . ��
Following the analogy with Girardeau’s [9] analysis of the impenetrable quantum

Bose-gas on the circle, we define now a linear map G : Cω(V ) → C(V )W by
(
Gf

)
(w−1v) := f (v), w ∈ W, v ∈ C+. (3.5)

The map G is injective: for g ∈ C(V )W in the image of G, the function G−1g is the
unique analytic continuation of g|C+ to V .

For k ≡ ∞ we interpret the boundary conditions (2.6) as f |Va ≡ 0 for all a ∈ �+.
The solution spaces BVP∞(λ)W of the associated boundary value problem (see Defini-
tion 2.3) can now be analyzed as follows.

Proposition 3.3. For λ ∈ V ∗
C

we have

(i) The map G restricts to a linear isomorphism G : E(λ)−W ∼−→ BVP∞(λ)W .
(ii) The space BVP∞(λ)W is zero-dimensional or one-dimensional. It is one-dimen-
sional iff λ is a regular element from 2πiP . In that case BVP∞(λ)W is spanned by
φ∞
λ := G(ψ∞

λ ), which is the unique W -invariant function satisfying

φ∞
λ (v) = 1

#W0

∏

α∈�+
0

λ(α∨)−1
∑

w∈W0

(−1)l(w)ewλ(v), v ∈ C+.

Proof. (i) A function f ∈ E(λ)−W vanishes on the root hyperplanes Va (a ∈ �+),
hence so does g := G(f ) ∈ C(V )W . The function g furthermore satisfies the differen-
tial equations (2.7), hence g ∈ BVP∞(λ)W .

For g ∈ BVP∞(λ)W we define f = G̃(g) ∈ C(V )−W by f (w−1v) := (−1)l(w)g(v)
for w ∈ W and v ∈ C+. This is well defined since g vanishes on the root hyper-
planes Va (a ∈ �+). Since f is W -alternating we have f ∈ C1,(0)(V ). The function
f satisfies the differential equations (2.7), hence f ∈ BVP0(λ)

−W = E(λ)−W , where
the last equality follows from (3.2). The proof is now completed by observing that
G̃ : BVP∞(λ)W → E(λ)−W is the inverse of the map G : E(λ)−W → BVP∞(λ)W .
(ii) This follows from (i) and Corollary 3.2. ��

For a root system �0 of type A, Proposition 3.3 is due to Girardeau [9].
For the generalization of Proposition 3.3 to arbitrary multiplicity function k it is

convenient to reinterpret the space E(λ)−W as follows. Consider the integral operator

(I(a)f )(v) =
∫ a(v)

0
f (v − tDa∨)dt (a ∈ �) (3.6)

as a linear operator on C(V ). The integral operators I(a) (a ∈ I ) satisfy the braid
relations of � as well as the quadratic relations I(a)2 = 0, cf. e.g. [13]. In particular,
given a reduced expression w = si1si2 · · · sil(w) for w ∈ W , the operator Q∞(w) :=
I(ai1)I(ai2) · · · I(ail(w) ) is well defined. Denote
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E(λ)WQ∞ := {f ∈ E(λ) |Q∞(w)f = 0, ∀w ∈ W \ {e}},
where e ∈ W is the unit element of W . We now have the following simple observation.

Lemma 3.4. For f ∈ C(V ) and b ∈ � we have sbf = −f if and only if I(b)f = 0.
In particular, E(λ)−W = E(λ)WQ∞ for all λ ∈ V ∗

C
.

Proof. It is immediate that I(b)f = 0 if sbf = −f . The converse follows from the
fact that

∂Db∨
(I(b)f ) = f + sbf, (3.7)

cf. [11, Lem. 2.1(iii)]. ��
By Lemma 3.4, Proposition 3.3 (i) can be reformulated as the statement that the map

G restricts to an isomorphism

G : E(λ)WQ∞
∼−→ BVP∞(λ)W . (3.8)

The isomorphism (3.8) can now be generalized to arbitrary multiplicity function k as fol-
lows. In the terminology of Gutkin [13], the system of integral operators {kbI(b)}b∈�+
is an operator calculus with respect to the affine Weyl group W for arbitrary multiplic-
ity function k. This implies that the assignment sa �→ Qk,a (a ∈ I ), with Qk,a the
integral-reflection operators

(
Qk,af

)
(v) = f (sav)+ ka

(I(a)f )(v), a ∈ �, f ∈ C(V ), (3.9)

uniquely defines a W -action on C(V ), cf. [11, 13] or Sect. 5. Accordingly, we write

Qk(w) := Qk,ai1
Qk,ai2

· · ·Qk,air

for w = si1si2 · · · sir ∈ W . Note that

Q∞(w) = lim
k→∞

k−1
w Qk(w), ∀w ∈ W,

where kw := kai1
kai2

· · · kair for a reduced expression w = si1si2 · · · sir ∈ W . The gen-
eralization of (3.8) for arbitrary multiplicity function k is now the statement that the map
G restricts to a linear isomorphism

G : E(λ)WQk
∼−→ BVPk(λ)

W (3.10)

for arbitrary positive multiplicity function k, where E(λ)WQk
is the subspace of

Qk(W)-invariant functions in E(λ). The proof of (3.10) will be given in Sect. 6.
With the isomorphism (3.10) at hand, Theorem 2.6 is equivalent to the following

theorem.

Theorem 3.5. Let λ ∈ V ∗
C

. The space E(λ)WQk is one-dimensional or zero-dimensional.
It is one-dimensional if and only if λ is a purely imaginary, regular solution of the Bethe
ansatz equations (2.10). If E(λ)WQk is one-dimensional then

ψkλ(v) = 1

#W0

∑

w∈W0

c̃k(wλ)e
wλ(v), ∀v ∈ V (3.11)

is the unique function in E(λ)WQk normalized by ψkλ(0) = 1.
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Theorem 3.5 is proved in Sect. 8 under the assumption that λ is regular. The assertion
that λ is necessarily regular is proved in Sect. 11.

In order to reveal the full symmetry structures underlying the isomorphism (3.10),
we will consider the upgrade of the map G to a k-dependent linear isomorphism Tk of
C(V ) which intertwines the Qk(W)-action with the usual W -action (2.8), and which
acts as G when applied to Qk(W)-invariant functions. The map which does the job
is Gutkin’s [11] propagation operator, defined by

(
Tkf

)
(w−1v) = (

Qk(w)f
)
(v) for

w ∈ W and v ∈ C+ (see Sect. 5 for details). The propagation operator Tk now restricts
to an isomorphism

Tk : E(λ)
∼−→ BVPk(λ) (3.12)

for all λ ∈ V ∗
C

(cf. [11] and Theorem 6.3), which implies (3.10) by restricting to the
subspaces of W -invariant functions.

We conclude this section by considering the limit to the impenetrable case k ≡ ∞.
The Bethe ansatz equations (2.10) then reduce to

ewλ(ϕ
∨) = 1 ∀w ∈ W0,

which has 2πiP as purely imaginary solutions λ (see (2.3)). Furthermore we have

lim
k→∞

µ̂k = 2πµ (3.13)

for µ ∈ P+, which follows by taking the limit k → ∞ in (2.15). For λ = iµ̂k ∈ iV ∗
(µ ∈ P++) a regular solution to the Bethe ansatz equation, ψkλ ∈ E(λ)WQk (see (3.11))
can alternatively be written as

ψkλ = 1

#W0

∑

w∈W0

Qk(w)(e
λ),

see [15] or Sect. 7. It follows that

lim
k→∞

k−1
w0
ψkiµ̂k = 1

#W0
Q∞(w0)(e

2πiµ) = ψ∞
2πiµ

for µ ∈ P++, uniformly on compacta. Pulling the limits through the map G, we obtain

lim
k→∞

k−1
w0
φkiµ̂k = φ∞

2πiµ

for µ ∈ P++, uniformly on compacta.

4. Dunkl Operators and Hecke Algebras

It is well known that conserved integrals for quantum integrable systems of Calogero-
Moser type can be conveniently expressed in terms of Dunkl-type operators, which
are explicit commuting first-order differential-reflection operators, see e.g. [14, 6, 1].
The Dunkl operators, together with the usual Weyl group action (2.8), form a faithful
representation of suitable degenerations of affine Hecke algebras, see [26, Cor. 2.9].
The exploration of these structures has been instrumental in solving the corresponding
quantum integrable systems.
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In this section we derive the Dunkl-type operators and the underlying Hecke algebra
structures for the periodic quantum integrable systems with delta-potentials as intro-
duced in Sect. 2. We initially define the Dunkl operators as explicit differential-reflection
operators on the space C∞(Vreg) of smooth functions on Vreg . In Sect. 6 we obtain the
key result that these Dunkl operators act on the solution space BVPk(λ) to the boundary
value problem. Together with the usualW -action (2.8), the space BVPk(λ) then becomes
a module over the associated graded algebra Hk of Cherednik’s [3] (suitably filtered)
degenerate double affine Hecke algebra.

