ON THE CHEVALLEY-WARNING THEOREM WHEN THE DEGREE EQUALS THE NUMBER OF VARIABLES

HECTOR PASTEN

Abstract

Let f be a degree d polynomial in n variables defined over a finite field k of characteristic p and let N be the number of zeros of f in k^{n}. The Chevalley-Warning theorem asserts that if $d<n$ then N is divisible by p. In this note we show a version of the result for $d=n$.

1. Introduction

Let p be a prime, let $q=p^{s}$ for some integer $s \geq 1$, and let $k=\mathbb{F}_{q}$. Let us recall the classical Chevalley-Warning theorem [5, 13].

Theorem 1.1. Let $n \geq 2$. Let $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials of degrees $d_{j}=\operatorname{deg}\left(f_{j}\right) \geq 1$ for each $1 \leq j \leq r$ and let $d=d_{1}+\ldots+d_{r}$. Let Z be the set of common zeros of these polynomials in k^{n}. If $d<n$, then $\# Z \equiv 0 \bmod p$.

Several generalizations are available in the literature, see for instance [1, 2, ,3, 7, ,9, 11, 12, In this note we give an extension to the case $d=n$. More precisely, to the polynomials f_{1}, \ldots, f_{r} we attach a certain additive sub-monoid Δ of the natural numbers, and show that $\# Z \equiv 0 \bmod p$ provided that $q-1 \notin \Delta$. As we will see in Section 4, the hypothesis $q-1 \notin \Delta$ is optimal in some cases. We also discuss various conditions that imply the aforementioned hypothesis.

From a geometric point of view, the case $d=n$ naturally appears when one considers the k rational points of varieties with trivial canonical sheaf. Namely, if $X \subseteq \mathbb{P}^{n-1}$ is a smooth projective complete intersection variety defined over k by homogeneous polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{dim} X=n-1-r$, the condition that X has trivial canonical sheaf means $\operatorname{deg}\left(f_{1}\right)+\ldots+$ $\operatorname{deg}\left(f_{r}\right)=n$. See Exercise II.8.4(e) in $[8$ for details. In fact, the example that we discuss in Section 4 regarding optimality of the condition $q-1 \notin \Delta$ arises from an elliptic curve, and elliptic curves are precisely the curves with trivial canonical sheaf.

2. Notation

We write $\mathbb{N}=\{0,1,2, \ldots\}$. The support of $x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ is $\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{N}^{n}$. If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is homogeneous, its support is the set $\operatorname{supp}(f) \subseteq \mathbb{N}^{n}$ consisting of the support of each monomial appearing in f. If $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ are homogeneous, we let $\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)=\bigcup_{j=1}^{r} \operatorname{supp}\left(f_{j}\right)$.

The highest degree homogeneous part of a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is denoted by \widehat{f}. Given $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ (not necessarily homogenous) we define $\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)=\operatorname{supp}\left(\widehat{f}_{1}, \ldots, \widehat{f}_{r}\right)$.

If $S \subseteq \mathbb{N}^{n}$, let $\operatorname{Mon}(S) \subseteq \mathbb{N}^{n}$ be the monoid generated by S. For $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ let

$$
\Delta\left(f_{1}, \ldots, f_{r}\right)=\left\{m \in \mathbb{N}:(m, \ldots, m) \in \operatorname{Mon}\left(\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)\right)\right\}
$$

and observe that $\Delta\left(f_{1}, \ldots, f_{r}\right)$ is an additive sub-monoid of \mathbb{N}.
In the following examples we take $n \geq 2$.
Date: November 8, 2021.
2010 Mathematics Subject Classification. Primary 11T06; Secondary 05E14, 11G25.
This research was supported by ANID (ex CONICYT) FONDECYT Regular grant 1190442 from Chile.