On the other hand, we will show in Sect. 5 that the W -action Qk on E(λ) together
with the directional derivatives ∂v (v ∈ V ) makes E(λ) into a Hk-module. With these
upgraded symmetry structures, Gutkin’s propagation operator Tk turns out to yield an
isomorphism

Tk : E(λ)
∼−→ BVPk(λ)

of Hk-modules for all λ ∈ V ∗
C

. It is this particular isomorphism which is explored in
Sect. 6 to (re-)prove and clarify crucial results on the boundary value problem (see
Definition 2.3), as well as on the associated bosonic theory.

We denoteχ : R\{0} → {0, 1} for the characteristic function of the interval (−∞, 0),
so χ(x) = 1 if x < 0 and χ(x) = 0 if x > 0. For a ∈ � the function χa(v) := χ(a(v))

(v ∈ Vreg) defines a smooth function on Vreg , which is constant on the alcoves C of
Vreg . In fact, for w ∈ W and a ∈ �+ we have

χa|w−1C+ ≡
{

1 if wa ∈ �−

0 if wa ∈ �+,
(4.1)

hence χa is nonzero on a given alcove w−1C+ (w ∈ W ) for only finitely many positive
roots a ∈ �+. The Dunkl-type operators

Dk
v = ∂v +

∑

a∈�+
kaDa(v)χa(·)sa (v ∈ V ), (4.2)

thus define linear operators on C∞(Vreg), which depend linearly on v ∈ V . For f ∈
C∞(Vreg) and w ∈ W we have by (4.1),

Dk
vf |w−1C+ =

(

∂vf +
∑

a∈�+∩w−1�−
kaDa(v)saf

)∣∣
∣
∣
w−1C+

. (4.3)

In particular, for the fundamental alcove C+ we simply have

Dk
vf |C+ = ∂vf |C+ . (4.4)

The Dunkl operators Dk
v (v ∈ V ) and the W -action (2.8) on C∞(Vreg) satisfy the

following fundamental commutation relations.

Theorem 4.1. (i) We have the cross relation

saDk
v = Dk

sDav
sa + kaDa(v), v ∈ V, a ∈ I.

(ii) The Dunkl operators Dk
v (v ∈ V ) pair-wise commute.
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Proof. (i) Fix v ∈ V and a ∈ I . By a direct computation we have

saDk
vsa = ∂sDav +

∑

b∈sa�+
kbDb(sDav)χb(·)sb.

Since sa�+ = (
�+ \ {a}) ∪ {−a} we obtain

saDk
v = Dk

sDav
sa − kaDa(sDav)

(
χa(·)+ χ−a(·)

)

= Dk
sDav

sa + kaDa(v),

which is the desired cross relation.
(ii) We derive the commutativity of the Dunkl operators Dk

v (v ∈ V ) as a direct
consequence of (4.4) and the cross relation. Let f ∈ C∞(Vreg) and v, v′ ∈ V . We show
by induction on the length l(w) of w ∈ W that

[Dk
v,Dk

v′ ]f |w−1C+ = 0. (4.5)

By (4.4), Eq. (4.5) is obviously valid for w = e the unit element of W . To prove the
induction step, it suffices to show that

sa[Dk
v,Dk

v′ ] = [Dk
sDav

,Dk
sDav

′ ]sa (4.6)

for all a ∈ I . For the proof of (4.6), first observe that

saDk
vDk

v′ − Dk
sDav

Dk
sDav

′sa = ka
(
Da(v′)Dk

v +Da(v)Dk
v′ −Da(v)Da(v′)Dk

Da∨
)

(4.7)

for all a ∈ I , which follows from applying the cross relation twice. Now (4.6) follows
from the fact that the right hand side of (4.7) is symmetric in v and v′. ��

By Theorem 4.1 (ii), the assignment v �→ Dk
v uniquely extends to an algebra mor-

phism S(V )C → End(C∞(Vreg)). We denote p(Dk) for the differential-reflection oper-
ator on C∞(Vreg) associated to p ∈ S(V )C.

Theorem 4.2. (i) There exists a unique complex unital associative algebraHk = Hk(�)

satisfying

(a) Hk = S(V )C ⊗ C[W ] as vector spaces, with C[W ] the group algebra of W .
(b) The maps p �→ p ⊗ e and w �→ 1 ⊗ w, with e ∈ W the unit element of W , are

algebra embeddings of S(V )C and C[W ] into Hk .
(c) The cross relations

sa · v − (
sDav

) · sa = kaDa(v)

holds in Hk for a ∈ I and v ∈ V ⊂ S(V )C. Here we have identified S(V )C and
C[W ] with their images in Hk through the algebra embeddings of (b).

(ii) The assignment p �→ p(Dk) (p ∈ S(V )C), together with theW -action (2.8), defines
a faithful representation πk : Hk → End(C∞(Vreg)).
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Proof. Suppose that
∑

w∈W pw(Dk)w = 0 as an endomorphism of C∞(Vreg), with
only finitely many pw ∈ S(V )C’s non zero. We show that all pw’s are zero. Equation
(4.4) implies

∑

w∈W
pw(∂)(wf )|C+ ≡ 0, f ∈ C∞(Vreg). (4.8)

Applying (4.8) to functions f of the form u−1g with u ∈ W and with g ∈ C∞(Vreg)
having support in the fundamental alcove C+, we conclude that pu(∂) = 0 as a constant
coefficient differential operator on smooth functions in some open ballD ⊂ C+, hence
pu = 0.

The proof of the theorem is now standard: let H̃k be the complex unital associative
algebra generated by v ∈ V and sa (a ∈ I ) with defining relations as in (b) and (c)
(so the vectors v ∈ V pair-wise commute, the sa (a ∈ I ) are involutions satisfying the
Coxeter relations associated to � and I , and the generators satisfy the cross relations
from (c)). By Theorem 4.1 and by the paragraph preceding this theorem, the assign-
ment v �→ Dk

v , together with theW -action (2.8), uniquely defines an algebra morphism
πk : H̃k → End(C∞(Vreg)). By the previous paragraph and by the cross relations
in H̃k it follows that πk is injective and that H̃k 	 S(V )C ⊗ C[W ] as vector spaces
(the Poincaré-Birkhoff-Witt Theorem for H̃k). Both statements of the theorem are now
immediately clear. ��

We use the notationMπk to indicate that a subspaceM ⊆ C∞(Vreg) is aW -submod-
ule or Hk-submodule of C∞(Vreg) with respect to the πk-action.

Remark 4.3. If the values ka of the multiplicity function k are considered to be inde-
pendent central variables in the definition of Hk , then Hk is graded by imposing the
degree of w ∈ W to be zero and the degrees of v ∈ V and ka to be one. As a graded
algebra,Hk is the associated graded algebra of Cherednik’s [3] degenerate double affine
Hecke algebra Hk , considered as a filtered algebra by the same degree function (the only
difference in the definition of Hk is the cross relation (see Theorem 4.2 (c)), which now
is of the form

sa · v − (
sav

) · sa = kaDa(v)

for a ∈ I , where S(V ) is considered as aW -module algebra with the action of s0 defined
by s0v = sϕ(v)+ 2‖ϕ‖−2ϕ(v)1 ∈ S(V )).

Lemma 4.4. The center Z(Hk) of Hk contains S(V )W0
C

.

Proof. Observe that the cross relations in Hk (see Theorem 4.2(c)) imply

sa · p − (
sDap

) · sa = −ka
(
sDap

)− p

Da∨ (4.9)

for a ∈ I and p ∈ S(V )C. It follows from (4.9) that S(V )W0
C

⊆ Z(Hk). ��

Remark 4.5. Observe that the subalgebra H(0)
k ⊂ Hk generated by W0 and S(V )C is

isomorphic to the degenerate affine Hecke algebra (also known as the graded Hecke
algebra), see e.g. [15, 23]. By [23, Prop. 4.5] we have Z(H(0)

k ) = S(V )
W0
C

.
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For trivial multiplicity parameters k ≡ 0, the operator p(D0) (p ∈ S(V )C) on
C∞(Vreg) is the constant-coefficient differential operator p(∂) on C∞(Vreg). We have
the following striking fact when p ∈ S(V )C is W0-invariant.

Corollary 4.6. For p ∈ S(V )W0
C

we have p(Dk) = p(∂) as operators on C∞(Vreg).

Proof. Letp ∈ S(V )W0
C

andf ∈ C∞(Vreg). By (4.4) we havep(Dk)f |C+ = p(∂)f |C+ .
Let w ∈ W and v ∈ C+. By Lemma 4.4 applied twice (once with multiplicity function
k, once with k ≡ 0), we have

(
p(Dk)f

)
(w−1v) = (

p(Dk)(wf )
)
(v)

= (
p(∂)(wf )

)
(v) = (

p(∂)f
)
(w−1v),

hence p(Dk)f = p(∂)f . ��
Remark 4.7. The Dunkl operators Dk

v , Theorem 4.1, Theorem 4.2 and Corollary 4.6 have
their obvious analogs in the context of finite root systems. In that case, the Dunkl-type
operators are

∂v +
∑

α∈�+
0

kαα(v)χα(·)sα, v ∈ V

realizing, together with the W0-action (2.8), an action of the degenerate affine Hecke
algebra H(0)

k on the space of smooth functions on V \ ⋃α∈�+
0
Vα . For classical root

systems these operators were constructed using solutions of classicalYang-Baxter equa-
tions and reflection equations in [28], [24] (type A) and [19]. This construction fits
into Cherednik’s [2] general framework relating root system analogs of r-matrices to
(degenerate) affine Hecke algebras and Dunkl operators.

5. Integral-Reflection Operators and the Propagation Operator

Heckman and Opdam [15] clarified the role of the degenerate affine Hecke algebraH(0)
k

in Gutkin’s [11] work when the underlying root system is finite. It led to an explicit
action ofH(0)

k as directional derivatives and integral-reflection operators. In this section
we extend these results to the present affine set-up. We show that Gutkin’s [11] propaga-
tion operator intertwines this action with the action πk which is defined in the previous
section in terms of Dunkl-type differential-reflection operators.

The integral-reflection operators Qk,a (see (3.9)) for a ∈ � are endomorphisms of
C(V ) satisfying

wQk,aw
−1 = Qk,w(a), w ∈ W, a ∈ � (5.1)

with respect to the W -action (2.8) on C(V ). We furthermore have

Qk,af |Va = f |Va , a ∈ �. (5.2)

By [11, Thm. 2.3], the assignment

sa �→ Qk(sa) := Qk,a (a ∈ I ) (5.3)
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extends to a representation Qk of W on C(V ). In particular, for w ∈ W and any choice
of decompositionw = sj1sj2 · · · sjr as a product of simple reflections (jl ∈ {0, . . . , n}),
we have

Qk(w) = Qk(sj1)Qk(sj2) · · ·Qk(sjr ) (5.4)

as operators on C(V ).

Definition 5.1. Gutkin’s [11] propagation operator Tk is the endomorphism of C(V )
defined by

(Tkf )(w
−1v) = (

Qk(w)f )(v), v ∈ C+, w ∈ W. (5.5)

In particular, T0 is the identity operator on C(V ).

A W -submodule M ⊆ C(V ) with respect to the Qk-action will be denoted by MQk .
By construction the propagation operator Tk : C(V )Q → C(V )π is W -equivariant. In
fact, by [11, Thm. 2.6] Tk is an isomorphism of W -modules.

Observe that the operators Qk(w) (w ∈ W ) preserve the space C∞(V ) of complex
valued, smooth functions on V . The following result is the affine analog of [15, Thm.
2.1] and [15, Cor. 2.3].

Theorem 5.2. The assignment v �→ ∂v (v ∈ V ), together with the W -action (5.3) on
C∞(V ), extends uniquely to a representation Qk : Hk → End(C∞(V )).

Proof. It suffices to verify the cross relations (see Theorem 4.2(c)), which follow directly
from [11, Lem. 2.1]. ��

We will also use the notation MQk to indicate that a subspace M ⊆ C∞(V ) is a
Hk-submodule with respect to the Qk-action. Observe that Cω(V )Q ⊆ C∞(V )Q as
Hk-submodule.

Consider the space CBω(V ) of functions f ∈ C(V ) such that f |C is the restriction
of a (necessarily unique) analytic function on V for all alcoves C ∈ C (cf. Remark 2.4).
Denote Cω,(k)(V ) for the space of functions f ∈ CBω(V ) satisfying

∂rDb∨f
(
v + 0Db∨)− ∂rDb∨f

(
v − 0Db∨) = (

1 − (−1)r
)
kb∂

r−1
Db∨f

(
v + 0Db∨)

(5.6)

for b ∈ �+, v ∈ Vb sub-regular and r ∈ Z>0. A function f ∈ Cω,(k)(V ) automatically
satisfies the jump conditions (5.6) for b ∈ �−, v ∈ Vb sub-regular and r ∈ Z>0, hence
the space Cω,(k)(V ) is not dependent on the choice of positive roots �+ in �. We thus
can and will interpret Cω,(k)(V )πk and CBω(V )πk as W -submodules of C∞(Vreg)πk .
Observe furthermore that Cω,(k)(V ) is a subspace of the space C1,(k)(V ) used in the
formulation of the boundary value problems (see Proposition 2.2 and Definition 2.3).

Observe that the propagation operator Tk restricts to a linear map

Tk : Cω(V ) → CBω(V ).

We now obtain the following theorem.

Theorem 5.3. (i) Cω,(k)(V )πk ⊆ C∞(Vreg)πk is a Hk-submodule.
(ii) The propagation operator Tk restricts to an isomorphism

Tk : Cω(V )Qk
∼−→ Cω,(k)(V )πk

of Hk-modules.
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Proof. We first show thatTk restricts to a linear isomorphismTk : Cω(V )
∼−→ Cω,(k)(V ).

For this we use the commutation relations

sa · (Da∨)r − (−1)r
(
Da∨)r · sa = (

1 − (−1)r
)
ka
(
Da∨)r−1

, a ∈ I, r ∈ Z>0

(5.7)

in Hk , which follows from (4.9) applied to p = (Da∨)r ∈ S(V )C.
Let φ ∈ Cω(V ) and denote f = Tkφ ∈ CBω(V ). We show that f satisfies the

derivative jumps (5.6) over sub-regular v ∈ Vb (b ∈ �+) for all r ∈ Z>0. In view of
the W -equivariance of the propagation operator Tk , it suffices to derive the derivative
jumps for f over sub-regular vectors v ∈ Va ∩ C+ (a ∈ I ). Fix a ∈ I , v ∈ Va ∩ C+
sub-regular and r ∈ Z>0. For ε > 0 small we have v + tDa∨ = sa(v − tDa∨) ∈ C+
for 0 < t < ε. Hence

∂rDa∨f (v + 0Da∨) = ∂rDa∨φ(v) = Qk(sa)(∂
r
Da∨φ)(v), (5.8)

where the second equality follows from (5.2). On the other hand,

∂rDa∨f (v − 0Da∨) = (−1)r∂rDa∨(saf )(v + 0Da∨) = (−1)r∂rDa∨(Qk(sa)φ)(v).

(5.9)

Combining (5.8) and (5.9) now yields

∂rDa∨f (v + 0Da∨)− ∂rDa∨f (v − 0Da∨) = ((
Qk(sa)∂

r
Da∨ − (−1)r∂rDa∨Qk(sa)

)
φ
)
(v)

= (
1 − (−1)r

)
ka∂

r−1
Da∨φ(v)

= (
1 − (−1)r

)
ka∂

r−1
Da∨f (v + 0Da∨),

where the second equality follows from (the Qk-image of) (5.7). Thus f ∈ Cω,(k)(V ).
The map Tk : Cω(V ) → Cω,(k)(V ) is clearly injective. We now proceed to prove

surjectivity. Let f ∈ Cω,(k)(V ) and denote ψ for the unique analytic function on V
satisfying ψ |C+ = f |C+ . The function g := f − Tkψ ∈ Cω,(k)(V ) satisfies g|C+ ≡ 0.
Combined with the continuity of g and the derivative jump conditions (5.6) for g, we
obtain

(
∂rDa∨g

)
(v − 0Da∨) = 0

for r ∈ Z≥0, a ∈ I and v ∈ Va ∩ C+ sub-regular. Since g|C (C ∈ C) has an extension
to an analytic function on the whole Euclidean space V , we conclude that g|C ≡ 0 for
the neighboring alcoves C = saC+ (a ∈ I ) of C+. Continuing inductively we conclude
that g ≡ 0 on V , hence f = Tkψ .

It remains to show that the isomorphism

Tk : Cω(V )Qk
∼−→ Cω,(k)(V )πk

ofW -modules is in fact an isomorphism ofHk-modules. For this it suffices to show that

Tk
(
∂vf

)|Vreg = Dk
v(Tkf |Vreg ) (5.10)

for v ∈ V and f ∈ Cω(V ). To prove (5.10) we use the commutation relation

w · v = (
(Dw)v

) · w +
∑

a∈�+∩w−1�−
kaDa(v)wsa (5.11)
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in Hk , which can be easily proved by induction on the length l(w) of w ∈ W using the
cross relations in Hk (see Theorem 4.2(c)). Fix w ∈ W and v′ ∈ C+. By (5.11) and
Theorem 5.2 we have

Tk(∂vf )(w
−1v′) = Qk(w)(∂vf )(v

′)
= ∂(Dw)v(Qk(w)f )(v

′)+
∑

a∈�+∩w−1�−
kaDa(v)Qk(wsa)f (v

′)

= ∂v(Tkf )(w
−1v′)+

∑

a∈�+∩w−1�−
kaDa(v)Tkf (saw

−1v′)

= Dk
v(Tkf )(w

−1v′),

where the last equality follows from (4.3). ��
Remark 5.4. The assertion [11, Thm. 2.7] that, in Gutkin’s notation, the propagation
operator Tk is an automorphism of the W -module CB∞, seems to be incorrect. In fact,
the integral-operators I(a) (a ∈ �) do not preserve CB∞, contrary to the claim in the
proof of [11, Thm. 2.7]. In [11], this result is used to link BVPk(λ) to E(λ) (see (3.1)).
We will show in Sect. 6 that Theorem 5.3(ii) suffices to provide this link.