Example 2.1. Let $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$. Suppose that the convex hull of $\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)$ in \mathbb{R}^{n} does not contain a vector of the form $(\lambda, \ldots, \lambda)$ for $\lambda \in \mathbb{R}_{>0}$. Then $\Delta\left(f_{1}, \ldots, f_{r}\right)=\{0\}$.

Example 2.2. Let $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials of degree $d_{j}=\operatorname{deg}\left(f_{j}\right)$ such that for each $1 \leq j \leq r$ we have $\widehat{f}_{j}=a_{j} x_{1}^{d_{j}}+h_{j}$ for certain $a_{j} \in k$ and $h_{j} \in k\left[x_{2}, \ldots, x_{n}\right]$. Then $\Delta\left(f_{1}, \ldots, f_{r}\right) \subseteq \delta \mathbb{N}$ where $\delta=\operatorname{gcd}\left(d_{1}, \ldots, d_{r}\right)$.
Example 2.3. For $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ let $\|m\|=\max _{i} m_{i}$, and for $S \subseteq \mathbb{N}^{n}$ let $\mu(S)=$ $\min _{m \in S}\|m\|$. Given $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ we define $\mu\left(f_{1}, \ldots, f_{r}\right)=\mu\left(\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)\right)$. Then we have $\Delta\left(f_{1}, \ldots, f_{r}\right) \cap\{0,1, \ldots, \mu-1\}=\{0\}$ where $\mu=\mu\left(f_{1}, \ldots, f_{r}\right)$.

3. Chevalley-Warning when $d=n$

Our main result is the following.
Theorem 3.1. Let $n \geq 2$. Let $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials of degrees $d_{j}=\operatorname{deg}\left(f_{j}\right) \geq 1$ for each $1 \leq j \leq r$, such that $d_{1}+\ldots+d_{r}=n$. Let Z be the set of common zeros of these polynomials in k^{n}. If $q-1 \notin \Delta\left(f_{1}, \ldots, f_{r}\right)$, then $\# Z \equiv 0 \bmod p$.

For other results related to the case $d=n$ in the Chevalley-Warning theorem, see 6].
Remark 3.2. In the setting of Theorem 3.1, if each f_{j} is homogeneous, we can consider the set $V \subseteq \mathbb{P}^{n-1}(k)$ of its common zeros defined over k in the $(n-1)$-dimensional projective space. Since the trivial zero belongs to Z, the conclusion $\# Z \equiv 0 \bmod p$ becomes $\# V \equiv 1 \bmod p$. In particular, V is non-empty.

For a function $g: k^{n} \rightarrow k$ we define $S_{n}(g)=\sum_{a \in k^{n}} g(a)$. In particular, this definition applies when g is a polynomial with coefficients in k. The following lemma is straightforward.

Lemma 3.3. Let $e \geq 0$. Consider the monomial $x^{e} \in k[x]$, with the convention that x^{0} is 1 . If $e<q-1$ then $S_{1}\left(x^{e}\right)=0$. On the other hand, $S_{1}\left(x^{q-1}\right)=-1$.

Proof of Theorem 3.1. We follow the strategy in Ax's proof of the Chevalley-Warning theorem [2].
Consider $F=\prod_{j=1}^{r}\left(1-f_{j}^{q-1}\right) \in k\left[x_{1}, \ldots, x_{n}\right]$. One readily checks that the function $F: k^{n} \rightarrow k$ defined by F is the characteristic function of Z with values in k. In particular, $S_{n}(F)=\# Z \bmod p$.

Notice that F is a k-linear combination of monomials of the form $x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ where $\sum_{i=1}^{n} e_{i} \leq$ $\operatorname{deg}(F)=(q-1) n$. Thus, $S_{n}(F)$ is a k-linear combination of terms of the form $S_{n}\left(x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}\right)$ with $\sum_{i=1}^{n} e_{i} \leq(q-1) n$. The assumption $q-1 \notin \Delta\left(f_{1}, \ldots, f_{r}\right)$ implies that the monomial $x_{1}^{q-1} \cdots x_{n}^{q-1}$ does not appear in F. By Lemma 3.3, $S_{n}\left(x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}\right)=\prod_{i=1}^{n} S_{1}\left(x^{e_{i}}\right)$ is non-zero only when $e_{i}=q-1$ for each i, but the term $S_{n}\left(x_{1}^{q-1} \cdots x_{n}^{q-1}\right)$ does not contribute to $S_{n}(F)$.