Remark 5.5. Theorem 5.3 has an obvious analog in the context of finite root systems
(compare with Remark 4.7). In the case of a finite root system of type A, the intertwin-
ing properties of the propagation operator with respect to the degenerate affine Hecke
algebra actions were considered in [16] and the normal derivative jump conditions of
higher order were considered in [12].

Corollary 5.6. Fix v ∈ V . The Dunkl operator Dk
v is a linear operator on Cω,(k)(V )

satisfying Dk
v

(
Tkf

) = Tk
(
∂vf

)
for all f ∈ Cω(V ).

In the following proposition we relate the Dunkl operators Dk
v to the quantum Hamil-

tonian Hk (see (2.4) and (2.5)). Recall that p2(∂) = � for theW0-invariant polynomial
p2 = ‖ · ‖2 on V ∗.

Proposition 5.7. For f ∈ Cω,(k)(V ) we have

−p2(Dk)f = Hkf (5.12)

as distributions on V .

Proof. Fix f ∈ Cω,(k)(V ), then p2(Dk)f ∈ Cω,(k)(V ) ⊆ C(V ) and p2(Dk)f |Vreg =
�f |Vreg by Corollary 4.6. Furthermore, f satisfies the first order normal derivative jumps
(2.6) over the affine hyperplanes Va (a ∈ �+). The identity (5.12) then follows from a
standard argument using Green’s identity, cf. (the proof of) Proposition 2.2. ��

By Proposition 5.7 it is justified to interpret the quantum HamiltonianHk onCω,(k)(V )
as the operator −p2(Dk) on Cω,(k)(V ). The complete integrability of the quantum sys-
tem is then directly reflected by the commutativity of the Dunkl operators Dk

v (v ∈ V ).
More precisely, the spaceCω,(k)(V )Wπ serves as an algebraic model for the Hilbert space
of quantum states associated to the bosonic quantum system on V/Q∨ with Hamilto-
nian Hk = −p2(Dk). The pair-wise commuting operators p(Dk) (p ∈ S(V )

W0
C

) on
Cω,(k)(V )Wπ are the corresponding quantum conserved integrals.
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6. The Boundary Value Problem Revisited

The operators p(Dk) (p ∈ S(V )W0
C

) on Cω,(k)(V ) satisfy

p(Dk)f |Vreg = p(∂)f |Vreg , f ∈ Cω,(k)(V )
by Corollary 4.6. This key observation leads to an explicit connection between the spec-
tral problem of the operators p(Dk) (p ∈ S(V )W0

C
) and the boundary value problem as

formulated in Definition 2.3. We will first do the analysis for the spectral problem of the
quantum Hamiltonian Hk (defined by (2.4) and (2.5)).

ForE∈C we write E(E) for the space of functions f ∈ Cω(V ) satisfying�f =−Ef
onV (cf. Example 2.5). By Lemma 4.4, E(E)Qk ⊆ Cω(V )Qk is aHk-submodule. Denote
Ek(E) for the space of functions f ∈ CBω(V ) satisfying Hkf = Ef as distributions
on V (cf. Proposition 2.2).

Theorem 6.1. Fix E ∈ C.
(i) We have

Ek(E) = {f ∈ Cω,(k)(V ) |p2(Dk)f = −Ef }, (6.1)

hence Ek(E)πk ⊆ Cω,(k)(V )πk is a Hk-submodule.
(ii) The propagation operator Tk restricts to an isomorphism

Tk : E(E)Qk
∼−→ Ek(E)πk

of Hk-modules.

Proof. (i) We first show that Ek(E) ⊆ Cω,(k)(V ). Fix f ∈ Ek(E). By Proposition 2.2,
f ∈ C1,(k)(V )∩CBω(V ) and�f |Vreg = −Ef |Vreg . Let ψ be the unique analytic func-
tion on V satisfying ψ |C+ = f |C+ , then ψ ∈ E(E). By Theorem 5.3 and Corollary 4.6
we conclude that Tkψ ∈ Cω,(k)(V ) and �(Tkψ)|Vreg = −E(Tkψ)|Vreg . Hence

g := f − Tkψ ∈ C1,(k)(V ) ∩ CBω(V )
satisfies �g|Vreg = −Eg|Vreg and has the additional property that g|C+ ≡ 0. Fix v ∈
Va ∩ C+ (a ∈ I ) sub-regular. The nontrivial normal derivative jump condition (2.6)
for g at v trivializes since g|C+ ≡ 0, hence g is continuously differentiable in an open
neighborhood U of v. It follows that g|U is a distribution solution of the (hypo)elliptic
constant coefficient differential operator�+E (cf. Example 2.5), hence g|U is smooth.
Since g|C+ ≡ 0, we conclude that

∂rDa∨g(v − 0Da∨) = ∂rDa∨g(v + 0Da∨) = 0, r ∈ Z≥0.

As in the proof of Theorem 5.3 we conclude that g|saC+ ≡ 0 for a ∈ I (alternatively, this
is a direct consequence of Holmgren’s Uniqueness Theorem). Continuing inductively,
we conclude that g ≡ 0 on V . Hence f = Tkψ ∈ Cω,(k)(V ).

Formula (6.1) now follows from Proposition 5.7. Sincep2(Dk) = πk(p2), Lemma 4.4
implies that Ek(E)πk ⊆ Cω,(k)(V )πk is a Hk-submodule.
(ii) This follows directly from Theorem 5.3, (6.1) and the fact thatQk(p2) = p2(∂) = �.
��

We now extend these results to the solution spaces BVPk(λ) of the boundary value
problem (Definition 2.3). For a Hk-module M and λ ∈ V ∗

C
we define
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Mλ := {m ∈ M | p ·m = p(λ)m ∀p ∈ S(V )W0
C

}, (6.2)

which is a Hk-submodule of M in view of Lemma 4.4. By Remark 4.5 the module Mλ

consists of the vectors m ∈ M transforming according to the central character λ ∈ V ∗
C

for the action of the center of the degenerate affine Hecke algebra H(0)
k ⊆ Hk .

Corollary 6.2. Let λ ∈ V ∗
C

. The space BVPk(λ) is the Hk-submodule Cω,(k)(V )πk,λ of
Cω,(k)(V )πk .

Proof. By Corollary 4.6 and Theorem 5.3 we have

Cω,(k)(V )πk,λ = {f ∈ Cω,(k)(V ) | p(∂)f |Vreg = p(λ)f |Vreg ∀p ∈ S(V )W0
C

},
(6.3)

hence Cω,(k)(V )πk,λ ⊆ BVPk(λ). By Proposition 2.2 and Remark 2.4 we have

BVPk(λ) ⊆ Ek(−p2(λ)).

Theorem 6.1 and (6.3) now imply that BVPk(λ) ⊆ Cω,(k)(V )πk,λ. ��
Theorem 6.3. Let λ ∈ V ∗

C
.

(i) The propagation operatorTk restricts to an isomorphismTk : E(λ)Qk
∼−→ BVPk(λ)πk

of left Hk-modules.
(ii) The map G (3.5) restricts to an isomorphism G : E(λ)WQk

∼−→ BVPk(λ)Wπk .

Proof. (i) The restriction of the propagation operator Tk to the Hk-module E(λ)Qk =
Cω(V )Qk,λ defines an isomorphism

Tk : E(λ)Qk
∼−→ Cω,(k)(V )πk,λ

of Hk-modules in view of Theorem 5.3. Corollary 6.2 now completes the proof.
(ii) This follows from (i) and from the fact that the propagation map Tk acts on

Qk(W)-invariant functions in the same way as the map G (3.5). ��
As observed in Sect. 3, Theorem 6.3 (ii) can be used to reformulate the main results

on the solution space BVPk(λ)Wπ (see Theorem 2.6) to the boundary value problem in
terms of the space of invariants E(λ)WQ , where E(λ) now is the solution space to the
boundary value problem with zero normal derivative jumps over sub-regular vectors.
Theorem 3.5 is the resulting reformulation of Theorem 2.6. In order to prove Theorem
3.5 we analyze the space E(λ)WQ in detail in the following sections.

7. Invariants in E(λ)

In this section we analyze the sub-space E(λ)W0
Q of W0-invariants of E(λ)Q. First we

recall some well known properties of the space E(λ) from [30, 15]. For technical pur-
poses it is convenient to introduce the following terminology.
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Definition 7.1. Let J be a subset of the simple roots I0. The spectral parameter λ ∈ V ∗
C

is called J -standard if λ ∈ V ∗ ⊕ iV ∗+ and if the isotropic sub-group of λ in W0 is the
standard parabolic sub-group W0,J generated by the simple reflections sα (α ∈ J ).

Lemma 7.2. Let λ ∈ V ∗
C

. The W0-orbit of λ contains a J -standard spectral parameter
for some subset J ⊆ I0.

Proof. Taking a W0-translate of λ we may assume that λ = µ + iν with µ ∈ V ∗ and
ν ∈ V ∗+. The isotropy group of ν in W0 is a standard parabolic sub-group W0,K ⊂ W0

for some subset K ⊆ I0. Write V ∗ = V ∗
K ⊕ (V ∗

K)
⊥ with V ∗

K = spanR{α |α ∈ K} and
(V ∗
K)

⊥ its orthocomplement in V ∗. Set

V ∗
K,+ = {ξ ∈ V ∗

K | ξ(α∨) > 0 ∀α ∈ K},
which we view as the fundamental chamber for the action of the standard parabolic sub-
groupW0,K on V ∗

K . Taking aW0,K -translate of λ we may assume that λ = µ+µ′ + iν

with µ ∈ V ∗
K,+, µ′ ∈ (V ∗

K)
⊥, and ν ∈ V ∗+ as before. The isotropy sub-group of λ in W0

then equals the isotropy sub-group ofµ inW0,K , which is a standard parabolic sub-group
W0,J for some subset J ⊆ K since µ ∈ V ∗

K,+. ��
Observe that a J -standard spectral parameter λ is regular if and only if J = ∅. Note

furthermore that the module E(λ) (λ ∈ V ∗
C

) only depends on the orbit W0λ. When
analyzing the module E(λ), we thus may assume without loss of generality that λ is
J -standard for some subset J ⊆ I0. In particular, we will now assume this condition for
the remainder of this section.

For j ∈ Z≥0 we denote P (j)(V )C (respectively P (≤j)(V )C) for the homogeneous
polynomials p ∈ P(V )C of degree j (respectively the polynomials p ∈ P(V )C of
degree ≤ j ). The W0-action (2.8) on P(V )C respects the natural grading P(V )C =⊕∞

j=0 P
(j)(V )C. Furthermore,

EJ (0) = {f ∈ P(V )C |p(∂)f = p(0)f ∀p ∈ S(V )W0,J }
is a gradedW0,J -submodule ofP(V )C, isomorphic to the regular representation ofW0,J

(see e.g. [30, Thm. 1.2] and references therein). We write E(j)J (0) = EJ (0)∩P (j)(V )C
and E(≤j)J (0) = EJ (0) ∩ P (≤j)(V )C.

Denote byWJ
0 the minimal coset representatives ofW0/W0,J . Steinberg [30] estab-

lished the decomposition

E(λ) =
⊕

u∈WJ
0

u
(
EJ (0)e

λ
)
. (7.1)

It follows from (7.1) thatE(λ), viewed as aW0-module by the action (2.8), is isomorphic
to the regular representation of W0. Furthermore, we have E(λ) = ⊕∞

j=0 E
(j)(λ) with

E(j)(λ) the W0-submodule

E(j)(λ) =
⊕

u∈WJ
0

u
(
E
(j)
J (0)eλ

)
.

We denote E(≤j)(λ) = ⊕j
r=0 E

(r)(λ).
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Representations of the finite group W0 do not admit nontrivial continuous deforma-
tions, hence E(λ)Q is isomorphic to the regular representation of W0 for an arbitrary
multiplicity function k. In particular, E(λ)W0

Q is one-dimensional for all spectral values
λ ∈ V ∗

C
. In fact, by (5.2) the function

ψkλ = 1

#W0

∑

w∈W0

Qk(w)e
λ (7.2)

satisfies ψkλ(0) = 1 and spans E(λ)W0
Q . On the other hand, by (7.1) there exist unique

polynomials pλu ∈ EJ (0) (u ∈ WJ
0 ) such that

ψkλ(v) =
∑

u∈WJ
0

pλu(u
−1v)euλ(v), v ∈ V. (7.3)

By (7.1) we have

E(λ) =
⊕

w∈W0

Cewλ, λ ∈ V ∗
C

regular, (7.4)

so the polynomials pλw (w ∈ W0) are constants for regular λ. In fact, from e.g. [8] and
[15, Sect. 2] we have

ψkλ(v) = 1

#W0

∑

w∈W0

c̃k(wλ)e
wλ(v), λ ∈ V ∗

C
regular, (7.5)

where the c-function c̃k is given by (2.9). In the remainder of the paper it will actually
be more convenient to work with the regularized c-function

ck(µ) :=
∏

α∈�+
0

µ(α∨)�=0

µ(α∨)+ kα

µ(α∨)
, µ ∈ V ∗

C
(7.6)

which is equal to c̃k(µ) for regular µ. We can then write

pλw = 1

#W0
ck(wλ), λ ∈ V ∗

C
regular.

For singular λ an explicit expression for pλu ∈ EJ (0) (u ∈ WJ
0 ) is not known. For our

purposes it suffices to have explicit expressions for the highest and the next to highest
homogeneous components of pλu , which we will now proceed to derive.

We denote�J0 ⊆ �0 for the parabolic root sub-system associated to the simple roots

J ⊆ I0. We write NJ for the cardinality of the corresponding set �J,+0 := �J0 ∩�+
0 of

positive roots in �J0 and

δJ = 1

2

∑

α∈�J,+0

α ∈ V ∗.

Recall that the minimal coset representatives WJ
0 of W0/W0,J can be characterized by

WJ
0 = {u ∈ W0 | u(�J,+0 ) ⊆ �+

0 }.
The following lemma now gives a derivational expression for pλu (u ∈ WJ

0 ).
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Lemma 7.3. Let λ ∈ V ∗
C

be J -standard. For u ∈ WJ
0 we have

pλu = K−1
J

dNJ

dtNJ

∣
∣
∣
∣
t=0




∑

v∈W0,J

du(t)euv(t)(−1)l(v)etvδJ





with coefficients

du(t)=
∏

α∈�+
0 \u(�J,+0 )

(
uδJ (α

∨)t+uλ(α∨)
)−1

, euv(t)=
∏

α∈�+
0

(uvδJ (α
∨)t+uλ(α∨)+kα)

and with strictly positive constant KJ = NJ !#W0
∏

α∈�J,+0
δJ (α

∨).

Proof. By (7.2),ψkµ(v
′) (v′ ∈ V ) depends analytically on the spectral parameterµ ∈ V ∗

C
.

In particular, ψkλt (v
′) with λt := λ + tδJ ∈ V ∗

C
depends analytically on t ∈ C, and we

have the (point-wise) limit

lim
t→0

ψkλt = ψkλ. (7.7)

For ε > 0 we write

U0
ε = {t ∈ C | 0 < |t | < ε}, Uε = {t ∈ C | |t | < ε}.

There exists an ε > 0 such that λt is regular for t ∈ U0
ε , hence

ψkλt = 1

#W0

∑

w∈W0






∏

α∈�+
0

wλt(α
∨)+ kα

wλt (α∨)




 e

wλt , t ∈ U0
ε

by (7.5). Splitting the sum into a double sum w = uv with u ∈ WJ
0 and v ∈ W0,J and

using

∏

α∈�+
0

uvλt (α
∨) = (−1)l(u)+l(v)tNJ

∏

α∈�J,+0

δJ (α
∨)

∏

β∈�+
0 \�J,+0

λt (β
∨)

= (−1)l(v)tNJ
∏

α∈�J,+0

δJ (α
∨)

∏

β∈�+
0 \u(�J,+0 )

uλt (β
∨),

we obtain

tNJ ψkλt = K−1
J NJ !

∑

u∈WJ
0

∑

v∈W0,J

du(t)euv(t)(−1)l(v)etuvδJ+uλ (7.8)

as analytic functions in t ∈ Uε (note that du(t) is analytic at t ∈ Uε). By (7.7), ψkλ is
the N th

J term in the power series expansion of (7.8) at t = 0, which yields the desired
result. ��
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Define the strictly positive constant CkJ by

CkJ = 1

#W0

∏

α∈�J,+0

kα

δJ (α∨)
.

The highest and next to highest homogeneous terms of pλu ∈ EJ (0) (u ∈ WJ
0 ) can now

be explicitly computed as follows.

Proposition 7.4. Let λ ∈ V ∗
C

be J -standard and u ∈ WJ
0 .

(i) The highest homogeneous term hλu of pλu ∈ EJ (0) is of degree NJ and is explicitly
given by

hλu = CkJ ck(uλ)
∏

α∈�J,+0

α.