4. Optimality of the condition $q-1 \notin \Delta\left(f_{1}, \ldots, f_{r}\right)$.

Using the theory of elliptic curves, let us provide an example showing that the condition $q-1 \notin$ $\Delta\left(f_{1}, \ldots, f_{r}\right)$ in Theorem 3.1 is optimal in some cases.

Let p be a prime and let $f_{p}=x_{1}^{3}-x_{2}^{2} x_{3}+x_{3}^{3} \in \mathbb{F}_{p}\left[x_{1}, x_{2}, x_{3}\right]$. Let $V_{p} \subseteq \mathbb{P}^{2}\left(\mathbb{F}_{p}\right)$ be the set of zeros of f_{p} over \mathbb{F}_{p} in the projective plane. We have $\operatorname{supp}\left(f_{p}\right)=\{(3,0,0),(0,2,1),(0,0,3)\}$ and $\Delta\left(f_{p}\right)=6 \mathbb{N}$. Theorem 3.1 ensures that $\# V_{p} \equiv 1 \bmod p$ for each prime p with $6 \nmid p-1$, that is, for $p=3$ and $p \equiv 2 \bmod 3$ (cf. Remark 3.2). We claim that for all primes $p \equiv 1 \bmod 3$ we actually have $\# V_{p} \not \equiv 1 \bmod p$.

For $p \geq 5$ the equation $f_{p}=0$ defines an elliptic curve E_{p} over \mathbb{F}_{p}. Let $a_{p}=p+1-\# V_{p}$ as usual. Note that E_{p} is the reduction modulo p of the CM elliptic curve E with affine equation $y^{2}=x^{3}+1$ over \mathbb{Q}, for which it is known that $a_{p}=0$ if $p \equiv 2 \bmod 3$ and $a_{p} \neq 0$ for all primes $p \equiv 1 \bmod 3$
(see below). In the latter case, by Hasse's bound we see that in fact $p \nmid a_{p}$, for otherwise a_{p} would be a non-zero integer divisible by p with $\left|a_{p}\right|<2 \sqrt{p}$.

Therefore, for all primes $p \equiv 1 \bmod 3$ we have $\# V_{p} \not \equiv 1 \bmod p$, as claimed.
The fact that $a_{p} \neq 0$ for all primes $p \equiv 1 \bmod 3$ follows from a more precise classical result going back to Gauss and Jacobi: Every prime $p \equiv 1 \bmod 3$ can be written as $p=A_{p}^{2}+3 B_{p}^{2}$ with A_{p}, B_{p} integers satisfying $a_{p}=2 A_{p}$. More generally, see Theorem 4 in Ch. 18 of [10].

5. Some special cases

Corollary 5.1. Let $n \geq 2$. Let $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials of degrees $d_{j}=\operatorname{deg}\left(f_{j}\right) \geq 1$ for each $1 \leq j \leq r$, such that $d_{1}+\ldots+d_{r}=n$. Let Z be the set of common zeros of these polynomials in k^{n}. Suppose that at least one of the following conditions holds:
(i) The convex hull of $\operatorname{supp}\left(f_{1}, \ldots, f_{r}\right)$ in \mathbb{R}^{n} does not contain a vector of the form $(\lambda, \ldots, \lambda)$ for $\lambda \in \mathbb{R}_{>0}$.
(ii) For each $1 \leq j \leq r$ we have $\widehat{f}_{j}=a_{j} x_{1}^{d_{j}}+h_{j}$ for certain $a_{j} \in k$ and $h_{j} \in k\left[x_{2}, \ldots, x_{n}\right]$, and moreover $\delta=\operatorname{gcd}\left(d_{1}, \ldots, d_{r}\right)$ does not divide $q-1$.
(iii) $q \leq \mu\left(f_{1}, \ldots, f_{r}\right)$.