(ii) Suppose that λ is singular (i.e. J �= ∅). The next to highest homogeneous term nλu of
pλu ∈ EJ (0) is

nλu = ∂u−1ρkuλ

(
hλu
) = CkJ ck(uλ)

∑

β∈�J,+0

uβ(ρkuλ)
∏

α∈�J,+0 \{β}
α

with

ρkµ =
∑

α∈�+
0

α∨

µ(α∨)+ kα
∈ VC. (7.9)

Remark 7.5. The formula for nλu should be read as an identity between analytic functions
in kα > 0 (the possible singularities are easily seen to be removable).

Proof. (i) Observe that euv(0) = eu(0) is independent of v ∈ W0,J , and

du(0)eu(0) = ck(uλ)
∏

α∈�J,+0

kα.

Combined with Lemma 7.3 we conclude that the highest homogeneous term hλu of pλu
is given by

hλu = CkJ

NJ !
ck(uλ)

dNJ

dtNJ

∣
∣
∣
∣
t=0

∑

v∈W0,J

(−1)l(v)etvδJ

= CkJ

NJ !
ck(uλ)

∑

v∈W0,J

(−1)l(v)
(
vδJ

)NJ . (7.10)

On the other hand, by the Weyl denominator formula for �J0 we have

dNJ

dtNJ

∣
∣
∣
∣
t=0

∑

v∈W0,J

(−1)l(v)etvδJ = dNJ

dtNJ

∣
∣
∣
∣
t=0
etδJ

∏

α∈�J,+0

(
1 − e−tα

) = NJ !
∏

α∈�J,+0

α.
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Combined with the first equality in (7.10) we obtain the desired expression for hλu.
(ii) The next to highest homogeneous term nλu of pλu is

nλu= NJ

KJ





d ′
u(0)eu(0)

∑

v∈W0,J

(−1)l(v)
(
vδJ

)NJ−1+du(0)
∑

v∈W0,J

(−1)l(v)e′uv(0)
(
vδJ

)NJ−1






in view of Lemma 7.3, where the prime denotes the t-derivative. The first W0,J -sum
in this expression is identically zero since it is a W0,J -alternating polynomial of degree
< NJ . By a direct calculation the remaining expression can be rewritten as

nλu = CkJ

(NJ − 1)!
ck(uλ)

∑

v∈W0,J

(−1)l(v)(vδJ )(u
−1ρkuλ)

(
vδJ

)NJ−1
.

The desired expression for nλu now follows from (7.10). ��

8. The Bethe Ansatz Equations

In this section we show that E(λ)WQ �= {0} implies that the spectral parameter λ is a
purely imaginary solution of the Bethe ansatz equations (2.10).

From the results of the previous section it is clear that E(λ)WQ is one-dimensional or

zero-dimensional. In fact it is one-dimensional if and only ifQk(a0)ψ
k
λ = ψkλ , in which

case we have

E(λ)WQ = E(λ)
W0
Q = spanC{ψkλ}.

It is convenient to reformulate these observations in terms of

Jk = ∂ϕ∨Qk(a0)+ kϕ (8.1)

(viewed as an operator on e.g. C∞(V ) orE(λ)), which satisfies the elementary commu-
tation relations

Jk∂v = ∂sϕvJk, ∀ v ∈ V
(the operator Jk can be defined on the level of the algebraHk as the elementϕ∨·s0+kϕ ∈
Hk , in which case it is the analog of the affine intertwiner from [4] and [27, Sect. 4]).
The equality Qk(a0)ψ

k
λ = ψkλ clearly implies Jkψkλ = (∂ϕ∨ + kϕ)ψ

k
λ .

Lemma 8.1. If λ is regular, then Jkψkλ = (∂ϕ∨ + kϕ)ψ
k
λ implies Qk(a0)ψ

k
λ = ψkλ .

Proof. By (7.4) we have a unique expansion

Qk(a0)ψ
k
λ − ψkλ =

∑

w∈W0

dwe
wλ

with dw ∈ C. We conclude from the equality Jkψkλ = (∂ϕ∨ +kϕ)ψkλ thatwλ(ϕ∨)dw = 0
for all w ∈ W0. Since λ is regular, this implies dw = 0 for all w ∈ W0. ��

For p ∈ P(V )C 	 S(V ∗)C we write p(∂µ) for the associated constant coefficient
differential operator acting on smooth functions in µ ∈ V ∗

C
.
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Lemma 8.2. Let p ∈ P(V )C 	 S(V ∗)C. For w ∈ W0 we have

Jk
(
p(w−1·)ewµ)(v) = −p(∂µ)((µ(w−1ϕ∨)+ kϕ)e

µ(w−1ϕ∨)eµ(w
−1sϕv)

)
,

(
∂ϕ∨ + kϕ

)(
p(w−1·)ewµ)(v) = p(∂µ)

(
(µ(w−1ϕ∨)+ kϕ)e

µ(w−1v)
)
,

where we view the left hand sides as functions in v ∈ V and the right hand sides as
functions in µ ∈ V ∗

C
. In particular,

Jk
(
P (≤j)(V )C eµ

)⊆P (≤j)(V )C esϕµ,
(
∂ϕ∨ + kϕ

)(
P (≤j)(V )C eµ

) ⊆ P (≤j)(V )C eµ

for j ∈ Z≥0 and µ ∈ V ∗
C

.

Proof. Observe that

(
p(w−1·)ewµ)(v) = p(∂µ)

(
eµ(w

−1v)
)
,

and p(∂µ) (acting on µ ∈ V ∗
C

) clearly commutes with Jk and (∂ϕ∨ + kϕ) (which act
on v ∈ V ). Thus it suffices to prove the lemma for p ≡ 1, in which case the second
formula is trivial. To prove the first formula for p ≡ 1 we may assume without loss of
generality thatw = e is the unit element ofW0. Suppose thatµ ∈ V ∗

C
is regular. A direct

computation using the definition (3.9) ofQk(a0) as an integral-reflection operator yields

Qk(a0)e
µ = − kϕ

µ(ϕ∨)
eµ +

(
µ(ϕ∨)+ kϕ

µ(ϕ∨)

)

eµ(ϕ
∨)esϕµ,

hence

Jk(eµ) = −(µ(ϕ∨)+ kϕ
)
eµ(ϕ

∨)esϕµ.

In the latter formula the regularity constraint on µ can be removed by continuity. ��

We denote π(j)λ : E(λ) → E(j)(λ) for the projection onto E(j)(λ) along the decom-
position E(λ) = ⊕∞

r=0 E
(r)(λ). Observe that

IdE(λ) =
NJ∑

j=0

π
(j)
λ (8.2)

if λ is J -standard in view of Proposition 7.4 (i). In this section we consider the constraint
on λ such that

π
(j)
λ

(Jkψkλ
) = π

(j)
λ

(
(∂ϕ∨ + kϕ)ψ

k
λ

)
(8.3)

for the highest degree component j = NJ .
The map u �→ uJ , where uJ ∈ WJ

0 is obtained from the unique decomposition

sϕu = uJ uJ , uJ ∈ WJ
0 , uJ ∈ W0,J , (8.4)

defines an involution on WJ
0 . Observe that

(uJ )J = (uJ )
−1, u ∈ WJ

0 . (8.5)

Recall that ck denotes the regularized c-function (7.6).
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Lemma 8.3. Suppose that λ ∈ V ∗
C

is J -standard.
(i) Equation (8.3) for j = NJ holds if and only if λ satisfies the equations

ck(sϕuλ)(uλ(ϕ
∨)− kϕ)e

−uλ(ϕ∨)(−1)l(uJ )=ck(uλ)(uλ(ϕ∨)+kϕ), ∀ u∈WJ
0 .

(8.6)

(ii) For u ∈ WJ
0 and for multiplicity functions k such that ck(uλ) �= 0, we have

ck(sϕuλ)

ck(uλ)
= (−1)l(uJ )

∏

α∈�+
0 ∩sϕ�−

0

uλ(α∨)− kα

uλ(α∨)+ kα
.

Proof. (i) By (7.3), Lemma 8.2 and Proposition 7.4(i) we have

π
(NJ )
λ (Jkψkλ) = −CkJ

∑

u∈WJ
0

ck(uλ)(uλ(ϕ
∨)+ kϕ)e

uλ(ϕ∨)esϕuλ
∏

α∈�J,+0

sϕuα,

π
(NJ )
λ

(
(∂ϕ∨ + kϕ)ψ

k
λ

) = CkJ

∑

u∈WJ
0

ck(uλ)(uλ(ϕ
∨)+ kϕ)e

uλ
∏

α∈�J,+0

uα. (8.7)

The proof now follows by equating the coefficients of euλ
∏

α∈�J,+0
uα (u ∈ WJ

0 ) in

(8.7) using (8.4).
(ii) We first compare the denominators of ck(uλ) and ck(sϕuλ) = ck(u

J λ). If µ ∈ V ∗
C

is regular then
∏

α∈�+
0 \uJ�J,+0

uJµ(α∨) =
∏

α∈�+
0

uJµ(α∨)
∏

β∈uu−1
J �

J,+
0

(uu−1
J µ(β∨))−1

= (−1)l(uJ )
∏

α∈�+
0

sϕuu
−1
J µ(α∨)

∏

β∈u�J,+0

(uu−1
J µ(β∨))−1

= (−1)l(uJ )+1
∏

α∈�+
0 \u�J,+0

uu−1
J µ(α∨).

Taking the limit µ → λ we obtain
∏

α∈�+
0 \uJ�J,+0

uJ λ(α∨) = (−1)l(uJ )+1
∏

α∈�+
0 \u�J,+0

uλ(α∨).

A similar (and easier) computation leads to the comparative formula

∏

α∈�+
0 \uJ�J,+0

(
uJ λ(α∨)+ kα

)=−






∏

β∈�+
0 ∩sϕ�−

0

uλ(β∨)−kβ
uλ(β∨)+kβ






∏

α∈�+
0 \u�J,+0

(
uλ(α∨)+kα

)

for the numerators of ck(uλ) and ck(uJ λ). Combining both formulas leads to the desired
result. ��

Recall from Sect. 2 that BAEk is the set of purely imaginary solutions of the Bethe
ansatz equations (2.10).
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Proposition 8.4. Suppose that λ ∈ V ∗
C

is J -standard. Equation (8.3) for j = NJ holds
if and only if λ ∈ BAEk .

Proof. We first show that λ is purely imaginary if λ satisfies Eq. (8.6). Let µ = uλ

(u ∈ WJ
0 ) be the element in theW0-orbit of λ having its real part in V ∗+. Then ck(µ) �= 0

since the multiplicity function k is strictly positive, hence (8.6) and Lemma 8.3(ii) imply

eµ(ϕ
∨) = µ(ϕ∨)− kϕ

µ(ϕ∨)+ kϕ

∏

α∈�+
0 ∩sϕ�−

0

µ(α∨)− kα

µ(α∨)+ kα
. (8.8)

The modulus of the left-hand (respectively right-hand side) of (8.8) is ≥ 1 (respectively
≤ 1) since the real part of µ is in V ∗+ and the multiplicity function k is strictly positive.
Thus |eµ(ϕ∨)| = 1, implying that µ(ϕ∨) is purely imaginary. Since ϕ∨ = ∑n

j=1mja
∨
j

withmj strictly positive integers and since the real part ofµ lies in V ∗+, we conclude that
µ(a∨

j ) is purely imaginary for all co-roots a∨
j (j = 1, . . . , n). This implies µ ∈ iV ∗,

hence λ ∈ iV ∗.
Combined with Lemma 8.3(i) it follows that λ satisfies (8.3) for j = NJ if and

only if λ is a purely imaginary solution of Eqs. (8.6). For purely imaginary λ we have
ck(uλ) �= 0 for all u ∈ WJ

0 due to the strict positivity of the multiplicity function k. The
proof now follows from Lemma 8.3(ii) and Remark 2.7. ��

As an immediate result we obtain the following “regular part” of Theorem 3.5.

Corollary 8.5. Suppose that λ ∈ V ∗
C

is regular. The space E(λ)WQ is zero-dimensional

or one-dimensional. It is one-dimensional if and only if λ ∈ BAEk . In that case E(λ)WQ
is spanned by ψkλ (3.11).

Proof. By the observations at the beginning of the section it suffices to show that
E(λ)WQ �= {0} iff λ ∈ BAEk .

Since BAEk ⊂ iV ∗ is aW0-invariant subset andE(λ)WQ only depends on theW0-orbit

of λ, we may assume without loss of generality that λ is ∅-standard. IfE(λ)WQ �= {0} then
(8.3) holds, hence λ ∈ BAEk by Proposition 8.4. Conversely, suppose that λ ∈ BAEk .
Since λ is regular we have IdE(λ) = π

(0)
λ by (8.2), hence Jkψkλ = (

∂ϕ∨ + kϕ
)
ψkλ by

Proposition 8.4. By Lemma 8.1 this impliesQk(a0)ψ
k
λ = ψkλ , hence 0 �= ψkλ ∈ E(λ)WQ .

��

9. The Master Function

In this section we prove Proposition 2.9, which yields a parametrization of the set BAEk
of purely imaginary solutions of the Bethe ansatz equations (2.10) by the weight lattice
P .

We first rewrite the Bethe ansatz equations (2.10) in logarithmic form. By a direct
computation using the elementary identity

e−2i arctan(x) = 1 − ix

1 + ix
(x ∈ R)
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the Bethe ansatz equations (2.10) for λ ∈ iV ∗ can be rewritten as

−iλ(wϕ∨)+
∑

α∈�0

arctan

(−iλ(α∨)
kα

)

α(wϕ∨) = 0 modulo 2πZ (9.1)

for all w ∈ W0. On the other hand, for µ ∈ P the gradient of the master function
Sk(µ, ·) : V ∗ → R (see (2.14)) is determined by

(
∂ξSk(µ, ·)

)
(η) = 〈η − 2πµ+

∑

α∈�0

arctan

(
η(α∨)
kα

)

α, ξ〉, ξ, η ∈ V ∗. (9.2)

Comparing (9.1) and (9.2) yields the following result.

Lemma 9.1. We have λ ∈ BAEk if and only if λ = iη with η ∈ V ∗ an extremal vector
of the master function Sk(µ, ·) for some µ ∈ P .

Proof. �0 is an irreducible root system in V ∗, hence {wϕ |w ∈ W0} spans V ∗. Thus
η ∈ V ∗ is an extremal vector of Sk(µ, ·) if and only if

(
∂wϕSk(µ, ·)

)
(η) = 0 for all

w ∈ W0, which by (9.2) is equivalent to

η(wϕ∨)+
∑

α∈�0

α(wϕ∨) arctan

(
η(α∨)
kα

)

= 2πµ(wϕ∨)

for all w ∈ W0. Comparing to (9.1), the proof now follows from (2.3). ��
We thus need to analyze the extrema of the master function Sk(µ, ·) at a given weight

µ ∈ P . Observe that the Hessian Bkξ : V ∗ × V ∗ → R of Sk(µ, ·) at ξ ∈ V ∗ is
independent of µ, and is given explicitly by

Bkξ (η, η
′) = (

∂η∂η′Sk(µ, ·)
)
(ξ)

= 〈η, η′〉 + 1

2

∑

α∈�0

kα‖α‖2 η(α
∨)η′(α∨)

k2
α + ξ(α∨)2

, η, η′ ∈ V ∗. (9.3)

By the strict positivity of the multiplicity function k, it follows from (9.3) that the Hessian
Bkξ is positive definite for all ξ ∈ V ∗, hence Sk(µ, ·) is strictly convex. Furthermore, for
all µ ∈ P ,

Sk(µ, ξ) ≥ ‖ξ‖2

2
− 2π〈µ, ξ〉 → ∞, ‖ξ‖ → ∞,

hence Sk(µ, ·) has a unique extremum µ̂k ∈ V ∗, which is a global minimum. It now
follows from (9.2) that µ̂k (µ ∈ P ) is uniquely determined by the equation

µ̂k + σkµ̂k = 2πµ (9.4)

in V ∗, where σkλ ∈ V ∗ (λ ∈ V ∗) is defined by

σkλ =
∑

α∈�0

arctan

(
λ(α∨)
kα

)

α.

Combined with Lemma 9.1 it now follows that the map µ �→ iµ̂k is a bijection from
the weight lattice P onto BAEk . The W0-equivariance of this map is immediate from
the equivariance property

(
∂wξSk(wµ, ·)

)
(wη) = (

∂ξSk(µ, ·)
)
(η), ∀w ∈ W0

for ξ, η ∈ V ∗ and µ ∈ P . This completes the proof of Proposition 2.9.
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10. Moment Gaps

In this section we prove Proposition 2.10, which yields estimates for the location of the
deformed weight µ̂ = µ̂k compared to the parametrizing weightµ ∈ P . In view of (9.2)
and Lemma 9.1, the deformed weight µ̂ ∈ V ∗ (µ ∈ P ) is the unique solution of (9.4).

The following lemma establishes the necessary bounds for σkλ .

Lemma 10.1. For λ ∈ V ∗+,

0 ≤ σkλ (β
∨) ≤ hk

n
λ(β∨), ∀β ∈ �+

0

with hk = 2
∑

α∈�0
k−1
α .

Proof. Fixλ ∈ V ∗+ andβ ∈ �+
0 . Let�β0 be the set of rootsα ∈ �0 satisfyingα(β∨) > 0,

then

σkλ (β
∨) =

∑

α∈�β0

{

arctan

(
λ(α∨)
kα

)

− arctan

(
λ(sβα

∨)
kα

)}

α(β∨). (10.1)

Each term in this sum is positive, hence σkλ (β
∨) ≥ 0.