Then $\# Z \equiv 0 \bmod p$.
Proof. This is a direct consequence of Theorem 3.1 and the Examples 2.1, 2.2, and 2.3.
Remark 5.2. If (i) holds in Corollary 5.1 with $r=1$, then we obtain a result of Adolphson and Sperber (cf. the discussion after Corollary 2.9 in [1]).
Remark 5.3. The condition $\widehat{f}_{j}=a_{j} x_{1}^{d_{j}}+h_{j}$ in (ii) of Corollary 5.1 agrees with Cao's notion of isolated variable in [4].

Remark 5.4. The condition $\delta \nmid q-1$ in (ii) of Corollary 5.1 cannot be completely dropped. Indeed, consider $q=p \equiv-1 \bmod 4$ and $f=x_{1}^{2}+x_{2}^{2} \in \mathbb{F}_{p}\left[x_{1}, x_{2}\right]$. Then $\delta=2$ divides $p-1$, while $\# Z=1$. See also the example in Section 4 taking $\delta=3$.

Remark 5.5. In general, the inequality $q \leq \mu=\mu\left(f_{1}, \ldots, f_{r}\right)$ in (iii) of Corollary 5.1 cannot be relaxed. For instance, consider $q=p=3$ and $f=x_{1}^{2}+x_{2}^{2} \in \mathbb{F}_{p}\left[x_{1}, x_{2}\right]$ as in the previous remark. In this case $\mu=2$ and $q=3$, so that $q=\mu+1$, while $\# Z=1$.

6. Acknowledgments

This research was supported by ANID (ex CONICYT) FONDECYT Regular grant 1190442 from Chile.

References

[1] A. Adolphson, S. Sperber, p-adic estimates for exponential sums and the theorem of Chevalley-Warning. Ann. Sci. École. Norm. Sup. 20 (1987), p. 545-556.
[2] J. Ax, Zeros of polynomials over finite fields. Amer. J. Math. 86 (1964), p. 255-261.
[3] D. Brink, Chevalley's theorem with restricted variables. Combinatorica 31 (2011), 127-130.
[4] W. Cao, A partial improvement of the Ax-Katz theorem. J. Number Theory 132 (2012), no. 4, 485-494.
[5] C. Chevalley, Démonstration d'une hypothèse de M. Artin. Abh. Math. Sem. Univ. Hamburg 11 (1935), p. 73-75.
[6] P. Clark, T. Genao, F. Saia, Chevalley-Warning at the boundary. Expositiones Mathematicae. Available online 25 May 2021.
[7] H. Esnault, Varieties over a finite field with trivial Chow group of 0-cycles have a rational point. Invent. Math. 151 (2003), 187-191.
[8] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New YorkHeidelberg, 1977.
[9] D. R. Heath-Brown, On Chevalley-Warning theorems. Uspekhi Mat. Nauk 66 (2011), 223-232; translation in: Russian Math. Surveys 66 (2011), 427-436.
[10] K. Ireland, M. Rosen, A classical introduction to modern number theory. Second Edition, Grad. Texts in Math. 84, Springer, New York, 1990.
[11] N. M. Katz, On a theorem of Ax. Amer. J. Math. 93 (1971), p. 485-499.
[12] O. Moreno, C. Moreno, Improvements of the Chevalley-Warning and the Ax-Katz theorems. Amer. J. Math. 117 (1995), no. 1, 241-244.
[13] E. Warning, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Univ. Hamburg 11 (1935), p. 76-83.

Departamento de Matemáticas, Pontificia Universidad Católica de Chile. Facultad de Matemáticas, 4860 Av. Vicuña Mackenna, Macul, RM, Chile

Email address, H. Pasten: hpasten@gmail.com