For the second inequality, we use the estimate for α ∈ �β0 ,

arctan

(
λ(α∨)
kα

)

− arctan

(
λ(sβ(α

∨))
kα

)

=
∫ λ(α∨)/kα

λ(sβ (α∨))/kα

dx

1 + x2 ≤ λ(β∨)β(α∨)
kα

,

leading to

σkλ (β
∨) ≤ λ(β∨)

∑

α∈�β0

β(α∨)α(β∨)
kα

= λ(β∨)
2

∑

α∈�0

β(α∨)α(β∨)
kα

(10.2)

in view of (10.1). Now note that

ξ �→
∑

α∈�0

k−1
α ξ(α∨)α

defines aW0-equivariant linear map V ∗ → V ∗. By Schur’s lemma it equals CkIdV ∗ for
some constant Ck ∈ C. To determine Ck explicitly we fix a basis {ej }nj=1 of V and we
denote {εj }nj=1 for the corresponding dual basis of V ∗. Then

Ckn =
n∑

j=1

∑

α∈�0

k−1
α εj (α

∨)α(ej ) = hk

with hk = 2
∑

α∈�0
k−1
α . Combined with (10.2) we obtain σkλ (β

∨) ≤ hk
n
λ(β∨). ��



222 E. Emsiz, E.M. Opdam, J.V. Stokman

Corollary 10.2. Let µ ∈ P . We have µ̂k ∈ V ∗+ if and only if µ ∈ P+.

Proof. Let µ ∈ P and suppose that µ̂k ∈ V ∗+. Then for all β ∈ �+
0 ,

2πµ(β∨) = µ̂k(β
∨)+ σkµ̂k (β

∨) ≥ 0

by Lemma 10.1, hence µ ∈ P+.
Conversely, suppose that µ ∈ P+ and let w ∈ W0 such that wµ̂k ∈ V ∗+. By Proposi-

tion 2.9 this implies ŵµk ∈ V ∗+. By the previous paragraph we conclude thatwµ ∈ P+.
On the other hand P+ ∩W0µ = {µ}, hence wµ = µ ∈ P+ and µ̂k = ŵµk ∈ V ∗+. ��

Proposition 2.10 is now a direct consequence of Corollary 10.2 and Lemma 10.1.

11. The Pauli Principle

In this section we complete the proof of Theorem 3.5 (and hence also of Theorem 2.6).
In view of Proposition 8.4 and Corollary 8.5 it suffices to show the following root system
analog of the Pauli principle.

Proposition 11.1. If λ ∈ BAEk is singular then E(λ)WQ = {0}.
For the proof of Proposition 11.1 we may assume without loss of generality that

λ ∈ BAEk is J -standard (in particular, λ ∈ iV ∗+). We write V ∗
J ⊆ V ∗ for the real

sub-space spanned by the subset J of simple roots. Its complement in V is defined by

V ⊥
J = {v ∈ V | ξ(v) = 0 ∀ ξ ∈ V ∗

J }.
Observe that V ⊥

J = V iff J = ∅ iff λ is regular.
Consider the linear map Kk

λ : V → V defined by

Kk
λ(v) = v +

∑

α∈�0

kαα(v)α
∨

k2
α − λ(α∨)2

, v ∈ V.

Lemma 11.2. Let λ ∈ iV ∗ be a singular J -standard solution of the Bethe ansatz equa-
tions (2.10). Then λ satisfies the constraint

π
(NJ−1)
λ

(Jkψkλ
) = π

(NJ−1)
λ

(
(∂ϕ∨ + kϕ)ψ

k
λ

)
(11.1)

iff Kk
λ(V ) ⊆ V ⊥

J .

Proof. Fix a singular J -standard solution λ ∈ iV ∗+ of the Bethe ansatz equations (2.10)
(in particular J �= ∅). By a similar computation as in the proof of Proposition 8.4 we
obtain from (7.3), Lemma 8.2 and Proposition 7.4,

π
(NJ−1)
λ

(
(∂ϕ∨ + kϕ)ψ

k
λ

) = CkJ

∑

u∈WJ
0

ck(uλ)
∑

β∈�J,+0

uβ(auλ)e
uλ

∏

α∈�J,+0 \{β}
uα,

π
(NJ−1)
λ

(Jkψλ
) = CkJ

∑

u∈WJ
0

ck(uλ)e
−uJ λ(ϕ∨)

∑

β∈�J,+0

uβ(buJ λ)e
uJ λ

∏

α∈�J,+0 \{β}
uJ uJ α
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with vectors aµ, bµ ∈ VC (µ ∈ V ∗
C

) given by

aµ = (µ(ϕ∨)+ kϕ)ρ
k
µ + ϕ∨,

bµ = (
µ(ϕ∨)− kϕ

)(
ρksϕµ + ϕ∨)− ϕ∨,

where we have used the involution onWJ
0 defined by (8.4), as well as (8.5). For u ∈ WJ

0
we have

∑

β∈�J,+0

uβ(buJ λ)
∏

α∈�J,+0 \{β}
uJ uJ α = (−1)l(uJ )






∑

β∈�J,+0

uβ(buJ λ)

uJ uJ β






∏

α∈�J,+0

uJα

= 1

2
(−1)l(uJ )






∑

β∈�J0

uu−1
J β(buJ λ)

uJ β






∏

α∈�J,+0

uJα

= (−1)l(uJ )
∑

β∈�J,+0

uu−1
J β(buJ λ)

∏

α∈�J,+0 \{β}
uJα.

Consequently (11.1) is equivalent to

ck(uλ)uβ(auλ) = (−1)l(uJ )ck(u
J λ)e−uλ(ϕ

∨)sϕuβ(buλ), ∀ u ∈ WJ
0 , ∀β ∈ �J,+0 .

Sinceλ is a solution of the Bethe ansatz equations (see (8.6) for the convenient equivalent
form of the Bethe ansatz equations) this is equivalent to

(
uλ(ϕ∨)− kϕ

)
auλ − (

uλ(ϕ∨)+ kϕ
)
sϕbuλ ∈ u(V ⊥

J ), ∀ u ∈ WJ
0 . (11.2)

Note that (11.2) only depends on the coset uW0,J (u ∈ WJ
0 ). Using the explicit expres-

sions for auλ and buλ we can rewrite (11.2) as

(
w−1ρkwλ−w−1sϕρ

k
sϕwλ

)+
(
wλ(ϕ∨)2 − k2

ϕ−2kϕ
wλ(ϕ)2 − k2

ϕ

)

w−1ϕ∨ ∈ V ⊥
J , ∀w∈W0.

(11.3)

We match (11.3) to the desired conditionKk
λ(V ) ⊆ V ⊥

J as follows. Since�0 is an irreduc-
ible root system in V ∗, the condition Kk

λ(V ) ⊆ V ⊥
J is equivalent to Kk

λ(w
−1ϕ∨) ∈ V ⊥

J
for all w ∈ W0, which in turn is equivalent to (11.3) if

Kk
λ(w

−1ϕ∨) = (
w−1ρkwλ − w−1sϕρ

k
sϕwλ

)+
(
wλ(ϕ∨)2 − k2

ϕ − 2kϕ
wλ(ϕ)2 − k2

ϕ

)

w−1ϕ∨

(11.4)

for all w ∈ W0. To prove (11.4) we first observe that

sϕρ
k
sϕwλ

= ρkwλ − 2
∑

α∈�+
0 ∩sϕ�−

0

kαα
∨

k2
α − wλ(α∨)2
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by the explicit expression (7.9) for ρkµ. Using (2.13) this can be rewritten as

w−1ρkwλ − w−1sϕρ
k
sϕwλ

= 2
kϕw

−1ϕ∨

wλ(ϕ∨)2 − k2
ϕ

+ 2
∑

α∈�+
0

kαα(ϕ
∨)w−1α∨

k2
α − wλ(α∨)2

.

The second term can be rewritten as

2
∑

α∈�+
0

kαα(ϕ
∨)w−1α∨

k2
α − wλ(α∨)2

=
∑

α∈�0

kαα(ϕ
∨)w−1α∨

k2
α − wλ(α∨)2

=
∑

α∈�0

kαα(w
−1ϕ∨)

k2
α − λ(α∨)2

= Kk
λ(w

−1ϕ∨)− w−1ϕ∨.

Combining the latter two formulas yields (11.4). ��
It follows from (9.3) that

Bk−iλ(ηv, ηv′) = 〈Kk
λ(v), v

′〉, v, v′ ∈ V

with ηv = 〈v, ·〉 ∈ V ∗ and Bk−iλ the Hessian of the master function Sk at −iλ ∈ V ∗.

SinceBk−iλ is positive definite,Kk
λ : V

∼−→ V is a linear isomorphism. Proposition 11.1
thus is an immediate consequence of Lemma 11.2.
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